
HAL Id: hal-00067838
https://hal.science/hal-00067838v1

Preprint submitted on 9 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Heap-size analysis for assembly programs
Jean-Yves Marion, Jean-Yves Moyen

To cite this version:

Jean-Yves Marion, Jean-Yves Moyen. Heap-size analysis for assembly programs. 2006. �hal-00067838�

https://hal.science/hal-00067838v1
https://hal.archives-ouvertes.fr

Heap-size analysis for assembly programs

Jean-Yves Marion
∗

INPL-Loria – École Nationale supérieure des
Mines de Nancy

Campus scientifique BP239
F-54506 Vandœuvre-lès-Nancy Cédex

Jean-Yves.Marion@loria.fr

Jean-Yves Moyen
†

LIPN-CNRS – Université Paris 13
99 avenue J.-B. Clément

F-93430 Villetaneuse

jean-Yves.Moyen@lipn.univ-paris13.fr

ABSTRACT
Our objective is to propose methods for resource-aware compila-
tion inspired by the implicit complexity community. We consider a
small assembly-like language and we build abstract finite machine
models in order to predict a bound on the maximal heap usage of
a program. We propose a polynomial time procedure to detect and
certify a broad and meaningful class of non-size increasing pro-
grams, which run in a constant size heap. We end by discussing
about programs running in linear heap space and discussing how to
capture logarithmic space computation.

1. INTRODUCTION

1.1 Motivations
The goal of this study is an attempt to predict and control com-

putational resources like space or time, which are used during the
execution of a bytecode program. We focus here on heap space
management. For this, we have chosen a bytecode language, which
is close to a fragment of C. The machine architecture contains reg-
isters and a heap memory. The set of instructions consists in arith-
metic operations, conditionals and jumps. The memory manage-
ment is performed by two low level operations new and free dealing
with dynamic memory allocations.

We present a data flow analysis of the low-level language sket-
ched by means of “Resource Control Graph”, and we think that this
is a generic concept from which several memory management poli-
cies could be checked. We establish a criterion which implies that
each execution of a program needs only a constant number of dy-
namic memory allocations. Such programs were dubbed Non Size
Increasing (NSI) by Hofmann, who has studied them in the con-
text of functional programming with a linear type discipline [13,
14]. Here, we propose a criterion which is decidable in polyno-
mial time. Besides the interest of this criterion to detect NSI pro-
grams, it also illustrates the possibilities and advantages of the con-
cept of Resource Control Graph. Lastly, we describe three other

∗Partly supported by the CRISS project.
†Partly supported by the CRISS and NoCost projects.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

applications: (i) computations with a linear amount of space, (ii)
LOGSPACE computations, and (iii) termination by lack of memory.

The goal is to develop an efficient static analysis in order to de-
termine whether or not a system is heap safe. Such resource analy-
sis allows to determine how much memory should be allocated and
so prevents memory overflow. This is of course crucial for many
critical applications, and has strong impact in computer security.

There are several approaches which are trying to solve this prob-
lem. The first protection mechanism is by monitoring computa-
tions. However, if the monitor is compiled with the program, it
could crash unpredictably by memory leak. The second is the
testing-based approach, which is complementary to static analysis.
Indeed, testing provides a lower bound on the memory while static
analysis gives an upper bound. The gap between both bounds is of
some value in practical. Lastly, the third approach is type checking
done by a bytecode verifier. In an untrusted environment (like em-
bedded systems), the type protection policy (Java or .Net) does not
allow dynamic allocation. Actually, the former approach relies on
a high-level language, which captures and deals with memory al-
location features [5]. Our approach guarantees, and even provides,
a proof certificate of upper bound on space computation on a low-
level language without disallowing dynamic memory allocations.

There are other motivations, which are more theoretical. Indeed
a lot of works have been done the last ten years to provide syntactic
characterisations of complexity classes, see [6, 20] among others.
Those characterisations are the bare bone of recent research on de-
lineating broad classes of programs that run in some amount of
time or space, like Hofmann, but also Niggl and Wunderlich [26],
Amadio, Coupet-Grimal, Dal Zilio and Jakubiec [4], and Bonfante,
Marion, Moyen [7].

Lastly, the method is a first step for us to prove imperative pro-
gram termination by adapting ideas of Lee, Jones and Ben-Am-
ram [17] or Abel and Altenkirch [1]. The intuition is that a program
terminates when there is no more resource to consume.

1.2 Coping with undecidability
All these theoretical frameworks share the common particularity

of dealing with behaviours of programs (like time and space com-
plexity) and not only with the inputs/outputs relation which only
depends on the computed function.

Indeed, a given function can be computed by several programs
with different behaviours (in terms of complexity or other). Clas-
sical complexity theory deals with functions and computes exten-
sional complexities. Here, we want to compute intensional or im-
plicit complexity, that is try to understand why a given algorithm is
more efficient than another to compute the same function.

The study of extensional complexity quickly reaches the bound-
ary of Rice’s theorem. Any extensional property of programs is

either trivial or undecidable. Intuition and empirical results points
out that intensional properties are even harder to decide. Section 2
will formalise this impression.

However, several very successful works do exist for studying
both extensional properties (like termination) or intensional ones
(like time or space complexity). As these works provide decidable
criteria, they must be either incomplete (reject a valid program) or
unsound (accept an invalid program). Of course, the choice is usu-
ally to ensure soundness: if the program is accepted by the criterion
then the property (termination, polynomial bound, . . .) is guaran-
teed. This allows the criterion to be seen as a certificate in a proof
carrying code paradigm.

The property that we study here is Non Size Increasingness (NSI)
as first studied by Hofmann [13]. A program is NSI if its computa-
tion does not require more memory than what is initially allocated
(i.e. the total memory usage is the size of the input, plus some con-
stant amount). This is an intensional property and this is an unde-
cidable property.

When studying intensional properties, two different kind of ap-
proaches exist. The first one consist of restricting the syntax of
programs so that any program written necessarily has the wanted
property. This is in the line of the works on primitive recursive
functions where the recurrence schemata is restricted to only prim-
itive recursion. This approach gives many satisfactory results, such
as the characterisations of PTIME by Cobham [10] or Bellantoni
and Cook [6], the works of Leivant and Marion on tiering and
predicative analysis [20] or the works of Jones on CONS-free pro-
grams [15]. On the logical side, this leads to explicit management
of resources in Linear Logic [12].

All these characterisations usually have the very nice property of
extensional completeness in the sense that, e.g. , every polynomial
time computable function can be computed by a bounded recursive
function (Cobham). Unfortunately, they’re usually very poor on
the intensional completeness, meaning that very few programs fit
in the characterisation [11] and programmers have to rewrite their
programs in a non-natural way.

