
HAL Id: hal-00068750
https://hal.science/hal-00068750v1

Submitted on 13 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Linearizing some recursive logic programs
Irène Guessarian, Jean-Eric Pin

To cite this version:
Irène Guessarian, Jean-Eric Pin. Linearizing some recursive logic programs. IEEE Transactions on
Knowledge and Data Engineering, 1995, 7, pp.137-149. �hal-00068750�

https://hal.science/hal-00068750v1
https://hal.archives-ouvertes.fr

Linearizing some recursive logic programs∗

Irène Guessarian†and Jean-Eric Pin‡

E-mail: guessarian@litp.ibp.fr,
JeanEric.Pin@frcl.bull.fr

Abstract

We give in this paper a sufficient condition under which the least fix-
point of the equation X = a + f(X)X equals the least fixpoint of the
equation X = a+ f(a)X. We then apply that condition to recursive logic
programs containing chain rules: we translate it into a sufficient condition
under which a recursive logic program containing n ≥ 2 recursive calls in
the bodies of the rules is equivalent to a linear program containing at most
one recursive call in the bodies of the rules. We conclude with a discus-
sion comparing our condition with the other approaches to linearization
studied in the literature.

1 Introduction.

We apply fixpoint techniques together with language theory tools to derive sim-
ple algorithms for answering some queries on recursive logic programs. We give
sufficient conditions on the query and the logic program which enable us to
find an iterative program, i.e. a program containing only right-linear recur-
sions, computing exactly the relevant facts needed to answer the query. The
method consists of first characterizing the semantics of the logic program us-
ing fixpoint theory tools, via algebraic or denotational methods. We compute
syntactically the least fixpoint of the logic program in a Herbrand model, then
interpret this least fixpoint in the actual domains. The syntactic expression
of the least fixpoint can be expressed in language theory terms, as a language
L(P), depending on the syntax of P . Then, using language theory tools, we give
sufficient conditions on P which ensure that L(P) will be a rational (or regular)
language. Hence, we can find an equivalent iterative (or right linear) program
P ′ such that L(P) = L(P ′), which will thus give the same answers to queries as
P . This program P ′ provides us with an efficient and easy algorithm to answer
queries on P. The present method applies to a popular class of programs called
chain Horn clauses; it can also be extended to programs allowing for the use
of aggregate functions provided that they are stratified and that the evaluation
algorithms preserve stratification. Linearization of recursive logic programs has
been extensively studied in recent deductive database research; we survey in the

∗Support from the PRC Mathématiques-Informatique is gratefully acknowledged.
†LITP/IBP, Université Paris VI et CNRS, Tour 55-65, 4 Place Jussieu, 75252 Paris Cedex

05, France
‡BULL, Recherche et Développement, Rue Jean Jaurès, 78340 Les Clayes-sous-Bois, France

1

last section the papers dealing with similar topics, and compare them with our
result.

A Datalog program P is a finite set of function-free Horn clauses, called
rules, of the form:

Q(X1, . . . , Xn)←− Q1(Y1,1, . . . , Y1,n1
), . . . , Qp(Yp,1, . . . , Yp,np

)

where X1, . . . , Xn are variables, the Yi,j ’s are either variables or constants, Q
is an intensional predicate, the Qi’s are either intensional database predicates
(i.e. relations defined by logical rules) or extensional database predicates (i.e.
relations explicitly stored in the database). We will in the sequel use the usual
abbreviations IDB (resp. EDB) standing for intensional data base (resp. ex-
tensional data base). The set of all extensional database predicates is denoted
by D. A database d over D maps every extensional database predicate onto a
relation. In practice, we use the same notation for the EDB predicate Q and its
associated relation (which should be denoted d(Q)).

A chain-rule is a rule of the form:

Q(X1, X2)←− Q1(X1, Y1), Q2(Y1, Y2), . . . , Qp(Yp−1, X2)

A chain program is a Datalog program containing only chain rules. Two EDB
predicates Qi and Qj commute (for a given database), if Qi ◦Qj = Qj ◦Qi, i.e.,

Qi ◦Qj = {(X, Y) | ∃Z Qi(X, Z) ∧Qj(Z, Y)}

= {(X, Y) | ∃Z Qj(X, Z) ∧Qi(Z, Y)} = Qj ◦Qi

Example 1.1 Examples of commuting relations are the following:

(1) A database where all EDB predicates are of the form An, for a given
relation A, since for all i, j, Ai ◦Aj = Aj ◦Ai.

(2) A database on the domain N of the integers, together with

A1 = {(n, p) | there exists k p = kn} = {(n, p) | n divides p}

A2 = {(n, p) | there exists k p = k2n} = {(n, p) | 2n divides p}

Then:
A1 ◦A2 = A2 ◦A1 = A2

A standard way of answering queries concerning Q would be, for instance by
considering Q as a recursive procedure, to compute the relation Q and the
course of the computation will involve several recursive calls. This process can
be improved in the present case; using language theory tools we show that
a chain program P on a database on which the EDB predicate commute is
equivalent to a Datalog program P ′ containing only right linear recursions, i.e.
a program all of whose rules are of one of the following forms:

Q(X1, X2)←− A1(Y1, Y
′
1), A2(Y2, Y

′
2), . . . , Ap−1(Yp−1, Y

′
p−1), Q(Y ′

p−1, X2)

Q(X1, X2)←− A1(Y1, Y
′
1), A2(Y2, Y

′
2), . . . , Ap−1(Yp−1, Y

′
p−1), Ap(Y

′
p−1, X2)

where all the Ai’s are EDB predicates.
To this end we first give a new sufficient condition for a certain type of

context-free language to be rational (or regular). We then translate it into a

2

sufficient condition under which a recursive logic program containing n ≥ 2
recursive calls in the bodies of the rules is equivalent to a right linear program.
The main difference between our approach and the previously studied cases of
linearizations consists in the following facts:

(a) We linearize only chain rule programs.

(b) We can linearize directly programs containing an arbitrary number of
recursive calls, versus the usually considered bilinear programs.

(c) Our linearization condition can be easily checked. See also the discussion
at the end of the paper.

The paper is organized as follows: in the next section, we prove the language
theory result, in Section 3 we apply this result to chain rule programs, and in
the last section we conclude with a discussion of related literature.

2 Rational functions and least fixpoints

In this section, we introduce the language theoretic tools needed in this paper.
The reader interested only in databases may omit the proofs and concentrate
on the examples. Our purpose is to give an abstract model of the following
situation. Let U be a set and let E be the set of relations on U . Then E is
naturally equipped with the inclusion ordering: given two relations R and S
on U , R ⊂ S if and only if, for every (x, y) ∈ U × U , R(x, y) implies S(x, y).
Now, the least upper bound is simply union and the largest lower bound is
intersection. Another natural operation on E is the composition of relations
(denoted by ◦, or to simplify notations, by just concatenation). Observe that,
for all relations R, S, T on U ,

(R ∪ S) ◦ T = (R ◦ T) ∪ (S ◦ T) and R ◦ (S ∪ T) = (R ◦ S) ∪ (R ◦ T)

Denote by R∗ the reflexive transitive closure of R.

R∗ = I ∪ R ∪ R ◦R ∪ R ◦R ◦R ∪ . . .

We now give our formal model. Let E be a complete lattice together with a
composition operation denoted multiplicatively. The ordering will be denoted
≤, the least upper bound +, the bottom of the lattice by 0. We assume that E,
equipped with this addition and multiplication, is a complete semiring, that is,
it satisfies the following properties:

(1) (ab)c = a(bc) for every a, b, c ∈ E,

(2) there exists an element 1 ∈ E such that, for every a ∈ E, a1 = 1a = a,

(3) 0a = a0 = 0 for every a ∈ E,

(4) (
∑

i∈I

ai)b =
∑

i∈I

aib for any family (ai)i∈I .

It follows in particular that, for every a, b, c ∈ E, a ≤ b implies ac ≤ bc and
ca ≤ cb. Note that 1 is not, in general, the top of the lattice E.

A complete subsemiring of E is a subset F of E containing 0 and 1 and
closed under product and arbitrary sums (that is, if a, b ∈ F then ab ∈ F , and
for any family (ai)i∈I of elements of F ,

∑

i∈I ai ∈ F). If a ∈ E, we set a0 = 1,
an+1 = ana for every n ≥ 0, a+ =

∑

n>0
an and a∗ =

∑

n≥0
an. A semiring is

said to be commutative if in addition:

3

(5) ab = ba for every a, b ∈ E.

