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1 INTRODUCTION

Perturbative QCD (pQCD) successfully predicts inclusinergy spectra of particles in jets. To this end
it was enough to make one step beyond the leading “Doubleritbgac Approximation” (DLA) which

is known to overestimate soft gluon multiplication, and &scribe parton cascades with account of first
sub-leading single logarithmic (SL) effects. EssentialcBtrections to DLA arise from:

* the running couplingys (k% );

x decays of a parton into two with comparable energies; 1 (the so called “hard corrections”, taken
care of by employing exact DGLAR][1] splitting functions);

x kinematical regions of successive parton decay anglegeafadme order of magnitud®,.,, ~ ©,. The
solution to the latter problem turned out to be extremelypsgmamely, the replacement of teong
angular ordering (AO)P;+1 < ©;, imposed by gluon coherence in DLA , by thractAO condition
0,41 < ©; (see [B] and references therein). The corresponding ajspation is known as MLLA
(Modified Leading Logarithm Approximation) and embodies ttext-to-leading correction, of ordet,

to the parton evolution “Hamiltonian®, o« ,/c being the DLA multiplicity anomalous dimensidf [2].

So doing, single inclusive charged hadron spectra (doeihiay pions) were found to be mathematically
similar to that of the MLLA parton spectrum, with an overalbportionality coefficientC®" normalizing
partonic distributions to the ones of charged hadr#if§;depends neither on the jet hardness nor on the
particle energy. This finding was interpreted as an expetiaheonfirmation of the Local Parton—Hadron
Duality hypothesis (LPHD) (for a review sdd [B][4] and refieces therein). However, in the ratio of two
particle distribution and the product of two single pa#idistributions that determine the correlation, this
non-perturbative parameter cancels. Therefore, one &xfigs observable to provide a more stringent
test of parton dynamics. At the same time, it constitutesmiarder a problem for the naive perturbative
QCD (pQCD) approach.

The correlation between two soft gluons was tackled in DLAHh The first realistic prediction with
account of next-to-leading (SL) effects was derived by Fang Webber in 199(][6]. They obtained
the expression for the two particle correlator in the kintoad region where both particles were close
in energy to the maximum ("hump”) of the single inclusivetdisution. In [7] this pQCD result was
compared with the OPAET e~ annihilation data at th&® peak: the analytical calculations were found
to have largely overestimated the measured correlations.

In this paper we use the formalism of jet generating funeti®i§$] to derive the MLLA evolution equa-
tions for particle correlators (two particle inclusive tdisutions). We then use the soft approximation
for the energies of the two particle by neglecting terms prtipnal to powers ofci, 20 < 1 (z is
the fraction of the jet energy carried away by the correspangarticle). Thus simplified, the evolu-
tion equations can be solved iteratively and their soltiare given explicitly in terms of logarithmic
derivatives of single particle distributions.

This allows us to achieve two goals. First, we generalize Rbeg—\Webber result by extending its
domain of application to the full kinematical range of sddtiicle energies. Secondly, by doing this, we
follow the same logic as was applied in describing incluspectra namely, treatirexactly approximate
evolution equations. Strictly speaking, such a solutiohemwformally expanded, inevitably bears sub-
sub-leading terms that exceed the accuracy with which thtemns themselves were derived. This
logic, however, was proved successful in the case of simglieisive spectrg[9], which demonstrated
that MLLA equations, though approximate, fully take intccaont essential physical ingredients of
parton cascading: energy conservation, coherence, mimoiapling constant. Applying the same logic
to double inclusive distributions should help to eluciddte problem of particle correlations in QCD
jets.

The paper is organized as follows.

e in section[R we recall the formalism of jet generating funmctils and their evolution equations; we
specialize first to inclusive energy spectrum, and thenparicle correlations;
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Figure 1: Two-particle correlations and Angular Ordering

e in sectior[B, we solve exactly the evolution equations inldlaeenergy (smalk:) limit; how various
corrections are estimated and controlled is specially ersighd,;

e section§t is dedicated to correlations in a gluon jet; theagiqo to be solved iteratively is exhibited,
and an estimate of the order of magnitudes of various cartiwmibs is given;

e section[p is dedicated to correlations in a quark jet, arddvial the same lines as sectidn 4;

e in section[p we give all numerical results, for LEP-I, Tewatrand LHC. They are commented,
compared with Fong-Webber for OPAL, but all detailed nuadrinvestigations concerning the size of
various corrections is postponed, for the sake of cladtgppendiy E;

e aconclusion summarizes this work.
Six appendices provide all necessary theoretical denaiimis and numerical investigations.

e inappendix A an B we derive the exact solution of the evolugquations for the gluon and quark
jet correlators;

e appendi € is a technical complement to subsedtion 4.2;

e in appendi D we demonstrate the exact solution of the MLLAl&tion equation for the inclusive
spectrum and give analytic expressions for its derivatives

o appendiXE is dedicated to a numerical analysis of all ctimes that occur in the iterative solutions
of the evolution equations;

e in appendi{F we perform a comparison between DLA and MLLAelattors.

2 EVOLUTION EQUATIONS FOR JET GENERATING FUNCTION-
ALS

Consider (see Fif] 1) a jet generated by a parton of #/gguark or gluon) with 4-momentum= (py =
E.p).

A generating functionak (E, ©; {u}) can be constructef][8] that describes the azimuth averaaytohp
content of a jet of energy’ with a given opening half-angl®; by virtue of the exact angular ordering
(MLLA), it satisfies the following integro-differential elution equation[[2]
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d oy L b eBla s (K1)
dln@ZA(p,@,{u})_§l;/o dz 859 2)

(28 (zp. 03 {u}) Zo((1 = 2)p, ©:{u}) ~ Za(p.O5{u}) )i (@)

in (@), = and (1 — 2) are the energy-momentum fractions carried away by the téspiifig of the
A — BC(C parton decay described by the standard one loop splittingtifans

1+ 22
1—2’

99 (2) = Cp M, )

oil9)(z) = O

Q10 (2) = T (22 + (1 - 2)?),  @I(z) =20, (1 ; 4 1%2 +2(1 - z)) N )

Cys=N, Cp=(N?-1)/2N., Tgr=1/2, (4)

where N, is the number of colorsZ4 in the integral in the r.h.s. of](1) accounts for 1-loop vatu
corrections, which exponentiate into Sudakov form factors

as(q?) is the running coupling constant of QCD

47
as(q?) = ——————, 5)
AN, —J

2
Adep

whereAgcp ~ afew hundredV/eV'’s is the intrinsic scale of QCD, and

- (e o

is the first term in the perturbative expansion of thiinction,n ; the number of light quark flavors.

If the radiated parton with 4-momentuin = (ko, k) is emitted with an angl® with respect to the
direction of the jet, one hag( is the modulus of the transverse trivechrorthogonal to the direction
of the jet)k, ~ |k|© ~ ky© ~ 2EO whenz < 1or (1 — z)E© whenz — 1, and a collinear cutoff
ki > Qo isimposed.

In (@) the symbol{«} denotes a set girobing functionsu, (k) with k the 4-momentum of a secondary
parton of typez. The jet functional is normalized to the total jet produntiross section such that

Za(p,O;u=1)=1; (7
for vanishingly small opening angle it reduces to the prgliumction of the single initial parton
Za(p,© — 0:{u}) = ua(k = p). ®)

To obtainexclusiven-particle distributions one takesvariational derivatives of 4 overu(k;) with ap-
propriate particle momenta=1...n, and set3: = 0 after wardsjnclusivedistributions are generated
by taking variational derivatives around= 1.



2.1 Inclusive particle energy spectrum

The probability of soft gluon radiation off a color chargedwing in thez direction) has the polar angle
dependence

sinfdf  dsin(0/2) db

~

2(1 —cosf)  sin(6/2) g

therefore, we choose the angular evolution parameter to be

4 2Fsin(©/2) 4y — dsin(©/2)

y=I Qo ~ sin(0/2)

9)

this choice accounts for finite anglé¥ 1) up to the full opening half-angl® = =, at which

2F
Y@Zﬂ' — 11’1 PR
Qo

where2F is the center-of-mass annihilation energy of the proe€ss: — ¢g. For small angles[]9)
reduces to

YzlnE—@, 0«1, d d

@ a4 1
Qo dY — dn®’ (10)

where EO is the maximal transverse momentum of a parton inside theijetopening half-anglé®.

To obtain the inclusive energy distribution of partoemitted at angles smaller th&hwith momentum
kq, energyE, = zE in a jet A, i.e. the fragmentation functioD {(x,Y"), we take the variational
derivative of [IL) oven, (k) and setu = 1 (which also corresponds 6 = 1) according to

D4 (z,Y) = E,

5u(ka) ZA (ka @; {u}) u=1’ (11)

where we have chosen the variahteandY rather thark, and©.

