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Abstract - In the context of human action sequence

recognition in video sequences, a scheduler of actions

is proposed. The Belief Scheduler is based on a Tem-

poral Belief Filter ensuring a consistency in the tem-

poral belief evolution as well as temporal constraints.

The Belief Scheduler is inspired from System Science

and is used to recognize actions in human activity de-

fined as a sequence of actions. This new scheduler is

proposed for applications in Computer Vision. The

whole system of action and sequence recognition is

based on the Transferable Belief Model proposed and

developed by Ph. Smets which allows to explicitly

model the doubt between actions. Furthermore, it

emphasizes the conflict which is exploited for state

change in action sequence. The experiments con-

cern real video sequences with moving camera and

several unknown view angles. The Temporal Belief

Filter and the Belief Scheduler show their efficiency

to cope with varying video quality and experiment

conditions.

Keywords: human motion analysis, sequence

analysis, constrained action recognition, schedul-

ing, Transferable Belief Model.

1 Introduction

Human motion analysis is an important topic of inter-
est in Computer Vision and Video Processing [1]. Re-
search in these domains is motivated by the diversity of
applications such as video indexing and retrieval, au-
tomatic surveillance and human-computer interaction.
The main problem is to link the real world, which has
intrinsically an analogical nature, to the human world
which is symbolic [2].

Many methods have been proposed for human ac-
tion sequence recognition [1] generally based on the
Bayesian framework [3] with Hidden Markov Models

(HMM) and Dynamic Bayesian Networks (DBN) [4].
In [5], an architecture was proposed for human ac-

tion recognition using the Transferable Belief Model

(TBM) [6]. The TBM is well-suited for action recogni-
tion notably because (i) doubtful transitions between
actions are explicitly modelled, (ii) conflict between
parameters reflects the need to improve the fusion
process and (iii) reliability of parameters depends on
the context and can be included in the system. In [7],

a Temporal Belief Filter (TBF) was described for im-
proving action recognition in the context of real video
sequences with varying experiment conditions.

In this paper, a Belief Scheduler based on the TBM
is proposed for human action sequence recognition.
The Belief Scheduler exploits and embeds the TBF as
well as scheduling principles [8]. Temporal sequences
recognition is achieved by the scheduler by means of
criteria based on conflict as defined in the TBM. In or-
der to illustrate the proposed approach, athletics meet-
ing videos acquired with a moving camera under an un-
known view angle are analyzed to detect and recognize
action sequences performed by one athlete.

The organization of the paper is as follows. An
overview of the action recognition architecture based
on the TBM is presented in Section 2. The main char-
acteristics of the TBF are recalled in Section 3 to string
with the Belief Scheduler described in Section 4. Sec-
tion 5 deals with experimental results. Finally, we con-
clude and propose future work.

2 Basic belief on actions ob-

tained by fusion

Figure 1: Architecture for human action sequence
recognition in videos. The architecture is based on
the Transferable Belief Model.

The whole system is presented in figure 1. The video
stream is analyzed by means of image processing. At
each frame of the video, a belief is computed for each
numerical parameter extracted from the video. These



beliefs are then combined in the TBM framework. A
detailed description of this part is given in [5] and the
main points will be recalled in the sequel.

Some reliability factors are automatically deter-
mined at each frame of the video and inserted into
the fusion process. The beliefs are then analyzed by
the TBF described in [7] which provides smooth be-
liefs without conflict and with emphasized transitions.
The TBF works on each action independently pro-
viding natural state of the actions. Causal relations
and temporal constraints concerning actions are then
added and managed in a scheduler of actions. As a
result, belief on actions with constrained states are ob-
tained. The Belief Scheduler is the main contribution
of this paper.

2.1 Numerical parameters

Relevant numerical parameters are extracted at each
frame from the video stream. Parameters are generally
application dependant. In this paper, they are based
on the following two main assumptions: first, the hu-

man is tracked by the cameraman because he is the
center of interest and, second, the trajectories of hu-

man’s head, center of gravity and one end of leg give

information on actions.
The chosen parameters are (1) the camera motion

parameters estimated from two successive frames and
which are pan, tilt and zoom, and (2) the three hu-
man major points detected and tracked [5, 9]. Points
coordinates are analytically combined to obtain more
advanced parameters which are: the angle made by the
human main axis and the horizon, the variation of the
center of mass and the legs alternation.