We recall the following standard result (Arden rule, see [12]):

Lemma 2.1 Let a, b ∈ E. Then the least solution of the equation X = a + bX
is b∗a.

It is instructive to translate this lemma in the terminology of relations. Let
A and B be two relations on U . Then the least relation satisfying X = A∪B◦X
is B∗ ◦A.

The next proposition extends Lemma 2.1 to a more general situation. Under
certain assumptions, it gives the least fixpoint of an equation of the form X =
a + f(X)X , where f is a monotone function.

Proposition 2.2 Let f : E → E be a monotone function, let a ∈ E, and
suppose that

(i) af(a) = f(a)a

(ii) g(f(a)∗a) = f(a)∗g(a), where g(X) = f(X)X

Then the least fixpoint of the equation X = a + f(X)X is af(a)∗.

Proof. Let X0 be a solution of the equation X = a + f(X)X . Then X0 is also
a solution of

X = a + f(X0)X (1)

whence X0 ≥ f(X0)
∗a which is the least solution of (1). Moreover, X0 =

a + f(X0)X0 implies X0 ≥ a, and since f is monotone, f(X0) ≥ f(a), whence
f(X0)

∗ ≥ f(a)∗, and X0 ≥ f(X0)
∗a ≥ f(a)∗a = af(a)∗ by (i).

Let us check that af(a)∗ is a solution of the equation X = a + f(X)X :

a + g(f(a)∗a) = a + f(a)∗g(a) (by (ii))

= a + f(a)∗f(a)a = a + f(a)+a = f(a)∗a.

Proposition 2.2 is powerful, but conditions (i) and (ii) may be difficult to verify
in practice. A more usable form is given below (Propositions 2.3 and 2.4), but
requires some auxiliary definitions.

The set R(E) of rational functions from E into E is the smallest set R of
functions such that

(1) R contains the identity function and the constant functions,

(2) if h1 ∈ R and h2 ∈ R then h1 + h2 ∈ R and h1h2 ∈ R,

(3) if h ∈ R, then h∗ ∈ R, where h∗(x) = h(x)∗

The set of polynomial functions is the smallest set of functions R satisfying
conditions (1) and (2) above.

Rational functions are usually represented by rational expressions. Rational
expressions on E are recursively defined as follows:

(1) for every variable x over E, x is a rational expression, and for every e ∈ E,
e is a rational expression,

(2) if h1 and h2 are rational expressions, then (h1 +h2) and h1h2 are rational
expressions,

(3) if h is a rational expression, then h∗ is a rational expression.

4

For instance, if e1, e2, e3 are elements of E, then (e1xe1e2x)∗e2+((e1xe3)
∗+e2)

∗

is a rational expression. To pass from rational expressions to rational functions,
it suffices to interpret x as the identity function and, for every e ∈ E, e as the
constant function that maps every element of E onto e.

For instance, if e1, e2, e3, e4 are elements of E, then the rational expression
xe3xe2e4 + e1xe1e2xxe1e2xe3 denotes the function h defined by

h(x) = xe3xe2e4 + e1xe1e2xxe1e2xe3

which is a polynomial function.
Note that different rational expressions may represent the same function.

For instance, if e1, e2 and e3 are elements of E such that e3 = e1e2, then e1e2

and e3 represent the same constant function, that maps every element of E onto
e1e2 = e3.

The elements of E occurring in a rational expression are the coefficients of
the expression. For instance, the coefficients of the expression (e1xe1e2x)∗e2 +
((e1xe3)

∗ + e2)
∗ are e1, e2 and e3. We are now ready to state our particular

instances of Proposition 2.2, the proofs of which are deferred to the appendix.

Proposition 2.3 Let f : E −→ E be a monotone function and let a ∈ E.
Suppose there exists a commutative complete subsemiring F of E, containing
a, such that f induces a rational function from F into F . Then the least fixed
point of the equation X = a + f(X)X is af(a)∗.

Remark 2.1 Let E be the set of relations on U . Proposition 2.3 applies in
particular if f is a polynomial (or more generally rational) function given by a
rational expression all of which coefficients commute and commute with a (but
they don’t need to commute with every element of E). Indeed, one can take
for F the complete subsemiring generated by the coefficients and by a. Thus,
in this case, the least fixpoint of X = a + f(X)X is af(a)∗. The equation
X = a + f(X)X is thus equivalent to the right-linear iteration X = a + f(a)X .

More generally, we have the following result:

Proposition 2.4 Let

P :







X1 = g1(X1, . . . , Xn)
. . .

Xn = gn(X1, . . . , Xn)

be a system of recursive equations where each equation Xi = gi(X1, . . . , Xn) can
be written in the form:

Xi = ai(X1, . . . , Xi−1, Xi+1, . . . , Xn) + fi(X1, . . . , Xn)Xi,

where ai and fi are rational functions given by rational expressions all of whose
coefficients commute. Then the least fixpoint of P is a rational function which
can be computed by a right linear iteration.

3 Applications to recursive logic programs

We now apply the results of the previous section to Datalog programs.

5

3.1 Preliminary results

We recall first the fundamentals of the semantics of Datalog programs. Let P
be a Datalog program,

P :







Q1(X, Y) ← Q1
1(X, X1), . . . , Q

1
n1

(Xn1−1, Y)
. . .

Qp(X, Y) ← Qp
1(X, X1), . . . , Q

p
np

(Xnp−1, Y)

Formally, a database is a map that associates a ground atomic formula (or fact)
for each EDB predicate. It is generally identified with a finite set D of ground
atomic formulas. For each database D, let TP (D) be the set of immediate
consequences of D using P , i.e., the set of facts which can be deduced from D
using one rule in P ; let T 0

P (D) = ∅, and, for i ≥ 1, let T i
P (D) = TP (T i−1

P (D))
be the i-th power of TP (D). Define

T∞
P (D) =

⋃

i≥0

T i
P (D)

and let QP (D) be the consequences about predicate Q in TP (D).
Similarly, let Q∞

P (D) (resp. Qi
P (D)) be the set of facts about predicate Q

which can be deduced from D by (resp. at most i) applications of the rules in P .
Recall first [5] that the IDB predicates defined by the Datalog program P can
be equivalently defined by an infinite union of conjunctive queries (CQP,j)j≥0,
that is, for every database D, Q∞

P (D) =
⋃

j≥0
CQP,j(D). The CQP,j ’s are called

the Q-expansions of P .
Assuming a Herbrand domain containing a denumerable set of constants,

the CQP,j ’s can be computed as the least fixpoint of a variant T ′ of the operator
of immediate consequences defined by

I = (Q1, . . . , Qp)←− I ′ = TP ((Q1, . . . , Qp) ∪ (R1, . . . , Rn))

where (Q1, . . . , Qp) (resp. (R1, . . . , Rn)) is a finite set of relations defining the
IDB predicates (resp. the EDB predicates). Then, letting for every Q ∈ IDB,

C0
QP (X, Y) = ∅

C1
QP (X, Y) = { C | Q(X, Y)←− C is a non recursive rule of P and

C ⊆ T 0
P (D)}

...

Cn
QP (X, Y) = { C(Qi ←− Cn−1

QiP
) | Q(X, Y)←− C is a (possibly recursive) rule

of P and C ⊆ T n−1

P (D)}

where C(Qi ←− Cn−1

QiP
) denotes the result of substituting Cn−1

QiP
for Qi, i =

1, . . . , p in C, we have

⋃

j≥0

CQP,j(D) =
⋃

n≥0

Cn
QP = Q∞

P (D).

Then
T∞

P (D) =
⋃

Q∈IDB

∪i≥0CQP,i(D) =
⋃

Q∈IDB

∪n≥0C
n
QP

6

For P a Datalog program, we will consider its semantics as being defined
by the least fixpoint µP of T ′. Thus µP =

⋃

Q∈IDB ∪n≥0C
n
QP . It can be

shown that µP can be defined also by µP : D → sup{T n
P (D) | n ∈ N} in the

Herbrand universe, where TP is the immediate consequence operator. For an
IDB predicate Q of P , the semantics of Q are the set of facts about Q in µP ,
i.e. ∪n≥0C

n
QP .