Two configurations must be accounted fd@:carrying away the fraction andC the fraction(1 — z)
of the jet energy, and the symmetric one in which the rol&andC is exchanged. Upon functional
differentiation they give the same result, which cancetsftittor1/2. The system of coupled linear
integro-differential equations that comes out is

d a ! os (T, (T 1 .
d—YxDA(m,Y):/O dzgcbﬁ(z)? [;DB (;,Y—an) —§xDA(m,Y)] (12)

We will be interested in the region of smallwhere fragmentation functions behave as
zD(x) "' p(nx), (13)
with p a smooth function ofn z. Introducing logarithmigarton densities

Q=xDg(x,Y), G=zDg,Y), (14)



respectively for quark and gluon jets, we obtain fr¢nj (12)

dQ / dz 2 a4(2) [(Q<1_z)—Q)+G(z)], (15)

G, = d—G :/O iz [@9( )(6() — =€) +np 23() (20(2) —G)], (16)

™

where, for the sake of clarity, we have suppressamdY and only kept the dependence on the integra-
tion variablez, e.qg.,

G(z) = —DG< Y +lnz> 17)
such that
G=G(1), Q=Q(). (18)

Some comments are in order concerning these equations.

e We chose to express the derivative with respect to the jetingeangle© on the I.h.s.’s of equa-

tions (1)[1p) in terms of

NG I E,©

Qo Qo ’

instead ofy” defined in [[P). The variablgis convenient for imposing the collinear cutoff condition
ki ~xFEsinf > Qg since, for small angles, it translates simply igte- 0;

y=Y —/¢=1In EElnlzln— (29)
x

e to obtain [1F) one proceeds as follows. Whns a quark in [[1R) , sincel is also a quark, one
gets two contributions: the real contributi@df;, _ q and the virtual one%D‘jl: -

— in the virtual contribution, sincé{(z) = ®J(1 — z), the sum ove3 cancels the factat/2;

— in the real contribution, when it is a quark, it is associatétth ®¢(>) and, when it is a gluon,
with ®J(z); we use like above the symmetdy(z) = ®J(1 — z) to only keep one of the two,
namely®?, at the price of changing the correspondigz) into D(1 — z);

e to obtain [1B), one goes along the following steps; nbw: g andB = g or g;

— like before, the subtraction term does not dependBoand is summed oveB = ¢ and
B = g, with the corresponding splitting functioris! and @g In the termcbg, using the
property®(z) = ®J(1 — z) allows us to replacé fo dz®J (= fo 2®J(z). This yields
upon functional differentiation the zG term in (1§). ForB = q, 2ny fIavors ézf flavors of
quarks andh ¢ flavors of anti-quarks) yield identical contributions, wihj owing to the initial
factor1/2 finally yieldsn;

— concerning the real term&g G in (fL.§) comes directly fron@iﬁD“ in (03). ForB = ¢, 2ny

flavors of quarks and anthuarks contribute equally since &t 1 sea quarks are produced
via gluons®. This is why we have multiplied) () by 2n ¢ in (L6).

3accompanied by a relatively small fractid?(,/a;) of (flavor singlet) sea quark pairs, while the valence (nioigist)
quark distributions are suppressed’as:).



Now we recall that both splitting functionBg(z) and ®J are singular at = 0; the symmetric gluon-
gluon splitting®$(=) is singular atz = 1 as well. The latter singularity i (L6) gets regularized bg t
factor (G(z) — zG) which vanishes at — 1. This regularization can be made explicit as follows

/01 dz®§(z) (G(Z) - zG> — /01 dz®9(z) [(1 - 2)G(2) + z(G(z) _ G)}

since®y(z) = P5(1—z), while leaving the first ternfo1 dz®J(z)(1—2)G(z) unchanged, we can rewrite
the second

/01 d=09()2(G(2) - G) = / Ca:09(2)(1 - 2) (-2 -a),

0
such that, re-summing the twQl, — z) gets factorized and one gets

/01 dz®9(2) <G(z) - zg) — /1 dz®9(2)(1 - 2) [G(z) + <G(1 —z) — G)] (20)

0

Terms proportional t@7(z) on r.h.s.'s of equationg (1$)(16) remain singular at- 0 and produce en-
hanced contributions due to the logarithmic integratioardkie regionr <« z <« 1.

Before discussing the MLLA evolution equations followingrh (I5) and [(16), let us derive similar
equation for two particle correlations inside one jet.

2.2 Two parton correlations

We study correlation between two particles with fixed eresgiy = w,/E, o = wo/FE (1 > x2)
emitted at arbitrary angle®, and®- smaller than the jet opening andke If these partons are emitted
in a cascading process, thén > O, by the AO property; see Fif} 1.

2.2.1 Equations

Taking the second variational derivative §f (1) with redpeecu(k,) andu(kz), one gets a system of
equations for the two-particle distributiod&? andQ(®) in gluon and quark jets, respectively:

QR = / dz % 9(2) [G<2>(z)+ (Q<2>(1—z)— Q<2>) n G1(z)Qg(l—z)—ng(z)Ql(l—z)} (1)

G2 = / dz O‘? Y(2) [(G@)(z)—zc:(?)) n Gl(z)Gg(l—z)}

+ [ % 04| (2096)-62) 201 ()Q:0-2) | @

Like before, the notations have been lightened to a maximaureh that)®® = Q) (z = 1), G® =
G (z = 1). More details about the variables on whigt¥) depend are given in subsectipn]3.2. Now
using (I}) we construct the-derivative of the product of single inclusive spectra. ®giically,

1 «
(@Q2), = @: [ d=2203(0) (@1 = 2) = Q1) + Ga (2]
1
+Q1/ dz%¢g(x)[(Q2(1 —2) = Q) +Gg(z)] (23)
0 T

Subtracting this expression frofn [21) we get



QP ~QiQ2), = / dz 7 @(2) [G”’(z) +(QP0-2-q®)
(61 - @) (@1 = 2) - @) + (Ga() - @2) (@1 -2 - 1) | 29

For the gluon jet, making use df {16) we analogously obtamf(22)

(G® — G1Gy), = / dz %@g(z) {(G@)(z) . zG(2)> n (Gl(z) - Gl) (02(1 ) GQH
+ [ 204 [2(0P6) - @) - (67 - 6ica)
+ <2Q1(Z) - Gl) <2Q2(1 —z) = G2)} : (25)

The combinations on the I.h.s.’s ¢f{24) afd](25) faramrelation functionsvhich vanish when particles

1 and 2 are produced independently. They represent the nechprobability of emitting particle 2 with
la,ys,... wWhen particle 1 with?1, yq, ... is emitted, too. This way of representing the r.h.s.'s of the
eguations is convenient for estimating the magnitude of/émus terms.

3 SOFT PARTICLE APPROXIMATION

In the standard DGLAP region = O(1) (¢ = O(0)), thex dependence of parton distributions is fast
while scaling violation is small

BZDG,Q(€7 y)
DG,Q

=v -0, BB =y, o) (26)

With z decreasing, the running coupling gets enhanced while-tiependence slows down so that, in the
kinematical region of thenaximum(”’hump”) of the inclusive spectrum the two logarithmic detives
become of the same order:

Yy ~ Py = O0(a,), y={~3Y. (27)

This allows to significantly simplify the equations for insive spectra[(19)(16) and two particle corre-
lations (2#)[2b) for soft particles;; < 1, which determine the bulk of parton multiplicity in jets. We
shall estimate various contributions to evolution equetiin order to single out the leading and first
sub-leading terms ig/a; to construct the MLLA equations.

3.1 MLLA spectrum

We start by recalling the logic of the MLLA analysis of the lingive spectrum. In facf (19)(1L6) are iden-
tical to the DGLAP evolution equations but for one detaik ghiftln z in the variableY” characterizing
the evolution of the jet hardnegs Being the consequence of exact angular ordering, thisfination is
negligible, within leading log accuracy Y, for energetic partons whemn z| < |Inz| = O(1). For
soft particles, however, ignoring this effect amounts toections of ordelO((a, In? )") that drasti-
cally modify the character of the parton yield in time-lilet§ as compared with space-like deep inelastic
scattering (DIS) parton distributions.

The MLLA logic consists of keeping the leading term and thetfitext-to-leading term in the right
hand sides of evolution equatior{s](15)(16). Meanwhile,ctbmbinations(Q(l —2) — Q) in (I3) and

9



(G(l —z)— G) in (0) produce next-to-MLLA corrections that can be ondftindeed, in the smalt-
region the parton densitieS(z) andQ(x) are smooth functions (s¢e]13) lofz and we can estimate,
say,G(1 — z) — G, using (IB), as

x

1—2’

G(l—z)—GzG( Y+ln(1—z))—G(w,Y):WGln(l—z).

Sinceyy ~ \/a; (se€[7B), combined with; this gives a next-to-MLLA correctio(+3) to the r.h.s. of
(L8). Neglecting these corrections we arrive at

Q- i % ag()600), (28)
$1
= / dz % [(1 — 2)®9(2)G(2) + nyPY(2) (2@(2) - G)] . (29)

To evaluate[(28), we rewrite (se€fé (2))
®(z) =Cr <§+z—2>;

the singularity inl/z yields the leading (DLA) term; sinc€'(z) is a smoothly varying function dh z
(see [1B)(4)), the maindependence of this non-singular part of the integrand we slightly alter by
replacing(z — 2)G(z) by (z — 2)G, which yields*

3Cr 2N, .o

O A

G (30)

z

! s 2 Ldz 2N,y
Qy:/ dZ%CF< G(z)+(z—2)G>:%/ e

wherea; = a4(In z) in the integral term while in the second, it is just a constdbtget the last term in
(@0) we used
1
3
/ dz(z —2) = ——. (31)
0 2

To evaluate[(39) we go along similar stegd, being a regular function of, we replaceQ(z) — G with
2Q — G; ®}(2) also reads (seg](2))

9(2) =204 (4171_2) — 24 2(1— z));

the singularity in1/(1 — z) disappears, the one iryz we leave unchanged, and in the regular part we
replaceG(z) with G. This yields

G, = /: dz O‘? [QCAGG(Z) T (1- z)( — 24 2(1 - z))G) +nfTR<z2 T (1- z)2> <2Q ~ G)}

1
dz o 11 2 Qg 4 Qg
=2 — — — | = —nlr|— —nIr— Q; 2
CA/I . 7TG(Z) <6CA+3nf R>WG+3nf RTFQ’ (32)

the comparison of the singular leading (DLA) terms|of (30) §82) shows that
DLA Cr

“sincez < 1, the lower bound of integration is set t6™in the sub-leading pieces 28) a@(ZQ)

G, (33)

10



which one uses to replae@ accordingly, in the last (sub-leading) term §f](32) (thereotions would
be next-to-MLLA (seq 41) and can be neglected). This yieh#sMLLA equation forG where we set
C4q = Ng:

1 2N, 2N
Gy:/ de 2Nes oy _ 2N (34)

z 7T 7T

with

11 nfTR QCF 1 11 4 QCF ng=3
. 1 - N+ ongTr(1 - =70.935. (35
12 73N, ( N. IN, |3 e 3ntR (35)

a parametrizes “hard” corrections to soft gluon multiplioatand sub-leading — ¢ splittings®.