2.2 Transferable Belief Model fusion

The numerical parameters values are converted into
belief concerning the trueness of actions. A belief on
actions is generated at each frame for each parameter.
Belief of several parameters are then combined in the
axiomatically well-founded Transferable Belief Model
framework proposed by Smets and Kennes [6] to obtain
a belief which takes all parameters into account.

2.2.1 From numerical parameters to belief on

actions

An action A is described by two hypotheses gathered in
the frame of discernment (FoD) ΩA = {RA, FA} with
RA (resp. FA) stands for “action A is right” (resp. “A
is false”). In the sequel, an hypothesis concerning an
action is called a state, e.g.“the current state of A is
RA”.

In this part, the modelling is based on the assump-
tion that actions are not exclusive, i.e. they can take
place at the same time. They are also independant, i.e.
the belief on one action does not imply anything about
the belief of the others. Links between actions will be
added by the Belief Scheduler described in Section 4.

The goal of the fusion process is to obtain the be-
lief of each action A according to several numerical

parameters. A basic belief assignment (BBA) on an
action A according to a parameter P is defined on the
set of propositions 2ΩA = {∅, RA, FA, RA∪FA} (where
RA ∪ FA is the explicit doubt between hypotheses RA

and FA) by mΩA

P : 2ΩA → [0, 1], X → mΩA

P (X) and by

construction mΩA

P (∅) = 0, and
∑

X⊆ΩA
mΩA

P (X) = 1.

A value mΩA

P (X) is a basic belief mass which expresses
a confidence in proposition X ⊆ ΩA according to para-
meter P but does not imply any additional claims re-
garding subsets of X. It is the fundamental difference
with probability theory. A fuzzy-set inspired method is
used to convert each numerical parameter into sources
of belief.

2.2.2 Fusion process

Rules of combination are then applied to obtain a belief
which takes the belief of all parameters into account.
The fusion process is performed frame by frame for
each action independently. Given two distinct BBAs
mΩA

P1
and mΩA

P2
defined on the same FoD ΩA then their

combination is defined as:

mΩA

P1

4©mΩA

P2
(E) =

∑

C4D=E

mΩA

P1
(C).mΩA

P2
(D) (1)

with 4 = ∩ (resp. ∪) for the conjunctive (resp. dis-
junctive) rule of combination. The rules of combina-
tion can be used in logical rules such as “if . . .and

. . .or . . . then . . . ” for describing actions by means of
parameters states. These logical rules are then trans-
lated into belief combinations where the logical and

is replaced by the ∩©-rule and the logical or by the
∪©-rule assuming the same FoD [10].

2.2.3 Integrating reliability

The TBM offers a discounting process that allows to
weight the belief of a parameter according to the reli-
ability of the corresponding source. The reliability is
an important tool for action recognition in video be-
cause it gives a penalty on belief provided by sources
that work in non-optimal conditions. Given αP ∈ [0, 1]
the reliability factor of a parameter P then 1 − αP is
called the discount rate and the belief provided by the
parameter is revised as:

mΩP ,αP

P (A) = αP ×mΩP

P , ∀A ( ΩP

mΩP ,αP

P (ΩP ) = (1− αP ) + αP ×mΩP

P

(2)
Statistics can be used to compute the reliability fac-
tor [11]. In this work, reliability factors are automat-
ically computed from data at each frame of the video
and in an online manner to take into account the re-
liability that may vary, in particular according to the
video quality. Two reliability factors are considered.
The first one is based on the quantity of pixels belong-
ing to the dominant motion in an image and gives an
opinion concerning the quality of the camera motion
estimation. The second one provides an opinion for the
quality of the tracking algorithm and is computed as
the normalized ratio between the distance ”leg-center



of gravity” and ”head-center of gravity” which, physi-
cally, has to be close to 1.