Definition 3.1 Two Datalog programs P and P ′ are said to be equivalent if
µP = µP ′, and this is equivalent to saying that for all D, T∞

P (D) = T∞
P ′ (D).

Assuming Q is binary, and letting Q(?, ?) (resp. Q(X0, ?)) be a query, the
answers to the query are all the substitutions ν : {x, y} −→ D (resp. ν : {y} −→
D) such that Q(ν(x), ν(y)) (resp. Q(X0, ν(y)) is in µP .

For more details about the semantics of logic programs, and query answering
methods, the reader can refer to [2, 11].

A Datalog rule:

Q(X1, . . . , Xn)←− Q1(Y1,1, . . . , Y1,n1
), . . . , Qp(Yp,1, . . . , Yp,np

) (2)

is said to be linear1 (resp. right linear, left linear) if and only if at most one of
the Qi’s (resp. at most Qp, Q1) is an IDB predicate, all other Qj ’s in the body
of (2) being EDB predicates.

A Datalog program is said to be linearizable (resp. right linearizable, left
linearizable) if it is equivalent to a Datalog program consisting only of linear
(resp. right linear, left linear) rules.

Recall finally that the trace language of P on a database D is obtained by
erasing variables from the predicate conjunctions of µP , and considering only
the predicate symbols. More precisely, the trace language of P relative to Q is
generated by the context free grammar LP deduced from P by

(a) considering as terminal (resp. non terminal) symbols the EDB (resp. IDB)
predicate symbols of P , together with Q as axiom (or start symbol),

(b) erasing variables,

(c) reversing arrows.

Example 3.1 For instance if P is given by

P :

{

Q(X, Y) ← A(X, Y)
Q(X, Y) ← B(X, Z), Q(Z, Z ′), C(Z ′, Y)

then LP is given by
Q −→ A + BQC

and the trace language of P relative to Q is {BnACn | n ≥ 0}.

If moreover A, B and C commute, then the trace on D can be represented
by the regular language A(BC)∗.

1Our definition is slightly more restrictive than if we would have defined linearity with
respect to recursive predicates only. A rule with multiple IDB predicates can still be considered
as linear if there is at most one of the Qi’s which is an IDB predicate mutually recursive with
the head of the rule Q, the other Qi’s being either non recursive IDB’s or EDB’s. However,
since non recursive predicates can be easily deleted from the program, we can, without loss
of generality, restrict ourselves to our definition which simplifies the formulation.

7

Lemma 3.1 Let P and P ′ be chain programs involving the same IDB predi-
cates. Then P and P ′ are equivalent if and only if their traces relative to all
IDB predicates coincide on all databases.

Proof. This is due to the fact that any Q-expansion of Q(X, Y) in a chain pro-
gram is a chain, and such a chain is characterized by the sequence of predicates
symbols occurring in it. In other words, variables can be omitted without ambi-
guity when writing such a chain [19], which is fully represented by the associated
term in the trace.

Lemma 3.1 is false if the program is not a chain program. For instance
the Datalog programs P : Q(X, Y) ← A(X), B(Y) and P ′ : Q(X, Y) ←
A(Y), B(X) have the same traces but are not equivalent.

We now consider chain programs of the form

P :







Q1(X, Y) ← Q1
1(X, X1), . . . , Q

1
n1

(Xn1−1, Y)
. . .

Qp(X, Y) ← Qp
1(X, X1), . . . , Q

p
np

(Xnp−1, Y)

in which all EDB predicates commute on a database D. We first show that this
condition also implies that IDB predicates commute.

Lemma 3.2 If all EDB predicates commute on a database D, then all the IDB
predicates commute, and they also commute with the EDB predicates.

Proof. By induction on the fixpoint computation of µP , we can see that each
IDB predicate can be expressed as a union of conjunctive queries containing
only EDB predicates. Since all EDB predicates commute, the IDB predicates
will also commute with the EDB predicates and among themselves.

We can now state

Proposition 3.3 Let

P :







Q1(X, Y) ← Q1
1(X, X1), . . . , Q

1
n1

(Xn1−1, Y)
. . .

Qp(X, Y) ← Qp
1(X, X1), . . . , Q

p
np

(Xnp−1, Y)

be a chain program in which all EDB predicates commute on a Database D.
Then:

(1) P is right linearizable,

(2) the traces of P on D are regular languages.

Proof. By Lemma 3.1, chain programs are equivalent if and only if their traces
relative to all EDB coincide and thus (2) is a consequence of (1).

To prove (1), notice first that by Lemma 3.2, the IDB predicates also com-
mute (with both EDB and other IDB predicates). Each rule of P can then be
written in one of the two forms: Qi ← Qi

1◦. . .◦Q
i
ni

(resp. Qi ← Qi
1◦. . .◦Q

i
ni
◦Qi)

where the Qi
k’s are EDB and IDB predicates different from Qi (resp. arbitrary

EDB and IDB predicates).

8

Grouping together all clauses with head Qi, we obtain a single equation
defining Qi and having the following form:

Qi ← ai(Q1, . . . , Qi−1, Qi+1, . . . , Qp) + fi(Q1, . . . , Qp) ◦Qi

where + stands for the set theoretic union or the disjunction ∨), the ai’s (resp.
fi’s) are polynomials of the EDB predicates and the Qj ’s (j 6= i) (resp. of the
EDB predicates and the Qj ’s), and all predicates of ai (resp. fi) commute.2

Then, by Proposition 2.4, P is equivalent to a program P ′ of the form:

P ′ : Qi = a′
i + f ′

i ◦Qi (3)

where a′
i and f ′

i are polynomials of the EDB predicates only.

The conditions on P which we consider for the ease of its application, are
stronger than really needed and are not necessary (see Example 3.3). It would
suffice to demand that the conditions (i) and (ii) of Proposition 2.2 be satis-
fied. But these conditions would be more difficult to check than commutativity.
Commutativity then trivially implies that the conditions (i) and (ii) are satis-
fied. Commutativity can be checked in each case like in Example 1.1. On the
other hand, one can give sufficient conditions for the commutativity of EDB
predicates that are very easy to check. For instance, predicates modelling func-
tions which modify disjoint sets of attributes will commute (see Example 3.5).
See also Examples 3.2 and 3.3.

Example 3.2 Let P be the recursive logic program

P :

{

Anc(x, y) ← Par(x, y)
Anc(x, y) ← Anc(x, z), Anc(z, y).

(4)

P is the archetype of recursive logic programs and it corresponds to the com-
putation of the transitive closure of a relation. P is associated with the single
equation:

Anc = Par + Anc ◦Anc,

i.e. X = Par + X ◦ X . In the present case, there is a single EDB predicate
Par, and all conditions are trivially verified. Commutativity is true since Par
commutes with itself, and conditions (i) and (ii) of Proposition 2.2 are also
trivial. With the notations of Proposition 2.2, E is the set of relations on a
set U , the product is the composition of relations, a = Par, and f(X) = X ,
hence conditions (i) and (ii) reduce to (i) Par ◦ Par = Par ◦ Par, and (ii)
(Par∗ ◦ Par) ◦ Par = Par∗ ◦ (Par ◦ Par).

By Propositions 2.2 and 3.3, the leastfixpoint µP of (4) is

Par ◦ f(Par)∗ = Par ◦ Par∗

whence Anc = Par ◦ Par∗ = Par+ = Par + Par2 + Par3 + Thus Anc
coincides with the least fixpoint of

P ′ : X = Par + Par ◦X

2Note that Qi may occur several times in fi(Q1, . . . ,Qp). The above equation is thus
multilinear, as opposed to the usual techniques, which linearize only bilinear equations, where
Qi may occur only twice in the body of the equation, and hence only once in fi(Q1, . . . , Qp).

9

which is a right linear iterative program for answering queries of the form
Anc(?, ?).