So, the motto of this first family of methods can be described
as leaving the proof burden to the programmer rather than to the
analyser. If you can write a program with the given syntax (which,
in some cases, can be a real challenge), then certain properties are
guaranteed. The other family of methods will go in the other way.
Let the programmer write whatever he wants but the analysis is not
guaranteed to work.

Since syntax is not hampered in these methods, decidability is
generally achieved by loosening the semantics during analysis. That
is, one will consider more that all the executions a program can
have. A trivial example of this idea would be “a program without
loop uniformly terminates”. The reason we consider loops as bad
is because we assume it is always possible to go through the loop
infinitely many time. That is, the control of the loop is completely
forgotten by this “analysis”.

A more serious example of this kind of characterisation is the
Size Change Principle [17]. The set FLOWω that is build during
the analysis contains all “well-formed call sequences”. Every ex-
ecution of the program can be mapped to a well-formed call se-
quence but several (most) of the call sequences do not correspond
to any execution of the program. Then, properties (termination) of
call sequences in FLOWω are necessarily shared by all execution
of the program.

However, the methods sometimes fails – which is normal since
it’s a decidable method for partly solving an undecidable problem –
because FLOWω does contains well formed call sequences which
correspond to no execution of the program but nonetheless do not

have the wanted property.
This second kind of methods can thus be described as not med-

dling with the programmer and let the whole proof burden lay on
the analysis.

Now, what is the situation on the Non Size Increasingness side?
All the existing works, either by Hofmann [13] or Aehlig and Schwicht-
enberg [2] or Aspinall and Compagnoni [5] belongs to the first fam-
ily of methods. In each case, resource management has to be done
by the programmer via the diamond type, meaning that one has
to explicitly reuse pointers that are no more needed (via the linear
typing).

This work is intended to belong to the second family of meth-
ods. This means that programs do not have to reuse pointers but
the analysis will discover if a reuse is possible. This has a nice con-
sequence in the way that programmers can now freely allocate and
de-allocate memory (with the diamonds, one cannot allocate and
everything de-allocated is gone for good). So our analysis do not
prevent malloc.

Of course, in order to have decidability back, we have to loosen
semantics as mentioned above. In our case, similarly to the Size
Change Principle, this is done by “rendering tests non determinis-
tic”, that is considering that any branch of a if can be taken with-
out looking at the actual result of the test.

And of course, there are several programs that are Non Size In-
creasing but won’t be analysed correctly. The set of falsely rejected
programs may appear big at first, however, it is not bigger than in
Hofmann’s framework since we can capture any algorithm that is
writable in this model. We will discuss this further at the end of
Section 5.2.

2. SOME DECIDABILITY ISSUES
In this section, we hint that intensional properties are more unde-

cidable than extensional ones by proving this result for polynomial
time computation and NSI.

Rice’s theorem [28] implies that any extensional property of Tur-
ing Machines (or programs) is either trivial or undecidable. An ex-
tensional property is one that depends only of the inputs and the
output of the machines, i.e. that depends only of the function com-
puted by the machine. A direct application of this theorem leads to
the following result:

PROPOSITION 1. The set of programs p whose output size is
bounded by their input size (|p(x)| ≤ |x|+ cte) is not recursive.

However, the Non Size Increasingness property that we want to
study is stronger. Indeed, there exists programs who need tremen-
dous amount of memory to compute but only output a small result.
Typically, any program solving a decision problem will only output
either “yes” or “no”, i.e. bounded size information, but may require
arbitrary large amount of memory to compute this answer.

The NSI property that we study is actually an intensional prop-
erty of programs. It depends not only on the inputs and outputs
but also on the way the computation is performed. Intensional
properties are really properties of programs and not properties of
functions. Indeed, a given function can be computed by several
programs (e.g. , Fibonacci’s numbers can be computed with a naive
exponential time algorithm or by a dynamic programming, linear
time algorithm). Extensional properties depending only on the in-
puts/outputs of the programs are shared by all programs computing
the same function. Intensional properties are not. For example,
the intensional property of “computing in polynomial time” is not
shared by all the program computing Fibonacci’s numbers.

Intuitively, intensional properties seem even harder to decide that

extensional ones. This can be formalised a bit by the following
theorem.

Here, we consider that a machine is NSI if and only if it never re-
quire more space than a constant value plus the initial space (needed
to store the input).

THEOREM 1. Let p be a program. The question ”is p NSI?” is
undecidable even if we know that p uniformly terminates.

Here, uniform termination means that the program terminates for
all inputs.

PROOF. Let q be a program and consider the program p that
works as follows:

• p answer 1 if its input is 0.

• On input x 6= 0, p simulates q(0) for x steps.

– If q(0) halts within x steps, then p answers 0.

– Else, p answers 2x (or any other large value depending
on x).

Obviously, p uniformly terminates. Is it NSI?
If q(0) terminates, then it does so in n steps. The space used to

compute p is bounded by 2n + Sq(0), where Sq(0) is the space
needed to compute q(0), i.e. a constant value and so p is NSI. If
q(0) does not terminates, then p compute the exponential and is
certainly not NSI.

So, p is NSI if and only if q(0) terminates. Since the halting
problem is not decidable, so is belonging to NSI.

Uniform termination of programs, in itself, is a non semi-recursive
property. So even with an oracle powerful enough to solve (some)
non semi-recursive problems, the intensional property of being NSI
is still undecidable! Intensional properties are, indeed, much harder
than extensional ones.

Notice that this proof can be easily adapted to show the unde-
cidability of any complexity class (of programs). It is sufficient to
change the function computed by p if q(0) does not terminates.

Remark 1. A similar proof, for the undecidability of running in
polynomial time, based on Hilbert’s tenth problem[23] (p(x+1) =
0 if some polynomial P has a root x, 2 × p(x) otherwise) was
presented as the Geocal ICC workshop in Feb. 2006 by Terui. This
work has been done independently from a similar result presented
by Marion in March 2000 at a seminar in ENS Lyon. This is kind
of a folklore result but is nonetheless worth mentioning because lot
of confusion is done on the subject.

The above result can be improved. Indeed, the set of programs
that run in polynomial time, or which are NSI, is Σ2-complete. Re-
call, that a typical Σ2-complete set is the set of partial computable
functions.

In order to establish the fact that NSI programs is a Σ2-complete
set, we take a class C of computable functions which contains all
constant functions. Assume also that there is a computable set of
function codes C̃ which enumerates all functions in C. The set
of linear functions {x + b | ∀b ∈ N} satisfies the above hypothe-
sis. Another example is the set of polynomials or the set of affine
functions (a · x + b).