3 Natural state estimation

The Temporal Belief Filter (TBF) was proposed in a
previous work described in [7]. The TBF works on
each action independently taking as input the BBA
obtained after parameters fusion and provides a BBA
with the following properties:

• Consistency between parameters : the conjunc-
tive rule of combination used in the TBM fusion
process may emphasize a conflict between para-
meters which has to be solved,

• Temporal consistency : the belief on action can not
vary abruptly between two successive frames,

• Exclusivity between action states : only one hy-
pothesis concerning action (either RA or FA) gets
a no null belief at each frame.

Figure 2: The Temporal Belief Filter (TBF) principle
where m̂ΩA

f is the prediction, mΩA

f is the output value
of the TBF at frame f given the natural state of actions
and m̃ΩA

f is the measure provided by the fusion of the
parameters at frame f .

One important characteristic of the TBF is that it
provides a BBA with only two focal sets: either RA

and RA ∪ FA, or FA and RA ∪ FA. In the former
case, the action is said to be in the right state while
false state in the latter case. Both states are said
to be natural because they are computed by the
TBF for each action independently according to the
BBA obtained after parameters fusion. These states
will be called constrained if temporal constraints
between actions are taken into account for the com-
putation of an action state. In the sequel, the TBF
is briefly described. Then, in Section 4, a method is
proposed to add temporal constraints between actions.

The general principle of the TBF is depicted in Fig-
ure 2. The core of the TBF is based on implication

rules which are well managed in the TBM framework.
Details on their formalization as well as an applica-
tion to target identification are described by Ristic
and Smets in [10]. An implication rule is generally
used to specialize a BBA. We have interpreted impli-
cation rules R and F as models of evolution denoted
M ∈ {R,F}. Each one focuses on one hypothesis of

the FoD of an action A which is either RA or FA states.
At each frame f , the TBF works in two steps: (i) pre-
diction, (ii) fusion and if necessary state change.

3.1 Prediction

The prediction step relies on the following assumption:
if an action state is RA (resp. FA) at frame (f − 1)
then it would be partially RA (resp. FA) at frame f .
This model of evolution R (resp. F) is weighted by a
confidence value of γR ∈ [0, 1] (resp. γF ∈ [0, 1]):

Model R:

If RA at (f − 1) then RA at f with belief of γR

Model F :

If FA at (f − 1) then FA at f with belief of γF

(3)
In the sequel, the following vector notation of a BBA
defined on a FoD ΩA is used:

mΩA = [mΩA(∅) mΩA(RA) mΩA(FA) mΩA(ΩA)]T

A model of evolution can be interpreted as a BBA. For
instance, for the model R:

mΩA

R =
[

0 γR 0 1− γR
]T

(4)

The disjunctive rule of combination (Eq. 1) is then used
to compute the prediction from the previous BBA and
the model of evolution:

m̂ΩA

f,M = mΩA

M ∪©mΩA

f−1
(5)

The ∪©-rule never assigns more belief to an hypothesis
than does the previous BBA. As a clue, the prediction
w.r.t. R (Eq. 6) is given by:

m̂ΩA

f,R=







0

γR ×mΩA

f−1
(RA)

0

(1− γR)×mΩA

f−1
(RA) + mΩA

f−1
(ΩA)







(6)

When γM = 1, the prediction equals the previous BBA
reflecting a total confidence in the current state of ac-
tion A. When γM = 0, the model expresses a total
ignorance about the prediction of the current BBA on
the action.

3.2 Natural state change

Prediction m̂ΩA

f,M and measure m̃ΩA

f represent two dis-
tinct pieces of information concerning the natural state
of action A. The conjunctive combination (Eq. 1)
of their associated BBA leads to a new BBA. If the
sources are discordant, then a conflict is emphasized
indicating a potential natural state change, i.e. the
model might be changed. Thus, the conflict value εf

(Eq. 7) seems relevant for model change requirement:

εf = (m̂ΩA

f,M ∩©m̃ΩA

f )(∅) (7)

The conflict analysis is thus required to know whether
the current model is no longer valid. The cusum

process of the conflict is well adapted for solving



problems concerning abrupt and short changes or
gradual and long changes in the conflict value because
it allows to sum up conflict during time. Generally,
the cusum is the cumulative sum during time of the
error between a prediction and a measure. In the case
concerned, the error is the conflict value.