Example 3.3 Consider the program:

P :

{

Q(X, Y) ←− A1(X, Y1), Q(Y1, Y2), A2(Y2, Y3), Q(Y3, Y)
Q(X, Y) ←− B(X, Y)

(5)

that we rewrite, according to our notations, into:

Q = A1 ◦Q ◦A2 ◦Q + B

In the present case, there are three EDB predicates B, A1 and A2, commuta-
tivity of B, A1 and A2 could still be reasonably easily satisfied (even though it
is not necessary, cf. Example 4.1). Conditions (i) and (ii) of Proposition 2.2,
however, are no longer trivial. We have now a = B and f(X) = A1 ◦X ◦ A2,
hence f(a) = A1 ◦B ◦A2, g(a) = A1 ◦B ◦A2 ◦B, f(a)∗a = (A1 ◦B ◦A2)

∗ ◦B
and conditions (i) and (ii) thus translate into:

(i) B ◦A1 ◦B ◦A2 = A1 ◦B ◦A2 ◦B,

(ii) A1◦(A1◦B◦A2)
∗◦B◦A2◦(A1◦B◦A2)

∗◦B = (A1◦B◦A2)
∗◦A1◦B◦A2◦B.

These two conditions are certainly weaker than commutativity, but a lot more
tedious to check; they are of course implied by commutativity, which is much
easier to check. [14] and [19] also gave necessary and sufficient conditions (see
Example 4.1) for linearization which may be even more tedious to check. This
was the reason for restricting ourselves to commutativity.

When B, A1 and A2 commute, the linear program for answering queries of
the form Q(?, ?) is given by:

P ′ : Q = B + A1 ◦B ◦A2 ◦Q

The above Proposition 3.3 states that for a program P satisfying its hypotheses,
recursion can be replaced by iteration in P . This result has some interesting
consequences which we will state in Corollary 3.4. We first give the idea of
the method we use: in order to evaluate queries on IDB predicates efficiently,
we use the technique of “pushing selections into relations” and to this end we
substitute set-valued functions for relations; we thus transform a logic program
into a “functional” program (with relational functions returning sets, or even
multisets when we will want to deal with aggregation). To every binary predicate
or relation Q(X, Y) we will associate two functions, q1 and q2: q1 will correspond
to queries on the first column of Q, i.e. queries of the form Q(?, Y) or select
X from Q, and q2 will correspond to queries on the second column of Q, i.e.
queries of the form Q(X, ?) or select Y from Q. The relations will be denoted by
upper case letters and the associated relational functions by the corresponding
lower case letters together with indices.

Definition 3.2 Let Q(X, Y) be an EDB or IDB predicate or relation, with X
ranging over D1 and Y ranging over D2. Let P(Di) be the powerset of Di for
i = 1, 2. Define

q1 : P(D2) −→ P(D1) by q1(Y) = Q(?, Y) = {x | Q(x, y) for some y ∈ Y }

q2 : P(D1) −→ P(D2) by q2(X) = Q(X, ?) = {y | Q(x, y) for some x ∈ X}

10

The operation +, ◦ and ∗ that are defined for relations can also be defined for
relational functions as follows:

(1) the union of two sets resulting from a function evaluation is denoted by
+; hence f(X + X ′) = f(X) + f(X ′),

(2) the sum of two functions having the same domain is defined by (f +
g)(X) = f(X) + g(X),

(3) the composition of f and g is possible provided that the image domain of g
is contained in the definition domain of f , and it is defined by (f ◦g)(X) =
f(g(X)),

(4) the star iterate of f is defined as soon as the image domain of f is equal
to the definition domain of f , and it is defined by f∗(X) = X + f(X) +
· · ·+ fn(X) + · · · , where fn = f ◦ f ◦ · · · ◦ f is f composed with itself n
times.

Example 3.4 For instance if P is given, as in Example 3.1 by

P :

{

Q(X, Y) ← A(X, Y)
Q(X, Y) ← B(X, Z), Q(Z, Z ′), C(Z ′, Y)

then P translates into the following relational functions

(i) for queries of the form Q(?, Y) on the first column, q1 = a1 + b1 ◦ q1 ◦ c1,

(ii) for queries of the form Q(X, ?) on the second column, q2 = a2 +c2 ◦q2 ◦b2,

due to the commutativity hypotheses (cf. Lemma 3.2), these equations can be
rewritten as

q1 = a1 + b1 ◦ c1 ◦ q1

q2 = a2 + b2 ◦ c2 ◦ q2

Note that q1 and q2 could even be defined to operate on multisets instead of
sets; this fact will be used when dealing with aggregation.

3.2 Applications

We now apply Proposition 3.3 to queries.

Corollary 3.4 Answers to queries of the form Q(?, ?), or Q(X0, ?), or Q(?, Y0)
in a recursive program P satisfying the hypotheses of Proposition 3.3 can be
computed by right linear iterations.

Proof. Since the semantics of P is equal to the semantics of P ′, it can be
described by regular languages. Thus the semantics of an IDB predicate Q of
P is directly given by the semantics of Q in P ′. The answers to a query of the
form Q(?, ?) are thus given by the facts about Q generated by the right linear
iteration P ′.

For queries of the form Qi(?, Y0), their answers are given by qi,1(Y0) =
Qi(?, Y0) = {x | Qi(x, y), for some y ∈ Y0}. Then if P ′ is given by the equation

P ′ : Qi = a′
i(R

1
i , . . . , R

ni

i) + f ′
i(R

1
i , . . . , R

ni

i) ◦Qi

11

the translation of P ′ in terms of relational functions is the same right linear
iteration where the upper case relation symbols Rj

i ’s have been replaced by the

corresponding lower case function symbols rj
i,1’s, i.e.,

qi,1 = a′
i(r

1
i,1, . . . , r

ni

i,1) + f ′
i(r

1
i,1, . . . , r

ni

i,1) ◦ (qi,1)

and hence the answers qi,1(Y0) to the query Qi(?, Y0) are given by:

qi,1(Y0) = a′
i(r

1
i,1, . . . , r

ni

i,1)(Y0) + f ′
i(r

1
i,1, . . . , r

ni

i,1)(qi,1(Y0))

which can be viewed as a right linear iteration in qi,1(Y0).
For queries of the form Qi(X0, ?), similarly, their answers are given by

qi,2(X0) = Qi(X0, ?) = {y | Qi(x, y) for some x ∈ X0}, which would natu-
rally correspond to a left linear iteration (cf. Example 3.4). However, by the
commutativity hypothesis, the rules of the program P ′ can be written in the
form:

Qi = a′
i(R

1
i , . . . , R

ni

i) + Qi ◦ f ′
i(R

1
i , . . . , R

ni

i).

We thus obtain that qi,2 is defined by the right linear iteration:

qi,2 = a′
i(r

1
i,2, . . . , r

ni

i,2) + f ′
i(r

1
i2, . . . , r

ni

i,2) ◦ qi,2

Note that we use the commutativity hypothesis a second time, because otherwise
we would obtain the EDB predicates in the monomials of f ′

i in the reverse order
(cf. Example 3.4). Finally

qi,2(X0) = a′
i(r

1
i,2, . . . , r

ni

i,2)(X0) + f ′
i(r

1
i2, . . . , r

ni

i,2)(qi,2(X0))

Corollary 3.5 Let P be a recursive logic program satisfying the hypotheses of
Proposition 3.3, then boundedness is decidable for P .

Proof. P is bounded if and only if all its trace languages are finite [4, 6].
Here the trace languages are regular, and finiteness is decidable for regular
languages.

Example 3.5 Consider a database D representing moves on a map, and having
as EDB predicates E, W, S, N , where E(x, y) holds if and only if y is one distance
unit East from x, W (x, y) holds if and only if y is one distance unit West from
x, etc. Clearly E, W, S, N all commute pairwise. Let P be the recursive logic
program representing some moves on that database and defined by:

P







M(x, y) ← S(x, z), W (z, y)
M(x, y) ← W (x, z), M(z, u), S(u, y)
M(x, y) ← W (x, z), M(z, u), M(u, v), M(v, w), S(w, y).

P is associated with the single equation:

M = S ◦W + W ◦ S ◦M + W ◦ S ◦M ◦M ◦M,

i.e. X = S ◦W + (W ◦ S + W ◦ S ◦X ◦X) ◦X .
By Propositions 2.2 and 3.3, its least fixpoint or least Herbrand model µP

is
SW.f(WS)∗ = SW.

(

WS + (WS)3
)∗

= SW.(SW)∗

12

whence M = SW.(SW)∗ = (SW)+ = SW + (SW)2 + (SW)3 + Thus M
coincides with the least model of

P ′ : X = SW + (SW)X.

P ′ provides a right linear iterative program for answering queries of the form
M(?, ?).

