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BIJECTIVE COUNTING OF KREWERAS WALKS AND

LOOPLESS TRIANGULATIONS

OLIVIER BERNARDI

Abstract. We consider lattice walks in the plane starting at the origin, re-
maining in the first quadrant i, j ≥ 0 and made of West, South and North-East
steps. In 1965, Germain Kreweras discovered a remarkably simple formula giv-
ing the number of these walks (with prescribed length and endpoint). Krew-
eras’ proof was very involved and several alternative derivations have been
proposed since then. But the elegant simplicity of the counting formula re-

mained unexplained. We give the first purely combinatorial explanation of this
formula. Our approach is based on a bijection between Kreweras walks and
triangulations with a distinguished spanning tree. We obtain simultaneously
a bijective way of counting loopless triangulations.

1. Introduction

We consider lattice walks in the plane starting from the origin (0,0), remaining
in the first quadrant i, j ≥ 0 and made of three kind of steps: West, South and
North-East. These walks were first studied by Kreweras [4] and inherited his name.
A Kreweras walk ending at the origin is represented in Figure 1.

a

c

b

Figure 1. The Kreweras walk cbcccbbcaaaaabb.

These walks have remarkable enumerative properties. Kreweras proved in 1965
that the number of walks of length 3n ending at the origin is:

kn =
4n

(n+ 1)(2n+ 1)

(

3n

n

)

. (1)

The original proof of this result is complicated and somewhat unsatisfactory. It was
performed by guessing the number of walks of size n ending at a generic point (i, j).
The conjectured formulas were then checked using the recurrence relations between
these numbers. The checking part involved several hypergeometric identities which
were later simplified by Niederhausen [6]. In 1986, Gessel gave a different proof in
which the guessing part was reduced [3]. More recently, Bousquet-Mélou proposed
a constructive proof (that is, without guessing) of these results and some extensions
[1]. Still, the simple looking formula (1) remained without a direct combinatorial
explanation. The problem of finding a combinatorial explanation was mentioned
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2 O. BERNARDI

by Stanley in [10]. Our main goal in this paper is to provide such an explanation.

Formula (1) for the number of Kreweras walks is to be compared to another
formula proved the same year. In 1965, Mullin, following the seminal steps of
Tutte, proved via a generating function approach [5] that the number of loopless
triangulations of size n (see below for precise definitions) is

tn =
2n

(n+ 1)(2n+ 1)

(

3n

n

)

. (2)

A bijective proof of (2) was outlined by Schaeffer in his Ph.D thesis [8]. See also [7]
for a more general construction concerning loopless triangulations of a k-gon. We
will give an alternative bijective proof for the number of loopless triangulations.
Technically speaking, we will work instead on bridgeless cubic maps which are the
dual of loopless triangulations.

It is interesting to observe that both (1) and (2) admit a nice generalization.
Indeed, the number kn,i of Kreweras walks of size n ending at point (i, 0) and the
number cn,i of loopless triangulations of size n of an (i+2)-gon both admit a closed
formula (see (8) and (9)). Moreover, the numbers kn,i and cn,i are related by the
equation kn,i = 2ncn,i. This relation is explained in Section 8. Alas, we have found
no way of proving these formulas by our approach.

2. How the proofs work

We begin with an account of this paper’s content in order to underline the
(slightly unusual) logical structure of our proofs.

• In Section 3, we first recall some definitions on planar maps. We also define a
special class of spanning trees called depth trees. Depth trees are closely related to
the trees that can be obtained by a depth first search algorithm.

Then, we consider a larger family of walks containing the Kreweras walks. These
walks are made of West, South and North-East steps, start from the origin and
remain in the half-plane i + j ≥ 0. We borrow a terminology from probability
theory and call these walks meanders. We call excursion a meander ending on the
second diagonal (i.e. the line i+ j = 0). An excursion is represented in Figure 2.

a

b

c

Figure 2. An excursion.

Unlike Kreweras walks, excursions are easy to count. By applying the cycle lemma
(see [9, Section 5.3]), we prove that the number of excursions of size n (length 3n)
is

en =
4n

2n+ 1

(

3n

n

)

.
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• In Section 4, we define a mapping Φ between excursions and cubic maps with a
distinguished depth tree. In Section 5 we prove that the mapping Φ is a (n+1)-to-1
correspondence Φ between excursions (of size n) and bridgeless cubic maps (of size
n) with a distinguished depth tree. As a consequence, the number of bridgeless
cubic maps of size n with a distinguished depth tree is found to be:

dn =
en

n+ 1
=

4n

(n+ 1)(2n+ 1)

(

3n

n

)

.

• In Section 6, we prove that the correspondence Φ, restricted to Kreweras walks,
induces a bijection between Kreweras walks (of size n) ending at the origin and
bridgeless cubic maps (of size n) with a distinguished depth tree. As a consequence,
we obtain:

kn = dn =
4n

(n+ 1)(2n+ 1)

(

3n

n

)

,

where kn is the number of Kreweras walks of size n ending at the origin. This gives
a combinatorial proof of (1).

• In Section 7, we enumerate depth trees on cubic maps. We prove that the number
of such trees for a cubic map of size n is 2n. As a consequence, the number of cubic
maps of size n is

cn =
dn

2n
=

2n

(n+ 1)(2n+ 1)

(

3n

n

)

.

This gives a combinatorial proof of (2).

• In Section 8, we extend the mapping Φ to Kreweras walks ending at (i, 0) and
discuss some open problems.

3. Preliminaries

3.1. Planar maps and depth trees.
Planar maps. A planar map, or map for short, is an embedding of a connected
planar graph in the sphere without intersecting edges, defined up to orientation
preserving homeomorphisms of the sphere. Loops and multiple edges are allowed.
The faces are the connected components of the complement of the graph. By re-
moving the midpoint of an edge we obtain two half-edges, that is, one-dimensional
cells incident to one vertex. We say that each edge has two half-edges, each of them
incident to one of the endpoints.

A map is rooted if one of its half-edges is distinguished as the root. The edge
containing the root is the root-edge and its endpoint is the root-vertex. Graphically,
the root is indicated by an arrow pointing on the root-vertex (see Figure 3). All
the maps considered in this paper are rooted and we shall not further precise it.

root

Figure 3. A rooted map.

Growing maps. Our constructions lead us to consider maps with some legs, that
is, half-edges that are not part of a complete edge. A growing map is a (rooted)
map together with some legs, one of them being distinguished as the head. We
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require the legs to be (all) in the same face called head-face. The endpoint of the
head is the head-vertex. Graphically, the head is indicated by an arrow pointing
away from the head-vertex. The root of a growing map can be a leg or a regular
half-edge. For instance, the growing map in Figure 4 has 2 legs beside the head,
and its root is not a leg.

leg

leg

root
head

Figure 4. A growing map.

Cubic maps. A map (or growing map) is cubic if every vertex has degree 3. It is
k-near-cubic if the root-vertex has degree k and any other vertex has degree 3. For
instance, the map in Figure 3 is 2-near-cubic and the growing map in Figure 4 is
cubic. Observe that cubic maps are in bijection with 2-near-cubic maps not reduced
to a loop by the mapping illustrated in Figure 5.

Figure 5. Bijection between cubic maps and 2-near-cubic maps.

The incidence relation between vertices and edges in cubic maps shows that the
number of edges is always a multiple of 3. More generally, if M is a k-near-cubic
map with e edges and v vertices, the incidence relation reads: 3(v − 1) + k = 2e.
Equivalently, 3(v − k + 1) = 2(e− 2k + 3). The number v − k + 1 is non-negative
for non-separable k-near-cubic maps (see definition below). (This property can be
shown by induction on the number of edges by contracting the root-edge.) Hence,
the number of edges has the form e = 3n+2k−3, where n is a non-negative integer.
We say that a k-near-cubic map has size n if it has e = 3n + 2k − 3 edges (and
v = 2n+k−1 vertices). In particular, the mapping of Figure 5 is a bijection between
cubic maps of size n (3n+3 edges) and 2-near-cubic maps of size n+1 (3n+4 edges).

Non-separable maps. A map is non-separable if its edge set cannot be par-
titioned into two non-empty parts such that only one vertex is incident to some
edges in both parts. In particular, a non-separable map not reduced to an edge has
no loop nor bridge (a bridge or isthmus is an edge whose deletion disconnects the
map). For cubic maps and 2-near-cubic maps it is equivalent to be non-separable
or bridgeless. The mapping illustrated in Figure 5 establishes a bijection between
bridgeless cubic maps and bridgeless 2-near-cubic maps not reduced to a loop.