The initial cusum process works as follows: when
the cusum value becomes greater than a warning
threshold Tw then the frame is stored as fw and the
model is kept as valid. As soon as the cusum value
becomes greater than a stop threshold Ts (at frame
fs) then the model is changed and the new model is
applied from fs. When a conflict appears between pre-
diction and measure, as it could be the case in interval
[fw, fs], it was chosen to trust the model of evolution.
Thus, the prediction is kept instead of an erroneous
measurement and it avoids propagating conflict which
is absorptive by the ∩©-rule:

mΩA

f =







m̂ΩA

f,M ∩©m̃ΩA

f if εf = 0

m̂ΩA

f,M otherwise

(8)

Equation (8) accounts for the fact that the BBA mΩA

f−1

can have only two focal sets (Eq. 6) depending on the
current model M. Furthermore, the output of the
TBF is a BBA without conflict and with only one
hypothesis whose belief is not null. The interest of
the ∪©-rule is emphasized when there is often conflict
because it allows to obtain mΩA

f→∞(ΩA) = 1 which
reflects total ignorance of the system.

To cope with low conflict during a long time, a fad-

ing memory process has been embedded which allows
to forget gradually past event. The fading memory
process requires a coefficient nicknamed fader, and de-
noted as λ, which works on the current cusum CS(f)
as follows:

CS(f)← CS(f − 1)× λ + εf (9)

The fader is here chosen as a constant and is applied
at each frame.

The two models (R and F) are tuned once and
one model is applied while it is valid. Otherwise, it
is changed by the other. A natural model change is
required for an action Ak when the stop threshold
T k

w is reached by its cusum. If the model change is
accepted and performed, then the interval of frames
IT = [fw,min(fs, fw +W)] can be interpreted as an
interval of transition between the two action states.
The parameter W limits the size of the transition.
The vacuous BBA is assigned to the frames belonging
to IT to well represent ignorance: mΩA

IT
(ΩA) = 1.

After a model change, the new model is applied from
the upper bound of the interval of transition IT and
the cusum is reset.

Initialization – The TBF is an online process.
In order to initialize the system, the model which

better fits the first data is determined. For that, the
cusum process is applied on an interval of frames for
all models and the chosen one minimizes the cusum.

3.3 Suggestions for parameters setting

First, it is necessary to set the parameters in a rele-
vant order: the fader and the models together, then
the stop threshold, the warning threshold and at last
the window. Second, for a given fader, the value of Ts

can be estimated by T̂s if references concerning ground
truth of actions are available i.e. the start frame fsref

and the end frame feref of these actions are known.
For that, the filter has to be applied with a model
of type F (false state) with a stop threshold Ts un-
reachable (close to infinity). Then, T̂s is estimated by
T̂s = CS(fsref ). If the data do not contain too much
conflict, the estimation should be optimal otherwise,
the fader has to be increased.

4 Constrained state estimation

In the previous section, action filtering was performed
independently for each action. In this section, temporal
constraints between actions are considered by assum-
ing that the real state of an action is constrained by the
activity defined as an ordered sequence of K actions.
The proposed algorithm for constrained state estima-
tion relies on the TBF and is called Belief Scheduler.

4.1 Sequence analysis problem

In the context of temporal sequence analysis, the Di-
rected Acyclic Graph (DAG) is one of the most com-
mon and used tool in Computer Vision for human ac-
tion sequence recognition such as Dynamic Bayesian
Networks [4]. Within the TBM framework, at least two
solutions have been proposed in the literature. In [12],
a belief Petri net was proposed but it is not enough ro-
bust for human action sequence recognition in case of
noise data, with false alarms and delayed action. The
Evidential Network (ENC) initially proposed by Smets
and deeply studied by Xu and Smets in [13] represents
another solution but conditional beliefs must be pro-
vided. ENCs are discussed and generalized in [14].

These tools have not been applied for human mo-
tion analysis yet. Recently, the Credal Expectation-
Maximization algorithm (CrEM) [15] has been
proposed and might be a powerful tool when coupled
with a ENC.

