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Abstract
After implantation, mouse embryos deficient for the activity of the transforming

growth factor-β member Nodal fail to form both the mesoderm and the definitive endoderm.

They also fail to specify the anterior visceral endoderm, a specialized signaling center which

has been shown to be required for the establishment of anterior identity in the epiblast. Our

study reveals that Nodal-/- epiblast cells nevertheless express prematurely and ectopically

molecular markers specific of anterior fate. Our analysis shows that neural specification

occurs and regional identities characteristic of the forebrain are established precociously in

the Nodal-/- mutant with a sequential progression equivalent to that of wild-type embryo.

When explanted and cultured in vitro, Nodal-/- epiblast cells readily differentiate into neurons.

Genes normally transcribed in organizer-derived tissues, such as Gsc and Foxa2, are also

expressed in Nodal-/- epiblast. The analysis of Nodal-/-;Gsc-/- compound mutant embryos shows

that Gsc activity plays no critical role in the acquisition of forebrain characters by Nodal-

deficient cells. This study suggests that the initial steps of neural specification and forebrain

development may take place well before gastrulation in the mouse and highlights a possible

role for Nodal , at pre-gastrula stages, in the inhibition of anterior and neural fate

determination.
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Introduction
The transforming growth factor-β family member Nodal is one of the critical signals

required for the establishment of the anterior-posterior (A-P) polarity in the mouse embryo.

Embryos deficient for Nodal activity fail to specify the anterior visceral endoderm (AVE) and

lack morphological and molecular evidence of mesoderm formation (Brennan et al., 2001;

Conlon et al., 1994). During the early steps of gastrulation, Nodal activity in the epiblast

triggers the specification of posterior cell fates and maintains molecular patterning in the

adjacent extra-embryonic ectoderm (Ang and Constam, 2004; Beck et al., 2002; Brennan et

al., 2001). In addition, Nodal transduction within the epiblast is essential for proper formation

and patterning of the AVE (Brennan et al., 2001). The AVE cells contribute to the

specification of anterior identity in the adjacent epiblast cells by producing secreted

antagonists such as Lefty1, Cerberus-like (Cerl) and Dickkopf1 (Dkk1), which prevent the

action of mesoderm-inducing posterior signals such as Nodal, Wnts and bone morphogenetic

proteins (Bmps)(Perea-Gomez et al., 2001).

The Squint (sqt) and cyclops (cyc) genes are zebrafish orthologs of mouse Nodal. One-

eyed pinhead (oep) is an EGF-CFC cofactor essential for Nodal signaling homologous to

Cripto. Both Sqt;cyc double mutants and the maternal-zygotic mutation of oep (Mzoep) lack

the prechordal plate, notochord and most other mesoderm and endoderm derivatives (Schier

and Shen, 2000). Despite the absence of these derivatives, neural structures are formed and

display evidence of A-P patterning (Feldman et al., 2000; Gritsman et al., 2000). In contrast,

there are striking differences between the mouse Nodal-/- and Cripto-/- mutants. Whereas both

mutants fail to form the primitive streak and mesoderm, anterior development occurs in the

Cripto-/- embryos (Ding et al., 1998; Kimura et al., 2001; Liguori et al., 2003), but no

evidence of anterior patterning has been reported so far in the Nodal-/- embryos (Brennan et

al., 2001). Epiblast differentiation, however, may occur in Nodal-deficient embryos as

indicated by the downregulation of the pluripotential marker gene Pou5f1 (Oct3/4) (Brennan

et al., 2001). The fate of Nodal-/- epiblast cells therefore warrants further investigation.

In the wild-type embryo, the ectoderm germ layer derives from cells that are located in

the distal and anterior regions of the epiblast and do not migrate through the primitive streak.

The anterior ectoderm comprises precursor cells of the neuroectoderm and the surface

ectoderm (Lawson et al., 1991; Quinlan et al., 1995). It is generally accepted that the initial

step in anterior specification requires the interaction of epiblast cells with the adjacent
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prospective AVE cells (Beddington and Robertson, 1999; Perea-Gomez et al., 2001; Thomas

and Beddington, 1996). Subsequently, during gastrulation and early somitogenesis, the

specification of neuroepithelial cell fate and the acquisition of regional identity within the

neural plate depend on interactions with the organizer and its derivatives, such as the axial

mesendoderm (Camus et al., 2000; Hallonet et al., 2002; Kiecker and Niehrs, 2001; Robb and

Tam, 2004; Tam and Steiner, 1999). The A-P patterning of the epiblast, the regionalisation of

the neural plate giving rise to distinct regions of the CNS, and their further subdivison

repetitively require the interplay of the three major signaling pathways TGF-β, Wnt and

fibroblast growth factors (FGFs) and of their respective negative regulators (Goumans and

Mummery, 2000; Schier and Shen, 2000; Whitman, 2001; Wilson and Houart, 2004).

The present study investigates the fate of Nodal-deficient epiblast cells and

demonstrates that anterior identity is established as early as 5.5 days postcoitum (dpc). A

detailed qualitative and quantitative analysis of gene expression also shows that, Nodal-/-

epiblast cells prematurely acquire neuroepithelial characteristics and, despite the lack of AVE

and mesendoderm derivatives, adopt from 6.5 dpc anterior and ventral regional identities

normally specified at the early somite stages in the wild-type prospective forebrain. Explant

culture assays demonstrate that Nodal-/- mutant cells are competent to progress toward

neuronal differentiation. Finally, Nodal-/- mutants express Gsc, a gene normally transcribed in

organizer-related tissues. However, the study of Nodal-/-;Gsc-/- compound mutant embryos

shows that the acquisition of forebrain character in the Nodal-/- mutant is not dependent on

Gsc activity. The results reported here highlight a possible role for Nodal in preventing the

emergence of anterior and neural cell fates before gastrulation and provide new insight into

the mechanisms underlying neural specification and forebrain formation in the mouse.