We define conveniently the integration variableand©’ satisfyingz < z < 1 andzE/Qo < © < ©
6 through
xEO’

Qo

The conditionz < z < 1 is then equivalent to < ¢/ < fandzFE/Qy < © < ©is0 <y <y.

Therefore,
1 0 © ! Y
[e=for [ 5L
z < 0 Qo/xE © 0

We end up with the following system of integral equations@f))(and [3}) for the spectrum of one
particle inside a quark and a gluon jet

/=m’ and ¢y =In (36)
X

Q=50+ SE[ [ar [ e v (6 - 3o - o)aean]. @
G(l,y) = 8(¢ / de'/ Ay + o (1 — ad(? —f))G(e',y') (38)
that we write in terms of the anomalous dimension

2N .o
T

Y0 = Yo(as) = (39)

which determines the rate of multiplicity growth with engrindeed, using[{5)[(19) anfi {39) one gets

1 1 1

2 E@I = = = 2 g/ + / =

ey ﬁln(ZE@) B(lnf+xE@,+)\> € +y) B +y + N)
QCD Qo

with A = In(Qo/Agcp). In particular, forz = 1 and®’ = © one has

9 1 _ 1
=Byt N~ BY N

l+y=Y. (40)

The DLA relation [3B) can be refined to

®The present formula fat differs from (47) in ] because, there, we defiriéd = n /2, instead off'r = 1/2 here.
bthe lower bound o®’ follows from the kinematical conditioh, ~ 2F0’ > Qo

11



C
Q.y) = G- (14 (= 3) (vr +a(uf + ) ) + 00| GlEw). (41)
where 1 dG(t,y) 1 d?Gt,y)
— Y 2 _ Y
TGy e T TGy e

Indeed subtractind (B8) and [37) gives

Q(&y) —ﬁ (£>y) = ﬁ(

3 4 12 .
o e (a=7) [Targoey) 42)

4

iterating twice [3B) yields

y
/0 dy'veG(l,y') = Gy +aGee + O(1E) = G4, y) (W +a(v] + wu)) +0(13)

which is then plugged il (#2) to gdt {41):? + v,, can be easily estimated from subsecfiod 4.2 to be
O(~3). In MLLA, (#3) reduces to

Cr

Qt.y) = & [1+ (a= D) velt.y) + 003 G(L.). (43)

3.2 MLLA correlation

We estimate analogously the magnitude of various termseontits. of [24) and (5). Terms proportional
10 Q2(1—2)— Q2 and toQ (1—2z)— Q1 in the second line of (24) will produce next-to-MLLA corramsts
that we drop out. In the first lin€® (1 — 2) — Q@ (Q® () is also a smooth function af ) will also
produce higher order corrections that we neglect. We get

1

Qs
QP —Q1Qy), = / dz — @4(2) G (z), (44)
1
where we consider > 1 > z5. In the first line of [2p) we drop for identical reasons thert@roportional
to G (1 — 2) — G2, and the ternG?) (2) — 2G?) is regularized in the same way as we did f¥z) — 2G
in (). In the second non-singular line, we use the smodthwer of ] (=) to neglect the dependence
inall G®, Q®, G andQ so that it factorizes and gives

1
(G®) = G1Ga), = /

x1

dz % (1 —2)29(2) G (2)

1
+/0 dz % ny®y(z) [Q(Q(Q) — Q1Q2) — (GP = G1Ga) + (2Q1 — G1) (2Q2 — GQ)} (45)

At the same level of approximation, we use the leading orelations

_Crq @) _CF (g :
Q=T G QY- = (0¥ -Gi6a); (46)

12



the last will be proved consistent in the following. This raakhe equation for the correlation in the
gluon jet self contained, we then get

1
(GO — G1Gy), — / 4= %2 (1 - 2)85() GO ()
1
1 Qg CF CF
+/0 dz — np®(2) <2E - 1) [(G<2> — G1Ga) + <2E - 1) Glc:?)]. (47)

Like for the spectra, we isolate the singular tef%: /> and2C 4 /2(1 — z) of the splitting functionsbg
andgj respectively (sef(2) anfl (3)). We then wrlteg (44) (4Thlowvs

1
Q% - Qua), = [ a2 2Ck[167(2) + 1206, (48)

xr1

1
(G(Q) _ Gle)y — /

1

dz % 204 EG@)(Z) +(1- z)< 24 21— z))G(Q)]

L ay C C
+/0 dz — nyTr [zz +(1— 2)2} (2% — 1> {(G(z) —G1Ga) + (2% - 1) G1G2}, (49)

c Cc

which already justifies posteriorithe last equation irf (#6). One then proceeds with:titegration of
the polynomials that occur in the non-singular terms (tHig@8) was already written i (31)). For the
termoc G2 which we factorize b C4, we find (se€[(35) for the expressionaf

/01 dz{u —2)(-2+2(1-2) + %('z? +(1-2p) (2% - 1” - )

C

while in the onex GG1 G2 we have simply

nylh () o Cr _ﬁ/l 24 (1 -2 = 2R (1 _oCr ) (1 _Cr
c <1 2Nc><1 NC>0dz[z +(1-2)%] = s, iy U ) (51)

Introducing

11 nsTg 20\° 1 [11 4 Cr\ ] ny=3
- 1— = TN, - ongTr(1-2=-2) | "E7 0915 (52
12 3N, < N, AN, |3 7e T 3R (52)

allows us to expres$ (b1) withy, = N, as

2nfTR QCF CF ng=3
—b= 1-— 1-—) = 0.02 53
o= () R) e <>

such that[(48) and (49) can be easily rewritten in the form

1
(@ - Qi) = Cr [ d22Nes (a) () _ 30 2Nels

= 54
y NeJy,, z w 4N, ’ (54)

1 z 7T 7T

L dz 2N, 2N, 2N,
(62 -6 = / 42 2Nes 2y () _ 2N o) () GGy (55)
Yy T

13



Again, as = a;s(In z) in the leading contribution while in the sub-leading ones @ constant. We now
introduce the following convenient variables and notatitmrewrite correlation evolution equations

Eizlnizlng, 1=1,2 (56)
T wj
_ B
yizln(zsogzlnwbogzif—& and nzlni—;zfg—flzyl—y2>0. (57)

The transverse momentum of parton with enetdyis k|, ~ zE©;. We conveniently define the in-
tegration variables and ©; satisfyingz; < z <1 and©; < 0; < O with O3 > (02)min = Qo/we
through

E
x1 Qo
then we write
10(:E01) 1 =%(C+y) : (59)
0 1) = = 2
E
Bomi+mw @1+mﬁﬁd> Bllty+n+A)
T 0 X9
In particular, forz = 1 and®; = © we have
1 1
0 L+y+n=Y.

T Bl gt BY TN
The conditionz; < z < 1 translates intd) < ¢ < ¢, while (©2),,:, < ©1 < © becomed) < y < ys.

Therefore,
1 1 (€] Y2
/%:/ d¢ and d—Glz/ dy.
z * 0 Qo/w2 ©1 0

One gets finally the MLLA system of equations pf|($4)(55) faack and gluon jets correlations
QP (6,2, 1)~ Q1 (01, 31)Qa(l2, y2) = < / / Ay (4 ) [ 350~ )]G (€,y.m), (60)

Y2

01
GO (01, y2,m) — G1(C1,91)Ga(la, yo) = / at [ dyy3 (¢ + )t - ad(e — )] G (e y.m)
0 0

Y2
+(a—b) /0 dy (0 +9)Gllr,y + G +n.).  (61)

In the last line of [61) we have made used[of (57) to write

G1=G(l,y1) = G, y2+m), G2=Gla,y2) = Gl +n,y2)- (62)
The first term in [(600) and (k1) represents the DLA contribtithe terms proportional t functions or
to a, b, represent MLLA correctionse — b appearing in[(§1) and defined in [53) is proportionahio

positive and color suppressed.