Bridgeless cubic maps are interesting because their dual are the loopless trian-
gulations. Recall that the dual M∗ of a map M is the map obtained by putting
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a vertex of M∗ in each face of M and an edge of M∗ across each edge of M . See
Figure 6 for an example.

Figure 6. A cubic map and the dual triangulation (dashed lines).

Depth trees. A tree is a connected graph without cycle. A subgraph T of a graph
G is a spanning tree if it is a tree containing every vertex of G. An edge of the
graph G is said to be internal if it is in the spanning tree T and external otherwise.
For any pair of vertices u, v of the graph G, there is a unique path between u and v
in the spanning tree T . We call it the T -path between u and v. A map (or growing
map) M with a distinguished spanning tree T will be denoted by MT . Graphically,
we shall indicate the spanning tree by thick lines as in Figure 7. A vertex u of MT

is an ancestor of another vertex v if it is on the T -path between the root-vertex
and v. In this case, v is a descendant of u. Two vertices are comparable if one
is the ancestor of the other. For instance, in Figure 7, the vertices u1 and v1 are
comparable whereas u2 and v2 are not.

A depth tree is a spanning tree such that any external edge joins comparable
vertices. Moreover, we require the edge containing the root to be external. In
Figure 7, the tree on the left side is a depth tree but the tree on the right side is
not a depth tree since the edge (u2, v2) breaks the rule. A depth-map is a map with
a distinguished depth tree. A marked-depth-map is a depth-map with a marked
external edge.

u1

v1

u2

v2

Figure 7. A depth tree (left) and a non-depth tree (right).

3.2. Kreweras walks and meanders.
In what follows, Kreweras walks are considered as words on the alphabet {a, b, c}.
The letter a (resp. b, c) corresponds to a West (resp. South, North-East) step.
For instance, the walk in Figure 1 is cbcccbbcaaaaabb. The length of a word w is
denoted by |w| and the number of occurrences of a given letter α is denoted by
|w|α. Kreweras walks are the words w on the alphabet {a, b, c} such that any prefix
w′ of w satisfies

|w′|a ≤ |w′|c and |w′|b ≤ |w′|c . (3)
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Kreweras walks ending at the origin satisfy the additional constraint

|w|a = |w|b = |w|c. (4)

These conditions can be interpreted as a ballot problem with three candidates. This
is why Kreweras walks sometimes appear under this formulation in the literature [6].

Similarly, the meanders, that is, the walks remaining in the half-plane i+ j ≥ 0,
are the words w on {a, b, c} such that any prefix w′ of w satisfies

|w′|a + |w′|b ≤ 2|w′|c . (5)

Excursions, that is, meanders ending on the second diagonal, satisfy the additional
constraint

|w|a + |w|b = 2|w|c . (6)

Note that the length of any walk ending on the second diagonal is a multiple
of 3. The size of such a walk of length 3n is n. Note also that a walk ending at
point (i, 0) has a length of the form l = 3n+ 2i where n is a non-negative integer.
A Kreweras walk of length l = 3n+ 2i ending at (i, 0) has size n.

Unlike Kreweras walks, the excursions are easy to count.

Proposition 3.1. There are

en =
4n

2n+ 1

(

3n

n

)

(7)

excursions of size n.

Proof: We consider projected walks, that is, one-dimensional lattice walks starting
and ending at 0, remaining non-negative and made of steps +2 and −1. (They
correspond to projections of excursions on the first diagonal.) A projected walk is
represented in Figure 8. Projected walks can be seen as words w on the alphabet
{α, c} with |w|α = 2|w|c and such that any prefix w′ of w satisfies |w′|α ≤ 2|w′|c.
The projected walks can be counted bijectively by applying the cycle lemma (see
Section 5.3 of [9]): there are

pn =
1

3n+ 1

(

3n+ 1

2n+ 1

)

=
1

2n+ 1

(

3n

n

)

projected walks of size n (length 3n).
Given an excursion, we obtain a projected walk by replacing the occurrences of a
and b by α. Conversely, taking a projected walk of length 3n and replacing the 2n
letters α by a sequence of letters in {a, b} one obtains an excursion. This establishes
a 4n-to-1 correspondence between excursions (of size n) and projected walks (of size
n). Thus, there are 4npn excursions of size n.

�

Figure 8. The projected walk associated to the excursion of Figure 2.
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4. A bijection between excursions and cubic marked-depth-maps

In this section we define a mapping Φ between excursions and bridgeless 2-near-
cubic marked-depth-maps (2-near-cubic maps with a distinguished depth tree and
a marked external edge). We shall prove in Section 5 that the mapping Φ is a
bijection between excursions and bridgeless 2-near-cubic marked-depth-maps. The
general principle of the mapping Φ is to read the excursion from right to left and
interpret each letter as an operation for constructing the map and the tree. This
step-by-step construction is illustrated in Figure 10. The intermediate steps are
tree-growing maps, that is, growing maps together with a distinguished spanning
tree (indicated by thick lines).

• We start with the tree-growing map M0
•

consisting of one vertex and two legs.
One of the legs is the root, the other is the head (see Figure 9). The spanning tree
is reduced to the unique vertex.

• We apply successively certain elementary mappings ϕa, ϕb, ϕc (Definition 4.1)
corresponding to the letters a, b, c of the excursion read from right to left.

• When the whole excursion is read, there is only one leg remaining beside the
head. At this stage, we close the tree-growing map, that is, we glue the head and
the remaining leg into a marked external edge as shown in Figure 11.

Figure 9. The tree-growing map M0
• .

a ca

a ca

c

a cb

b a

Figure 10. Successive applications of the mappings ϕa, ϕb, ϕc

for the walk cacbaaccaaba (read from right to left).

Let us enter in the details and define the mapping Φ. Consider a growing mapM .
We make a tour of the head-face if we follow its border in counterclockwise direction
(i.e. the border of the head-face stays on our left-hand side) starting from the head
(see Figure 12). This journey induces a linear order on the legs of M . We shall
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Close

Figure 11. Closing the map (the marked edge is dashed).

talk about the first and last legs of M .

root

head

first leg

last leg

Figure 12. Making the tour of the head-face.

We define three mappings ϕa, ϕb, ϕc on tree-growing maps.

Definition 4.1. Let MT be a tree-growing map (the map is M and the distin-
guished tree is T ).

• The mappings ϕa and ϕb are represented in Figure 13. The tree-growing map
M ′

T ′ = ϕa(MT ) (resp. ϕb(MT )) is obtained from MT by replacing the head by an
edge e together with a new vertex v incident to the new head and another leg at
its left (resp. right). The tree T ′ is obtained from T by adding the edge e and the
vertex v.

• The tree-growing map ϕc(MT ) is only defined if the first and last legs exist (that
is, if the head-face contains some legs beside the head) and have distinct and com-
parable endpoints. We call these legs s and t with the convention that the endpoint
of s is an ancestor of the endpoint of t.
In this case, the tree-growing map M ′

T = ϕc(MT ) is obtained from MT by gluing
together the head and the leg s while the leg t becomes the new head (see Figure
14). The spanning tree T is unchanged.

• For a word w = a1a2 . . . an on the alphabet {a, b, c}, we denote by ϕw the map-
ping ϕa1

◦ ϕa2
◦ · · · ◦ ϕan

.

Definition 4.2. The image of an excursion w by the mapping Φ is the map with
a distinguished spanning tree and a marked external edge obtained by closing the
tree-growing map ϕw(M0

•
), that is, by gluing the head and the unique remaining

leg into a marked edge.
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a

e

v

b

e

v

Figure 13. The mappings ϕa and ϕb.

c

s
t

Figure 14. The mapping ϕc.

The mapping Φ has been applied to the excursion cacbaaccaaba in Figure 10 and
11. Of course, we still need to prove that the mapping Φ is well defined.

Proposition 4.3. The mapping Φ is well defined on any excursion w:
• It is always possible to apply the mapping ϕc when required.
• The tree-growing map ϕw(M0

• ) has exactly one leg beside the head. This leg and
the head are both in the head-face, hence can be glued together.

Before proving Proposition 4.3, we need three technical results.

Lemma 4.4. Let w be a word on the alphabet {a, b, c} such that ϕw(M0
•
) is well

defined. Then, ϕw(M0
•
) is a tree-growing map.