Next, let JpK be the function computed by the program p with
respect to an acceptable enumeration of programs. We refer to
Rogers’ textbook [16] for background. Say that Tp(x) is the num-
ber of steps to execute the program p on input x with respect to
some universal (Turing) machine.

Now, define the set of programs whose runtime is uniformly
bounded by functions in C:

AT = {p | ∃e ∈ C̃ ∀x, Tp(x) < JeK(|x|)}

THEOREM 2. The set AT is Σ2-complete.

PROOF. It is clear that the statement which defines AT is a Σ2

statement.
Let B be any Σ2 set defined as follows:

B = {q | ∃y∀x, R(q, y, x)} R is a computable predicate

We prove that B is reducible to AT .
For this, we construct a binary predicate Q as follows. Q(q, t)

tests during t steps whether there is a y with respect to some canon-
ical ordering such that ∀x, R(q, y, x) holds. If it holds, Q(q, t) also
holds. Here, the predicate Q is computable with a complete Π1 set
as oracle.

Using the s-m-n theorem, there is a program q′ such that Jq′K(t) =
Q(q, t).

1. Suppose that q ∈ B. We know that there is an y such that
∀x, R(q, y, x). It follows that the witness y will be found by
Q after t steps. Since the constant function λz.t is in C, we
conclude that q′ is in AT .

2. Conversly, suppose that q′ is in AT . This means that Q(q′, t)
holds for some t, which yields an y verifying ∀x, R(q, y, x)

Notice that we may change time by space in the above proof,
which leads to the following consequence.

COROLLARY 1. Let

AS = {p | ∃e ∈ C̃ ∀x, Sp(x) < JeK(|x|)}

where Sp(x) is the space use by p on x. The set AS is Σ2-complete.

Depending on the choice of the set of functions C, this proves
the Σ2-completeness of the following sets:

• Non-Size Increasing programs (for linear functions and AS).

• PTIME (for polynomials functions and AT).

• LOGSPACE, PSPACE, . . . any classical complexity class.

3. PROGRAMS

3.1 Syntax

Definition 1. A program is defined by the following grammar:

(Programs) p ::= lbl1 : i1; . . .lbln : in;
(Instructions) I 3 i ::= r1, · · · , rl := op(r′1, · · · , r′k) |

r := ∗r′ | ∗ r := r′ |
r := newn |free r |
jmplbl |jz rlbl0 lbl1 |
end

(Labels) L 3 lbl finite set of labels
(Registers) R 3 r finite set of registers
(Operators) O 3 op finite set of operators

Each operator has a fixed arity k and co-arity l and n is an integer
constant. The syntax of a program induces a function next : L →
L such that next(lbli) = lbli+1 and a mapping instr : L →
I such that instr(lblk) = ik .

Machines that we consider are close to the RAM-Machines. There
is a memory device, similar to heaps on computers, and a finite
number of registers. The heap consists in an unbounded number of
memory cells. Each cell stores an integer. Each register also stores
an integer whose value may be the address of a heap-cell.

Roughly speaking, ∗r denotes the value of the memory cell whose
address is stored in r. The instruction jmp lbl gives the control
to label lbl, jz r lbl lbl’ gives the control to either lbl (if r
contains 0) or lbl’. The instruction new n allocates n consecutive
cells of memory in the heap and returns the address of the first one
and free frees the memory cell in the heap at the given address.

Memory allocation is done by block because we may require two
given to cells have consecutive addresses (e.g. to represent lists) but
freeing memory is done cell by cell (unlike, e.g. , in C) to avoid
remembering the size of each allocated block.

Example 1. The following program reverses a list. A list is here
represented by a set of positions, each position consists in two con-
secutive memory cells. The first cell contains the value of the el-
ement in the list and the second contains the address of the next
position (or 0 for the end of the list). For the sake of clarity, only
labels which play a special role (e.g. destination of jumps) have
been mentioned in this example.

begin : next := 0;jz r0 end loop;

loop : val := ∗r0; tmp := r0 + 1;free r0;

r0 := ∗tmp; free tmp;

r1 := new 2; ∗r1 := val; r1 + +; ∗r1 := next; r1 −−;

next := r1;jz r0 end loop;

end : end;

Of course, the use of low-level data structure may imply tedious
pointer management. However, we could introduce new operators
acting both on registers and on the heap that can be seen as macros.
For lists, we’ll need a cons operator taking a value and a list (i.e. ,
an address in the heap) and returning a list (after allocating 2 cells
on the heap) and a destr operator taking a list and returning a
value (the head) and a list (the tail) after de-allocating two cells
that can be formally defined as:

• l := cons(a, l’) is equivalent to l := new 2; ∗l := a; l +
+; ∗l := l’; l−−;

• a, l’ := destr(l) is equivalent to a := ∗l; tmp := l +
1; free l; l’ := ∗tmp;free tmp;

Using these, the program thus becomes:

begin :next := 0;lbl1 : jz r0 end loop;

loop :val, r0 := destr(r0);

lbl2 :r1 := cons(val, next);

lbl3 :next := r1;lbl4 : jz r0 end loop;

end :end;

We illustrate an execution of the program in Figure 1.
Notice that if one wants to write the reverse program within Hof-

mann’s or Aspinall and Compagnoni’s formalism, one cannot use
new and free and has to explicitly keeps the values of pointer (i.e.
the diamonds) and tells when they have to be reused.

3.2 Semantics
The domain of the computation is V = N, and we interpret each

operator op by a function JopK of the same arity an co-arity over
V .

An environment is a mapping σ : R → V , which associates to
each register a value. We note {ri ← v}σ the environment that
maps ri to v and rj to σ(rj) (j 6= i). When no ambiguity can arise,
we just write r instead of σ(r).

A heap is a mapping µ : N → V
S

{⊥}, which returns a value
if a heap address is allocated. Otherwise, it returns ⊥ when a heap
address is unallocated. We note {n ← v}µ to say that the heap
is updated in such a way that {n ← v}µ(n) = v and {n ←
v}µ(m) = µ(m) (m 6= n).

Memory allocation is performed by some external mechanism
similar to a system call. In our framework, we have a predicate
memfree(k, n) which tests whether the memory cells between k
and k + n− 1 are currently unallocated:

memfree(k, n) =dfn (µ(k) = ⊥) ∧ . . . ∧ (µ(k + n− 1) = ⊥)

During computation, three kind of errors can happen. Namely,
(i) accessing an unallocated memory cell (MemError), (ii) lacking
free memory to perform a new instruction (MemFull) or (iii) free-
ing an already unallocated memory cell (FreeError).