14



4 TWO PARTICLE CORRELATION IN A GLUON JET

4.1 Iterative solution

Since equation[(§1) for a gluon jet is self contained, it is starting point. We define the normalized
correlatorC, by
G(z) - Cg (617 Y2, 77) Gl G27 (63)

where G, and G, are expressed irf (62). Substitutirfg](63) info] (61) one gste @ppendik]A) the
following expression for the correlator

_1-0 -0 (Y1, + 20 — [B8]) — laxe + 62]

Cy—1 (64)
14+ A+6; + [a (xe + [673]) + 52}
which is to be evaluated numerically. We have introducegahewing notations and variables
dx dx
= 1 = —_— —_
X an7 XZ d€ 9 Xy dy 9 (65)
1 dG1 1 dGl
= 1 = — e —
Y1 =InGy, (W, R WG (66)
1 dGQ 1 dGQ
=1 =——= = ——=; 67
rlzz)Z DGQ, T;ZJQ,K GQ v ; T;Z)2,y GQ dy ) ( )
A =7 (%,Wzy + ¢1,y¢2,£); (68)
01 =75 [xe(Wry + ay) + Xy (10 + 20 (69)
2 =15 (x/zxy + x¢ y)- (70)

As long aC, is changing slowly wittY andy, (64) can be solved iteratively. The expressiongoénd
1y, as well as the numerical analysis of the other quantitiesaplicitly given in appendicds .2 app E
for A = 0 (Qo = Agcp), the so call “limiting spectrum”. Consequently, |(64) wik computed in the
same limit.

4.2 Estimate of magnitude of various contributions

To estimate the relative rdle of various terms[if] (64) werzake use of a simplified model for the MLLA
spectrum in which one neglects the variatiorgf hence ofy, in 84). It becomes, after differentiating
with respect t

Gey =75 (G —aGy). (72)
The solution of this equation is the function fgf = const (see appendik]C for details)
1
G(l,y) = exp (270 VEy — ag y) (72)

The subtraction termx a in ([72) accounts for hard corrections (MLLA) that shifts thasition of the
maximum of the single inclusive distribution toward largatues of¢ (smallerz) and partially guaran-
tees the energy balance during soft gluons cascading[{§BkdRad references therein). The position of
the maximum follows from[(72)

bnaz = 5(1 + avp).
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From (72) one gets

, L
wzm)\/g, wyzw\/;—cwg, Yoy ~ Yoo ~Pyy =003), €1~y t=0(F) (73)

and the functiom\ in (68) becomes

y1€2 bLiys / [y2 )
€1y2 yilo lo
= 2cosh(p; — po) — ayo(e!t + et?); ;. (74)

i

We see that\ = O(1) and depends on the ratio of logarithmic variableendy. One step further is
needed before we can estimate the order of magnituge, af, andy, . Indeed, the leading contribution
to these quantities is obtained by taking the leading (DLi&re of (6}), that is

DLA1 14 1
~ n D E—
X 1+ A

_ Ay _ Ay .
MTTATACTA)Y T O A)ETA)

then, it is easy to get

we have roughly
Xe X ey, Xy X My,  Xey O Ly Hy;

sincep; ¢ = piy = O(72) one gets

Xe~ Xy =00%),  Xey ~ xexy = O(), (75)
which entails for the corrections termisandd, in (69) (79)
01=0(),  b=0(). (76)

The termd; constitutes a MLLA correction whilé, as well as other terms that are displayed in square
brackets in[(§4) are of ordeg and are, formally speaking, beyond the MLLA accuracy.

4.3 MLLA reduction of (§4)

DroppingO(+3) terms , the expression for the correlator would simplify to

MLLA 1 —b (Y10 + o) —
1+A+6

Cg—1 (77)

4.4 C, > 0inthe soft approximation

C, must obviously be positive. By looking é}, > 0 one determines the region of applicability of our
soft approximation. Usind (J7), the condition reads

24+ A > b(thre + o). (78)
For the sake of simplicity, we employ the model|(T2)(F3)(74)s gives

2(1 + cosh(p1 — p2)) > v0(a + b) (e + e+?), (79)
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which translates into

\/z+\/é>'yo(a+b). (80)
Y1 Y2

For/y, fo < Y we can sef; ~ y» ~ Y and, usingy? ~ 1/3Y ', we get the condition

Vi + /> a“;b ~ 2.1, (81)

which is satisfied as soon s> 1 (¢5 > ¢1); so, forzy < 0.4, 2 < x1, the correlatiorC is positive.

4.5 The sign of(C, — 1)

In the region of relatively hard particldg, — 1) becomes negative. To find out at which value/ aff
happens, we use the simplified model and take, for simpliGity= /> = /.
The conditionl = &; + b(t1,¢ + ¥2,¢), using [1P)(40](73) and neglectidg which vanishes at; ~ ¢,
reads

2

Yg_gi:()@@i: Mf]’w, Mg:&:m. (82)

+ I+ 52
Thus in theY — oo limit the correlation between two equal energy partons ituamjet turns negative
at a fixed valueg > x4 ~ exp(4.5) = 1/90. For finite energies this energy is essentially larger; in
particular, forY” = 5.2 (which corresponds to LEP-I energ})|(82) gives~ 2.4 (z4 ~ 1/11).

For the Tevatron, let us for instance take the typical vafue- 6.0, one hag+ ~ 2.6 and finally, for
the LHC we take the typical on&; = 7.5, one gets the correspondiig ~ 2.8. This is confirmed
numerically in Figs[[]7 and 9.

1—[)"}/0-2

5 TWO PARTICLE CORRELATIONS IN A QUARK JET

5.1 lterative solution

We define the normalized correlat@y by

Q@ =Cy(t1,y2,m) Q1 Q2, (83)

whereQ; andQ), are expressed like ifi (62) fo¥; andG,. By differentiating [6D) with respect t§ and
Y2, One gets (see appendik B)

Becy[1- 3 (wre + o+ bl - 1893]) | SESESE S - 51 — 5]

Co—1=—= = =
L R 14— BR) | G+ 1 - d (e — B3| S + 81 + B

,  (84)

which is used for numerical analysi€!;/Q; is computed using (41). The terndy~Z) are the one that
can be neglected when staying at MLLA (deq 5.2). We havednotred, in addition to[(§5)F(F0), the
following notations

A=y (801,3802,31 + <P1,y802,z)7 (85)
51 - ’Y()_Q |:O'Z(S01,y + 8027y) + Uy(@l,@ + @2,3)] ’ (86)
s -2

0y = Yo (O'ZUy + O'Zy)7 (87)

forny; =3, =0.75
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with
or =InQk, o =InC,. (88)

Accordingly, (8#) will be computed fak = 0, the analysis of the previous functions is done in appendix
E.

5.2 MLLA reduction of (§4)

Using (@), which entail§£ St ~ 1 — (a — %) + O(13), reduces[(T11) to

B2y |1 W+ i) — 3o — B981] = €01+ [B2))

24+ A —a(ir e+ bar) + 3643
By [1 = alwre + o) = Fxe = Bo51] = 01 = 3]

Cp—1=

- _ e (89)
2+ A — a1+ vae) + [5673] + 61 + 02
As demonstrated in appendix B&,= A + O(1¢) and
L N,
Cy(61 + 62) ~ C—Cg(51 + 02); (90)
F
and (89) becomes
LN (1= a(Wie+ ) = 3xe = B18) — 1 — 5] o
1 ey 24+ A —a(yie+ o) + 2642

Would we neglect, according t¢ {7B)[76), next to MLLA termnahich amounts to dropping afd(+3)
corrections, [(§9) would simply reduce to

MLLAN, Cq {1 — a0+ ¢2,e)] -4

C,—1 .
! Cr 2+ A —a(¥re+ ae) + 01

(92)

Furthermore, comparing (91) and](77) and using the magmiastimates of subsectign J4.2 allows to
make an expansion in the sméll(~,) correctionsdy, v; o ands)s , to get

C,—1 mLLa N, 1+A
4 =2 =1+ (b—
o 2o [1+ 0= et w07
Ve _ pra) !
¥ s {1 + (b —a)(¥1,e + Pay) (Cg > }7 (93)
_ 4 2+A o
where we have consistently used the DLA expresé]ﬁﬁ 1A (a —b) is given in (5B). The

deviation of the ratio from the DLA valu®'./C'r is proportional ta: ¢, is color suppressed and numerical
small.
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5.3 C, > 0inthe soft approximation

Since we neglect NMLLA corrections and the runningxgf we can make use df (93) in order to derive
the positivity constrain for the quark correlator. In thes. of {9B) we can indeed neglect the MLLA
correction in the square brackets because it is numerisaibll (for instance, fofy, ~ 0.5 itis ~ 1073).
ThereforeC, changes sign when

Cr 5 1
C,>1——=Z~~~=
9= N. 9 2

/ 1 4
_1‘|‘ 2 > —(a+2b)70,
\/ Y1 \/ Y2 D

which finally, following the same steps, gives

da-+2b
Vi Ve > ¢ 5 =26

The last inequality is satisfied as soon/as> 1.6 (¢2 > ¢1). This condition slightly differs from that of
the gluon correlator ifi 4.5.

B0) gets therefore replaced by

5.4 The signof(C, — 1)

From (92),C, — 1 changes sign for

N, Cq {1 — a1+ 7/)2,4)]

C,—1~— >
I Cr 2+ A —a(vre+1ay)

(94)

which gives the condition

1= a(y1,e+ 2y).

This gives a formula identical td (82) with the excharige— a; a being slightly larger tha, we
find now a parameteM, = 4a?/3 ~ 4.66. The corresponding.. at which (C, — 1) will change
sign is slightly higher than for gluons; for exampleYat= 5.2, /1 ~ 2.5 (z+ ~ 1/12), Y = 6.0,
Oy ~2.7 (x4 ~1/13),Y = 7.5, 0+ ~ 2.9 (x4 ~ 1/16). This is confirmed numerically in figur¢s 3, 8
and[1p.