Proof: Let MT = ϕw(M0
•
). It is clear by induction that T is a spanning tree. The

only point to prove is that the legs of ϕw(M0
• ) are in the head-face. We proceed

by induction on the length of w. This property holds for the empty word. If the
property holds for MT = ϕw(M0

• ) it clearly holds for ϕa(MT ) and ϕb(MT ). If ϕc

can be applied, the head is glued either to the first or to the last leg of MT . Thus,
all the remaining legs (including the head of ϕc(MT )) are in the same face. �

We shall see shortly (Lemma 4.6) that whenever the tree-growing map ϕw(M0
•
)

is well defined, the endpoints of any leg is an ancestor of the head-vertex. Observe
that in this case the endpoints of the legs are comparable.

Lemma 4.5. Let MT be a tree-growing map. Suppose that the endpoint of any leg
is an ancestor of the head-vertex. Suppose also that the first and last legs exist and
have distinct endpoints. We call these endpoints u and v with the convention that
u is an ancestor of v. Then, v is the last vertex incident to a leg on the T -path
from the root-vertex to the head-vertex.

Proof: The situation is represented in Figure 15. We make an induction on the
number of edges that are not in the T -path P from the root-vertex to the head-
vertex. The property is clearly true if the tree-growing map is reduced to the path
P plus some legs. If not, the deletion of a edge not in P does not change the order
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of appearance of the legs around the head-face. In particular, the first and last legs
are unchanged. �

P
v

u P
v

u

Figure 15. The last vertex incident to a leg on the T -path from
the root-vertex to the head-vertex is v.

Lemma 4.6. Let w be a word on the alphabet {a, b, c} such that ϕw(M0
• ) is defined.

Then the endpoint of any leg of ϕw(M0
•
) is an ancestor of the head-vertex.

Proof: We proceed by induction on the length of w. The property holds for
the empty word. We suppose that it holds for MT = ϕw(M0

•
). It is clear that

the property holds for the tree-growing maps ϕa(MT ) and ϕb(MT ). If ϕc can be
applied, the endpoints of the first and last leg are distinct and comparable. We
call these endpoints u and v with the convention that u is an ancestor of v. By the
induction hypothesis, the conditions of Lemma 4.5 are satisfied by MT . Therefore,
the vertex v is the last vertex incident to a leg on the T -path from the root-vertex
to the head-vertex. Hence, any endpoint of a leg of ϕc(MT ) is an ancestor of v
which is the head-vertex of ϕc(MT ). �

Proof of Proposition 4.3: Let w be an excursion. We consider a suffix w′ of
w and denote by M ′

T = ϕw′(M0
•
) the corresponding tree-growing map (if it is well

defined).

• If M ′

T is well defined, it has |w′|a+|w′|b−2|w′|c+1 legs besides the head. (Observe
that, by (5) and (6), the quantity |w′|a + |w′|b − 2|w′|c is non-negative.)
We proceed by induction on the length of w′. The property holds for the empty
word. Moreover, applying ϕa or ϕb increases by 1 the number of legs whereas
applying ϕc decreases this number by 2. Thus, the property follows easily by
induction.

• The tree-growing map M ′

T is well defined.
We proceed by induction on the length of w′. The property holds for the empty
word. We write w′ = αw′′ and suppose that M ′′

T = ϕw′′(M0
•
) is well defined. If

α = a or b the tree-growing map M ′

T = ϕα(M ′′

T ) is well defined. We suppose
now that α = c. The tree-growing map M ′′

T has |w′′|a + |w′′|b − 2|w′′|c + 1 =
|w′|a + |w′|b − 2|w′|c + 3 > 2 legs besides the head. It is clear by induction that
all these legs have distinct endpoints. Moreover, by Lemma 4.6, all the endpoints
of these legs are ancestors of the head-vertex. Thus the endpoints of the legs are
comparable. In particular, the endpoints of the first and last legs are comparable.
Hence, the mapping ϕc can be applied.

• The tree-growing map MT = ϕw(M0
•
) is well defined and has exactly one leg

beside the head.
This property follows from the preceding points since |w|a + |w|b − 2|w|c = 0. �
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We now state the key result of this paper.

Theorem 4.7. The mapping Φ is a bijection between excursions of size n and
bridgeless 2-near-cubic marked-depth-maps of size n.

The proof of Theorem 4.7 is postponed to the next section. For the time being
we explore its enumerative consequences. We denote by dn the number of bridgeless
2-near-cubic depth-maps of size n. Consider a 2-near-cubic map M of size n (3n+1
edges, 2n+ 1 vertices) and a spanning tree T . Since T has 2n+ 1 vertices, MT has
2n internal edges and n + 1 external edges. Hence, there are (n + 1)dn bridgeless
2-near-cubic marked-depth-maps. By Theorem 4.7, this number is equal to the
number en of excursions of size n. Using Proposition 3.1, we obtain the following
result.

Corollary 4.8. There are dn =
en

n+ 1
=

4n

(n+ 1)(2n+ 1)

(

3n

n

)

bridgeless

2-near-cubic depth-maps of size n.

Observe that dn is also the number of bridgeless cubic depth-maps of size n− 1
since the bijection between cubic maps and 2-near-cubic maps represented in Fig-
ure 5 can be turned into a bijection between cubic depth-maps and 2-near-cubic
depth-maps.

5. Why the mapping Φ is a bijection

In this section, we prove that the mapping Φ is a bijection between excursions
and bridgeless 2-near-cubic marked-depth-maps. We first prove that the image
of any excursion by the mapping Φ is a bridgeless 2-near-cubic marked-depth-
map (Proposition 5.1). Then we define a mapping Ψ from bridgeless 2-near-cubic
marked-depth-maps to excursions (Definition 5.4) and prove that Φ and Ψ are
inverse mappings (Propositions 5.7 and 5.9).

Proposition 5.1. The image Φ(w) of any excursion w is a bridgeless 2-near-cubic
marked-depth-map.

Proof: Let w′ be a suffix of w and let M ′

T = ϕw′(M0
• ) be the corresponding tree-

growing map.

• The tree-growing map M ′

T is 2-near-cubic.
Applying ϕa or ϕb creates a new vertex of degree 3 and does not change the degree
of the other vertices. Applying ϕc does not affect the degree of the vertices. The
property follows by induction.

• The head and the root of M ′

T are distinct half-edges.
The property holds for the empty word. We now write w′ = αw′′. If α = a or b the
property clearly holds for w′. Suppose now that α = c. Let u and v be the vertices
incident to the first and last legs of M ′′

T = ϕw′′(M0
• ) with the convention that u

is an ancestor of v. By definition, v is the head-vertex of M ′

T = ϕc(M
′′

T ) and is a
proper descendant of u. Hence, the head-vertex v and the root-vertex of M ′

T are
distinct.

• The tree T is a depth tree of M ′

T .
The external edges are created by applying the mapping ϕc, that is, by gluing the
head to another leg. By Lemma 4.6, any vertex incident to a leg is an ancestor of
the head-vertex. Hence, any external edge joins comparable vertices. Moreover, by
the preceding point, if the root is part of a complete edge, then this edge is external
(internal edges are created by the mappings ϕa or ϕb which replace the head by a
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complete edge).

• Let u0 be the first vertex of M ′

T incident to a leg on the T -path from the root-
vertex to the head-vertex. Any isthmus of M ′

T is in the T -path between u0 and the
head-vertex.
We proceed by induction on the length of w′. The property holds for the empty
word. We write w′ = αw′′ and suppose that it holds for M ′′

T = ϕw′′(M0
•
). If α = a

or b the property clearly holds for M ′

T = ϕα(M ′′

T ). We suppose now that α = c.
We denote by u1 the first vertex of M ′′

T incident to a leg on the T -path from the
root-vertex to the head-vertex. Let u and v be the vertices incident to the first and
last legs of M ′′

T with the convention that u is an ancestor of v. By Lemma 4.6, the
vertices u1, u and v are all ancestors of the head-vertex v1 of M ′′

T . Hence, u and v
are on the T -path between u1 and v1. This situation is represented in Figure 16.
By definition, the tree-growing map M ′

T is obtained from M ′′

T by creating an edge
e1 between u and v1 while v becomes the new head-vertex. We denote by P1 (resp.
P2) the T -path between u1 and u (resp. u and v1). We consider an isthmus e of
M ′

T . The edge e is an isthmus of M ′′

T (since M ′′

T is obtained from MT by deleting
an edge). By the induction hypothesis, the isthmus e is either in P1 or in P2. The
edge e is not in the path P2 since the new edge e1 creates a cycle with P2. The
isthmus e is in P1, therefore the vertices u1 and u are distinct. Hence u1 = u0 is
the first vertex of M ′

T incident to a leg on the T -path from the root-vertex to the
head-vertex. Thus, the isthmus e is in the T -path from u0 to the head-vertex v of
M ′

T .