The (MemError) rule means that there is a mechanism (either
internal or external via system calls performed when memory is
read) able to detect dangling pointers. This, of course, is a rather
costly operation at runtime and quite hard to perform on static code.
On the other hand, memory leaks are not detected.

Both these issues can be discarded if we consider that our pro-
grams are obtained by compilation of a higher level language with
efficient memory management and garbage collection. In the fol-
lowing, we will assume that programs are safe in the sense that they
never cause one of the error rules to be triggered.

Definition 2. A configuration is a triplet θ = 〈IP, µ, σ〉 where
the instruction pointer IP is a label, µ is a heap and σ is an environ-
ment. A configuration is final if it’s an error or IP = end. Θ is the
set of configurations and Θerr is the set containing configurations
and the errors that may happen during computation.

Definition 3. Programs are executed using a straightforward small-
step semantics whose rules are described in Figure 2. The relation

p ` θ1
t
−→θ2 means that the new configuration is θ2 after executing

the instruction t = instr(IP) where IP is the instruction pointer
of θ1.

An execution of a program p is a sequence of configurations

computed step by step. We write p ` θ0
t1−→ . . .

tn−→θn if p `

θi
ti−→θi+1 for each i = 0, n− 1.

Programs compute functions from heaps to heaps as soon as cer-
tain conditions on the initial environment (with respect to the initial
heap) are respected. The program of Example 1 reverses a list as-
suming that the heap is really the encoding of a list and that r0

initially contains the address of the first cell of the list.

3.3 Measuring heap Usage
In order to control space resources, we consider the number of

new heap cells allocated during any execution of a program. We
do not consider the number of cells of the input. So, only the
“workspace” is counted like in read-only model of computation.

If we want to control the real space usage, we have to take values
into account. Indeed, working with unbounded values means that
one needs logarithmic space to actually store them. To constantly

Instruction r0 r1 next val tmp Heap Heap size |θ|
2 ⊥ 1 9 ⊥ 3 0 ⊥ ⊥ 2 5 6

next := 0 ; jz 2 0 ⊥ 1 9 ⊥ 3 0 ⊥ ⊥ 2 5 6
val := ∗r0 2 0 1 ⊥ 1 9 ⊥ 3 0 ⊥ ⊥ 2 5 6

tmp := r0 + 1 2 0 1 3 ⊥ 1 9 ⊥ 3 0 ⊥ ⊥ 2 5 6
free r0 0 1 3 ⊥ ⊥ 9 ⊥ 3 0 ⊥ ⊥ 2 5 5

r0 := ∗tmp 9 0 1 3 ⊥ ⊥ 9 ⊥ 3 0 ⊥ ⊥ 2 5 5
free tmp 9 0 1 ⊥ ⊥ ⊥ ⊥ 3 0 ⊥ ⊥ 2 5 4

r1 := new 2 9 1 0 1 0 0 ⊥ ⊥ 3 0 ⊥ ⊥ 2 5 6

∗r1 := val 9 1 0 1 1 0 ⊥ ⊥ 3 0 ⊥ ⊥ 2 5 6
r1 + + 9 2 0 1 1 0 ⊥ ⊥ 3 0 ⊥ ⊥ 2 5 6

∗r1 := next 9 2 0 1 1 0 ⊥ ⊥ 3 0 ⊥ ⊥ 2 5 6
∗r1 −− 9 1 0 1 1 0 ⊥ ⊥ 3 0 ⊥ ⊥ 2 5 6

next := r1 ; jz 9 1 1 1 1 0 ⊥ ⊥ 3 0 ⊥ ⊥ 2 5 6
val, r0 := destr(r0) 5 1 1 2 1 0 ⊥ ⊥ 3 0 ⊥ ⊥ ⊥ ⊥ 4

r1 := cons(val, next) 5 4 1 2 1 0 2 1 3 0 ⊥ ⊥ ⊥ ⊥ 6

r1 −− 5 3 1 2 1 0 2 1 3 0 ⊥ ⊥ ⊥ ⊥ 6
next := r1 ; jz 5 3 3 2 1 0 2 1 3 0 ⊥ ⊥ ⊥ ⊥ 6

val, r0 := destr(r0) 0 3 3 3 1 0 2 1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 4

r1 := cons(val, next) 0 6 3 3 1 0 2 1 3 3 ⊥ ⊥ ⊥ ⊥ 6

r1 −− 0 5 3 3 1 0 2 1 3 3 ⊥ ⊥ ⊥ ⊥ 6
next := r1 ; jz ; end 0 5 5 3 1 0 2 1 3 3 ⊥ ⊥ ⊥ ⊥ 6

Figure 1: An example run of the reverse program.

keep this into mind, we speak of heap complexity rather than the
usual space complexity.

Of course, in any real computer, the set of values is bounded (e.g.
, it is the set long int of 32 bits integers). In this case, the real
space usage is directly proportional to the heap usage, heap and
space complexity are the same up to a multiplicative constant.

Definition 4. Let θ = 〈IP, µ, σ〉 be a configuration. The heap
size |θ| of θ is card{n, µ(n) 6= ⊥}, that is the number of non-⊥
elements in µ.

The heap measure is a function such that for any program p, and
any configuration θ0

heapp(θ0) =

8

>

<

>

:

maxi∈0...n{|θi| − |θ0|} if p ` θ0
t1−→θ1 . . .

tn−→θn

and θn final
⊥ otherwise

In other words, the heap usage heapp(θ0) is the maximal heap
size of an encountered configuration when the computation termi-
nates.

Given a total function f : N → N, we define the set of heap-
bounded programs:

Heap(f) = {p | heapp(θ) ≤ f(|θ|)∀θ, heapp(|θ|) 6=⊥}

Definition 5. LINHEAP is the class of programs running with
a linear heap. That is LINHEAP =

S

Heap(f) where the union
ranges over all f : x 7→ β × x + α.

NSI is the class of programs running with at most a constant
increase in heap size, that is NSI =

S

Heap(f) where the union
ranges over all f : x 7→ α.

4. RESOURCE PETRI NET

4.1 Petri Nets in a nutshell

We briefly describes Petri nets and reader may consult the survey
of Murata [25] for more details. A Petri net N is a quadruplet
(S, T, A, ω) where S is a set of places, T is a set of transitions and
A is a set of arrows such that (S, T, A) is a bipartite oriented graph.
That is, S and T are disjoint and each arrow is either from S to T
or from T to S. An arrow between s and t (t and s) has a weight
ω(s, t) (ω(t, s)). As usual, places are graphically represented by
circles while transitions are represented by squares.