This result can be generalized to chain rule programs containing not only
Horn clause rules, but also aggregate functions, provided that the program be
properly stratified, so that there is no ”aggregation through recursion”. More
precisely, the clauses of P should be decomposable into a disjoint union P =
P1 ∪ · · · ∪ Pn such that the following conditions are satisfied:

(1) for every clause Qi ← A1 ◦ · · · ◦Ani
of Pj , the IDB predicates Q1, . . . , Qp

which occur in the body of the rules defining Qi are defined in the Pk’s ,
k ≤ j. (i.e. these IDB predicates shall not occur in the head of a clause
in a Pk, k > j).

(2) all clauses involving an aggregate function h are of the form:

Q1(x, e)← A1(x, x1), A2(x1, x2), . . . , Ani
(xni−1, xni

)h(〈xni
〉, e)

where h : P(D) → D′ is a functional relation taking as argument the set
(or multiset) Xni

= {xni
| A1(x, x1) ∧ A2(x1, x2) ∧ · · · ∧ Ani

(xni−1, xni
)}

and returning an element e. We will write 〈xni
〉 to denote aggregation on

the variable xni
.

For instance h = count will be defined as follows: count(〈y〉, e) will hold
if and only if the multiset 〈y〉 has e elements, ave(〈y〉, m) will hold if and
only if m is the average of the elements of the multiset 〈y〉.

(3) for all clauses of the stratum Pi of the form

Qi(x, e)← A1(x, x1), . . . , Ani
(xni−1, xni

)h(xni
, e)

i.e. containing aggregate functions, all the predicates A1, . . . , Ani
have

been previously defined in the strata Pk, k < i.

(4) in each stratum Pi,

– either all the EDB predicates present in the strata Pk, k ≤ i and IDB
predicates which have been defined in the strata Pk, k < i, commute

– or there is only linear recursion in stratum Pi.

If P is a recursive logic program satisfying the conditions (1) to (4) above,
then a minimal Herbrand model mP of P can be obtained by a computation
respecting the strata. P1 contains neither negation nor aggregates, hence mP1 =
µP1 is the ordinary least Herbrand model. Assuming mPi is a minimal Herbrand
model of P1 ∪ . . . ∪ Pi, consider all the IDB predicates computed in mPi as
extensional, then they can be aggregated in Pi+1. Define then mPi+1 = µPi+1

(cf. [3] for the case with negations). An example of such a situation is studied
below.

13

Example 3.6 [10] The average number of children of the descendants of X0 is
given by the query avc(X0, ?), on the program P = P1 ∪ P2 ∪ P3 defined by:

P1 :

{

P2 :
P3 :

Anc(x, y) = Par(x, y) + Anc(x, z), Anc(z, y) (7)
ch(x, e) = Par(x, y), count(〈y〉, e) (8)

chd(x, e) = Anc(x, y), ch(y, e) (9)
avc(x, m) = chd(x, e), ave(〈e〉, m) (10)

where in (8) 〈y〉 is the aggregate of the multiset of y’s such that Par(x, y),

count(〈y〉, e)⇐⇒ e = card {y | Par(x, y)}

so ch(x, e) holds if and only if e is the number of children of x. Similarly, in (10),
〈e〉 is the aggregate of the multiset of e’s such that chd(x, e) , where chd(x, e)
holds if and only if e is the number of children of some descendant of x, i.e.

ave(〈e〉, m)⇐⇒ m = average({e | chd(x, e)}) = average(chd(x, ?)),

and average(〈e〉) is the average of the multiset of numbers 〈e〉.

We here are using an extension of Datalog which allows for sets and multisets
as arguments to relations, and where grouping is denoted via brackets 〈〉. Then
the relational functions corresponding to such relations can be defined as in
the Definition 3.2, namely, for a multiset X and a relation Q on D1 × D2,
q2 : P(D1) −→ P(D2) and q2(X) is the multiset consisting of all y’s such that
Q(x, y) for each x ∈ X . We will need however a slight extension in order to deal
with aggregation; let 〈q2〉 : P(D1) −→ P

(

P(D2)
)

be defined by:

– 〈q2〉(x) = Q(x, ?) = {y | Q(x, y) for some x ∈ {x}} = q2(x), for individual
variables x,

– 〈q2〉(x1, . . . , xn) =
(

q2(x1), . . . , q2(xn)
)

, for multisets {x1, . . . , xn} of vari-
ables.

For aggregate relations, the definitions are similar, for instance ave1(m) is the
set of multisets whose average is m, ave2(〈e〉) is average(〈e〉), and ave2({〈e〉, 〈e〉,
〈e′〉}) is {average(〈e〉), average(〈e〉), average(〈e′〉)}.

Then, the answers to the query avc(X0, ?) can be obtained by the right linear
program P ′

1 ∪ P ′
2 ∪ P ′

3:

P ′
1 :

{

P ′
2 :

P ′
3 :

Anc2 = Par2 + Par2 ◦Anc2

ch2 = count2 ◦ 〈Par2〉
chd2 = ch2 ◦Anc2

avc2 = ave2 ◦ 〈chd2〉

so that, for instance,

ch2(x1, . . . , xp) =
(

count2 ◦ Par2(x1), . . . , count2 ◦ Par2(xp)
)

= (n1, . . . , np),

or

avc2(x1, . . . , xp) = ave2 ◦ 〈chd2〉(x1, . . . , xp)

=
(

ave2 ◦ chd2(x1), . . . , ave2 ◦ chd2(xp)
)

.

14

Note that, if we were interested in the average number of children of the descen-
dants of a given subpopulation, this could easily be obtained by the formula:

avcG
2 (x1, . . . , xp) = ave2 ◦ chd2(x1, . . . , xp) = ave2

(

chd2({x1, . . . , xp})
)

.

The iteratively computed answers to the query avc(X0, ?) will be given by the
regular expression:

avc(X0, ?) = ave2 ◦ count2 ◦ 〈Par+

2 〉

or in expanded form

avc(X0, ?) = ave(count(〈
∞
∑

n=1

Parn(X0, ?)〉, ?), ?)

Assuming we are given an EDB with information going up to the third genera-
tion, with the following pairs in the relation Par

Parent Child

Peter Charles

Peter Mary

Peter Ann

Charles Alex

Charles Beth

Charles Sally

Mary John

Ann Henry

Parent Child

Alex Alice

Henry Emily

John Sam

John Molly

Sally Elisa

Sally Anthony

Sally Jack

Sally Louis

Then we find, for instance,

chd2(Charles) = (1, 0, 4)

chd2(Charles, Mary) =
(

(1, 0, 4), (2))

chd2(Peter) = (3, 1, 1, 1, 0, 4, 2, 1)

avc2(Charles, Mary, Ann) = (5/3, 2, 1)

avc2(Peter) = 13/8

while

avcG
2 (Charles, Mary, Ann) = ave2

(

chd2(Charles, Mary, Ann)
)

= ave2(1, 0, 4, 2, 1) = 8/5 = 1.6

which is different from

average
(

avc2(Charles, Mary, Ann)
)

= average(5/3, 2, 1) = 14/9 = 1.555 · · ·

Another consequence of Proposition 3.3 is to yield a sufficient condition of ap-
plicability of the result of [4] stating that a chain-rule program, together with
a query Q(X0, ?) is equivalent to a monadic program (i.e. a program P ′ all of
whose IDB predicates are unary), if and only if its trace language is regular.

15

Corollary 3.6 For a recursive logic program P satisfying the hypotheses of
Proposition 3.3, any query of the form Q(X0, ?), Q(?, X0) or Q(X0, X0) can be
computed by an equivalent monadic program.

Proof. By the part 2) of Proposition 3.3, the trace language is regular. Note
that in addition, for queries Q(X0, ?) or Q(?, X0) the proof of Proposition 3.3
gives the method to construct the monadic program.

4 Discussion and conclusions

Recently, a number of papers [9, 14, 15, 18, 20] have studied linearizations of
Horn clause programs. All of the methods that are effective do not address the
general problem of whether a program P is linearizable, but the more specific
question of whether the program P is linearizable and equivalent to a given linear

program P ′ [9, 15, 18, 20]. One reason for this is the fact that linearization is
in general undecidable [14, 15].

The various effective approaches can be classified according to two criteria:

(i) the method used for the linearization,

(ii) the class of programs which they are able to handle.