The method proposed in this paper is inspired from
the work of System Science community. More pre-
cisely, the main idea is based on scheduling as defined
in the divisible load paradigm [8]. Scheduling is per-
formed by an algorithm nicknamed scheduler which
generally aims at executing tasks as fast as possible

while respecting specifications given by the designer of
the scheduler like the ordering of the tasks, their pri-
ority or the access control to resources. The scheduler



is the core of an operating system such as Linux [16]
and allows to optimize the programs execution while
ensuring good performance for the user.

4.2 Activity constraints

An activity is defined as an ordered sequence of K ac-
tions, A1, A2, . . . Ak, . . . AK . Ideally, the actions are
synchronized but in real videos, they can be either
overlapped or unconnected such as represented in Fig-
ure 3. Three main reasons can be identified:

• it is physically impossible to determine crisp
boundary between two consecutive actions,

• the thresholds setting are seldom perfect in the
numeric-to-symbolic conversion or in the TBF.

• there is always noise on the numerical parame-
ters leading to either overlapped or unconnected
actions.

Figure 3: Representation of natural right state of ac-
tions using intervals (overlap between A1 and A2; gap
between A2 and A3.

Overlapping and unconnection phenomenons are de-
scribed as follows (where f is the current frame):

• overlapped: at frame fP read as ”the frame of pre-
emption”, two consecutive actions Ak and Ak+1

have a natural right state at the same time.

• unconnected: at frame fF read as ”the frame of
forcing”, an action Ak becomes false while the
next Ak+1 is not yet right. Thus, two actions have
a natural false state at the same time.

As it has been seen in [7] and recalled Section 3, a
model R or F is associated to each action according to
its state. Thus, the models {R,F} can be interpreted
as resources while actions represent threads1 which try
to access the resources. There are one resource of type
{R} and (K − 1) resources of type {F}. The access
control is managed by the Belief Scheduler according
to the information provided by the TBF concerning
the model change process.

The Belief Scheduler relies on the following assump-
tion: at each frame of the video, one and only one
action is in the right state while the others are in the
false state despite of the overlapping and gap problems.
Therefore, the Belief Scheduler modifies the state of
each action according to the state of its neighboring
actions.

1Concept introduced in [3] for human motion analysis.

4.3 Belief Scheduler description

The Belief Scheduler has in charge to deal with the
state change according to the data and the sequence.
Its goal is to re-synchronize the actions by defining the
constrained state for each of them. The proposed al-
gorithm is based on the TBF and the diagram of the
Belief Scheduler is depicted in Figure 4. One impor-
tant characteristic of the Belief Scheduler is that it
allows only one action to be true at a given time.

Figure 4: The Belief Scheduler of actions.

The algorithm considers two consecutive actions:
the current one Ak and its following Ak+1. Thus, the
order in the sequence is taken into account. All ac-
tions are compelled to be in the false state with the
model F except the current action Ak which is in the
right state with the model R. If the cusum of Ak or
of Ak+1 exceeds their respective stop threshold, then
the Belief Scheduler is informed that the sequence is in
a transition step. The transition between two actions
in the sequence is achieved by two processes: the pre-

emption and the forcing, for managing overlapped

and unconnected actions respectively.

4.3.1 Preemption process

Figure 5: Preemption process.

This process concerns overlapped actions. At (fP −
1), natural state of Ak is right and natural state of
Ak+1 is false. At fP , Ak is still right while Ak+1 be-
comes right thus, two actions are right at the same
time. In this case, constrained state of Ak+1 is tem-
porarily right (right state) from frame fP and the con-
strained state of Ak is temporarily false (false state)
until validation (see Figure 5). The validation is en-
abled when the quality of the recognition of the ac-



tion which asks for preemption, e.g. Ak+1, is good
(section 4.3.3). Information at fP concerning actions
(cusum, belief,...), also called the context, is stored in
case the preemption would not be enabled.

4.3.2 Forcing process

At (fF − 1), the natural state of Ak is right and the
natural state of Ak+1 is false. At fF , Ak is false as well
as Ak+1. Thus, the two actions are false at the same
time. If the two successive actions are a little uncon-
nected, i.e. with a small gap less than ∆F , constrained
state of Ak is forced to the right state until Ak+1 be-
comes right. However, sometimes, the gap between
successive actions can be large, i.e. with a size greater
than a value ∆F . The action requiring a forcing, e.g.
constrained state of Ak, keeps on being right until the
frame (fF + ∆F ). In this case, constrained state of
Ak+1 is forced to be right and constrained state of Ak

becomes false (see Figure 6).