A marking M assigns to each place s a natural number M(s)
which indicates the number of tokens in it.The pre-set of a transition
t is •t = {s ∈ S/(s, t) ∈ A}. The post-set of a transition t is
t• = {s ∈ S/(t, s) ∈ A}.

A transition t is enabled at marking M if and only if for any
place s in •t, M(s)−ω(s, t) ≥ 0. It can then be fired thus reaching
marking M ′:

M ′(s) = M(s)− ω(s, t) + ω(t, s)

We write N ` M
t
−→M ′, N ` M0

t1−→ . . .
tn−→Mn is a run of the

Petri net.

4.2 Control Flow Petri Net

Definition 6. Let p be a program, its control flow Petri net (CFPN)
cfpn(p) is defined as follows:

• The set of places is exactly the set L of labels of p.

• For each instruction that is neither jz nor end, there is a
transition1 bearing the same name and for each jz r lbl
lbl’ instruction, there are two transitions r = 0 and r 6= 0.

• For each label lbl such that instr(lbl) /∈ {jz,jmp,end},
there is one arrow from lbl to instr(lbl) and one from
instr(lbl) to next(lbl).

1Formally, a transition is a pair composed of a label and the in-
struction name.

instr(IP) = r1, · · · , rl := op(r′1, · · · , r′k) v′
j = σ(r′j)j∈1...k v1, · · · , vl = JopK(v′

1, · · · , v
′
k)

Operator
p ` 〈IP, µ, σ〉

instr(IP)
−−−−−−→〈next(IP), µ, {ri ← vi}i∈1...lσ〉

instr(IP) = r := ∗r′ or instr(IP) = ∗r′ := r µ(r′) = ⊥
MemError

p ` 〈IP, µ, σ〉
instr(IP)
−−−−−−→MemError

instr(IP) = r := ∗r′ µ(r′) = v
Load

p ` 〈IP, µ, σ〉
instr(IP)
−−−−−−→〈next(IP), µ, {r← v}σ〉

instr(IP) = ∗r := r′ µ(r) ∈ V
Store

p ` 〈IP, µ, σ〉
instr(IP)
−−−−−−→〈next(IP), {σ(r)← σ(r′)}µ, σ〉

instr(IP) = r := new n ∀k ∈ N,¬memfree(k, n)
MemFull

p ` 〈IP, µ, σ〉
instr(IP)
−−−−−−→MemFull

instr(IP) = r := new n ∃k ∈ N,memfree(k, n)
Alloc

p ` 〈IP, µ, σ〉
instr(IP)
−−−−−−→〈next(IP), {k ← 0, . . . , k + n − 1← 0}µ, {r← k}σ〉

instr(IP) = free r µ(r) = ⊥
FreeError

p ` 〈IP, µ, σ〉
instr(IP)
−−−−−−→FreeError

instr(IP) = free r µ(r) 6= ⊥
Free

p ` 〈IP, µ, σ〉
instr(IP)
−−−−−−→〈next(IP), {σ(r)← ⊥}µ, {r← 0}σ〉

instr(IP) = jmp lbl
Jump

p ` 〈IP, µ, σ〉
instr(IP)
−−−−−−→〈lbl, µ, σ〉

instr(IP) = jz r lbl lbl′ σ(r) = 0
IfTrue

p ` 〈IP, µ, σ〉
r=0
−−→〈lbl, µ, σ〉

instr(IP) = jz r lbl lbl′ σ(r) 6= 0
IfFalse

p ` 〈IP, µ, σ〉
r6=0
−−→〈lbl′, µ, σ〉

Figure 2: Small-steps semantics

lbl4

next := r1

lbl3

cons

lbl2

destr

loopend

lbl1

r0 = 0 r0 6= 0

next := 0

begin

r0 6= 0
r0 = 0

Figure 3: CFPN of the reverse program (with operators)

• For each label lbl such that instr(lbl) = jmp lbl′,
there is one arrow from lbl to instr(lbl) and one from
instr(lbl) to lbl′.

• For each label lbl such that instr(lbl) =jz r lbl0

lbl1, there are the four arrows (lbl, r = 0), (r = 0, lbl0),
(lbl, r 6= 0) and (r 6= 0, lbl1).

Both places and transitions are named after the label or instruc-
tion they represent. No distinction are made between a place or
transition and the label or instruction as long as the context is clear.
The CFPN of the reverse program is displayed on Figure 3. If we
only consider the places, we obtain the usual Control Flow Graph
(CFG) of the program. The CFG of the reverse program is on Fig-
ure 5.

If θ = 〈IP, µ, σ〉 is a configuration of a program p, the corre-
sponding marking Mθ of cfpn(p) is the marking that puts one token
in the place IP and none in the other places.

PROPOSITION 2. Let p be a program. If p ` θ0
t1−→ . . .

tn−→θn

is an execution of p, then cfpn(p) ` M θ0
t1−→ . . .

tn−→Mθn is a run
of cfpn(p).

4.3 Resource Petri Net
We now turn to represent the heap memory mechanism by a Re-

source Petri Net (RPN). In order to define a RPN, we add to CFPN
construction described above two new places Heap and Free. As
previously, each program execution is mapped on a RPN run which,
unlike the previous CFPN model, is resource-aware. For this, a
token represents a heap cell. At the beginning of a program exe-
cution, the place Free contains the number of free cells. When a
program requests n new cells, then we need to have n tokens in the
place Free. In this case, we put n tokens in the place Heap. Oth-
erwise, there is not enough free memory, and the run of the RPN
stalls. The number of tokens in the place Heap is the number of
cells which have been allocated during a program execution.

lbl4

next := r1

lbl3

cons

lbl2

destr

loopend

lbl1

r0 = 0 r0 6= 0

next := 0

begin

r0 6= 0

r0 = 0

Heap
Free

2

2

2

2

Figure 4: RPN of the reverse program (with operators)

Inversely, when a free r instruction is executed, then one token
is moved from the Heap place to the Free one. Thus we recycle
discarded heap cells.

So, a RPN is a simple model which allows to simulate executions
of programs and to check memory usage at the same time. The
Heap place should contain as many tokens as the current size of the
heap (the number of non-⊥ cells). The Free place should contain as
many tokens as there is free memory (this depends on the machine
used, not only on the program).

Definition 7. Let p be a program. The resource Petri net rpn(p)
of p is obtained by adding to cfpn(p) two places Free and Heap and
four kind of arrows

• An arrow from the Free place to each new n transition of
weight n.

• An arrow from each newn transition to Heap place of weight
n.

• An arrow from each free transition to the Free place of
weight 1

• An arrow from the Heap place to each free transition of
weight 1.