We sketch in the sequel a brief overview according to these two criteria:

(1) For the first criterion, namely the method used for the linearization, most
studies [14, 15, 18, 17, 20] use proof trees and their transformations to
linearize programs. The basic idea is

(a) to expand the original program into a set of proof trees representing
conjunctive queries with their derivations.

(b) take the ”bad” proof trees, corresponding to non linear conjunctive
queries, and check whether they can be embedded into ”good” ones,
corresponding to linear conjunctive queries

(c) when the method is effective, show that the depth of the containing
proof trees can be bounded.

The exceptions are:

– Ioannidis and Wong, who use relational algebra methods, but note that
”. . . essentially, a proof tree is another representation of a product in
a nonassociative closed semiring . . . ”,

– Saraiya, who uses proof trees for linearization, but uses a language the-
ory encoding to show the undecidability of the general linearization
problem (for programs with only one IDB predicate, one bilinear rule,
possibly some linear rules and five initialization non-recursive rules).

Our method on the other hand makes use of language theory for the
linearization.

(2) Consider now the second criterion, namely the class of programs which
are linearized; at most bilinear sirups, i.e. bilinear recursions with a single
recursive rule, are shown to be linearizable in all papers: in a bilinear sirup,
each recursive rule body may contain at most two occurrences of the IDB
predicates, together with various additional restrictions, whereas we deal
with multiple rules and multiple IDB predicates. Bilinear recursions are
also called ”doubly recursive” programs in [15, 17, 20].

16

– the earliest work on linearization is [17], where a necessary and sufficient
condition is stated for the linearization of programs of the form:






Q(X1, . . . , Xn) ←− Q(Y1,1, . . . , Y1,n1
), Q(Y2,1, . . . , Y2,n2

),
A(Y3,1, . . . , Y3,n3

)
Q(X1, . . . , Xn) ←− B(X1, . . . , Xn)

consisting of one IDB predicate Q defined by a single bilinear recur-
sive rule having at most one EDB predicate (A), together with one
initialization rule,

– Saraiya extends that result by allowing for arbitrary many pairwise
different EDB predicates in the bilinear recursive rule, and several
initialization rules; he also studies the complexity of the linearization
(Ptime), which becomes NP-hard (resp. undecidable) if one allows
the same EDB predicate, with n ≤ 4 (resp. n ≥ 5) in the bilinear
recursive rule.

Both of the above papers use proof tree containments to linearize and show that
they can bound the depth of the containing proof trees to be considered. It is
shown in [14] that if repetitions of the same EDB predicate are allowed in the
non recursive subgoals of the bilinear recursive rule, then, the number or the
depth of the proof tree containments to be checked can no longer be bounded,
whence the undecidability of the linearization.

The most general condition for linearization appears in [14], and, in an
equivalent form, albeit obtained by different tools, in [9], where necessary and
sufficient conditions are given for the right (resp. left) linearization of bilinear
programs. By the above remarks, these conditions must be undecidable. For
the sake of clarity we will discuss only the right linearization condition on an
example. The left linearization condition is symmetric.

Example 4.1 (cf. Example 3.3) Consider the program:

{

Q(X, Y) ←− A1(X, Y1), Q(Y1, Y2), A2(Y2, Y3), Q(Y3, Y)
Q(X, Y) ←− B(X, Y)

that we rewrite, according to our notations, into:

Q = A1 ◦Q ◦A2 ◦Q + B

Then, on the present example, the condition of right linearization, called reverse
power-subassociativity in [14], or power-right-subalternativity in [9], boils down
to the following: for all binary relations R, for all n, m ≥ 1, there exists k ≥ 1,
such that:

A1 ◦Rn ◦A2 ◦Rm ⊆ fk(R)

where fk(R) is defined as follows:

f0(R) = R

f1(R) = A1 ◦R ◦A2 ◦R

...

fn+1(R) = A1 ◦ fn(R) ◦A2 ◦R

17

This condition is necessary and sufficient. However, as noted in [9]: “Unfor-
tunately, all properties that are equivalent to [right]-linearizability . . . require
testing for containment of recursive programs, which is in general undecidable
[16]”, see also [1].

So, Ioannidis and Wong introduce a much simpler sufficient condition, right-
subalternativity, which implies that the program is right linearizable, and which
would be expressed in the case of the present example by, for all binary relations
R, S:

A1 ◦ (A1 ◦R ◦A2 ◦ S) ◦A2 ◦ S = A1 ◦R ◦A2 ◦ (A1 ◦ S ◦A2 ◦ S)

Now, neither our condition, nor the right-subalternativity are necessary condi-
tions, and moreover, these conditions are incomparable, as shown below.

Let Q be defined by the equations (5), and let the domain of the database
be D = {1, 2, 3, 4, 5, 6}.

(1) If A1 and A2 do not commute, our condition will not apply, whereas the
Ioannidis and Wong condition may apply.

(2) Take

A1 = {(1, 2)}

A2 = {(2, 1)}

B = {(5, 6)}

Then A1 ◦A2 6= A2 ◦ A1 and our condition does not apply; the Ioannidis
and Wong condition does not apply either, since taking R = S = {(x, y) |
(x, y) ∈ D2}, we have:

A1 ◦ (A1 ◦R ◦A2 ◦ S) ◦A2 ◦ S = ∅

6= A1 ◦R ◦A2 ◦ (A1 ◦ S ◦A2 ◦ S) = {(1, x) | x ∈ D}

However Q is linearizable and equivalent to Q = B, which shows that
both conditions are non necessary.

(3) Take

A1 = {(1, 2) , (2, 1)}

A2 = {(3, 4) , (4, 3)}

B = {(5, 6)}

Then, our commutativity condition trivially applies since A1 ◦A2 = A2 ◦
A1 = Ai◦B = B◦Ai = ∅, hence Q is equivalent to the right linear program:
Q = A1 ◦ B ◦ A2 ◦ Q + B = B. However, the right-subalternativity of
Ioannidis and Wong is not verified since, letting

R = {(x, y) | (x, y) ∈ D2}

S = {(3, x) | x ∈ D}

we have

A1 ◦ (A1 ◦R ◦A2 ◦ S) ◦A2 ◦ S = {(1, x) , (2, x) | x ∈ D}

6= A1 ◦R ◦A2 ◦ (A1 ◦ S ◦A2 ◦ S) = ∅

18

However, one can check easily that, in the present example, as defined by the
equations (5), provided that A1 and A2 are regular enough, that is, right or
left cancellable, then the Ioannidis and Wong condition implies that A1 and A2

commute.
Recall that a relation is said to be right (resp. left) cancellable if and only if,

for all relations X and Y , X ◦A = Y ◦A⇒ X = Y (resp. A◦X = A◦Y ⇒ X =
Y). Assuming for instance that A1 is left cancellable and A2 is right cancellable,
and applying the Ioannidis and Wong condition with R = S = id, we obtain
A1 ◦A2 = A2 ◦A1.

All the papers discussed so far linearize only bilinear recursions with a single
recursive rule, with the exception of [9], where the algebraic framework of vectors
and matrices allows for the treatment of bilinear recursions with several mutually
recursive rules at no extra cost. It is also shown in [9] that multilinear recursions
can be encoded into bilinear recursions, but at the price of encoding a k-linear
recursion by a vector of vectors . . . of vectors of bilinear recursions (i.e. k − 1
nested levels of vectors), which complicates the treatment.

Our approch, on the other hand, although it may sound somehow restrictive
because of the assumption of commutative chain rules, has nevertheless several
assets:

• It is extremely simple to handle.

• Commutativity is a non unusual restriction which has been introduced quite
often in databases, mostly to simplify the evaluation of queries, for exam-
ple:

– In a similar content, commutativity of EDB predicates has also been
considered in [7, 9] to optimize the evaluation of transitive closures: it
is shown that, if A1 and A2 commute, then (A1+A2)

∗ = A∗
1◦A

∗
2, and

of course the latter expression can be evaluated a lot more efficiently.

– In a different context, commutativity of linear rules is assumed in [8, 18]
to optimize query evaluations: two rules r1 and r2 defining the same
IDB predicate Q are said to commute if r1r2 = r2r1, namely whenever
Q is evaluated by calling first r1 then r2, the same result can be
obtained by calling r2 first and then r1. We can show that (see
Example 4.2 below), when the EDB predicates commute, the rules
will also commute, and whatever optimizations were obtained will
then apply.