• The depth-map Φ(w) has no isthmus.
By the preceding points, any isthmus of MT = ϕw(M0

• ) is on the T -path between
the head-vertex and the endpoint of the only remaining leg. Hence, no isthmus
remains once the map closed. �

P2

u

v

P1

v

u

v1

u1 u1

v1

e1
ϕc

Figure 16. Isthmuses are in the T -path between u0 and the head-vertex.

We will now define a mapping Ψ (Definition 5.4) that we shall prove to be the
inverse of Φ. The mapping Ψ destructs the tree-growing map that Φ constructs
and recovers the walk. Looking at Figure 10 from bottom-to-top and right-to-left
we see how Ψ works.

We first define three mappings ψa, ψb, ψc on tree-growing maps that we shall
prove to be the inverse of ϕa, ϕb and ϕc respectively. We consider the following
conditions for a tree-growing map MT :
(a) The head-vertex has degree 3 and is incident to an edge and a leg at the left of
the head.
(b) The head-vertex has degree 3 and is incident to an edge and a leg at the right
of the head.
(c) The head-vertex has degree 3 and is incident to 2 edges which are not isthmuses.



BIJECTIVE COUNTING OF KREWERAS WALKS AND LOOPLESS TRIANGULATIONS 13

Furthermore, the tree T is a depth tree.

The conditions (a), (b), (c) are the domain of definition of ψa, ψb, ψc respectively.
Before defining these mappings we need a technical lemma.

Lemma 5.2. If Condition (c) holds for the tree-growing map MT , then there exists
a unique external edge e0 incident to the head-face with one endpoint u ancestor of
the head-vertex and one endpoint v0 descendant of the head-vertex.

Lemma 5.2 is illustrated by Figure 17.

u

ee0

v0

Figure 17. The unique edge e0 satisfying the conditions of
Lemma 5.2.

Proof: We suppose that MT satisfies Condition (c). One of the two edges incident
to the head-vertex is in the T -path from the root-vertex to the head-vertex. Denote
it e. The edge e separates the tree T in two subtrees T1 and T2. We consider the
set E0 of external edges having one endpoint in T1 and the other in T2. Any edge
satisfying the conditions of Lemma 5.2 is in E0. Since e is not an isthmus, the set
E0 is non-empty. Moreover, any edge in E0 has one endpoint that is a descendant
of the head-vertex. Since T is a depth tree, the other endpoint is an ancestor of
the head-vertex. It remains to show that there is a unique edge e0 in E0 incident
to the head-face. By contracting every edge in T1 and T2 we obtain a map with 2
vertices. The edges incident to both vertices are precisely the edges in E0 ∪ {e}.
It is clear that exactly 2 of these edges are incident to the head-face. One is the
internal edge e and the other is an external edge e0 ∈ E0. This edge e0 is the only
external edge satisfying the conditions of Lemma 5.2. �

We are now ready to define the mappings ψa, ψb and ψc.

Definition 5.3. Let MT be a tree-growing map.

• The tree-growing map M ′

T ′ = ψa(MT ) (resp. ψb(MT )) is defined if Condition (a)
(resp. (b)) holds. In this case, the tree-growing map M ′

T ′ is obtained by suppressing
the head-vertex v and the 3 incident half-edges. The other half of the edge incident
to v becomes the new head.

• The tree-growing map M ′

T ′ = ψc(MT ) is defined if Condition (c) holds. In this
case, we consider the unique external edge e0 with endpoints u, v0 satisfying the
conditions of Lemma 5.2. The edge e0 is broken into two legs. The leg incident to
v0 becomes the new head (the former head becomes an anonymous leg).

• For a word w = a1a2 . . . an on the alphabet {a, b, c}, we denote by ψw the map-
ping ψan

◦ ψan−1
◦ · · · ◦ ψa1

. Moreover, we say that the word w is readable on a
tree-growing map MT if the mapping ψw is well defined on MT .
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Remarks:
• Applying one of the mappings ψa, ψb or ψc to a 2-near-cubic map cannot delete
the root (only half-edges incident to a vertex of degree 3 can disappear by applica-
tion of ψa or ψb).

• The conditions (a), (b), (c) are incompatible. Thus, for any tree-growing map
MT , there is at most one readable word of a given length.

• Applying the mapping ψa, ψb or ψc decreases by one the number of edges. There-
fore, the length of any readable word on a tree-growing map MT is less than or
equal to the number of edges in MT .

We now define the mapping Ψ on bridgeless 2-near-cubic marked-depth-maps.
Let MT be such a map and let e be the marked (external) edge. Observe first
that, unless MT is reduced to a loop, the edge e has two distinct endpoints (or
the endpoint of e would be incident to an isthmus). We denote by u and v the
endpoints of e with the convention that u is an ancestor of v. We open this map
if we disconnect the edge e into two legs and choose the leg incident to v to be
the head. We denote by M⊣⊢

T the tree-growing map obtained by opening MT . By
convention, opening the 2-near-cubic marked-depth-map reduced to a loop gives
M0

•
. Note that we obtain MT by closing M⊣⊢

T . We now define the mapping Ψ.

Definition 5.4. Let MT be a bridgeless 2-near-cubic marked-depth-map. The
word Ψ(MT ) is the longest word readable on M⊣⊢

T .

We want to prove that Φ and Ψ are inverse mappings. We begin by proving that
the mapping ψα is the inverse of ϕα for α = a, b, c.

We say that a tree-growing map satisfies Condition (c′) if it satisfies Condition
(c) and is such that the endpoint of every leg is an ancestor of the head-vertex.

Lemma 5.5.
• For α = a or b, the mapping ψα ◦ϕα is the identity on all tree-growing maps and
the mapping ϕα ◦ψα is the identity on tree-growing maps satisfying Condition (α).

• The mapping ψc ◦ϕc is the identity on tree-growing maps such that the endpoints
of the first and last legs exist and are distinct ancestors of the head-vertex. The
mapping ϕc ◦ ψc is the identity on tree-growing maps satisfying Condition (c′).

Before proving Lemma 5.5, we need the following technical result.

Lemma 5.6. Let MT be a tree-growing map satisfying Condition (c′) and let e0 be
the edge with endpoints u, v0 satisfying the conditions of Lemma 5.2. By definition,
the tree-growing map ψc(MT ) is obtained by breaking e0 into two legs s and h
incident to u and v0 respectively while h becomes the new head. The pair of first
and last legs of ψc(MT ) is the pair {s, t}, where t is the head of MT .

Lemma 5.6 is illustrated by Figure 18.

Proof of Lemma 5.6:
• Let v be the head-vertex of MT (i.e. the endpoint of t). By Condition (c′), the
endpoint of any leg of MT is an ancestor of v. Therefore, in the tree-growing map
ψc(MT ), the vertex v is the last vertex incident to a leg on the T -path from the
root-vertex to the head-vertex v0. Hence, by Lemma 4.5, the leg t is either the first
or the last leg of ψc(MT ).

• No leg lies between s and h on the tour of the head-face of ψc(MT ) since this leg
would have been inside a non-head face of MT . Thus the leg s is either the first or
the last leg of ψc(MT ).



BIJECTIVE COUNTING OF KREWERAS WALKS AND LOOPLESS TRIANGULATIONS 15

s

u u

v0v0

v vψc

t

h

t
e0

Figure 18. The pair of first and last legs of the tree-growing map
ψc(MT ) is the pair {s, t}.

�

Proof of Lemma 5.5:
• For α = a or b, it is clear from the definitions that ϕα ◦ ψα is the identity
mapping on all tree-growing maps and that ϕα ◦ψα is the identity on tree-growing
maps satisfying Condition (α).