Materials and methods
Generation of wild-type and transgenic embryos 

Timed matings of Swiss outbred mice or heterozygous NodallacZ/+ mice (Collignon et al.,

1996) on a Swiss background were used to collect embryos at different stages. Noon of the

day of observation of a vaginal plug was defined as 0.5 dpc (day post-coitum). Embryos were

staged according to the scheme described in Downs and Davies (1993). Visceral endoderm

thickening provided landmarks to stage embryos at prestreak stages (Rivera-Perez et al.,

2003). Measurements and pictures were taken with a Leica stereomicroscope. The mutant
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NodallacZ allele was genotyped as previously described (Collignon et al., 1996). Nodal-/-; Gsc-/-

mutant embryos were obtained by intercrossing Nodal413d/+; GsclacZ/+ mice. Wild-type and

mutant alleles of both loci were identified as previously described (Camus et al., 2000;

Conlon et al., 1994).

Explants cultures 

Mutant and wild-type embryos were dissected in DMEM, 25 mM Hepes, 15% foetal calf

serum (FCS). Mutant embryos were cut proximally with tungsten needles to remove the

extraembryonic region and cultured in 100 µl DMEM, 15% FCS and antibiotics under

mineral oil, in bacteriological 96 well plates, for 48 hours. For anterior neural plate explants, a

rostral segment (175 µm long and 80 µm wide) of the anterior midline tissue consisting of

mesendoderm and overlying ectoderm was isolated from 7.5 dpc wild-type embryos and

cultured under the same conditions.

Β-galactosidase staining, in situ hybridization and histology 

Detection of β-galactosidase activity, whole-mount in situ hybridization and histology were

performed according to standard methods as described in Perea-Gomez et al. (2004). Embryos

were sectioned at 10 µm. Antisense probes for the following genes were used : Cerl (Biben et

al., 1998) ; Dkk1 (Mukhopadhyay et al., 2001) ; Dlx5 (Yang et al., 1998) ; Emx2 (Suda et al.,

2001) ; En1 (Davis and Joyner, 1988) ; Foxa2 (Filosa et al., 1997); Foxg1 (Xuan et al.,

1995) ; Gbx2 (Wassarman et al., 1997) ; Gsc (Filosa et al., 1997); Hesx1 (Thomas and

Beddington, 1996) ; Hoxb1 (Frohman et al., 1990) ; Lefty1/2 (Oulad-Abdelghani et al., 1998);

Msx1 (Lyons et al., 1992) ; Nkx2.1 (Sussel et al., 1999) ; Pax6 (Walther and Gruss, 1991) ;

Sfrp5 (Finley et al., 2003) ; Shh (Echelard et al., 1993) ; Six3 (Oliver et al., 1995) ; Sox1

(Wood and Episkopou, 1999) ; Vax1 (Hallonet et al., 1999).

Whole-mount immunohistochemistry  and confocal microscopy 

Tissue explants were stained with a neuron-specific class III β-tubulin monoclonal antibody

(1 :400 ; T8660, Sigma), as described by Easter et al. (1993) after fixation in 2%

paraformaldehyde/PBS overnight at 4°C. Biotinylated donkey anti-mouse (1 :100 ; 715-065-

151, Jackson ImmunoResearch), Alexa Fluor 568 conjugated streptavidin (1 :300 ; S11226,

Molecular Probes) and the nuclear staining YO-PRO-1 iodide (Y3603 ; Molecular Probes)

were used. Control experiment was always carried out without primary antibody in order to

assess the specificity of the signal. Confocal sections were taken every 5 µm using a Leica

SP2 AOBS scanning head and Helium Neon (543 nm) and Argon (488 nm) laser lines and the

images were prepared using ImageJ software.
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Analysis of gene expression by real-time reverse transcription-PCR 

mRNA quantification was done by means of the calibrator normalised relative quantification

method (Bieche et al., 2001). Almost all variables influencing the final result such as RNA

amount or quality, cDNA synthesis efficiency and pipetting errors were eliminated by the

normalisation to a reference and a calibrator. Results are expressed as normalised ratio :

target/reference ratios of all samples are divided by the target/reference ratio of the calibrator.

The final ratio is function of PCR efficiency and the determined crossing points. Eight serial

dilutions of cDNA control were included in each run, allowing us to establish a standard

curve for each primer pair. No significant differences in the final ratio were found between

the two reference genes Gapdh and Taf7 (only Gapdh normalised values are presented). In all

experiments, a cDNA sample of the cephalic part anterior to the second somite of a 10-12

somites-stage wild-type embryo (8.5 dpc) was the calibrator that we used as the basis for

comparative results.

After removing the ectoplacental cone, poly A+ RNA from single embryo was isolated

using Dynabeads mRNA DIRECT kit (DYNAL). Random priming first strand cDNA

synthesis was done at 42°C for 1 hour (Roche). PCR was performed with 1/ 50 of the final

cDNA volume and QuantiTect SYBR Green (QIAGEN) on a LightCycler (Roche). Mock

reactions were carried out in the absence of reverse transcriptase for wildtype and mutant

embryos (data not shown). Primer sequences (Forward/Reverse) were designed with Oligo4.0

(National Biosciences) or obtained from Primer Bank (Wang and Seed, 2003) at

http://pga.mgh.harvard.edu/primerbank/index.html as follow: En1  7106305a2 ; Foxg1

6679843a2 ; Gapdh 5’-TTC AAC AGC AAC TCC CAC TCT TC-3’/5’-CCC TGT TGC TGT

AGC CGT ATT C-3’ ; Gbx2 6753952a2 ; Gsc 6754076a1; Hesx1 6754184a3 ; Nkx2.1

6678353a2 ; Sox1 5’-CAA GAT GGCCCAGGAAAA C-3’/5’-TCG GAC ATG ACC TTC

CAC TC-3’; Taf7 28461141a2. The representative PCR products were analysed on agarose

gels to ascertain the specificity of the amplifications.