The above construction depends on the resource amount requested
by each instruction, which may be measured by a weight:

ω(new n) = −n ω(free r) = 1

ω(instr) = 0 for any other instruction

The construction of RPN is based on the weight of each instruc-
tion. We generalise RPN to operators by assigning a weight, which
is defined as the sum of the weights of the instructions that compose
them. In this way, we have ω(cons) = −2 and ω(destr) = 2.
We add an edge from each transition labelled by an instruction
instr of non-zero weight to Heap and Free places. The weight

lbl4

lbl3

lbl2

loopend

lbl1

begin

r0 = 0 r0 6= 0

destr

cons

r0 = 0

r0 6= 0

Figure 5: Control Flow Graph of the reverse program. Edges
are labelled after the instruction they represent.

of this edge is the absolute value of ω(instr) and the direction
of it is given by the sign of the weight. Figure 4 illustrates this by
showing the RPN of the reverse program.

Tokens in the Heap and Free places correspond to Hofmann’s
diamonds (�), that is a fixed amount of space in the heap. Each
token represents a diamond, either used by (one of the variable of)
the program if in the Heap place or available if in the Free place.
Memory allocation (such as cons), needs diamonds in order to be
performed while memory de-allocation (such as destr) releases
diamonds to be used later.

LEMMA 1. In each run of a RPN, the total number of tokens in
the Free and Heap places is constant.

To each configuration θ = 〈IP, µ, σ〉 of p, we associate a mark-
ing Mθ

i of rpn(p):

Mθ
i (Heap) = |θ| Mθ

i (Free) = i

Mθ
i (IP) = 1 Mθ

i (lbl) = 0 otherwise

LEMMA 2. Let p be a program, θ be a configuration such that

p ` θ
t
−→θ′ and i be an integer such that i + ω(t) ≥ 0. Then,

rpn(p) `Mθ
i

t
−→Mθ′

i+ω(t).

PROOF. Consider that t = new n. We can remove n tokens
from Free because i + ω(t) = i − n ≥ 0. So, we can fire the
new n transitions.

Next, consider t = free r. The place Heap contains |θ| tokens
and by hypothesis p ` θ → θ′, so we know that |θ| > 02. There-
fore, we can remove one token from the place Heap and fire the
transition.

PROPOSITION 3. Let p be a program and let N be its RPN.

Assume that p ` θ0
t1−→ . . .

tn−→θn. Let i0 be a natural number
such that ∀k ≤ n, i0 + |θ0| − |θk| ≥ 0. Then, there is a run

N `Mθ0

i0

t1−→ . . .
tn−→Mθn

in
which satisfies ik = i0 + |θ0|− |θk| for

each k = 0, . . . , n.

5. CHARACTERIZATION OF HEAP COM-
PLEXITY

2The condition |θ| − ω(t) ≥ 0 is not necessarily here.

5.1 Heap complexity and resource Petri nets

THEOREM 3. Let f : N → N be a total function. Let p be a
program.

p ∈ Heap(f(x)) if and only if for each initial configuration θ0

and for each execution p ` θ0
t1−→ . . .

tn−→θn, we have rpn(p) `

Mθ0

f(|θ0|)

t1−→ . . .
tn−→Mθn

in
for some i1, . . . , in.

The fact that the run exists means that f(|θ0|) is a sufficiently
large number of tokens to put in Free to avoid any deadlock.

PROOF. If for each initial configuration θ0 and each execution

p ` θ0
t1−→ . . .

tn−→θn there is a corresponding run

rpn(p) `Mθ0

f(|θ0|)

t1−→ . . .
tn−→Mθn

in

then for any k,

|θk| = M
θk

ik
(Heap) ≤Mθ0

f(|θ0|)
(Heap) + Mθ0

f(|θ0|)
(Free)

= |θ0|+ f(|θ0|)

Conversely, deadlocks in the run may come from three sources:
the label places, the Heap place or the Free place. The label places
cannot cause deadlock due to Proposition 2. The Heap place may
only cause deadlock if a free transition should be fired but the
Heap place is empty. However, this would correspond to executing
a free instruction on an empty heap, thus triggering the (FreeEr-
ror) rule.

The Free place can cause deadlock if a new n transition has to be
fired but Free contains less than n token. However, Prop. 3 claims
that if we start from marking Mθ0

i0
such that for all 1 ≤ k ≤ n,

i0 + |θ0|−|θk| ≥ 0 there will be no deadlock. Since p ∈ Heap(f),
|θk| ≤ f(|θ0|) + |θ0| and thus i0 + |θ0| − |θk| ≥ i0 − f(|θ0|). So
by starting from Mθ0

f(|θ0|)
, there will be no deadlock.

Notice that the (implicit) quantifier on the Petri net runs is exis-
tential and not universal. To each execution of the program corre-
sponds a run, but some runs correspond to no execution of the pro-
gram (because the Petri net does not mimic the semantics tightly,
especially tests). This means that unless one can decide which run
corresponds to an execution, analysis of the Petri net will not cap-
ture every programs (because in some cases, the “invalid” runs do
not correspond to an execution). This is a necessarily lose if we
want our criterion to be decidable, as mentioned in the discussion
at the end of Section 1.2.

COROLLARY 2. p ∈ NSI if and only if there exists a constant α
such that for each initial configuration θ0 and each execution p `

θ0
t1−→ . . .

tn−→θn, we have cfpn(p) ` Mθ0
α

t1−→ . . .
tn−→Mθn

in
where

ik = |θ0|+ α− |θk|.
p ∈ LINHEAP if and only if there exists α and β such that for

each initial configuration θ0 and each execution p ` θ0
t1−→ . . .

tn−→θn,

we have cfpn(p) ` Mθ0

β·|θ0|+α

t1−→ . . .
tn−→Mθn

in
where ik = (β +

1)|θ0| + α − |θk|.

5.2 Detection of non-size increasing programs

THEOREM 4. There is a polynomial time procedure to detect if
a program is NSI.

PROOF. Let p be a program. We construct a directed graph G
from rpn(p) that we name the resource control graph of p as fol-
lows. Nodes are label place. There is an edge from lbl to lbl′

lbl4

lbl3

lbl2

loopend

lbl1

begin

r0 = 0 r0 6= 0

destr

cons

r0 = 0

r0 6= 0

+2

−2

Figure 6: Resource Control Graph of the reverse program.
Edges are labelled after the instruction they represent.

if there is a transition from lbl to lbl′ in rpn(p). The weight as-
signed to an edge is the weight of the corresponding transition, that
is the weight ω(instr(lbl)). In other words, the resource con-
trol graph is the control flow graph where each arrow as the same
weight as the corresponding instruction.