• Consider a tree-growing map MT such that the endpoints of the first and last
legs exist and are distinct ancestors of the head-vertex v0. We call these legs s
and t with the convention that the endpoint u of s is an ancestor of the endpoint
v of t. By definition, ϕc(MT ) is obtained by gluing the head of MT to s while t
becomes the new head. Let e0 be the external edge created by gluing the head to s.
The head-vertex v of the tree-growing map ϕc(MT ) is on the cycle made of e0 and
the T -path between its two endpoints u and v0, thus ϕc(MT ) satisfies Condition
(c). Moreover, the external edge e0 satisfies the conditions of Lemma 5.2. Thus,
ψc ◦ ϕc(MT ) = MT .

• We consider a tree-growing map MT satisfying Condition (c′). We consider the
edge e0 with endpoints u, v0 satisfying the conditions of Lemma 5.2. By definition,
ψc(MT ) is obtained by breaking e0 into two legs s and h incident to u and v0
respectively while h becomes the new head. By Lemma 5.6, the pair of first and
last legs of ψc(MT ) is {s, t}. Moreover, the endpoint u of s is an ancestor of the
endpoint v of t (by definition of e0, u, v0 in Lemma 5.2). Therefore, the identity
ϕc ◦ ψc(MT ) = MT follows from the definitions. �

Proposition 5.7. The mapping Ψ ◦ Φ is the identity on excursions.

Proof:
• For any word w on the alphabet {a, b, c} such that the tree-growing map ϕw(M0

•
)

is well defined, the word w is readable on ϕw(M0
• ) and ψw ◦ ϕw(M0

• ) = M0
• .

We proceed by induction on the length of w. The property holds for the empty
word. We write w = αw′ with α = a, b or c and suppose that it holds for w′. Let
M ′

T = ϕw′(M0
• ). If α = c, the endpoints of the first and last legs of M ′

T are distinct
and comparable (since ϕc is defined on M ′

T ). Moreover, we know by Lemma 4.6
that these endpoints are ancestors of the head-vertex. Thus, for α = a, b or c,
Lemma 5.5 ensures that ψα ◦ ϕα(M ′

T ) = M ′

T . Therefore,

ψαw′ ◦ ϕαw′(M0
•
) = ψw′ ◦ ψα ◦ ϕα ◦ ϕw′(M0

•
) = ψw′ ◦ ψα ◦ ϕα(M ′

T ) = ψw′(M ′

T ),

and ψw′(M ′

T ) = M0
•

by the induction hypothesis.

• For any excursion w, we have Ψ ◦ Φ(w) = w.
By definition, the map MT = Φ(w) is obtained by closing ϕw(M0

• ). In order to
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conclude that M⊣⊢

T = ϕw(M0
• ), we only need to check that the head of M⊣⊢

T is the
head of ϕw(M0

•
) (and the non-head leg of M⊣⊢

T is the non-head leg of ϕw(M0
•
)).

This is true since the endpoint of the non-head leg of ϕw(M0
•
) is an ancestor of

the head-vertex by Lemma 4.6. By the preceding point, the word w is readable on
M⊣⊢

T = ϕw(M0
•
) and ψw(MT ) = ψw ◦ ϕw(M0

•
) = M0

•
. Since no letter is readable

on M0
• , the longest word readable on M⊣⊢

T is w. Thus, Ψ ◦ Φ(w) = Ψ(MT ) = w.

�

It remains to show that Φ ◦ Ψ is the identity mapping on bridgeless 2-near-
cubic marked-depth-maps. We first prove that the image of bridgeless 2-near-cubic
marked-depth-maps by Ψ are excursion.

Proposition 5.8. For any bridgeless 2-near-cubic marked-depth-map MT , the
longest word w readable on M⊣⊢

T is an excursion. Moreover, the tree-growing map
ψw(M⊣⊢

T ) is M0
•
.

Proof: If MT is the map reduced to a loop the result is trivial. We exclude this
case in what follows. Let w be a word readable on M⊣⊢

T and let NT = ψw(M⊣⊢

T ).
We denote by u0 the first vertex of NT incident to a leg on the T -path from the
root-vertex to the head-vertex.

• Any isthmus of NT is in the T -path between u0 and the head-vertex.
We proceed by induction on the length of w. Suppose first that w is the empty
word. Let e0 be the marked edge of MT . By definition, the tree-growing map
NT = M⊣⊢

T is obtained from MT by breaking e0 into two legs: the head and an-
other leg incident to u0. Let e be an isthmus of NT and let N1, N2 be the two
connected submaps obtained by deleting e. Since e is not an isthmus of MT , the
edge e0 joins N1 and N2. Therefore, the root-vertex and head-vertex are not in the
same submap. Thus, the isthmus e is in any path between u0 and the head-vertex,
in particular it is in the T -path.
We now write w = αw′ with α = a, b or c and suppose, by the induction hypothesis,
that the property holds for w′. We denote by u′0 the first vertex of N ′

T = ψw′(M⊣⊢

T )
incident to a leg on the T -path from the root-vertex to the head-vertex. Suppose
first that α = a or b. The edge incident to the head-vertex of N ′

T is an isthmus
hence, by the induction hypothesis, it is in the T -path between u′0 and the head-
vertex v′0 ofN ′

T . Hence, u′0 6= v′0. Thus, u0 = u′0 and every isthmus ofNT = ψα(N ′

T )
is in the T -path between u0 and the head-vertex. Suppose now that α = c. Since w
is readable on M⊣⊢

T , the tree-growing map N ′

T = ψw′(M⊣⊢

T ) satisfies Condition (c).
We consider the edge e0 with endpoints u, v0 satisfying the conditions of Lemma
5.2. The map NT = ψc(N

′

T ) is obtained from NT by breaking e0 into two legs. By
definition, the head-vertex of NT is v0. Moreover, the vertex u0 is either u′0 or u
if u is an ancestor of u′0. We consider an isthmus e of NT . If e is an isthmus of
N ′

T , it is in the T -path between u′0 to the head-vertex of N ′

T which is included in
the T -path between u0 and v0. If e is not an isthmus of N ′

T , we consider the two
connected submaps N1, N2 obtained from NT by deleting the isthmus e. Since e
is not an isthmus of N ′

T , the edge e0 joins N1 and N2. Hence, the endpoints u and
v0 of e0 are not in the same submap. Thus, the isthmus e is in every path of NT

between u and the head-vertex v0, in particular, it is in the T -path between u0 and
v0.

• The tree-growing map NT has at least one leg beside the head.
We proceed by induction. The property holds for the empty word. We now write
w = αw′ with α = a, b or c and suppose that the property holds for w′. Suppose
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first that α = a or b. Since Condition (α) holds, the edge incident to the head-
vertex v′0 of the tree-growing map N ′

T = ψw′(M⊣⊢

T ) is an isthmus. By the preceding
point, this edge is on the T -path between u′0 and v′0, where u′0 be the first vertex of
N ′

T incident to a leg on the T -path from the root-vertex to the head-vertex. Thus
u′0 6= v′0 and NT = ψα(N ′

T ) has at least one leg (the one incident to u′0) beside the
head. In the case α = c, the tree-growing map NT = ψc(N

′

T ) has one more legs
than N ′

T , hence it has at least one leg beside the head.

• The head and root of NT are distinct half-edges.
By definition, the map M⊣⊢

T has one leg beside the head whose endpoint is a proper
ancestor of the head-vertex. Hence, the head-vertex and root-vertex are distinct.
We suppose now that w = αw′ with α = a, b or c. If α = a or b the head of NT is
an half-edge of N ′

T = ψw′(M⊣⊢

T ) which is part of an internal edge. Hence it is not
the root. If α = c, the head of NT is part of an external edge e of N ′

T = ψw′(M⊣⊢

T ).
The edge is broken into the head of NT and another leg whose endpoint is a proper
ancestor of the head-vertex. Hence, the head-vertex and root-vertex of NT are
distinct.

• If w is the longest readable word, then NT = M0
•
.

We first prove that the root-vertex and the head-vertex of NT are the same. Sup-
pose they are distinct. In this case, the head-vertex has degree 3 and is incident to
at least one edge. If it is incident to one edge, then one of the conditions (a) or (b)
holds and w is not the longest readable word. Hence the head-vertex is incident
to two edges e1 and e2. One of these edges, say e1, is in the T -path from the
root-vertex to the head-vertex and the other e2 is not. By a preceding point, the
edge e2 is not an isthmus . Therefore, e1 is not an isthmus either (e1 and e2 have
the same ability to disconnect the map). In this case, Condition (c) holds (since T
is a depth tree) and w is not the longest readable word. Thus, the root-vertex and
the head-vertex of NT are the same. Therefore, the root-vertex has degree 2 and
is incident to the head and the root. The head and the root are distinct (by the
preceding point). Moreover the root is a leg. Indeed, if the root was not a leg it
would be part of an external edge which is an isthmus (which is impossible since
the tree T is spanning). Hence the root-vertex is incident to two legs: the root and
the head. Thus, NT = M0

• .