Results
Morphological defects in Nodal-deficient embryo and early expression of Nodal

The dimensions and the morphology of embryos homozygous for the null NodallacZ

allele were analysed from 5.5 to 8.5 dpc (n=80). We observed a great variability in the sizes

of Nodal-/- embryos. The average length and width, however, indicate that these embryos
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continue to proliferate as they get older despite severe morphological defects (Fig. 1A).

Interestingly, Nodal-/- embryos were morphologically distinguishable from normal littermates

at least a day earlier than previously documented. At 5.5 dpc, Nodal-/- embryos do not display

the egg-cylinder shape normally seen in the wild-type. Often, the boundary between the

epiblast and the extra-embryonic ectoderm cannot be distinguished and the overlying visceral

endoderm (VE) frequently protrudes distally (Fig. 1B).

Given that the mutant phenotype is detectable at 5.5 dpc, it is likely that Nodal activity

is required before this stage. Β-galactosidase activity was analysed in 5.0 dpc heterozygous

NodallacZ/+ embryos and detected in both the epiblast and the overlying VE (n=16 ; Fig. 1C).

This result shows that Nodal is expressed at least half a day before the appearance of the

proximal-distal polarity (Beddington and Robertson, 1999).

Widespread and precocious expression of anterior markers in Nodal-deficient epiblast

The earliest known function of Nodal is in the specification of distal visceral

endoderm (DVE) cells at 5.5 dpc (Robertson et al., 2003). This discrete population of cells

expresses a specific set of markers and migrates proximally to the prospective anterior side of

the embryo to constitute the AVE (Beddington and Robertson, 1999; Perea-Gomez et al.,

2001; Srinivas et al., 2004; Thomas and Beddington, 1996). Consistent with an earlier study

demonstrating that Nodal- / -   embryos fail to establish molecular patterns within the VE

(Brennan et al., 2001), no expression of the AVE markers Cerl, Dkk1 and Sfrp5 was

detectable in 6.5 dpc Nodal-/- embryos analysed by whole-mount in situ hybridization (Table

1; data not shown).

An unexpected result was obtained when Nodal-/- embryos were tested for the

expression of the anterior marker Hesx1. In the wild-type, Hesx1 is expressed in the AVE

when gastrulation starts at 6.5 dpc, and one day later also in the anterior proximal region of

the ectoderm, which comprises the presumptive forebrain ectoderm (Thomas and Beddington,

1996). All Nodal-/- embryos examined expressed Hesx1 (4/4 at 6.5 dpc; 3/3 at 7.5 dpc ; Fig.

2A-D). Transverse sections of 6.5 and 7.5 dpc Nodal-/- embryos showed that Hesx1 transcripts

are found throughout the epiblast but not in the VE (Fig. 2A’-D’). To investigate further the

possibility of an anteriorisation of the mutant epiblast, the expression of Dlx5 was analysed.

Dlx5 is one of the earliest known markers for the most rostral ectoderm, before the formation

of an overt neural plate at 7.5 dpc. Subsequently, its expression demarcates the anterior neural

ridge (ANR), which defines the rostral boundary of the neural plate at 8.0 dpc, and extends
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laterally, marking presumptive neural crest precursors (Yang et al., 1998). Widespread

expression of Dlx5 was found in the epiblast of Nodal-/- embryos at 6.5 dpc (2/2) and at 7.5

dpc (3/3) (Fig. 2E-G’). The precocious and widespread expression of anterior ectoderm

markers in the mutant epiblast led us to examine the patterning of the VE a day earlier. The

AVE could have been specified at 5.5 dpc but subsequently not maintained at 6.5 dpc. Similar

to the findings at 6.5 dpc, no expression of AVE markers were found in the Nodal-/- mutant at

5.5 dpc (Table 1; data not shown). All together, these results indicate that, in the Nodal-/-

mutant, epiblast cells precociously adopt an anterior ectoderm character despite the absence of

the AVE.

Nodal-deficient epiblast cells prematurely acquire a neural character

A detailed molecular analysis was performed to address the question whether Nodal-/-

epiblast cells can acquire neural identity. Sox1 is the earliest known specific marker of the

neuroectoderm, the onset of its expression correlates with the formation of the neural plate at

late headfold stages (7.75 dpc; Pevny et al., 1998; Wood and Episkopou, 1999). Sox1 was

detected in 6.5 dpc Nodal-/- embryos (8/8), a developmental stage during which this early

neural marker is not normally expressed, and was maintained at 7.5 dpc (3/3) (Fig. 2H-J).

Histological analysis of 6.5 and 7.5 dpc Nodal-/- embryos showed that most epiblast cells

express Sox1 (Fig. 2I’,J’). These findings indicate that Nodal-/- epiblast cells are prematurely

committed to a neuroepithelial cell fate.

Some mutant epiblast cells do not express Sox1 (Fig. 2J’), yet the non-neural ectoderm

marker Dlx5 is detectable at this stage. In wild-type embryos, Dlx5-expressing ectoderm gives

rise to various cell types, including epidermis, sensory placodes and neural crest cells (Knecht

and Bronner-Fraser, 2002; Osumi-Yamashita et al., 1997; Yang et al., 1998). However, in

Nodal-/- embryos, no expression of Msx1, a marker of the cephalic neural crest at early somite

stages (Lyons et al., 1992), was detected at 6.5 or 7.5 dpc (Table 1; Fig. 2K-M). Therefore,

although non-neural cells are present in the mutants, we found no evidence of neural crest cell

differentiation.