If the resource control graph contains no cycle of strictly negative
weight, then the program is in NSI. This criterion can be decided
in polynomial time via Bellman-Ford’s algorithm.

Indeed, any path in the resource control graph correspond to a
run in the RPN. The weight of the path being exactly the number
of token removed from (if negative) the Free place at the end of
the run. If there is no cycle of negative weight, then the minimum
weight of all paths, α, is well defined. So, no run can remove more
than α token from Free. Hence, each execution corresponds to a
run that can be performed with max(−α, 0) token initially in Free
and p is NSI.

The above demonstration provides also the number of cells which
are necessary to perform any computation. Therefore, we may
be able to set up a proof procedure, like in proof carrying code
paradigm, in polynomial time to calculate and certify that a pro-
gram uses a fixed amount of heap.

Hofmann has shown that Non Size Increasing programs can be
compiled into C without using malloc [13]. That is, in our case,
we can write an equivalent program without the new instruction, or,
more precisely, starting with a single new α instruction during the
initialization process. Amadio already has a PTIME bound to detect
NSI programs in terms of quasi-interpretation [3]. And linear space
usage can also be characterized by quasi-interpretations [8].

Lasltly, notice that a cycle of positive weight may cause damages
by releasing potentially non-allocated heap cells. We do not control
this kind of troubles here.

Example 2. The resource graph of the reverse program is given
in Figure 6. Since there is no cycle of negative weight, so the
program is NSI. Moreover, the weight of any path starting from
begin is either 0 or +2, so choosing α = 0 is enough, meaning
that the program doesn’t use more memory that initially allocated.

Of course, the above method does not capture all non size in-
creasing programs. For example, if in a loop like (written in a C-
like syntax for readability):

for(i = 1, i ≤ r, i + +){r′ := new 1; }

the method fails. However, we can roughly distinguish three cases
for this kind of loops.

• r is an immediate value, that is the loop actually is, say,

for(i = 1, i ≤ 10, i + +){r′ := new 1; }

In this case, the allocation can be performed before the loop:

r := new 10; for(i = 1, i ≤ 10, i + +){r′ := r + i; }

This allows to have the same effect but put the allocation out
of the loop.

• r is a value stored in a register which happen to be a constant.
In this case, constant propagation allows to detect at compile
time that r can be replaced by an immediate value.

• r is the value of a register which depends on the inputs. In
this case, the program is probably not NSI because it perform
a number of allocations dependant on the inputs.

Both the first two transformations can be performed automati-
cally at compile time, just before the analysis is performed. More-
over, construction of the CFG and RCG can help find potentially
harmful loops (those with a positive weight) and thus help the trans-
formation of these loops. Of course, programs where constant
propagation fails or programs with loops of the third kind will not
be detected as NSI. Hopefully, there are few of them among the
commonly used algorithms. . .

It is also important to notice that any algorithm that fits into Hof-
mann’s framework can be detected as NSI by our method. Indeed,
Hofmann provides a way to compile NSI programs into malloc-
free programs and our method obviously detect malloc-free pro-
grams as NSI (since they do not allocate memory, the RCG has no
edge of negative weight and cannot have cycle of negative weight).

6. OTHER CHARACTERIZATIONS

6.1 Linear Heap Space
The detection of linear space computation is closely related to

the one of non size increasing computation, and the previous method
can be modified to handle linear heap run. The idea is that each in-
put cell gives β new cells when it is deallocated, instead of one in
the case of a non-size increasing memory allocation. On the other
hand, cells which are allocated during an execution only count for
one. To perform this analysis, we consider two kinds of heaps: an
input heap that cannot be further re-allocated ; and a work heap,
initially empty, that can be allocated. Then, programs have two
free instructions: freei to free input cells and freew to free
work cells3. The new only allocates memory on the work heap
µw .

Now, we extend RPN in order to take into account both new free
instructions by assigning the following weights to them:

ω(freei r) = β ω(freew r) = 1

THEOREM 5. There is a polynomial time procedure to detect if
a program is linear heap computable.

PROOF. The proof is similar to the demonstration of Theorem 4.
We need to find β such that the resource control graph has no cycles
of strictly negative weight. Notice that this will also give us the
values β and α and a precise bound on the space usage.
3We cope with the difficulty to detect which free instruction re-
leases memory from the input or work heap. A way is to restrict
the use of input register like in [15].

Again, this decision procedure does not capture all linear heap
programs but again use of constant propagation may help.

6.2 Logarithmic Heap Space
Usual definitions of logarithmic space computations often present

it by saying that we are allowing to have a number of pointers into
the initial data but not to alter it. In our case, registers which only
store addresses in the heap are clearly pointers while some others
(such as the val in the reverse program) are not. So if we have a
NSI-program and we can control the size (that is the value) of reg-
isters, then it will be possible to compute it in logarithmic space.

In order to do this, we must be careful about heap management.
Indeed, pointers (that is registers containing addresses in the heap)
might have a value as big as the address of any allocated heap-cell.
But this value might well be unrelated to the size of the heap (that is
the number of allocated cells) just because the allocated cells might
be non-contiguous.

So we need to somehow force the heap to be as contiguous as
possible. The initial heap must respect these conditions and the
memfree predicate also. In real computer, these conditions may
be ensured by having a set of virtual memory addresses to access
the heap and those virtual addresses are translated into real memory
addresses by the system via a map between the virtual memory
of each process and the real memory. The memfree system call
has access to these maps and in addition to allocating some real
memory it extends the map of the process.

Keeping in mind the fact that heap is contiguous, we now can
compute NSI-programs in logarithmic space as soon as the values
stored in registers is bound by the (initial) size of the heap at each
step of the computation.

6.3 Lack of Resources
Since it is not possible to free more memory that what is allo-

cated, no execution can free an unbounded number of cells. So,
any potentially infinite execution whose corresponding run in the
RPN (resp. path in the RCG) removes infinitely many tokens from
Heap (resp. has weight +∞) will stop once the heap is empty and
does not correspond to a real infinite execution.

Similarly, on any real computer, the available memory is finite
and bounded. So, any potentially infinite execution whose corre-
sponding run in the RPN (resp. path in the RCG) removes infinitely
many tokens from Free (resp. has weight −∞) will stop once all
the memory has been allocated and does not correspond to any real
infinite execution. This leads to a simple criterion to detect termi-
nation by lack of resources.

PROPOSITION 4. Let p be a program and G be its RCG. If all
the infinite paths of G have infinite weight (±∞), then all execu-
tions of the program terminate by lack of resources.