6 NUMERICAL RESULTS

In order to lighten the core of the paper, only the main lines ideas of the calculations, and the results,
are given here; the numerical analysis of (MLLA and NMLLAYtions occurring in[(64) andl (84) is
the object of appendil{ E, that we summarize in subse¢tigh@&®@v. We present our results as functions
of (@1 + @2) and(€1 — @2)
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6.1 The gluon jet correlator

In order to implement the iterative solution of the first liofe(64), we define

1
Y,=In|1+ (95)

— b(¥10 + Pae — [B3])
1+ A+ [aB3]

as the starting point of the procedure. It represent thetizenaler of the iteration fox = InC,. The
terms proportional to derivatives gf in the numerator and denominator pf](64) are the objectse)f th
iteration and do not appear {n]95); the parametetepends (se¢ (68)) only on the logarithmic derivatives
Yy, 10, of the inclusive spectrurty which are determined at each step, by the exact soluftiot) (L.39)

for G demonstrated in appendi} D. The leading piece (DLA)of (95)

1
DLA 14+

T
1+ A

g

is the one that should be used when reducjnj (64) to MLLA. Wee hastead consistently kept sub-
leading (MLLA and NMLLA) corrections in[(95) in order to failv the same logic that proved successful
for the single inclusive spectrum.

6.2 The quark jet correlator

We start now from[(84) and define, like for gluons

Nccg[ (¢1z+¢2z+[ 5%])]?\{81 L&
A+ {1 — 30— [ﬁ%])] SES+ [1 — 3 (9,0 — [B2] )] Ao

as the starting point of the iterative procedure, the zeroth order of the iteration for= InC,; it again
includes MLLA (and some NMLLA) corrections. Since the itsoa concerng’,, the terms proportional
to C, and to its derivativey, must be present ifj (P6). All other functions are determitikd,above, by
the exact solution of (1B8) anfl (139) far.

We have replaced in the denominator [of (@6vith A, which amounts to neglecting(+Z) corrections,
because the coefficient q§2(A — A) is numerically very small; this occurs for two combined @as
it is proportional to(a — 3/4) which is small, and the combinatidu; ¢, 12 ¢ + 12.0,001,y + V20410 +
V1,002, ) that appears i (1]1L7) is very small (see [fig. 13). Accorgingl

T,=In{1+ (96)

We can use this simplified expression for the MLLA reductiéiifd]).

6.3 The role of corrections; summary of appendiX E

Analysis have been done separately for a gluon and a quatkéét conclusions are very similar.

Thats), ande,, which areO(+) should not exceed reasonable values (fixed arbitrarily fyovides an
interval of reliability of our calculations; for examplet, laEP-I

25<0<450r5<l +0,<9, Y =52 (97)

This interval is shifted upwards and gets larger wheimcreases.
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Y=5.2 Y=5.2

15

0<l-,<0.1 15 5.9<I+,<6.1
14 —— 04<1-,<06 1 T —— 69<t,<71

— 09<l-h<11 4 —— 79<#,<81

lp+1p -1y

Figure 2:C, for the LEP-1 Y = 7.5) inside a gluon jet as function &f + ¢, (left) and of¢; — /5 (right)

T, andY, defined in [9b) and (96) and their derivatives are shown tabeksmoothly in the confidence
interval (97).

The roles of all corrections, §», A for a gluon jet,d;, 2, A for a quark jet, have been investigated
individually. They stay under control if (97). While, in itenter, their relative values coincide with
what is expected from subsecti¢n]4.2, NMLLA corrections bagome larger than MLLA close to
the bounds; this could make our approximations questi@abio cases may occur which depend on
NMLLA corrections not included in the present frame of cédtion; either they largely cancel with
the included ones and the sum of all NMLLA corrections is (hjuemaller than those of MLLA: then
pQCD is trustable at” = 5.2; or they do not, the confidence in our results at this energyeak,
despite the fast convergence of the iterative procedurehnwdgcurs thanks to the “accidental” observed
cancellation between MLLA and those of NMLLA which are indéd. The steepest descent method
[LAI[LT], in which a better control is obtained of MLLA comtions alone, will shed some more light on
this question. The global role of all corrections in theatere process does not excedy; for Y = 5.2
(OPAL) at the bounds oﬂ];?) it is generally much smalleough never negligible. In particular,
01 + 2 +a¥y, for quons (oré; + b5 for quarks) sum up t@ (10~ 2) at LEP energy scale (they reach
their maximum©(10~!) at the bound of the interval corresponding to 30&; evoked above).

The role of corrections decreases when the total engrgfthe jet increases, which makes our calcula-
tions all the more reliable.

6.4 Results for LEP-I

In ete~ — ¢q collisions at theZ? peak,Q = 91.2GeV,Y = 5.2, andy, ~ 0.5. In Fig. 2 we give the
results for gluon jets and in Fifj. 3 for quark jets.

6.4.1 Comments

Near the maximum of the single inclusive distributidh & ¢» ~ %(1 + a7p)) our curves are linear
functions of(¢; + ¢5) and quadratic functions @f; — ¢5), in agreement with the Fong-Webber analysis

(6.

(Cq—1) is roughly twice(C, — 1) since gluons cascade twice more than quagés(z 2). The difference
is clearly observed from Fid] 2 and F[d. 3 (left) near the hwhthe single inclusive distributior/{ +
{5 ~ 7.6), that is where most of the partonic multiplication takescgl.
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0<l,<01 59<l+,<6.1
18l —— 04<l-1,<0.6 | P B 6.9<l+,<7.1
— 09<ld,<11 : — 79<lH,<81

16
OD' OD—
14 ¢
12+
1
5.5 6 6.5 7 7.5 8 8.5 9 2 -15 -1 -05 0 0.5 1 15 2
Iy + 1y -l

Figure 3: C, for the LEP-I " = 7.5) inside a quark jet as function éf + ¢, (left) and of¢; — ¢, (right)
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1.7+ —— l1#l,Y=75
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155 16 165 17 175 18 185

(I + L)Y

Figure 4: Decrease of the correlation fgr£ /5 atY = 5.2, Y =6.0andY = 7.5

In both cases( reaches its largest value fér ~ ¢, and steadily increases as a function(6f + ¢2)
(Fig.|2, left); for¢y # 45, itincreases with{¢; + ¢2), then flattens off and decreases.

Both C’s decrease a; — ¢»| becomes large (Fig] 2 afjfl 3, right). The quark’s tail is stedpan the
gluon’s; for5.9 < ¢ 4+ ¢ < 6.1, (C — 1) becomes negative wheh — /5 increasesC > 1 as soon
asty, ly > 2.75 (21,72 < 0.06); this bounds is close t6 > 2.4 found in subsectiof 4.5 dr > 2.5 of

(250).

One finds the limit

l1+b2—2Y
—

Cgorg 1. (98)

Actually, one observes on Fid$.[2, 3 dhd 4 that a strongerstatt holds. Namely, when we take the limit
£y — Y for the softer particle, the correlator goesltorhis is the consequence of QCD coherence. The
softer gluon is emitted at larger angles by the total colargh of the jet and thus becomes de-correlated
with the internal partonic structure of the jet.
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The same phenomenon explains the flattening and the deak@seat /1 # £s.

An interesting phenomenon is the seemingly continuousease ofC, andC, at largeY for ¢; ~ (5
(green curves in figg] 2 affl 3 left). Like we discussed ih [b2jerning inclusive distributions, here we
reach a domain where a perturbative analysis cannot bedristause of the divergence®f. Indeed,
when (¢; + ¢5) gets close to its limiting kinematical valueY(), bothy; andy, get close td), such
that the corresponding,(k?, ) anda,(k3, ) cannot but become out of control. Away from the~: ¢,
diagonal, takings — Y (y2 — 0), we havey; — n > 0 and the emission of the harder parton still stays
under control.

The two limitations of our approach already pointed afif] @2 found again here:
+ x should be small enough such that our soft approximatiorsstald;
* No running coupling constant should get too large such Q&P stays reliable.

6.5 Comparison with the data from LEP-I

OPAL results are given in terms of

1 1
R(fl,fz,Y) = 5 + §Cq (fl,fz,Y) .

In Fig. [ we compare our prediction with the OPAL ddfa [7] amel Eong-Webber curves (see subsection

6.6 and [b]).

6.6 Comparing with the Fong-Webber approximation

The only pQCD analysis of two-particle correlations in jbeyond DLA was performed by Fong and
Webber in 1990. In[]6] the next-to-leadirt®(~o) correctionCyorq = 1+ (/a5 + - - -, to the normalized
two-particle correlator was calculated. This expressi@s werived in the regioft; — /5|/Y < 1,
that is when the energies of the registered particles ase d¢tmeach other (and to the maximum of the
inclusive distribution [RIH[IB]). In this approximatiothe correlation function is quadratic [y — ¢2)
and increases linearly witff; + /), see [100). For example, if one replaces the expressiore sirigle
inclusive distribution distorted gaussigdn][13] (obtain@the regiory ~ %(14-@70)) into (77) the MLLA
result for a gluon jet reads

b +1
1—<5b—3b 1;; 2>fy0+0(fy§)

0 — 0\ 2 0y + 0
3+9<1Y 2> —<2B+5a—3a1; 2)70—1—(’)(73)

where we have neglected the MLLA correctién~ (¢; — £3)?,/a; ~ 0 near the hump of the single
inclusive distribution {; ~ ¢> ~ ¥-(1 + avy)). The Fong-Webber answer is obtained by expandiny (99)
in 7o to get [§]

4 0] — 05\ 2 5 1 2 1 0+
et (55 3o (-4 () e o

In Fig. 6 we compare, choosing for pedagogical readéns 5.2 andY = 100, our exact solution of
the evolution equation with the Fong-Webber predictigfj$d6two particle correlations. The mismatch
in both cases is, as seen 1(101%), and decreases for smaller values of the perturbative sigran
parametery,. In particular, a” = 100, (v3 ~ 0.01) the exact solution[ (§4) gets close fo (100). This
comparison is analogous in the case of a quark jet.