Nodal-deficient ectoderm layer principally consists of presumptive anterior and ventral

forebrain cells

Expression analysis of regional markers of fore-, mid- or hind-brain territories was

performed to investigate whether the Sox1-expressing cells found in Nodal-/- embryos could

acquire A-P regional identities. We found that the anterior neural plate marker gene Six3,
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which demarcates the prospective forebrain at 7.75 dpc (Oliver et al., 1995), was strongly

expressed throughout Nodal-/- epiblast as early as 6.5 dpc (3/3 ; Fig. 3A,B). In contrast, no

expression was detectable for the midbrain marker En1 (0/6 at 6.5 dpc, data not shown; 0/6 at

7.5 dpc; Fig. 3D,E), the rostral hindbrain marker Gbx2 and the posterior neuroectoderm

marker Hoxb1 (Table 1; data not shown). We conclude that the Nodal-/- epiblast prematurely

adopts a neuroectoderm fate, but of forebrain character only.

Interestingly, we observed an apparent reduction in Six3 expression between 6.5 and

7.5 dpc, suggesting that the prospective anterior neuroepithelial tissue in the Nodal-/- mutants

continues to differentiate during the next 24 hours of development (3/3; Fig. 3B,C). This

would be in accordance with the acquisition of early regional identity observed in the wild-

type anterior neural plate at early somite stages (Kobayashi et al., 2002). 6.5 and 7.5 dpc

Nodal-/- embryos were tested for the expression of genes whose activities direct the

development of distinct forebrain regions. Foxg1 is first detected at 3-somites stage in the

ANR and subsequently in the anterior telencephalic neuroectoderm at 8-somites stage (Xuan

et al., 1995). Nkx2.1 is expressed at 3-somites stage in the ventral part of the forebrain (Sussel

et al., 1999). The expression of Vax1 is detectable at 8.0 dpc and is restricted to the most

rostral level of the medial neural plate, including the ANR and adjacent ectoderm (Hallonet et

al., 1999). None of these markers could be detected at 6.5 dpc in Nodal-/- embryos (0/4 ; 0/10

and 0/2 for Foxg1, Nkx2.1 and Vax1 respectively; Fig. 3F,G,I,J and data not shown), but at 7.5

dpc the anterior neuroectoderm marker Foxg1 and the ventral diencephalon marker Nkx2.1

were found strongly expressed in discrete patches in Nodal-/- embryos (6/6 and 9/9,

respectively ; Fig. 3H,H’,K,K’). Similarly, Vax1 transcripts were observed in discrete regions

of the epiblast in 4 out of 6 Nodal-/- embryos examined at 7.5 dpc (data not shown). In contrast

to anterior and ventral regional markers, the dorsal forebrain markers Emx2 and Pax6 were

not expressed (Table 1; Fig. 3L-N and data not shown). Together these results show that a

subset of 6.5 dpc Six3-expressing mutant cells differentiate further at 7.5 dpc and acquire

anterior and ventral forebrain characters.

Gsc gene activity plays no critical role in the acquisition of forebrain characters by

Nodal-deficient cells

Nodal-/- embryos fail to form a primitive streak or a node and lack morphological and

molecular evidence of mesoderm formation. Interestingly, a broad expression of Gsc, Foxa2

and Shh, three genes associated with patterning activity in organizing tissues, was seen in the

epiblast layer of Nodal-/- embryos. Gsc and Foxa2 expressions were detected from 6.5 dpc (7/7
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and 4/4 for Gsc, 3/3 and 3/3 for Foxa2 at 6.5 and 7.5 dpc, respectively; Fig. 4A-D and data

not shown; see also Brennan et al., 2001 for Foxa2). Shh expression was detected a day later

than that of Foxa2 in the Nodal-/- embryos (0/5 and 5/6 at 6.5 and 7.5 dpc, respectively; Fig.

4E-G). This delay is consistent with the timing of activation that occurs in normal

development. In embryonic structures where they are both expressed, Foxa2 expression

preceeds that of Shh.

Experiments performed in other vertebrates species have emphazised the role of Gsc

in the specification of anterior neural tissues (Blum et al., 1992; Izpisua-Belmonte et al.,

1993; Latinkic and Smith, 1999; Yao and Kessler, 2001). However, loss-of-function analysis

in the mouse has shown that the lack of Gsc activity does not prevent the formation of a

patterned neural tube (Rivera-Perez et al., 1995; Yamada et al., 1995). Nevertheless, a

functional interaction between Gsc and Foxa2 is required for the patterning of the neural tube

(Filosa et al., 1997). Moreover, heterospecific transplantation experiments suggest that Gsc

activity plays a role in the ability of the mouse node to ectopically induce Sox2 and Sox3

neural-specific markers in the chick host embryo (Zhu et al., 1999). The role of Gsc in the

development of forebrain tissues in the Nodal-deficient embryo was addressed by analysing

the patterning of Nodal-/-; Gsc-/- compound mutants using real-time RT-PCR. Embryos were

collected at 6.5 and 7.5 dpc and no obvious morphological difference could be observed

between mutant embryos of distinct genotypes: Nodal-/-; Gsc+/+ (n=3), Nodal-/-; Gsc+/- (n=3)

and Nodal-/-; Gsc-/- (n=9) (data not shown). Moreover, the comparison of the normalized

values obtained, at 6.5 and 7.5 dpc, for Sox1, Hesx1, Nkx2.1 and Foxg1 transcripts, revealed

no significant difference between embryos of distinct genotypes (Figure 4H; data not shown

at 6.5 dpc). The quantitative expression study of Nodal-/-; Gsc-/- compound mutants revealed

that anterior and ventral neuroectoderm is formed despite the absence of Gsc activity. We

conclude that the acquisition of anterior and neural characters in Nodal-/- mutants does not

require Gsc activity.