• It allows to take into account aggregate functions, whereas it is not clear
whether this will be possible with the other methods.

Example 4.2 For instance, the rules r1 and r2 commute

r1 : Q(X, Y)←− A(X, Z), Q(Z, Y)

r2 : Q(X, Y)←− Q(Z, Y), B(Z, Y)

since both r1r2 and r2r1 lead to the same query A(X, W), Q(W, Z), B(Z, Y),
modulo renaming of variables.

19

The rules r′1 and r′2 do not commute [18]

r′1 : Q(X1, X2, X3, X4)←− Q(X2, X3, X4, X1)

r′2 : Q(X1, X2, X3, X4)←− Q(X4, X3, X2, X1)

since r′1r
′
2 leads to Q(X1, X4, X3, X2) and r′2r

′
1 leads to Q(X3, X2, X1, X4).

Commutativity of rules can be extended to nonlinear rules and we can show
that

Proposition 4.1 Let P satisfy the hypotheses of Proposition 3.3, then all the
rules of P with Q occurring in their head and their body commute.

Proof. Since all IDB and EDB predicates commute by Lemma 3.2, it is enough
to know the predicates occurring in a rule body, and we can omit the variables,
so that, if,

r1 : Q←− Q1
1 · · ·Q

1
i−1QQ1

i+1 · · ·Q
1
n1

r2 : Q←− Q2
1 · · ·Q

2
j−1QQ2

j+1 · · ·Q
2
n2

,

then r1r2 results in

Q1
1 · · ·Q

1
i−1Q

2
1 · · ·Q

2
j−1QQ2

j+1 · · ·Q
2
n2

Q1
i+1 · · ·Q

1
n1

and r2r1 results in

Q2
1 · · ·Q

2
j−1Q

1
1 · · ·Q

1
i−1QQ1

i+1 · · ·Q
1
n1

Q2
j+1 · · ·Q

2
n2

which are equivalent queries due to the commutativity of all the Qj
i ’s. Note that

the Qj
i ’s may be EDB predicates. IDB predicates, or may be equal to Q.

As for the fact that we consider only chain programs, we note that:

• Programs usually found in the literature are most often chain programs.

• Among non linear programs, chain programs correspond to really nested re-
cursions, where the recursive subgoals cannot be easily evaluated in par-
allel, and thus really need linearization. for instance, in a chain program
such as

{

Q(X, Y) ←− Q(X, Z), Q(Z, Y)
Q(X, Y) ←− B(X, Y)

most evaluation methods for queries of the form Q(X, ?) will evaluate the
first rule by pushing selections strategies, or sideways information passing
strategies, finding Z for the first subgoal and passing the result to the
second subgoal. Evaluating Q(X, Z) and Q(Z, Y) in parallel would be
most inefficient, since that would lead to computing many useless Z’s,
which would then be eliminated via a costly join. The linearized program

{

Q(X, Y) ←− Q(X, Z), Q(Z, Y)
Q(X, Y) ←− B(X, Y)

is much more efficient.

20

On the other hand, a non chained recursion such as

{

Q(X, Y) ←− Q(X, Y1), Q(Y, Y2)
Q(X, Y) ←− B(X, Y)

should not be linearized, because evaluating Q(X, Y1) and Q(Y, Y2) in
parallel is more efficient (minimally twice as fast) that evaluating them
sequentially via the linearized program: this stems from the fact that
there is no nesting of recursion nor information passing between the two
recursive subgoals Q(X, Y1) and Q(Y, Y2) which can thus be evaluated
independently with a better efficiency; hence such recursions should not
be linearized!

5 Appendix

This appendix is devoted to the proofs of Propositions 2.3 and 2.4. The first
step is rather standard: we show that rational functions are continuous and
apply Tarski’s fixpoint theorem. Recall that a function f : E → E is monotone
if, for each x, y ∈ E, x ≤ y implies f(x) ≤ f(y). It is continuous if, for every
increasing chain x0 ≤ x1 ≤ x2 ≤ · · · , supn≥0 f(xn) = f(supn≥0(xn)). Observe
that any continuous function is increasing.

Proposition 5.1 Every rational function from E into E is continuous.

Proof. Let C be the set of all continuous functions from E into E. Clearly C
contains the identity and the constants. We show that if (fi)i∈I is a family of
functions of C, then Σi∈Ifi ∈ C. Indeed, since for an increasing chain (xn)n≥0,
supn≥0 xn = Σn≥0xn, we have

sup
n≥0

∑

i∈I

fi(xn) =
∑

n≥0

∑

i∈I

fi(xn) =
∑

i∈I

∑

n≥0

fi(xn) =

∑

i∈I

sup
n≥0

fi(xn) =
∑

i∈I

fi(sup
n≥0

xn)

Next, we claim that if f, g ∈ C, then fg ∈ C. Indeed, we have

fg
(

sup
n≥0

xn

)

= f
(

sup
n≥0

xn

)

g
(

sup
n≥0

xn

)

= f
(

∑

n≥0

xn

)

g
(

∑

n≥0

xn

)

=
(

∑

n≥0

f(xn)
)(

∑

n≥0

g(xn)
)

=
∑

n,m≥0

f(xn)g(xm)

But now, for every k ≥ 0,

f(xk)g(xk) ≤
∑

0≤n,m≤k

f(xn)g(xm) ≤
∑

0≤n,m≤k

f(xk)g(xk)

and thus
∑

0≤n,m≤k

f(xn)g(xm) = f(xk)g(xk)

21

Therefore

fg
(

sup
n≥0

xn

)

=
∑

n≥0

f(xn)g(xn) =
∑

n≥0

fg(xn) = sup
n≥0

fg(xn)

Finally, if f ∈ C, we also have f∗ ∈ C since f∗ =
∑

n≥0
fn. Therefore C contains

all rational functions.

Let now g1, . . . , gn be a sequence of rational functions from E into E and
consider the system







X1 = g1(X1, . . . , Xn)
. . .

Xn = gn(X1, . . . , Xn)
(6)

This system can be written as X = g(X) where g = (g1, . . . , gn) is a map from
En into itself. If En is ordered by the product order, g is continuous. Therefore,
by a direct application of Tarski’s fixpoint theorem, we obtain

Corollary 5.2 The system (6) has a least solution, given by X = supn≥0 gn(0).

We also need a slightly more technical notion. Let F be a commutative
complete semiring of E. We define the set R0(F) of 0-rational functions from
F into F as the smallest set R of functions such that

(1′) R contains the identity function and the null function h(x) = 0,

(2′) if e ∈ F and h ∈ R, then eh ∈ R,

(3) if h1 ∈ R and h2 ∈ R, then h1 + h2 ∈ r and h1h2 ∈ R,

(4′) if h ∈ R, then h∗ ∈ R, where h∗(x) = h(x)∗.

The next two propositions give the relation between rational and 0-rational
functions, which is somewhat reminiscent of the connection between affine and
linear functions in geometry.

Proposition 5.3 Let h : F −→ F be a function. Then h is rational if and only
if there exists a 0-rational function h0 : F −→ F such that h = h(0) + h0.

Proof. If h = h(0) + h0 for some 0-rational function h0, then h is rational.
Conversely, let H be the set of all functions h such that h = h(0) + h0 for
some h0 ∈ R0(F). We show that H contains all rational functions. Clearly,
the identity function and the constant functions are in H . Next, if h, h′ ∈ H ,
then h = h(0) + h0 and h′ = h′(0) + h′

0 for some h0, h′
0 ∈ R0(F). It follows

that h + h′ = h(0) + h′(0) + h0 + h′
0 = (h + h′)(0) + (h0 + h′

0) and hh′ =
hh′(0) + (h(0)h′

0 + h′(0)h0 + h0h
′
0). Now h0 + h′

0 ∈ R0(F) by condition (3)
above, and h(0)h′

0 + h′(0)h0 + h0h
′
0 ∈ R0(F) by conditions (2’) and (3). Thus

h + h′ ∈ H and hh′ ∈ H . Finally, if h = h(0) + h0 then

h∗ = (h(0) + h0)
∗ = h(0)∗h∗

0 = h(0)∗ + h(0)∗h+
0 = h∗(0) + h(0)∗h+

0 .