• The tree-growing map NT has 2|w|c − |w|a − |w|b + 1 legs beside the head.
The tree-growing map M⊣⊢

T has one leg beside the head. Moreover, applying map-
ping ψa or ψb decreases by one the number of legs whereas applying mapping ψc

increases this number by two. Hence the property follows easily by induction.

• The longest word w readable on M⊣⊢

T is an excursion.
By the preceding points, any prefix w′ of w satisfies 2|w′|c − |w′|a − |w′|b + 1 ≥ 1
(since this quantity is the number of non-head legs of ψw′(M⊣⊢

T )). Moreover, since
ψw(M⊣⊢

T ) = M0
•

has one leg beside the root, we have 2|w|c − |w|a − |w|b + 1 = 1.
These properties are equivalent to (5) and (6), hence w is an excursion. �

Proposition 5.9. The mapping Φ ◦ Ψ is the identity on bridgeless 2-near-cubic
marked-depth-maps.

Proof: Let MT be a bridgeless 2-near-cubic marked-depth-map.

• For any word w readable on M⊣⊢

T , the endpoints of any leg of ψw(M⊣⊢

T ) is an
ancestor of the head-vertex.
We proceed by induction on the length of w. The property holds for the empty
word. We now write w = αw′ with α = a, b or c and suppose that it holds for
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w′. For α = a or b, the property clearly holds for w. Suppose now that α = c.
Since w is readable, the tree-growing map N ′

T = ψw′(M⊣⊢

T ) satisfies Condition (c).
We consider the edge e0 with endpoints u, v0 satisfying the conditions of Lemma
5.2. By definition, the head-vertex v0 of NT = ψc(N

′

T ) is a descendant of the
head-vertex v of N ′

T . By the induction hypothesis, the endpoint of any leg of N ′

T

is an ancestor of v. Hence, the endpoint of any leg of NT is an ancestor of the
head-vertex v0.

• For any word w readable on M⊣⊢

T , we have ϕw ◦ ψw(M⊣⊢

T ) = M⊣⊢

T .
We proceed by induction. The property holds for the empty word. We now write
w = αw′ with α = a, b or c and suppose that the property holds for w′. If α = a or
b the induction step is given directly by Lemma 5.5 (since Condition (α) holds for
M ′

T = ψw′(M⊣⊢

T )). If α = c, that is, Condition (c) holds for M ′

T = ψw′(M⊣⊢

T ), we
must prove that Condition (c′) holds (in order to apply Lemma 5.5). But we are
ensured that Condition (c′) holds by the preceding point. Thus, for α = a, b or c,
Lemma 5.5 ensures that ϕα ◦ ψα(M ′

T ) = M ′

T . Therefore,

ϕαw′ ◦ ψαw′(M⊣⊢

T ) = ϕw′ ◦ ϕα ◦ ψα ◦ ψw′(M⊣⊢

T ) = ϕw′ ◦ ϕα ◦ ψα(M ′

T ) = ϕw′(M ′

T ),

and ϕw′(M ′

T ) = M⊣⊢

T by the induction hypothesis.

• Φ ◦ Ψ(MT ) = MT .
By definition, the word w = Ψ(MT ) is the longest readable word on M⊣⊢

T . Hence,
by Proposition 5.8, ψw(M⊣⊢

T ) = M0
•
. By the preceding point, ϕw(M0

•
) = ϕw ◦

ψw(M⊣⊢

T ) = M⊣⊢

T . By definition, the map Φ(w) is obtained by closing ϕw(M0
• ) =

M⊣⊢

T , hence Φ(w) = MT . Thus, Φ ◦ Ψ(MT ) = Φ(w) = MT . �

By Proposition 5.1, the mapping Φ associates a bridgeless 2-near-cubic marked-
depth-map with any excursion. Conversely, by Proposition 5.8, the mapping Ψ
associates an excursion with any bridgeless 2-near-cubic marked-depth-map. The
mappings Φ and Ψ are inverse mappings by Propositions 5.7 and 5.9. Thus, the
mapping Φ is a bijection between excursions and bridgeless 2-near-cubic marked-
depth-maps. Moreover, if an excursion w has size n (length 3n), the 2-near-cubic
depth-map Φ(w) has size n (3n+1 edges). This concludes the proof of Theorem 6.1.

�

6. A bijection between Kreweras walks and cubic depth-maps

In this section, we prove that the mapping Φ establishes a bijection between
Kreweras walks ending at the origin and 2-near-cubic depth-maps. This result is
stated more precisely in the following theorem.

Theorem 6.1. Let w be an excursion. The marked edge of the 2-near-cubic depth-
map Φ(w) is the root-edge if and only if the excursion w is a Kreweras walk ending
at the origin.
Thus, the mapping Φ induces a bijection between Kreweras walks of size n (length
3n) ending at the origin and bridgeless 2-near-cubic depth-maps of size n (3n + 1
edges).

Figure 19 illustrates an instance of Theorem 6.1. Before proving this theorem
we explore its enumerative consequences. From Theorem 6.1, the number kn of
Kreweras walks of size n is equal to the number dn of bridgeless 2-near-cubic depth-
maps of size n. The number dn is given by Corollary 4.8. We obtain the following
result.
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Theorem 6.2. There are kn =
4n

(n+ 1)(2n+ 1)

(

3n

n

)

Kreweras walks of size n

(length 3n) ending at the origin.

a

c c b c

a ab b

Close

Figure 19. The image of a Kreweras walk by Φ: the root-edge is marked.

The rest of this section is devoted to the proof of Theorem 6.1.

Consider a growing map M such that the root is a leg. Recall that making the
tour of the head-face means following its border in counterclockwise direction start-
ing from the head (see Figure 12). We call left (resp. right) the legs encountered
before (resp. after) the root during the tour of the head-face. For instance, the
growing map in Figure 12 has one left leg and two right legs.

Lemma 6.3. For any Kreweras walk w ending at the origin, the marked edge of
Φ(w) is the root-edge.

Proof: Let w′ be a suffix of w and let M ′

T = ϕw′(M0
•
) be the corresponding tree-

growing map.

• The root of M ′

T is a leg and M ′

T has |w′|a − |w′|c left legs and |w′|b − |w′|c right
legs. (Observe that, these quantities are non-negative by (3) and (4).)
We proceed by induction on the length of w′. The property holds for the empty
word. We now write w′ = αw′′ with α = a, b or c and suppose that the property
holds for w′′. If α = a or b the property holds for w′ since applying ϕa (resp.
ϕb) increases by one the number of left (resp. right) legs. We now suppose that
α = c. We know that |w′′|a − |w′′|c = |w′|a − |w′|c + 1 ≥ 1. Hence, by the
induction hypothesis, the tree-growing-map M ′′

T = ϕw′′(M0
• ) has at least one left

leg. Similarly, M ′′

T has at least one right leg. Therefore, the first (resp. last) leg
of M ′′

T is a left (resp. right) leg. Hence, applying ϕc to M ′′

T decreases by one the
number of left (resp. right) legs. Thus, the property holds for w′.

• For w′ = w, the preceding point shows that ϕw(M0
• ) has only one leg beside the

head and that this leg is the root. Thus, the marked edge of Φ(w) is the root-edge.

�

Lemma 6.4. For any bridgeless 2-near-cubic depth-map MT marked on the root-
edge, the word w = Ψ(MT ) = Φ−1(MT ) is a Kreweras walk ending at the origin.
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Proof: Let w be a word readable on M⊣⊢

T and let NT = ψw(M⊣⊢

T ). Observe that
the root of NT is a leg (since it is the case in M⊣⊢

T and the root never disappears).