Figure 6: Forcing process.

In the case of forcing, there is conflict between
the natural and constrained states of actions Ak and
Ak+1. Therefore, according to Equations (6) and (8)
embedded in the TBF, the belief tends to ignorance. If
the gap is too large, i.e. more than ∆F , the constrained
state of Ak+1 is always in conflict with its natural state.
Thus, the TBF naturally changes it into the false state.

4.3.3 False alarm detection

A false alarm appears when an action becomes true in-
stead of staying false. It corresponds to the case that
an action Ak+1 tries to perform a forcing on Ak+2

while, beforehand, Ak+1 had made a preemption on
Ak. If actions Ak+1 and Ak+2 are too much uncon-
nected, then Ak+1 can be interpreted as a false alarm
(see Figure 7). This false alarm procedure is applied
to validate a preemption.

Figure 7: False alarm processing.

In order to decide whether action Ak+1 is or not a
false alarm, it is required to assess the recognition per-

formance of this action. Thus, there is a need to find

a quality criterion in order to assess this performance.
One difficulty is that the criterion has to be computed
without references.

The chosen criterion is the mean of conflict, denoted
C∅, computed along the interval [fP , fF +∆F ]. We de-
note Nf = (fF +∆F −fP +1) the number of frames of
the interval concerning the action Ak+1 which is poten-
tially a false detection and which has made a preemp-

tion after a forcing (Fig. 7,b). In this interval, the
constrained state of the action Ak+1 is often in conflict
with its natural state. The mean of conflict C∅ is:

C∅ =
1

Nf

( fF∑

f=fP

εf (Ak+1)

︸ ︷︷ ︸

natural conflict

+

fF +∆F∑

f=fF +1

εf (Ak+1)

︸ ︷︷ ︸

artificial conflict

)

(10)

where εf (Ak+1) is the conflict between measurement
and model for action Ak+1 and given by Equation (7).
If C∅ > δ∅, where δ∅ is a crisp threshold, the detection
of the action is considered as a false detection. In con-
sequence, the context of the actions at frame fP , as for
instance the value of the cusum, is restored and the
previous action (before preemption), e.g. Ak, becomes
right again. If C∅ < δ∅ then Ak+2 becomes right and
Ak+1 and Ak+2 are both validated.

4.3.4 Elucidating the parameter ∆F

To give a hand in the setting of the parameter ∆F ,
some details are given concerning its interpretation. Its
value can be bounded if it is possible to estimate the
higher value DM of the disjunction space between two
states estimated or given by expert knowledge. In this
case, ∆F ≥ DM/2. In addition, the value of ∆F should
influence the value of C∅ by increasing artificially the
conflict. Given δ∅, let dm be the minimal duration of
an action estimated or given by expert knowledge. In
this case, ∆F /(∆F + dm) ≤ δ∅. Therefore, if DM and
dm are known then ∆F can be bounded:

DM

2
≤ ∆F ≤

δ∅
1− δ∅

× dm (11)

Learning DM and dm is quite straightforward if refer-
ences are given. Concerning δ∅, its setting depends on
the setting of the TBF. Its value was set empirically to
0.2 for all tests.

4.3.5 Queuing

When several actions perform consecutive preemp-

tion, they must be validated to ensure they are not
false alarms. One solution consists in storing them
in a FIFO queue to wait for their validation. As
emphasized in the previous section, the validation
will appear after a forcing process. The number of
actions in the queue is limited and when the queue is
full, the first queued-action is automatically validated.

Initialization – It can be noticed that, at the be-
ginning of the scheduling, all actions are in the false

state. An artificial initial right state action is added in



the sequence that allows the Belief Scheduler to wait
for a preemption of the first action.

5 Experiments

Database description: The proposed system is used
to recognize high jump and pole vault actions sequence.
Their sequence are running, jumping and falling.

Figure 8: Heterogeneous database used for testing.