69(61,52, Y) ~1+

; (99)
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Figure 5: Correlations? between two particles produceddrie™ — ¢q compared with the OPAL data
and the Fong-Webber approximation
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Figure 6: Exact, compared with Fong-Webber’s &t = 5.2 (left) andY” = 100 (right)

We do not perform in the present work such an expansion byt kestead the ratiog (64) and [84) as
exact solutions of the evolution equations.

6.7 Predictions for Tevatron and LHC

In hadronic high energy colliders, the nature of the jet (gua gluon) is not determined, and one simply
detects outgoing hadrons, which can originate from eitfpg;tone then introduces a “mixing” parameter
w, which is to be determined experimentally, such that, th@ression for two particle correlations can
be written as a linear combination 6f and(,

Cretlwi 1, ,Y) = Alwi by, £, Y) Collr, €2, Y ) + Blws 1,62, Y) Gy, £2,Y), (101)
where
o {Q%,Y) Q(@,m]
Awi by, 6,Y) = G4, Y) G(6,Y)
{1 +w<w = 1)} {1 w(M _ 1)}
G(61,Y) G(l5,Y)

and

Bw;t1,£2,Y) = (1-w)

Q(gh Y) Q(€27 Y) .
1 ——1 1 —— -1
R G Gy
We plug in respectively (§4) (B4) fat, andC,; the predictions for the latter are given in Fiffs. 7 §hd 8
for the Tevatron, Figg] 9 ar[d]10 for the LHC.

6.7.1 Comments

For bothY = 6.0 (Tevatron) and” = 7.5 (LHC), the global behavior given ih 6.4.1 also holds. The
interval corresponding to the conditi@h ., > 1 is shifted toward larger values éf(smallerz) as
compared with th& = 5.2 case, in agreement with the predictions[of](4.5) dnd (5.4)marically, this

is achieved for > 2.9 (¢ > 3.2) atY = 6.0 (Y = 7.5) in a gluon jet at the Tevatron (LHC). For a

25



15

1.4

0.8

Y=6.0 Y=6.0

L 00<lp<0l — T6a<Itly<66
F—— 04<l1,<06 | —— 74<1+,<7.6

— 09<l-h,<11 — 84<+,<85

6 7 8 9 10 -3 -2 -1 0 1 2 3
Iy +1y I -1

Figure 7:C, for the TevatronY” = 6.0) as function of’; + ¢ (left) and of¢; — ¢, (right)
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Figure 8:C, for the TevatronY = 6.0) as function of¢; + ¢, (left) and of¢; — ¢ (right)
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Figure 10:C, for the LHC (Y" = 7.5) inside a gluon jet as function &f + ¢» (left) and of¢; — /5 (right)

quark jet, these values become respectively 3.1 (¢ > 3.3) and one can check that they are close to
the approximated ones obtained[in{4.5) gnd (5.4).

One notices that correlations increase as the total en¥lgng¢reases (LHC> TeV > LEP-I).
6.8 Asymptotic behavior ofCy o 4

We display in Fig[ 41 the asymptotic behavior@fandC, whenY increases.

St o S )
<n >2

Ve <n=D>g o AN o

C ~
g <n>2 3Cp

1
%1+§w1.33, Cq
wheren is the multiplicity inside one jet. These limits coincidetwithose of the DLA multiplicity
correlator [I§][Ib]. It confirms the consistency of our apguh.

7/ CONCLUSION

In this paper two particle correlations between soft pariorguark and gluon jets were considered.

Corresponding evolution equations for parton correlaiee derived in the next to leading approxima-
tion of perturbative QCD, known as MLLA, which accounts fo€Q coherence (angular ordering) on
soft gluon multiplication, hard corrections to parton &pigs and the running coupling effects.

The MLLA equations for correlators were analyzed and solterdtively. This allowed us to generalize
the result previously obtained by Fong and Webbe}in [6] e valid in the vicinity of the maximum
of the single inclusive parton energy distribution ("hump”

In particular, we have analyzed the regions of moderatelgllsmabove which the correlation becomes
"negative” C — 1 < 0). This happens when suppression because of the limitafitimeqohase space
takes over the positive correlation due to gluon cascading.

Also, the correlation vanishe€ (— 1) when one of the partons becomes very sbfc(Inl/z — Y =
In E©/Qy). The reason for that is dynamical rather than kinematiealiation of a soft gluon occurs at
large angleswhich makes the radiation coherent and thus insensitiveeanternal parton structure of
the jet ensemble.
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Figure 11: Asymptotic behavior @f, andC, whenY” increases

Qualitatively, our MLLA result agrees better with availadDPAL data than the Fong—\Webber predic-
tion. There remains however a significant discrepancy, ewykat very smalle. In this region non-
perturbative effects are likely to be more pronounced. Thay undermine the applicability particle
correlationsof the local parton—hadron duality considerations thatvgerccessful in translating parton
level predictions to hadronic observations in the case okrmzlusivesingle particle energy spectra

Forthcoming data from Tevatron as well as future studiedHt lshould help to elucidate the problem.

Acknowledgmentdt is a great pleasure to thank Yuri Dokshitzer and Bruno Mador their guidance
and encouragements. | thank Francois Arléo, Bruno Dunmimfany discussions and Gavin Salam for
his expert help in numerical calculations.
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A DERIVATION OF THE GLUON CORRELATOR C, IN (%)

One differentiatesG® — G1G2 = G1G2(C, — 1) with respect to/; andy, and use the evolution
equations[(38) and (p1).
By explicit differentiation and using the definitions (rgfeota4bis){(70) one gets

[G1Ga(Cy 1)), = G1Ga[Cory + Coeltbny + y) + o (V10 + v2)|
+(Cg — 1) [G1G2 (V1,002 + o0th1y) + G1Gapy + GQGl,Zy}; (102)

the definition [6p) ofy entailsCy; = x/Cy, Cgy = xyCq: Coey = Cq(xey + XeXy), Such that[(1G2)
rewrites

G =16, =y GG (xey X)Xt (1 ) + X (V1 + )|
+(C—1) [G1G2 (1,082, + 1y20) + G1Gapy + GQGL(y]. (103)
By differentiating the evolution equation for the inclusispectra[(38) with respect foand/ one gets
Gy =28 (1= a (e = 913) ) G (104)
where one has used the definitiqn] (§6)(67)yaf, to replace?Z: with Gy, and [@D) to evaluate
43 = —B¢. Substituting into[(I03) yields
l.h.s.(@)by
13G1G2

whered; andd, are defined in[(§9) (70).
Differentiating now the r.h.s. of (b1) with respectigpand?;, one gets

r.h.s.(61)
27‘“’ =Cy(1—a (1o + 120 — B3) ) — Cgaxs+ (a—b) (Y10 + P2 — B5) . (106)
75 G1Go

Equating the expressionis (105) apd {106) for the correldtiaction we derive

Y1002,y + Y1y
5)
70

=(Cy—1) (2 —a (Y1 +hag) + + 2aﬁ7§> +Cy(61 + 62),(105)

(Cy— 1)<1 + A+ +a(xe+Bg) + 52) =1—0b(t1,0+ ¥op — B35) — 61 — (axe + 62), (107)

which gives [6}).

B DERIVATION OF THE QUARK CORRELATOR C, IN (84)

B.1 Derivation of (84)

The method is the same as in apper{dix A: one evaluates/ @t — Qle]zy = [Cq — 1)Q1Q2Ly.

First, by differentiating the evolution equatidn(60), arets

CF2

[Q(Q) - QlQZ]gy =0

CyG1Ga (1= 5 (e +bne + xe— 63) ) (108)

then, one explicitly differentiate%(cq - 1)@ QQ] and makes use of

CF2

Qrpy = F%Gk <1 - Z(%,z - 5V§)>7 (109)

29



which comes directly from differentiating the r.h.s pf|(3¥ith respect to andy; this yields
Q¥ — Q1Q2],, = C1Q2 [O'e (Pry + P2y) +oe(pre + p2) + o0y + O'ZO'y}
+(Cg — 1) Q1Q27%% {@1,@%02,11 + 901,y902,e]
C 3 3
+(Cq — 1)73% {(G1Q2 +Q1G2) — ZGlQQ (V1,0 — BY) — ZQlGQ (Yo, — 573)];

(110)
equating [(108) and (1]L0) gives
&=Cq [1 - %(1/11,@ + o0+ X0 — 573)] FalEe —Cy (01 + o)
Cp—1= , (111)

R+ [1- 3o - B8)| S0 + [1 - wne - 8| G

which leads[(84).