Differentiation in Nodal-/- mutants recapitulates the sequential events of specification

and refinement of anterior neurectoderm

In order to establish with precision the primary molecular defect and the time course

of marker expressions, we examined individual Nodal-/- embryos using quantitative real-time

RT-PCR. We performed a relative quantification of gene expression on single embryos from

5.5 dpc to 7.5 dpc (2 to 4 embryos were analysed per day of gestation). For all analysed

transcripts, normalised values showed a variability between embryos recovered on the same
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day of gestation, but they confirmed the data obtained by in situ hybridization: anterior and

neural gene markers were consistently detected, whereas no En1 or Gbx2 transcript was found

from 5.5 dpc to 7.5 dpc (Fig. 5A ; data not shown). In addition, this analysis reveals that

anterior identity appears to be specified first, with the Hesx1 transcript being detectable in

Nodal-/- embryos as early as 5.5 dpc (data not shown). In situ hybridisation was performed on

5.5 dpc Nodal-/- embryos with the Hesx1 probe and showed that transcripts are expressed by

cells of the epiblast layer exclusively (n=2 ; Fig. 3O). Sox1 transcripts were detected at 6.25

dpc, as assessed by the size of the mutants (Fig. 1A) and by the developmental stage of the

littermates. Therefore Sox1 expression demonstrates that, at 6.25 dpc, the Nodal-/- epiblast

adopts a neural fate. Finally, a low level of Nkx2.1 transcripts could be detected as early as 6.5

dpc (data not shown). At 7.5 dpc, the abundance of Nkx2.1 transcripts confirms the

presumptive forebrain character of Nodal-/- epiblast-derived cells. Foxg1 and Nkx2.1

transcripts appear to be regulated independently in a given mutant embryo, as revealed by the

variations in the normalised values (Fig. 5A). Figure 5B summarises and compares the

chronology of the molecular defects seen in the Nodal-/- mutants and the anterior patterning of

the wild-type embryo. Altogether, these results demonstrate that anterior and neural identities

are specified and further regionalisation of forebrain tissues takes place precociously in

Nodal-/- mutants, albeit with a sequential and temporal progression similar to that of wild-type

embryos.

Nodal-deficient cells are competent to progress towards neuronal differentiation

Following neural induction, neurogenesis takes place in specific areas along the A-P

and dorso-ventral axis of the neural plate around 9.5dpc (Bally-Cuif and Hammerschmidt,

2003). We therefore investigated whether neuronal differentiation could occur in Nodal-/-

embryos. Past 8.5 dpc, Nodal-/- embryos start to degenerate (Conlon et al., 1994). Therefore

we performed tissue explant cultures to prolong the survival of the mutant tissues in vitro

(Liguori et al., 2003). The anterior neural plate of a 7.5 dpc wild-type embryo was used as

control explant (Fig. 6A). After 48 hours of culture in vitro, analysis was performed by

whole-mount immuno-histochemistry with an anti-β-tubulin subunit III antibody that

specifically marks neurons and axons (Easter et al., 1993). Three out of 4 control explants

displayed a faint β-tubulin subunit III staining. A few fusiform cells without process were

immunopositive (Fig. 6B) likely indicators of the beginning of neurogenesis in control

explants after 48 hours of culture. In 7.5 dpc Nodal-/- explants cultured under the same
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conditions (Fig. 6C), a dense network of immunopositive cells was detected (in 4 out of 5

explants). Numerous axonal projections had grown into the space between the

neuroepithelial-like inner layers and the thickened VE (Fig. 6D,E). These results demonstrate

that Nodal-/- epiblast-derived cells are committed to a neural fate and are competent to

differentiate into neurons.

Discussion 
Anterior patterning takes place in Nodal-deficient mouse embryo

Previous studies in zebrafish reported that severe disruptions of mesendodermal

derivatives in the absence of Nodal signaling do not prevent the formation of an A-P

patterned neural tube (Schier and Shen, 2000). Our finding that anterior neural patterning

occurs in Nodal-/- embryos partly reconciles the discrepancies between mouse and zebrafish

studies on Nodal signaling. The comparison of the identity of neural tissues generated by

mutants in both species, however, reveals important differences suggesting that Nodal plays a

distinct role in the mouse. Diagnostic markers identifying fore-, mid- and anterior hind-brain

territories are detectable in both Mzoep and Sqt;Cyc zebrafish mutants and in the Cripto-/-

mouse embryos (Ding et al., 1998; Kimura et al., 2001; Liguori et al., 2003). In contrast, our

study indicates that Nodal-/-  derived epiblast cells do not generate tissues of midbrain or

hindbrain types. The detailed qualitative and quantitative molecular analysis shows that the

expression profile observed from 5.5 to 7.5 dpc in Nodal-/- embryos is reminiscent of the

distinct steps of prospective anterior and ventral forebrain development characterised in the

wild-type embryo. These differences might be explained by the existence of Cripto-

independent Nodal signaling or by the presence of other EGF-CFC genes, such as Cryptic

(Schier and Shen, 2000; Whitman, 2001), which could allow partial Nodal signaling in

Cripto-/- embryos. Interestingly, the topological relationship between the different A-P neural

marker domains persists in the Cripto-/- mutants (Liguori et al., 2003). Cells with caudal-most

neural identity are found adjacent to the extraembryonic ectoderm where residual posterior

signals are predominant (Ding et al., 1998). In the Nodal-/- mutants, Foxg1- or Nkx2.1-

expressing cells were indifferently located in the distal or the proximal part of the embryos

and the levels of transcription of Foxg1 and Nkx2.1 revealed striking variations between

mutant embryos at a given stage. These results indicate that the intrinsic competence and/or

the various instructive cues that trigger the development of the anterior neural tissues likely
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vary from one Nodal-/- embryo to another. The origin of this heterogeneity remains unknown

but deserves to be investigated in future studies.