This approach is somewhat similar to the Size Change Principle
(SCP) [17] in the sense that we check if a given finite resource (in
our case memory) is exhausted during computation. However, SCP
is much more efficient that our simple criterion since it takes into
account the values of the variables and not only the global amount
of memory. Typically, this lack of resources criterion is unable to
detect termination of the reverse program while SCP detects it by
checking the length of the list.

7. CONCLUSION
The main result that we have presented is a (incomplete) crite-

rion to determine if a low-level program runs within a fixed amount
of heap memory, and to calculate an upper bound on this heap size.

Moreover, this criterion is polynomial time computable. One of
the main advantages of our approach compared with the other ones
that we have cited in the text, is that we are dealing with a low-
level programming language without type annotations. Aspinall
and Compagnoni [5] derived a similar characterisation for assem-
bly language but still by using the type discipline originally intro-
duced by Hofmann [14]. We believe that the representation in term
of Resources Petri Nets shed some light on Hofmann’s diamond-
concept. In particular, we do not need any more the linearity con-
ditions introduced in these works. Moreover, we do not forbid dy-
namic heap allocation.

More generally, our method shows that it is quite easy to control
the size of any buffer. In the same way that we control the size
of the heap via the new and free instructions, we could similarly
control depth of a data stack (via push and pop), of a control stack
(via call and return), or the value of a counter (via increment
and decrement). We may also deal with several kinds of tokens,
which represent different amount of memory. A challenging direc-
tion is to compare our (more) theoretical method with the exciting
approaches of [27, 9]. Another interesting direction would be to in-
corporate our methods into the Hoare or Dynamic logic paradigm.
For this, we could follow the recent works of Leivant [18, 19].

Finally, we think that our method can be extended in order to
control the size of each variable of a program independently. We
aim at having a criterion for termination similar to the Size Change
Principle. We have started to do so on simple basis in [24, 21]
and a bit more elaborated in [22]. We intend to go further in this
direction.

8. REFERENCES
[1] A. Abel and T. Altenkirch. A Predicative Analysis of

Structural Recursion. Journal of Functional Programming,
12(1):1–41, January 2002.

[2] Klaus Aehlig and Helmut Schwichtenberg. A syntactical
analysis of Non-Size Increasing polynomial time
computation. In Proceedings of the Fifteenth IEEE
Symposium on Logic in Computer Science (LICS ’00), pages
84–91, 2000.

[3] R. Amadio. Max-plus quasi-interpretations. In TLCA, 2003.
[4] R. Amadio, S. Coupet-Grimal, S. Dal Zilio, and L. Jakubiec.

A functional scenario for bytecode verification of resource
bounds. In CSL, 2004. To appear.

[5] D. Aspinall and A. Compagnoni. Heap Bounded Assembly
Language. Journal of Automated Reasoning (Special Issue
on Proof-Carrying Code), 31:261–302, 2003.

[6] S. Bellantoni and S. Cook. A new recursion-theoretic
characterization of the poly-time functions. Computational
Complexity, 2:97–110, 1992.

[7] G. Bonfante, J.-Y. Marion, and J.-Y. Moyen.
Quasi-interpretation: a way to control ressources.
Theoretical Computer Science. under revision.

[8] G. Bonfante, J.-Y. Marion, and J.-Y. Moyen.
Quasi-Interpretations and Small Space Bounds. In Rewriting
Techniques and Applications, volume 3467 of Lecture Notes
in Computer Science, pages 150–164, April 2005.

[9] K. Chatterjee, D. Ma, R. Majumdar, T. Zhao, T.A.
Henzinger, and J. Palsberg. Stack size analysis for
interrupt-driven programs. In SAS 03: Static Analysis,
Lecture Notes in Computer Science 2694, pages 109–126.
Springer-Verlag, 2003.

[10] A. Cobham. The intrinsic computational difficulty of
functions. In Y. Bar-Hillel, editor, Proceedings of the

International Conference on Logic, Methodology, and
Philosophy of Science, pages 24–30. North-Holland,
Amsterdam, 1962.

[11] L. Colson. Functions versus Algorithms. EATCS Bulletin, 65,
1998. The logic in computer science column.

[12] J.-Y. Girard. Linear logic. Theoretical Computer Science,
50:1–102, 1987.

[13] M. Hofmann. A type system for bounded space and
functional in-place update. Nordic Journal of Computing,
7(4):258–289, 2000.

[14] M. Hofmann. The strength of Non-Size Increasing
computation. In Proceedings of POPL’02, pages 260–269,
2002.

[15] N. Jones. The expressive power of higher order types or, life
without cons. Journal of Functional Programming,
11(1):55–94, 2000.

[16] H. Rogers Jr. Theory of Recursive Functions and Effective
Computability. McGraw-Hill, 1967. Reprint, MIT press
1987.

[17] C. S. Lee, N. D. Jones, and A. Ben-Amram. The
Size-Change Principle for Program Termination. In
POPL’01, volume 28, pages 81–92. ACM press, January
2001.

[18] D. Leivant. Proving Termination Assertions in Dynamic
Logics. In Proceedings of LICS’04, pages 89–98, 2004.

[19] D. Leivant. Matching explicit and modal reasoning about
programs: a proof theoretic delineation of dynamic logic.
Technical report, 2005.

[20] D. Leivant and J.-Y. Marion. Lambda Calculus
Characterizations of Poly-Time. Fundamenta Informaticae,
19(1,2):167–184, September 1993.

[21] J.-Y. Marion and J.-Y. Moyen. Termination and ressource
analysis of assembly programs by Petri Nets. Technical
report, Loria, 2003.

[22] J.-Y. Marion and J.-Y. Moyen. Termination and non size
increasingness of assembly programs. In AppSem, 2005.

[23] Y. V. Matiyasevich. Hilbert’s 10th Problem. Foundations of
Computing Series. The MIT Press, 1993. MAT y 93:1 1.Ex.

[24] J.-Y. Moyen. Analyse de la complexité et transformation de
programmes. Thèse d’université, Nancy 2, Dec 2003.

[25] T. Murata. Petri nets: Properties, analysis and applications. In
Proceedings of the IEEE, volume 77, pages 541–580, 1989.

[26] K.-H. Niggl and H. Wunderlich. Certifying polynomial time
and linear/polynomial space for imperative programs. SIAM
Journal on Computing. To appear.

[27] J. Regehr. Say no to stack overflow. Embedded systems
programming, 2004.

[28] H. G. Rice. Classes of Recursively Enumerable Sets and
Their Decision Problems. Trans. Amer. Math. Soc.,
74:358–366, 1953.