• The tree-growing map NT has |w|c − |w|a left legs and |w|c − |w|b right legs.
We proceed by induction on the length of w. The property holds for the empty
word. We now write w = αw′ with α = a, b or c and suppose that the property
holds for w′. If α = a or b the property holds for w since applying ψa (resp. ψb)
decreases by one the number of left (resp. right) legs. We now suppose that α = c.
The map N ′

T = ψw′(M⊣⊢

T ) satisfies Condition (c). We have already proved (see the
first point in the proof of Lemma 5.8) that the endpoint of every leg is an ances-
tor of the head-vertex. Hence N ′

T satisfies Condition (c′). Therefore, Lemma 5.6
holds for N ′

T . We adopt the notations h, s, t of this lemma which is illustrated in
Figure 18. By Lemma 5.6, the pair of first and last head of NT = ψc(N

′

T ) is the
pair {s, t}. Hence, in the pair {s, t} one is a left leg and the other is a right leg of
NT . Moreover, the other left and right legs of NT are the same as in N ′

T . Thus,
applying ψc to N ′

T increases by one the number of left (resp. right) legs. Hence,
the property holds for w.

• The word w = Ψ(MT ) is a Kreweras walk ending at the origin.
By definition, w is the longest word readable onM⊣⊢

T . By Proposition 5.8, ψw(M⊣⊢

T ) =
M0

• . By the preceding point, we get |w|c − |w|a = 0 and |w|c − |w|b = 0 (since M0
•

has no left nor right leg). Moreover, for any suffix w′ of w, the preceding point
proves that |w′|c − |w′|a ≥ 0 and |w′|c − |w′|b ≥ 0. These properties are equivalent
to (3) and (4), hence w is a Kreweras walk ending at the origin. �

7. Enumerating depth trees and cubic maps

In Section 4, we exhibited a bijection Φ between excursions and bridgeless 2-near-
cubic marked-depth-maps. As a corollary we obtained the number of bridgeless
2-near-cubic depth-maps of size n: dn = 4n

(n+1)(2n+1)

(

3n
n

)

. In this section, we

prove that any bridgeless 2-near-cubic map of size n has 2n depth trees (Corollary

7.5). Hence, the number of bridgeless 2-near-cubic maps of size n is cn = dn

2n
=

2n

(n+1)(2n+1)

(

3n

n

)

. Given the bijection between 2-near-cubic maps and cubic maps

(see Figure 5), we obtain the following theorem.

Theorem 7.1. There are cn =
2n

(n+ 1)(2n+ 1)

(

3n

n

)

bridgeless cubic maps with

3n edges.

By duality, cn is also the number of loopless triangulations with 3n edges. Hence,
we recover Equation (2) announced in the introduction. As mentioned above, an
alternative bijective proof of Theorem 7.1 was given in [7].

The rest of this section is devoted to the counting of depth trees on cubic maps
and, more generally, on cubic (potentially non-planar) graphs. We first give an
alternative characterization of depth trees. This characterization is based on the
depth-first search (DFS) algorithm (see Section 23.3 of [2]). We consider the DFS
algorithm as an algorithm for constructing a spanning tree of a graph.

Consider a graph G with a distinguished vertex v0. If the DFS algorithm starts
at v0, the subgraph T (see below) constructed by the algorithm remains a tree
containing v0. We call visited the vertices in T and unvisited the other vertices.
The distinguished vertex v0 is considered as the root-vertex of the tree. Hence, any
vertex in T distinct from v0 has a father in T .
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Definition 7.2. Depth-first search (DFS) algorithm.

Initialization: Set the current vertex to be v0 and the tree T to be reduced to v0.

Core: While the current vertex v is adjacent to some unvisited vertices or is dis-
tinct from v0 do:
If there are some edges linking the current vertex v to an unvisited vertex, then
choose one of them. Add the chosen edge e and its unvisited endpoint v′ to the
tree T . Set the current vertex to be v′.
Else, backtrack, that is, set the current vertex to be the father of v in T .

End: Return the tree T .

It is well known that the DFS algorithm returns a spanning tree. It is also known
[2] that the two following properties are equivalent for a spanning tree T of a graph
G having a distinguished vertex v0:
(i) Any external edge joins comparable vertices.
(ii) The tree T can be obtained by a DFS algorithm on the graph G starting at v0.

Before stating the main result of this section, we need an easy preliminary lemma.

Lemma 7.3. Let G be a connected graph with a distinguished vertex v0 whose
deletion does not disconnect the graph. Then, any spanning tree T of G satisfying
conditions (i)-(ii) has exactly one edge incident to v0.

Proof: Let e0 be an edge of T incident to v0 and let v1 be the other endpoint of
e0. We partition the vertex set V of G into {v0} ∪ V0 ∪ V1, where V1 is the set of
descendants of v1. There is no internal edge joining a vertex in V0 and a vertex in
V1. There is no external edge either or it would join two non-comparable vertices.
Thus V0 = ∅ or the deletion of v0 would disconnect the graph.

�

Theorem 7.4. Let G be a loopless connected graph with a distinguished vertex v0
whose deletion does not disconnect the graph. Let e0 be an edge incident to v0. If
G is a k-near-cubic graph (v0 has degree k and the other vertices have degree 3)
of size n (3n + 2k − 3 edges), then there are 2n trees containing e0 and satisfying
conditions (i)-(ii).

Given that the depth trees are the spanning trees satisfying conditions (i)-(ii)
and not containing the root, the following corollary is immediate.

Corollary 7.5. Any bridgeless 2-near-cubic map of size n (3n + 1 edges) has 2n

depth trees.

Remark: Theorem 7.4 implies that any k-near-cubic loopless graph of size n has
k2n trees satisfying the conditions (i)-(ii).

The rest of this section is devoted to the proof of Theorem 7.4. The proof relies
on the intuition that exactly n real binary choices have to be made during the
execution of a DFS algorithm on a k-near-cubic map of size n.

Given a graph G and a subset of vertices U , we say that two vertices u and
v are U -connected if there is a path between u and v containing only vertices in
U ∪ {u, v}.



22 O. BERNARDI

Lemma 7.6. Let v be the current vertex and let U be the set of unvisited vertices
at a given time of the DFS algorithm. The vertices that will be visited before the
last visit to v are the vertices in U that are U -connected to v.

Proof: Let S be the set of vertices in U that are U -connected to v. We make an
induction on the cardinality of S. If the set S is empty, there is no edge linking v to
an unvisited vertex. Hence, the next step in the algorithm is to backtrack and the
vertex v will never be visited again. In other words, it is the last visit to v, hence
the property holds. Suppose now that S is non-empty. In this case, there are some
edges linking the current vertex v to an unvisited vertex. Let e be the edge chosen
by the DFS algorithm and let v′ ∈ U be the corresponding endpoint. Let S1 be the
set of vertices in U that are U -connected to v′ and let S2 = S \S1. Observe that no
edge joins a vertex in S1 and a vertex in S2. This situation is represented in Figure
20. The set of vertices in U ′ = U \ {v′} that are U ′-connected to v is S′

1 = S1 \ {v′}
(since a vertex is U -connected to v′ if and only if it is U ′-connected to v′). By the
induction hypothesis, S′

1 is the set of vertices visited between the first and last visit
to v′. Hence S1 is the set of vertices visited before the algorithm returns to v. Since
no edge joins a vertex in S1 and a vertex in S2, the vertices in S2 are the vertices
in U \ S1 that are (U \ S1)-connected to v. By the induction hypothesis, S2 is the
set of vertices visited before the last visit to v. Thus, the property holds. �

v′

v

S1

S2

Figure 20. Partition of the vertices in S.

Proof of Theorem 7.4: Clearly, the spanning trees containing e0 and satisfying
the conditions (i)-(ii) are the spanning trees obtained by a DFS algorithm for
which the first core step is to choose e0. We want to prove that there are 2n such
spanning trees.
We consider an execution of the DFS algorithm for which the first core step is to
choose e0 and denote by T the spanning tree returned by the DFS algorithm (in
order to distinguish it from the evolving tree T ). After the first core step, the tree
T is reduced to e0 and its two endpoints v0 and v′0. Let V be the vertex set of G
and let V ′ = V \ {v0, v′0}. Since the deletion of v0 does not disconnect the graph,
every vertex in V ′ is V ′-connected to v′0. Hence, by Lemma 7.6, every vertex will
be visited before the algorithm returns to v0. Thus, from this stage on, the current
vertex v is incident to 3 edges e, e1, e2, where e ∈ T links v to its father.