In contrast to other vertebrate models, in which mutations that either disrupt the Nodal

signaling pathway or lead to the absence of mesendoderm derivatives result in the lack of

ventral neuroectoderm (Kiecker and Niehrs, 2001; Klingensmith et al., 1999; Schier and

Shen, 2000), our study reveals that mouse embryos lacking Nodal signaling form tissue of a

ventral forebrain character. It has been shown that the morphogenetic activities of the

organizer and the organizer-derived anterior axial mesendoderm (the prechordal plate) are

essential for the specification and maintenance of anterior neural cell fates in the mouse

embryo (Camus et al., 2000; Hallonet et al., 2002; Tam and Steiner, 1999). A broad

expression of Gsc and Foxa2, two genes associated with patterning activity in organizing

tissues (Camus and Tam, 1999), was seen in the epiblast layer of Nodal-/- embryos. After

gastrulation, Gsc and Foxa2 genes are also transcribed in the ventral part of the forebrain of

the wild-type embryo (Filosa et al., 1997; Wilson and Rubenstein, 2000). Thus, the presence

of these marker genes in Nodal-/- embryos may be indicative of the ventral character of the

developing neuroectoderm rather than of any residual signaling activities characteristic of the

early organizer or the mesendoderm precursors. Our study of Nodal-/-; Gsc-/- compound

mutants revealed that the acquisition of anterior and neural characters in Nodal-/- mutants does

not require Gsc activity. Due to the difficulty in obtaining fertile Nodal+/-; Foxa2+/- females

(A.C. and J.C. unpublished results), we were not able to examine the consequences of the loss

of Foxa2 activity in the Nodal-/- context, leaving this question unresolved. Several reports

have suggested that Shh activity is necessary for the ventral patterning throughout the nervous

system, including the telencephalon (Wilson and Rubenstein, 2000). A more recent study on

mouse embryonic stem cells has shown that the addition of Wnt and Nodal antagonists to a

neural differentiation assay efficiently increases the generation of the telencephalic precursors

that acquire a ventral diencephalic character in response to Shh treatment (Watanabe et al.,

2005). It is likely that Shh activity directs neuroectoderm cells towards a ventral diencephalic

fate in the Nodal-deficient embryonic context.

The depletion of posteriorizing signals promotes forebrain specification in absence of a

functional AVE

Previous expression analysis of early gene markers in the Nodal-/- embryos led to the

conclusion that Nodal activity is required to maintain posterior signals, such as Bmp4 and

Wnt3 and for proper formation and patterning of the AVE (Brennan et al., 2001). Our study
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reveals that anterior epiblast fates are specified and subsequent steps leading to forebrain

tissue formation take place in Nodal-deficient embryos, despite the absence of a functional

AVE. The AVE has often been proposed to be the “head inducer”, playing a central role in the

induction of the forebrain in mammals (Beddington and Robertson, 1999). To our knowledge,

this is the first mutation in the mouse where anterior neuroectoderm cell fates are established

in the absence of AVE signals. Transplantations, germ-layer explant assays and previous

genetic studies have indicated that the AVE alone cannot induce the anterior neuroectoderm,

but imparts an anterior fate on the adjacent epiblast cells by preventing the action of

mesoderm-inducing posterior signals, such as Nodal, Bmp and Wnt (Kimura et al., 2000;

Perea-Gomez et al., 2002; Tam and Steiner, 1999). In the Nodal-/- mutant context, where

posterior signals fail to be maintained, the lack of AVE does not prevent the emergence of

anterior cell fates.

Moreover, our cell fate analysis of the Nodal-deficient epiblast shows that the

neuroectoderm formed lacks dorsal forebrain identity and that the non-neural ectoderm cells

fail to differentiate into placodal tissues or neural crest cells (absence of Emx2, Pax6 and

Msx1) (Gunhaga et al., 2003; McLarren et al., 2003; Theil et al., 2002; Tribulo et al., 2003).

These findings are further evidence that Nodal-deficient tissues retain none or an insignificant

level of Bmp and Wnt signaling after 6.5 dpc.

The analysis of the Nodal-/- embryo provides a paradigm to study the mechanism

underlying forebrain specification in the mouse. Genetic analyses have established that an

excess of signaling of both Wnt and Bmp leads to forebrain truncations in the mouse

(Anderson et al., 2002; del Barco Barrantes et al., 2003; Lagutin et al., 2003; Mukhopadhyay

et al., 2001). The transcriptional co-repressor Drap1 is critical for the attenuation of the

positive feedback loop of the Nodal signaling pathway. Drap1-deficient embryos display

enlarged axial mesendoderm, but no neuroectoderm is formed suggesting that inhibition of

Nodal is also essential for anterior neural development (Iratni et al., 2002). In Xenopus, upon

overexpression of full-length Cer, a multifunctional antagonist of Nodal, Bmp and Wnt

signaling, neural tissue of a forebrain character, very similar to that found in the Nodal-/-

mouse mutant, is formed exclusively (Agius et al., 2000; Bouwmeester et al., 1996; De

Robertis and Kuroda, 2004; Piccolo et al., 1999). Altogether, this striking phenotypic

resemblance, the genetic data and the finding that posterior signals such as Bmp and Wnt are

not maintained in Nodal-deficient embryos argue that the specification of the anterior-most

neural precursors requires the combined inhibition of the Bmp, Wnt and Nodal signaling

pathways in the mouse.
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What is the nature of the signal that mediates neural tissue formation in the Nodal-/-

mutant?

The latest studies in chick and Xenopus place the initial steps of neural tissue

specification before gastrulation, thus before the organizer is formed (Delaune et al., 2005;

Kuroda et al., 2004; Stern, 2005). Although considerable progress has been made, our

understanding of the molecular and cellular mechanisms that govern the emergence of neural

cells is still the subject of constructive debate (De Robertis and Kuroda, 2004; Munoz-

Sanjuan and Brivanlou, 2002; Stern, 2005; Wilson and Edlund, 2001). In the mouse, fate

mapping by clonal analysis at the early gastrula stage demonstrated that, although a

regionalisation of cell fate exists within the epiblast, this embryonic tissue is pluripotent. The

progeny of a single cell can contribute to any somatic tissue lineage before the completion of

gastrulation (Lawson et al., 1991; Tam and Behringer, 1997). It is not known when the initial

step in neural specification occurs in the mouse embryo. Moreover, the nature of the signals

required for the epiblast cells to become neuroectoderm remains uncertain.