The database is composed of 40 videos acquired
with a moving camera and several unknonw view
angles. There are 25 pole vaults and 15 high jumps
equivalent to about 6500 frames. The database is
characterized by its heterogeneity (Fig. 8) with a panel
of view angles as well as environments and athletes
(out/indoor, male, female, other moving people).

Settings: To show the generalization capabiblity
of the method, the TBF parameters as well as the
the Belief Scheduler ones are the same for all actions
and all videos. The parameters are tuned using
the elucidations provided in the previous sections
(§ 3.3 and 4.3.4) and expert knowledge. For informa-
tion we set: λ = 0.9, γR = γF = 0.9, Ts = 3, Tw = 0.5,
W = 5, δ∅ = 0.2 and ∆F = 8.

Decision-taking based on belief : We use
the pignistic probability (BetP) proposed by Ph.
Smets [17]. We focus on the BetP of actions which
are true (right state) therefore:

BetP(RA) =
1

(1−m(∅))

(

m(RA) +
m(RA ∪ FA)

2

)

(12)
If BetP(RA) > 0 then A is considered as true.

Evaluation criteria: The database is annotated.
We assess, first, the actions within the sequences and
then, the beginning and the end of the sequences.

Recall (R) and precision (P) indexes are often
used for the evaluation of video processing. They
are computed as R = C∩R

C
and P = C∩R

R
, where C

is the reference set obtained by expert annotations,
R is the set of retrieved frames provided by the
recognition module by using the BetP-based criteria,
and C ∩R is the number of correctly retrieved frames.
In order to assess the method by only one criterion,
the F1-measure is used: F1 = 2×R×P

R+P
It allows to

combine R and P (here, the same importance is given
to both components). This measure tends to the
minimum between R and P.

Illustration and analysis: Table 1 gathers the
F1-measures reflecting action recognition performance

for each action of each sequence. An important gain is
obtained for all actions by using the Belief Scheduler

because (1) it integrates past events while embedding a
memory fading and (2) the model change is constrained
according to a sequence, both allowing to remove false
alarms.

Table 1: F1-measure (in %) before and after filter-
ing for actions in pole vault and high jump. The last
column is the gain/loss on F1 after both filtering and
scheduling.

High jump before after gain

running 67.9 86.6 +18.7

jumping 57.9 78.4 +20.5

falling 70.1 81.0 +10.9

Sequence − 91.2 −

Pole vault before after gain

running 73.6 85.6 +12.0

jumping 48.6 80.9 +32.3

falling 64.9 78.5 +13.6

Sequence − 88.5 −

The illustration depicted in Figure 9 (for a high
jump) shows the efficiency of the approach. Belief
on propositions RA (A is right), FA (A is false) and
RA ∪ FA (A is right or false) are represented.

6 Conclusion

The Belief Scheduler of actions proposed for tempo-
ral sequence recognition is based on the Transferable
Belief Model fusion process.

After the parameters fusion step, the Temporal Be-
lief Filter is used to (i) smooth belief (ii) detect the
transition between action using the conflict between
model and observation. In order to improve and em-
phasize the transition between two actions, a cusum
of the conflict is computed. Because the human activ-
ity can be described by a sequence of actions, we have
developed an original Belief Scheduler to improve the
state evaluation of each action that composes the con-
cerned activity. The preemption and forcing process-
ing, well known in the System Science community has
been adapted in order to re-synchronize the actions
belonging to the sequence. The originality of the pro-
posed algorithm is that it is based on the conflict detec-
tion and evaluation: conflict between parameters and
constraint state models, and conflict between exclusive
actions states. An elucidation of the parameters tuning
is also provided to facilitate the setting.

The method was successfully applied on 40 real
video sequences acquired with a moving camera to
recognize athlete jumps such as pole vault and high

jump as well as actions in jumps such as running, jump-

ing and falling.
The generalization capability was tested by applying

successfully the Belief Scheduler with the same settings
on both activities. The future work concern parame-
ters learning and models adaptation based on gradual



Figure 9: Result of the Belief Scheduler for a high jump sequence. The belief on RA, FA and RA ∪ FA are
represented respectively in blue, red and green color.

rules. Furthermore, a comparison with ENC [13, 14]
will be performed.
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