B.2 Expressing& 8, and &, in terms of gluon-related quantities

All the intricacies of [11]1) lie inA, &; andé, defined in [§7), which involve the quark related quantities
o andy (B8). In what follows, we will express them in terms of the@iurelated quantitieg and)

(68)(66)(6h).
B.2.1 Expression forA

Differentiating (4]L) with respect téyields

Qre = %Gu [1 + (a - —)% e] + %Gk <a — —>7Z)k 00+ 05 (112)

then

Qe _ {CFGH[l + (a - —>¢k z] + ﬁGk (a - —)wk M} [Glzl - <a - Z)%,ZG?]

e Qk Nc
(113)
yields
3 4
e = Ve + (a - Z)%u + O(v0)- (114)
Differentiating (4]L) with respect tg yields
C C
kay Fka|:1+ (a_ _>1/}k £:| + FFG]C (a'_ _>wk76y+0(7§)7 (115)
and, finally,
3 4
ky = Vky + (a — Z)d%,éy + O(vy)- (116)
Using (11%) and[(116) it given by (8]) gives
- 3 72
A~A+ (a - Z) <1/11,ey¢2,z + Yoo,y + Y20y 1e + ¢1,M¢2,y)% ; (117)

which shows in particular, thak ~ A + O(12).
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B.2.2 Expression fordy, 8-

®7) entailsC 1301 = Cqr(01,y+02y) +Cay (01.0+02,0); SINCEC, ¢ ANAC, , areO(4Z) and considering
(@18) and[(134), we can approximate

Cq'ﬁ%gl = Cqu (wl,y + ¢27y) + Coy (1/11,6 + 1/12,6) + O(’Yg)v (118)

which needs evaluating, , andC, ,, in terms of gluonic quantities. Actually, sindgd; andC,d, occur
as MLLA and NMLLA corrections in[(111), it is enough to takeetleading (DLA) term of, to estimate
them N, 1 N. N. 1
chrA_—q14 ¢~ —1_2¢ —(1 ) 119
1 +CF1+A CF+CF +1+A (119)
differentiating then ovef andy yields

N, A

CDLA _ _0_752: . CgDLA (120)
F <1 +A) F

CDLA _ _& Ay — N CDLA (121)

CF (1 -|-A>2 CF 9,y

Substituting [220),[(121) intd (1}18) one gets
Cyd1 = Cyd1 + O(9). (122)

Likewise, calculatingygcqgg needs evaluatingffyf“ in terms of gluonic quantities. Usinfy (120) one gets

Cyda = Cyda + O(7g). (123)

Accordingly, C, (6, + d2) can be replaced bg,(5; + d-) to get the solution[(Z11). This approximation
is used to get the MLLA solutior] (P2) of (7]11).

C DLA INSPIRED SOLUTION OF THE MLLA EVOLUTION EQUA-
TIONS FOR THE INCLUSIVE SPECTRUM

This appendix completes subsect[on 4.2. For pedagogiaabns we will estimate the solution ¢f|38)
when neglecting the running ef; (constanty?) (see [R][#] and references therein). We perform a
Mellin’s transformation ofz (¢, y)

G(4,y) // o dV et e’y G (w,v). (124)

271'2

The contour C lies to the right of all singularities. In](3&)eoset the lower bounds fdrandy to
—oo since these integrals are vanishing when one closes thaBtoao the right. Using the Mellin’s

representation fof(¢)
) = // ddeQ et e"yl, (125)
c (2mi) v

one gets

1
v—3(l/w—a)

G(w,v)= (126)
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Substituting [126) into[(124) and extracting the polg £ 73 (1/w — a)) from the denominator of (126)
one gets rid of the integration overand obtains the following representativn

Gy = /C %exp [wf—!—wg(l/w - a)y}; (127)

finally treating? as a large variable (soft approximatien< 1) allows us to have an estimate pf (127)
by performing the steepest descent method; one then has

z<1 1 1/2
Glty) = 5\ 2l e (22077 — axd ) (128)

However, since we are interested in getting logarithmidvdéves; in this approximation we can drop
the normalization factor of (1P8) which leads to sub-legdinrrections that we do not take into account
here; we can use instead

K1
G(l,y) = exp <270 V0y —av] y) (129)
which is (72).

D EXACT SOLUTION OF THE MLLA EVOLUTION EQUATION FOR
THE INCLUSIVE SPECTRUM

We solve [3B) by performing a Mellin’s transformation of foddowing function ¢ , 3 and are defined

in (59), (@)):

F(ly) =v%+y)G (ty),

that is,

F(ly) = //C (C;:Cj; et e’ F(w,v). (130)

Substituting [130) into[(38) we obtain:

Bl+y+N) // dwdu et e F (w0, 1) // dwdu ot v [1+.7:(w,1/)}
27?@ 271'2 v wv

B a// dwdy2 ot eyy]:(w,u)’
(271) v

where we have again replacéd) by its Mellin’s representation[ (1R5). Then using the ecjeinae
¢ 2y 2 weintegrate the L.h.s. by parts and obtain:

dwdv | (0 g wltvy // dwdu 8;7-"_8;7: witvy
// [(&u v +)\> ] (w,v) =5 (2mi)? dw ov)© ’

8by making use of Cauchy’s theorem.
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We are finally left with the following inhomogeneous diffatal equation:

B < 0F 8]:> = i+£ — ai. (131)
14 wv 14
The variablesv andv can be changed conveniently to

, wH+v , w—vV
w = 2 s UV =

such that[(131) is now decoupled and can be easily solved:

ﬁ()\}"—£>: L T

dw' w —v w2 — 2 w —v

The solution of the corresponding homogeneous equatiattewias a function ofo andv, is the fol-

lowing:
/oo ds V+S) 1/B(w—v) v a/B
I/ .
@, ~ B v+s \(w+s)v v+s

We finally obtain the exact solution df {38) given by the fallng Mellin’s representation:

dw dl/ " y/oo ds w(u + S) 1/8(w—v) v a/B .
LU 1% - S. 1 2
Gly) = €+y+)\// o Vv+s\(w+s)v v+s ¢ (132)

([T32) will be estimated using the steepest descent methaedfamthcoming work that will treat two

particles correlations &y > Agcp (A = In(Qo/Agep) # 0) [LA][LT]. Substituting [(132) into[(61)
one has the Mellin's representation inside a quark jet

B dwdv oipy (% 37% /°° ds (w(v+ s\ y a/ﬁf)\s‘
Q(E,y)—(€+y+>\)//(2m_)26 <wu 4dv )]y v+s\(w+s)v v+s C

wheren3 /wr = O(1) and the second term is the MLLA correctigf/v = O(vo).

;"

D.1 Limiting Spectrum, A = 0

We set)\ = 0 (that isQo = Agcep) in (L32) and change variables as follows

w=w-v, Ss+wt=w/u, AEA((D):BL, B=ua/p
w

toget ¢ + y =Y is used as a variable)

€1+1i00 €o2+100 B —-A t—1
GLY) = / B ooy At ave <L> 1B / duuP (1 +u) At (133)
€ 0

1—ico €9—1i00 271 1 + t

the last integral of[(133) is the representation of the hygemetric functions of the second kind (see

[T4))

t— t_B
/ duuP! (1—|—u)7A: ?gFl (A,B;B—Fl;—t*l);
0
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for RB > 0, we also have

2F1 (a,bicia) = ) e
n=0
where for example
I'(a+n)
(a), = W
Therefore [(133) can be rewritten in the form:

=a(a+1)..(a+n—1).

Y €1+i00 d B €a+100 dt - ¢ —A
G,Y)=—= —w_x_ww/ B o Fy (A, B;B+1; —t_l) . (134)
B Je—ico 2mi cr—ico 2T0 1+1¢

By making use of the identity [17]:

—A
(1+t ) oFi (FA+B+1, B+ 1L;—t ") = (ﬁ) oFy (A, B;B+1;—t71),

we split (I3}) into two integrals. The solution of the secone is given by the hypergeometric function
of the first kind [17]:

€2+100 dt -
/ — VR (-A+ B+ 1,1;B+1;,—t ) =1F (-A+ B+ 1;B+1;-oY). (135)
€

9—i00 211

Taking the derivative of (135) ovéY’) we obtain:

/EWOO dt YR (-A+B+1,1,B+1;—t7) d Fi(-A+B+1;B+1;-wY)
At _ ) o ___ % _ ) o

ey ine i 241 D) 9 d(—(:)Y)l 1 ) 9 )

where,

1F1 (a;b;2) = @ (a;b;2) = Z ((C;)))" f:
n=0 no

We finally make use of the identity] [1L7]:

B+1
1F1(—A+B+1;B+2;—(DY): Z |:1F1(—A+B+1;B+1;—(DY)
d
—-— 1 (-A+B+1;B+1;—-0Y
d(—u_JY)l 1( + + 1 + 1 —w )
to get ( F; = P):
Gt,Y) Y /EHOO e oG (At B+1,B+2,—aY) (136)
= —X — — W N
’ BB(B+1) €—100 2mi ’ ’ ’

we can rename — w and seft” = ¢ + y, which yields
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Y €+100 d
G (t,y) i/ LD (—A+ B+ 1,B+2,-w(l +y))

T BB(B+1) ) 2mi
f—{—y e+i00 dw .