This study shows that, in the absence of Nodal signaling, epiblast cells adopt an

anterior identity and express Hesx1 prematurely, as early as 5.5 dpc, whereas this expression

begins in the wild-type rostral ectoderm only after gastrulation has been completed. Shortly

after, at 6.25 dpc, Nodal-/- epiblast cells display molecular and cellular characteristics that are

indicative of their precocious commitment to neural fate and have the competence to

differentiate in vitro into mature neurons. A possible explanation for the precocious neural

phenotype characterised in the mutant embryos is that the inactivation of Nodal leads to early

deficits that leave the epiblast cells with no instructive or permissive signals other than those

directing them towards neural differentiation and that neural progenitor cells are initially of

anterior character (Foley et al., 2000). An alternative explanation is that like in other

chordates, the first step toward neural differentiation is initiated well before gastrulation in the

mouse and that Nodal plays an active role in preventing epiblast cells from further

differentiation down the neural lineage by transiently blocking neural commitment.

Consistent with the later hypothesis, recent studies suggested a role for several

components of the TGF-β/activin/Nodal pathway in the maintenance of the undifferentiated

state in human embryonic stem cells (Besser, 2004; James et al., 2005; Vallier et al., 2004).

Discrepancies between mouse and zebrafish Nodal pathway mutants could be explained if one

considers that Nodal acts as a key modulator of cell fate decision within the pluripotent



Camus et al., 2005 15.12.05 16

epiblast of the mouse pregastrula. In the zebrafish embryo, the Sqt and Cyc expression

domains are restricted to the dorsal marginal cells that are fated to form endoderm and axial

mesoderm (Feldman et al., 2000), whereas in the mouse Nodal is broadly expressed in the

whole epiblast well before gastrulation starts. From 5.5 dpc, the dynamics of expression of

Cripto and Nodal antagonists, together with the extraembryonic ectoderm-localised

expression of the proprotein convertases Spc1/4 required for the maturation of Nodal,

contribute to the establishment of a proximal-distal gradient of Nodal activity within the

epiblast (Ang and Constam, 2004; Robertson et al., 2003). Previous studies have provided

evidence that high and sustained Nodal activity in the proximal epiblast promotes endoderm

and mesoderm fates (Lowe et al., 2001; Norris et al., 2002; Vincent et al., 2003). Depending

on the concentration but also on the duration of the exposure to Nodal signal, a given epiblast

cell will adopt a particular cell fate. Interestingly, clonal analysis indicates that a majority of

the distal epiblast cells, labelled near the midline at the prestreak stage, gives rise to

descendants that contribute to the midline of the anterior neuroectoderm at early somite stages

(K. A. Lawson personal communication). According to the proximal-distal gradient of Nodal

activity, these distal epiblast cells would be the less exposed to Nodal signal. Based on the

data presented here, we propose that moderate and transient Nodal activity would prevent the

early commitment of the epiblast cells to anterior and neural cell fates. In this model, Nodal

signal would play a central role in maintaining epiblast cells in a competent state to sustain

normal growth and patterning of the embryo during gastrulation. The blockage in neural

commitment would be released toward the end of gastrulation when the mesoderm and

definitive endoderm layers are fully formed and can impart a complete A-P polarity to the

emerging neuroectoderm cells. Such a mechanism mediated directly or indirectly by Nodal

renders compatible the co-existence of an early step in anterior neural specification and the

remarkable plasticity of the epiblast cells characteristic of the mouse embryo. The model

discussed above is speculative, further work will be required to establish whether Nodal

regulates anterior neural differentiation during early postimplantation development. The

unique characteristics of the Nodal-deficient embryo make it appropriate for future

investigations into the mechanisms of neural specification and forebrain development in the

mouse.
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Fig. 1. Growth and morphology of the mutant embryos and Nodal expression at 5.0 dpc.

(A) Graph showing average length (L) in dark blue and width (W) in pink of the mutant from

5.5 to 8.5 dpc and the length of the wild-type embryo (red star ; data for pregastrula embryos

are from (Perea-Gomez et al., 2004; Rivera-Perez et al., 2003). L, length of the egg cylinder:

from the base of the ectoplacental cone to the distal tip of the embryonic region; W, width of

the embryonic region. The number of mutants analysed is indicated between brackets.

Standard errors are shown as bars on each dot. The difference between L and W values

decreases : mutants become rounded with time.

(B) Morphology of 5.5 dpc Nodal-/- embryo. The arrow points to an abnormal accumulation of

VE. The black dotted line demarcates the epiblast layer.

(C) Β-galactosidase activity in 5.0 dpc NodallacZ/+ embryo. EPI, epiblast ; VE, visceral

endoderm. Scale bars are 50 µm.

Fig. 2. Anterior patterning and widespread expression of the Sox1 neuroectoderm marker in

Nodal-/- mutants.

(A-D’) Hesx1 expression in Wild-type embryos, (A) at 6.5 and (C) at 7.5 dpc ; in Nodal-/-

mutants, (B) at 6.5 and (D) at 7.5 dpc. (A’-D’) corresponding transverse sections. (B’ and D’)

show that expression is absent from the VE in the mutant.

(E-G’) Dlx5 expression in Wild-type at 7.5 dpc (E) ; in Nodal-/- , (F) at 6.5 and (G) at 7.5 dpc.

(G’) corresponding sagittal section. Note that the expected assymmetric expression of Hesx1

and Dlx5 is lost in the mutants, transcripts are found instead throughout the epiblast.