• We denote by v1 and v2 the endpoints of e1 and e2 respectively (these endpoints
are not necessarily distinct) and we denote by U the set of unvisited vertices. We
distinguish three cases:
(α) at least one of the vertices v1, v2 is not in U ,
(β) the two vertices v1, v2 are in U and are U -connected with each other,
(γ) the two vertices v1, v2 are in U and are not U -connected with each other.
The three cases are illustrated by Figure 21. We prove successively the following
properties:
- In case (α), no choice has to be done by the algorithm.
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Indeed, there is at most one edge (e1 or e2) linking the current vertex v to an
unvisited vertex.
- In case (β), the algorithm has to choose between e1 and e2. This choice necessarily
leads to two different spanning trees T . Indeed the edge e1 (resp. e2) is in T if and
only if the choice of e1 (resp. e2) is made.
Suppose (without loss of generality), that the choice of e1 is made. The vertex v2
is (U ∪ {v1})-connected to v1 (a vertex is (U ∪ {v1})-connected to v1 if and only if
it is U -connected to v1). Hence, by Lemma 7.6, the vertex v2 will be visited before
the last visit to v1, that is, before the algorithm returns to the vertex v. Therefore,
the edge e2 will not be in the spanning tree T .
- In case (γ), the algorithm has to choose between e1 and e2. Moreover, any tree T
obtained by choosing e1 can be also obtained by choosing e2.
Let S1 and S2 be the set of vertices in U that are U -connected to v1 and v2
respectively. Observe that the sets S1 and S2 are disjoint and no edge links a vertex
in S1 and a vertex in S2 (otherwise the vertices v1 and v2 would be U -connected).
Suppose that the choice of e1 is made. The set of vertices in U \ {v1} that are
U \ {v1}-connected to v1 is S1 \ {v1}. Hence, by Lemma 7.6, the set of vertices
visited before the last visit to v1, that is, before the algorithm returns to v is S1.
Since v2 is not in S1 the next step of the algorithm is to choose e2. Let U2 = U \S1

be the set of unvisited vertices at this stage. Since no vertex in S1 is adjacent to
a vertex in S2, the set of vertices in U2 \ {v2} that are (U2 \ {v2})-connected to v2
is S2 \ {v2}. Hence, by Lemma 7.6, the set of vertices visited before the last visit
to v2, that is, before the algorithm returns to v is S2. Let T1 (resp. T2) be the
subtree constructed by the algorithm between the first and last visit to v1 (resp.
v2). Since no vertex in S1 is adjacent to a vertex in S2, the subtree T1 could have
been constructed exactly the same way if the algorithm had chosen e2 (instead of
e1) at the beginning. Similarly, the subtree T2 could have been constructed exactly
in the same way if the algorithm had chosen e2 at the beginning. Therefore, the
tree T returned by the algorithm could have been constructed if the algorithm had
chosen e2 (instead of e1) at the beginning.

• During any execution of the DFS algorithm we are exactly n times in case (β).
The k-near-cubic graph G has 3n+ 2k − 3 edges and 2n+ 2k − 1 vertices. Hence,
the spanning tree T has 2n+2k−2 edges. Thus, there are n+k−1 external edges
among which k − 1 are incident to v0. Let Eβ be the set of the n external edges
not incident to v0. Since G is loopless and the spanning tree T satisfies (i)-(ii),
the edges in Eβ have distinct and comparable endpoints. For any edge e in Eβ , we
denote by ve the endpoint of e which is the ancestor of the other endpoint. The
vertex ve is incident to e, to the edge of T linking v to its father and to another
edge in T linking ve to its son (otherwise ve has no descendant). In particular, if e
and e′ are distinct edges in Eβ , then the vertices ve and ve′ are distinct. Thus, the
set of vertices Vβ = {ve/e ∈ Eβ} has size n.
We want to prove that the case (β) occurs when the algorithm visit a vertex in Vβ

for the first time (and not otherwise). Let v be a vertex in Vβ . The vertex v is
incident to an edge e1 in Eβ , an edge e in T linking v to its father and another
edge e2 in T linkink v to its son. Let T be the tree constructed by the algorithm
at the time of the first visit to v and let U be the set of unvisited vertices. Any
descendant of v is in U . In particular, the endpoints v1 and v2 of e1 and e2 are
in U and are U -connected with each other (take the T -path between v1 and v2).
Thus, we are in case (β). Conversely, if we are in case (β) during the algorithm,
the current vertex v is visited for the first time (or one of the vertices v1, v2 would
already be in U). Moreover, by the preceding point, one of the edges (e1 or e2)
incident to v is not in T and joins v to one of its descendants. Hence, the current
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vertex v is in Vβ .

• During the DFS algorithm we have to make n binary choices that will affect the
outcome of the algorithm (case (β)). The other choices (case (γ)) do not affect the
outcome of the algorithm. Therefore, there are 2n possible outcomes. �

e

v2v1
v e2e1

e

v2v1
v e2e1

e

v1
v e2e1

v2

S1 S2

Figure 21. Case (α) (left), case (β) (middle) and case (γ) (right).
The visited vertices are indicated by a square while unvisited ones
are indicated by a circle.

8. Applications, extensions and open problems

8.1. Random generation of triangulations.
The random generation of excursions of length 3n (with uniform distribution) re-
duces to the random generation of 1-dimensional walks of length 3n with steps +2,
-1 starting and ending at 0 and remaining non-negative. The random generation
of these walks is known to be feasible in linear time. (One just needs to generate a
word of length 3n+ 1 containing n letters c and 2n+ 1 letters α and to apply the
cycle lemma.) Given an excursion w, the construction of the 2-near-cubic marked-
depth-map Φ(w) can be performed in linear time. Therefore, we have a linear time
algorithm for the random generation (with uniform distribution) of bridgeless 2-
near-cubic marked-depth-maps. For any bridgeless 2-near-cubic map there are 2n

depth trees and (n+1) possible marking. Therefore, if we drop the marking and the
depth tree at the end of the process, we obtain a uniform distribution on bridgeless
2-near-cubic maps. This allows us to generate uniformly bridgeless cubic maps or,
dually, loopless triangulations, in linear time.

8.2. Kreweras walks ending at (i, 0) and (i+ 2)-near-cubic maps.
The Kreweras walks ending at (i, 0) are the words w on the alphabet {a, b, c} with
|w|a + i = |w|b = |w|c such that any suffix w′ of w satisfies |w′|a + i ≥ |w′|c and
|w′|b ≥ |w′|c. There is a very nice formula [4] giving the number of Kreweras walks
of size n (length 3n+ 2i) ending at (i, 0):

kn,i =
4n(2i+ 1)

(n+ i+ 1)(2n+ 2i+ 1)

(

2i

i

)(

3n+ 2i

n

)

. (8)

There is also a similar formula [5] for non-separable (i+ 2)-near-cubic maps of size
n (3n+ 2i+ 1 edges):

cn,i =
2n(2i+ 1)

(n+ i+ 1)(2n+ 2i+ 1)

(

2i

i

)(

3n+ 2i

n

)

. (9)

In this subsection, we show that the bijection Φ (Definition 4.2) can be extended
to Kreweras walks ending at (i, 0). This gives a bijective correspondence explaining
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why kn,i = 2ncn,i.

Consider the tree-growing map M i
•

reduced to a vertex, a root, a head and i left
legs (Figure 22). We define the image of a Kreweras walk w ending at (i, 0) as the
map obtained by closing ϕw(M i

•
). We get the following extension of Theorem 6.1.

Figure 22. The tree-growing map M i
•

when i = 3.

Theorem 8.1. The mapping Φ is a bijection between Kreweras walks of size n
(length 3n+ 2i) ending at (i, 0) and non-separable (i + 2)-near-cubic maps of size
n (3n + 2i + 1 edges) marked on the root-edge with a depth tree that contains the
edge following the root in counterclockwise order around the root-vertex.

By Theorem 7.4, there are 2n such depth trees. Consequently, we obtain the
following corollary:

Corollary 8.2. The number kn,i of Kreweras walks of size n ending at (i, 0) and
the number cn,i of non-separable (i+2)-near-cubic maps of size n are related by the
equation kn,i = 2ncn,i.

One can define the counterpart of excursions for Kreweras walks ending at (i, 0).
These are the walks obtained when one chooses an external edge in a non-separable
(i + 2)-near-cubic depth-map such that the edge following the root is in the tree
and applies the mapping Ψ = Φ−1. Alas, we have found no simple characterization
of this set of walks nor any bijective proof explaining why this set has cardinality

4n(2i+ 1)

(2n+ 2i+ 1)

(

2i

i

)(

3n+ 2i

n

)

.
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