Now h+

0 ∈ R0(F) by condition (4’) above and h(0)∗h+

0 ∈ R0(F) by condition
(2’). Thus h∗ ∈ H . It follows that every rational function belongs to H .

22

Proposition 5.4 Let h : F −→ F be a function. Then the following conditions
are equivalent:

(i) h is rational and h(0) = 0,

(ii) there exists a rational function f : F −→ F such that h(x) = f(x)x,

(iii) h is 0-rational.

Proof. (ii) implies (i) is trivial and the equivalence of (i) and (iii) follows from
Proposition 5.3. We show that (iii) implies (ii). Let H be the set of all functions
of the form h(x) = f(x)x for some f ∈ R(F). It is easy to verify that H satisfies
conditions (1’), (2’) and (3). But H also satisfies (4’). Indeed, if h(x) = f(x)x,
then h+(x) = (f(x)x)+ = (f(x)x)∗f(x)x and the function (f(x)x)∗f(x) is
rational. It follows that H contains R0(F), since R0(F) is the smallest set
of functions satisfying (1’), (2’), (3) and (4’). Every 0-rational function thus
satisfies (ii).

A function h : F −→ F is said to be ∗-linear if, for every x, y ∈ F ,
h(x∗y) = x∗h(y). Note that the composition of two ∗-linear functions is ∗-
linear. Continuing the analogy with linear functions in geometry, we show that
0-rational functions are ∗-linear.

Proposition 5.5 Every 0-rational function is ∗-linear.

Proof. We observe that:

(a) the identity function and the null function are ∗-linear,

(b) if e ∈ F and if h is ∗-linear, then eh is ∗-linear,

(c) if (hi)i∈I is a family of ∗-linear functions, then
∑

i∈I hi is ∗-linear,

(d) if h1 and h2 are ∗-linear, then so is h1h2. Indeed

h1h2(x
∗y) = h1(x

∗y)h2(x
∗y)

= x∗h1(y)x∗h2(y) (by ∗-linearity)

= x∗x∗h1(y)h2(y) (by commutativity)

= x∗h1(y)h2(y) (x∗x∗ = x∗)

= x∗h1h2(y)

(e) if h is ∗-linear, h+ is also ∗-linear, since

h+(x∗y) = [h(x∗y)]+

= (x∗h(y))+

= x∗h(y)+ (commutativity)

= x∗h+(y)

This shows that every 0-rational function is ∗-linear.

We are now ready to give the proof of Proposition 2.3. For the convenience
of the reader, we first restate this proposition:

Let f : E −→ E be a monotone function and let a ∈ E. Suppose there exists

a commutative complete subsemiring F of E, containing a, such that f induces

23

a rational function from F into F . Then the least fixed point of the equation

X = a + f(X)X is af(a)∗.

Proof. Since f is monotone, it suffices to verify that f satisfies conditions (i)
and (ii) of Proposition 2.2. Now a ∈ F and f(a) ∈ F since F is stable under
f . Condition (i) follows, since F is commutative. It remains only to verify
condition (ii). By Proposition 5.4, g(x) = f(x)x is 0-rational, and hence ∗-
linear by Proposition 5.5. Now since F is complete, f(a)∗ ∈ F and f(a)∗a ∈ F .
Therefore

g(f(a)∗a) = f(a)∗g(a)

and thus condition (ii) is satisfied.

We now come to Proposition 2.4:

Let

P :







X1 = g1(X1, . . . , Xn)
. . .

Xn = gn(X1, . . . , Xn)

be a system of recursive equations where each equation Xi = gi(X1, . . . , Xn)
can be written in the form:

Xi = ai(X1, . . . , Xi−1, Xi+1, . . . , Xn) + fi(X1, . . . , Xn)Xi,

where ai and fi are rational functions given by rational expressions all of whose

coefficients commute. Then the least fixpoint of P is a rational function which

can be computed by a right linear iteration.

Proof. Let F be the complete semiring generated by the coefficients of the ai’s
and of the gi’s. By assumption, F is a commutative semiring. By Corollary
5.2, the least solution of the system exists and is given by X = supn≥0 gn(0). It
follows in particular that the least solution belongs to F n. Therefore, it suffices
to solve the system in the commutative semiring F . We now prove the theorem
by induction on n. If n = 1, then the system reduces to X1 = a + f1(X1) and
since F is commutative, it suffices to apply Proposition 2.2. For n > 1, it suf-
fices to solve the last equation with respect to Xn in the commutative semiring
F [[X1, . . . , Xn−1]] of series in commutative variables X1, . . . , Xn−1 with coeffi-
cients in F . For instance, the last equation can be written as

Xn = an(X1, . . . , Xn−1) + fn(X1, . . . , Xn)Xn

and its solution is the rational expression

Xn = an(X1, . . . , Xn−1)fn(X1, . . . , Xn−1, an(X1, . . . , Xn−1))
∗,

which can then be substituted for Xn in the first (n − 1) equations. Now, by
induction the solution of the new system with (n − 1) equations is a rational
function which can be computed by a right linear iteration.

Acknowledgements

The authors would like to thank the anonymous referees for their insightful
reading and their numerous suggestions to improve the quality of this paper.

24

References

[1] S. Abiteboul, Boundedness is undecidable for Datalog programs with a
single recursive rule, IPL 32 (1989), 281–287.

[2] K.R. Apt, Introduction to Logic Programming, Rep. CWI-CS-R8826, Am-
sterdam (1988).

[3] K. Apt, H. Blair, A. Walker, Towards a theory of declarative knowledge, in
Foundations of Deductive DataBases and Logic Programming, J. Minker
Ed., Morgan-Kaufman, Los Altos (1988), 89–148.

[4] F. Bancilhon, C. Beeri, P. Kanellakis, R. Ramakrishnan, Bounds on
the Propagation of Selection into Logic Programs, Proc. 6th. A.C.M. -
P.O.D.S., San Diego (1987), 214–226.

[5] S. Cosmadakis, H. Gaifman, P. Kanellakis, M. Vardi, Decidable Optimiza-
tions for Data Base Logic Programs, Proc. A.C.M. STOC Conf. (1988).

[6] I. Guessarian, Deciding Boundedness for Uniformly Connected Datalog
Programs, Proc. ICDT’90, Lect. Notes in Comput. Sci. 470 (1990), 395–
405.

[7] J. Han, W. Lu, Asynchronous chain recursions, IEEE Trans. Knowl. and
Data Eng., 1 (1989), 185–195.

[8] Y. Ioannidis, Commutativity and its role in the processing of linear recur-
sion, to appear in Jour. Logic Prog..

[9] Y. Ioannidis, E. Wong, Towards an algebraic theory of recursion, Jour.

Assoc. Comput. Mac., 38 (1991), 329–381.

[10] J.M. Kerisit, La méthode d’Alexandre: une technique de déduction, Ph.
D. Thesis, Paris (1988).

[11] J.W. Lloyd, Foundations of Logic Programming, Springer-Verlag, Berlin
(1987).

[12] Z. Manna, Mathematical theory of computation, Mac Graw Hill, New
York (1974).

[13] S. Naqvi and S. Tsur, A logical language for data and knowledge bases,
Computer Science Press, New York (1989).

[14] R. Ramakrishnan, Y. Sagiv, J. Ullman, M. Vardi, Proof tree transfor-
mation theorems and their applications, Proc. 8th. A.C.M. - P.O.D.S.,
Philadelphia (1989), 172–181.

[15] Y. Saraiya, linearizing nonlinear recursion in polynomial time, in Proc.
8th ACM-PODS (1989), 182–189, see also Ph. D. Thesis, Stanford Univ.
(1991).

[16] O. Shmueli, Decidability and expressiveness aspects of logic queries, Proc.
6th. ACM-PODS, San Diego (1987), 237–249.

25

[17] D. Troy, C. Yu, W. Zhang, Linearization of nonlinear recursive rules, IEEE

Trans. Soft. Eng. 15 (1989), 1109–1119.

[18] J.D. Ullman, Data base and knowledge-base systems, 3rd ed. New York:
Computer Science Press, (1989).

[19] J.D. Ullman and A. Van Gelder, Parallel complexity of loical query pro-
grams, Algorithmica 3 (1988), 5–42.

[20] W. Zhang, C.T. Yu, D. Troy, Necessary and sufficient conditions to
linearize doubly recursive programs in logic databases, ACM-ToDS 15

(1990), 459–482.

26