(H-J’) Sox1 expression in Wild-type at 8.5 dpc (H) ; in Nodal-/-, (I) at 6.5 and (J) at 7.5 dpc.

Corresponding transverse (I’) and sagittal (J’) sections.

(K-M) Msx1 expression in Wild-type at 8.5 dpc (K) ; in Nodal-/-, (L) at 6.5 and (M) at 7.5 dpc.

(D’, G’ and J’) The continuous growth and folding of the epithelium result in the formation of

distorted cavities. Arrowheads in (A), (B), (C), (D) and (I) show levels of transverse sections.

Scale bars are 100 µm.

Fig. 3. Nodal-deficient ectoderm layer acquires prematurely anterior and ventral forebrain

characters.

(A-C) Six3 expression in Wild-type at 8.5 dpc (A) ; in Nodal-/- , (B) at 6.5 and (C) at 7.5 dpc.

(D and E) En1 expression in Wild-type at 8.5 dpc (D) ; in Nodal-/-  at 7.5 dpc (E).
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(F-H’) Foxg1 expression in Wild-type at 8.5 dpc (F) ; in Nodal-/-, (G) at 6.5 and (H) at 7.5

dpc. (H’) corresponding parasagittal section showing Foxg1 expressed in two distinct

domains (arrows).

(I-K’) Nkx2.1 expression in Wild-type at 8.5 dpc (I) ; in Nodal-/-, (J) at 6.5 and (K) at 7.5 dpc.

(K’) corresponding sagittal section.

(L-N) Emx2 expression in Wild-type at 8.5 dpc (L) ; in Nodal-/-, (M) at 6.5 and (N) at 7.5 dpc.

(O) Hesx1 expression in 5.5 dpc Nodal-/- epiblast. Scale bars are 100 µm.

Fig. 4. The acquisition of forebrain characters is not dependent on Gsc activity.

(A-D) Gsc expression in Wild-type, (A) at 6.5 and (C) at 7.5 dpc ; in Nodal-/-, (B) at 6.5 and

(D) at 7.5 dpc. Gsc is expressed in both the VE (arrow) and in the organizer region (A) and in

the prechordal plate and ventral neuroectoderm (C) in the Wild-type. Note the absence of

expression in the mutant VE layer (B).

(E-G) Shh expression in Wild-type at 7.5 dpc (E) ; in Nodal-/-, (F) at 6.5 and (G) at 7.5 dpc.

Shh is expressed in the nascent mesendoderm in the wild-type (E). Scale bars are 100 µm.

(H) Relative quantification of anterior and neural gene expressions in Nodal ; Gsc compound

mutants at 7.5 dpc.

Representation of the mean values. Two groups of a total of 5 individual embryos of distinct

genotypes. The comparison of the normalised values for all genes analysed revealed no

significant difference between embryos of distinct genotypes, except for Gsc in Nodal-/-; Gsc-/-

(statistical analysis was performed by means of a Wilcoxon test on JMP software, SAS

Institute Inc., Cary, NC ). The standard error is shown as a bar within each column.

Fig. 5. Anterior and ventral regional cell fates are specified prematurely in Nodal-/- mutants

with a progression similar to that of the wild-type embryo.

(A) Relative quantification of gene expression in four individual 7.5 dpc Nodal-/- embryos by

real time RT-PCR. Size increases from left to right. L, egg cylinder length ; W, embryonic

width.

(B) Summary of the time-course analysis of molecular defects in the Nodal-/- mutant (real time

RT-PCR data) in parallel with the wild-type embryo (real time RT-PCR and whole-mount in

situ hybridization data) from 5.5 to 8.5 dpc. Coloured arrowheads correspond to gene markers

as in (P) and point to the developmental time of onset of expression.
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Fig. 6. In vitro assay of neuronal differentiation.

(A and B) Anterior neural plate dissected from a 7.5 dpc wild-type embryo cultured for 48

hours. (B) Β-tubulin subunit III antibody seen in green and nuclear staining in red. Fusiform

cell without process (white arrow).

(C-E) 7.5 dpc Nodal-/- explants cultured for 48 hours to assess neuronal differentiation using

β-tubulin subunit III antibody seen in green and nuclear staining in red (D). (E) Higher

magnification of the boxed region in D (rotated 90°) showing β-tubulin subunit III antibody

only. Note numerous mature neurones forming a complex network of axonal projections

(green arrows).

Using ImageJ software, we calculated the fluorescence intensity per µm3 for the β-tubulin

subunit III signal from whole explants. The values were 5.74 and 28.54 for the wild-type (B)

and Nodal-/- (D) explants respectively. This quantification shows that Nodal-/- explant displays

5 times more fluorescence than the wild-type explant. Scale bars are 100 µm.



Table 1 
Summary of the whole-mount in situ hybridization experiments on Nodal-/- mutants 
 
Gene    No of mutantsa   
 5.5 dpc  6.5 dpc  7.5 dpc 
      
Cerl 0/7  0/7   
Dkk1 0/5  0/3   
Lefty1/2b 0/5  -   
Sfrp5 0/5  0/3   
      
Gsc   7/7  4/4 
Foxa2   3/3  3/3 
Shh   0/5  5/6 
      
Hesx1 2/2c  4/4  3/3 
Dlx5   2/2  3/3 
Sox1   8/8  3/3 
Msx1   0/5  0/5 
      
Six3   3/3  3/3 
Foxg1   0/4  6/6 
Nkx2.1   0/10  9/9 
Vax1   0/2  4/6 
Emx2   0/4  0/4 
Pax6   -  0/7 
En1   0/6  0/6 
Gbx2   0/3  0/2 
Hoxb1   0/3  0/2 
 
a Number of positive embryos out of the total number of mutant embryos analysed.  
b The probe used recognizes Lefty1 and Lefty2 mRNA.  
c Expression detected within the epiblast layer but not in the VE.  
 

Table 1
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