We thus demonstrated that the integral representdtior) {§22juivalent to[(136) in the limik = 0. In
this problem all functions are derived usirjg (137), and oresfithe value ot = In(Q/Qo) (that is
fixing the hardness of the process under considerationh that each result is presented as a function
of the energy fraction in the logarithmic scale= In(1/x). As demonstrated irf]2[T12], the inclusive
spectrum can be obtained usitig (136) and the result is

G, y) =22 By < / 4T o fB(T,y,z)> , (138)
p o 7
. o . , 1 Y ,
where the integration is performed with respect tefined byo = 3 In (7 — 1> + i,
9 B/2
cosh a — <1 — é) sinh o
Fa(r0,Y) = — 15(2V/Z (7 0 Y)),
[ sinh «
Y « 2/
Z Y)=— ha—(1—- = |sinhal; 1

(1,4,Y) 7 smha {cos @ < Y> sin a} : (139)

Ig is the modified Bessel function of the first kind.

D.2 Logarithmic derivatives of the spectrum,A = 0

Using the expressions derived [n]12] and fixing the sy = Y, one gets

d I(B) [2dr _g,[1 . 1
— Y)=2——= — e 7% | = (14 2¢“ sinh —e” ; 14
CMG(E, ) 3 /0 —e [Y( + 2e%sin a)}"B—i—ﬁe .7-"B+1], (140)
and
d [(B) [2dr _p,[1 o 1, 2sinh a
d—yG(f,y):Z%/o ?e B |:?(1+2€ smha).’FB—FBe Fpi1 — v ‘7:31:|. (141)

Logarithmic derivatives), andi, are then constructed according to their definitiph 66)B7dlividing
(T49) and[(141) by the inclusive spectrun (138).

Using the expression of Bessel's series, one gets

o fori—0;

Wy ZEO %—Fclln(%—l) — 00,

2a/6+2 /71'/2 a a
c = — dr (cos )%/ B+2 [cos <—’7’> — tan 7 sin (—7’)] = 0.4097 > 0,
LS rarem Sy T E 5

14
Yy —afyg + Cl; — —afyg. (142)
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o fori —-Y < y—0;

—0
¢€ y: C2 7 -1)— 0’
9a/B+2 /W/2 a a
c = — dr (cos 7)%/ P12 [cos (—’7’) + tan 7 sin (—7’)} = 0.9218 > 0;
2T vz )y T 5 E
— Y
Py yzo —coln 7" 1) — oo. (143)

They are represented in F[g]12 as function$ fufr two different values ot (= 5.2, 15).

D.3 Double derivatives

In the core of this paper we also need the expressiom for

Yo = 5Gue— W) (144

By differentiating twice [(137) with respect t one gets
Gurlt) = o (Gultn) - G
elby) = g\ Gelby) = Glby

e+i00
W/ 9 v (A% £ BA £ 2) B(A+3,B+ diw(l+y).

B (B+3) Je_ino 2mi
(145)
Using the procedure of [[L2] (appendix A.2) and setting Y — ¢, the result forG,, reads
Gt Y) = 2 (cue.y) - Law,y)
L0 %y - Yy JARS) Yy )
D(B) [2da g o9, [1 6 . 8 .
+2T/0 ?e (B-2) @fB_FQ—’—B—YSIHh(XfB_Fl—FWSIHh aFpl|.
(146)
Likewise, for )
Vyy = any - (%)2, (147)
where

Gyy(ly) = WGl y) + %(Gy(& y) — G, y))

1(+y)T(B) [ dw _ w |
EWZ i€ y<w2_5>¢<,4+1,3+3,w<“y)),(148)

—100

one gets
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Figure 12: Derivativeg), ands, as functions of at fixedY = 5.2 (left) andY” = 15 (right)

Gru(t.) = FEEY) + 3 (Gy(EY) - Gultr1))

I'(B) [2d sinh’ 1 sinh
+4 (ﬂ )/2 70567(B+1)a |:2(B—|— 1)M.’F371 _ _SID afB . (149)
0

Finally,
Yoy = Vye =75 [L —a (e — BY)] — Vet

Yoo, Py y anda,, are drawn in Fig[3 of append[x E.lL.1 as functiond éér fixed Y. They are all
O(g)-

E NUMERICAL ANALYSIS OF CORRECTIONS

In this section, we present plots for the derivativesyofand ¢ (see [66](d7) and (B8)), for and
its derivatives (see[ (PF)(06)), fak, 61, d» (see [665){(70)) and the combinatiop = &, + &2 + a Ty,
Oc = 01 + 09.

E.1 Gluon jet
E.1.1 < and its derivatives

This subsection is associated with append[ce$ D.2[and DtZnables in particular to visualize the
behaviors ofy, andy,, when? — 0 ory — 0, as described i (1}#2) anfl (143), and to set/tierval
within which our calculation can be trusted.

In Fig[12 are drawn), andv, as functions of for two valuesY” = 5.2 corresponding to LEP working
conditions, and” = 15 corresponding to an unrealistic “high energy limit”.

Yy and (),) being bothO(yy), they should not exceed a “reasonable value”; setting thisevto1,
[Ye] < 1and|yy,| < 1 set, forY = 5.2, a confidence interval

2.5 <0< 4.5. (150)

In the high energy limit™ = 15, this interval becomed,.5 < ¢ < 13, in agreement wit@.S.
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Figure 13: Double derivativeg, , 1/, ands, , as functions of at fixedY’

E.12 A(f1,£2,Y)

A has been defined ifi (68), in whieh , and; ,, are functions of; andY’, 12 » ands)y ,, are functions
of ¢/, andY'.

Studying the limits — 0 and/ — Y of subsectiof D] 2:

e for ¢y, /5 — Y one gets (using the results[of P.2)

Y-t Y-ty Y-ty Y-—1
A~ —c2 1 1 151
C2 ( fl n €2 + 62 n 61 ) ) ( )
such that
ADTES0 ) AR (152)

e for /1, /5 — 0 one gets (according fo .2):

~ a2 |2 (L L Y-b o, Y=6y
A >~ —avj [ﬁ <€1—|—€2>+cl<ln 0 +In 0 — —00. (153)

In Fig. [14 (left) A is plotted as a function of; + ¢ for three different values of; — ¢5 (0.1, 0.5, 1.0);

the condition [(150) translates into
5.0 < 01 + 05 < 9.0; (154)

on Fig.[1}h (right) the asymptotic limih — 2 for very largeY clearly appears (we have takén— /¢y =
0.1); it is actually its DLA value [R]; this is not surprising sig, in the high energy limit, becomes
very small and sub-leading corrections (hard correctionsranning coupling effects) get suppressed.

E.1.3 Y4 and its derivatives

Fig. exhibits the smooth behavior efp (T,) as a function of(¢; + ¢») in the whole range of
applicability of our approximation (we have chosen the samlaes of(¢; — ¢,) as for Fig.[14), and
as a function of¢; — ¢3) for three values of¢; + ¢2) (6.0,7.0,8.0). So, the iterative procedure is safe
and corrections stay under control.
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Figure 14:A as a function of; + ¢ for Y = 5.2 (left) and its asymptotic behavior (right, — ¢, = 0.1)
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Figure 15:exp (T ,) as a function of; + ¢ (left) and,¢; — ¢5 (right) for Y = 5.2
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Figure 16:Y,,, Y, , andY, ;, as functions of; +/ for Y = 5.2, /; — {5 = 0.1 (left) and/; — {5, = 1.0
(right)

Fig.[16 displays the derivatives af,. ([L5%), (15p) and[(1$7) have been plottedvat= 5.2, for (¢; —
l3) = 0.1 (left) and (¢; — ¢2) = 1.0 (right). The size and shape of these corrections agree with o

expectations, ¢, = Yy, = O(13), Tgoy = O(V5)).
For explicit calculations, we have used

[1=b (V1,04 v20—B73)] (Ar—aB?3) b (Y1,00+v2,00+575)

Y,y =— - 155
ot (1+A+apB2) 2+A—b (Y1 e+v20— B7)]  2+A—b (Y1e+v20—03)’ (153)
_ [1=b (Yretdoe=515)] (Ay—aB*) b (Yrey+doey+6°7) (156)
W (1+A+aBB) 24A-b (Vretiae—B1R)] 24+A=b (Gretipee—B3)
oY
Yory=—7," (157)

where

Ay = 75; (1,002, + V100240 + Vap ety + Va1 4o + B1EA,
Ay =952 [Wr0ytoy + V1o¥oyy + Yoty + Y201y y] + BEA. (158)

For the expressions afy(, ¥, = v, , andi,,, the reader is directed fo .4. (357) has been computed
numerically (its analytical expression is too heavy to balgananipulated).

E.1.4 64, 62,90,
81 andds, are defined in[(65)(Y0). We also define

e =01+ 92+ aXy, (159)

which appears in the numerator of the first line[of (64).

Fig.[17 displays the behavior 6f, 6, andd; + 4, atY = 5.2 for 1 — {3 = 0.1 and/; — ¢ = 1.0. We
recall that these curves can only be reasonably trustectiimtarval [154).

Though|d:| = O(vp) (MLLA) should be numerically larger thajds| = O(~¢) (NMLLA), it turns out
that for relatively largey, ~ 0.5 (Y=5.2), |61| ~ |d2|, and that strong cancellations occur in their sum.
As 7o decreases (dr increases)d; | > |02|, in agreement with the perturbative expansion conditions.
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Figure 17:61, 02 andd; + d5 as functions of; + /5 for £; — £5 = 0.1 (left) and{; — ¢5 = 1.0 (right)
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Figure 18:4. as a function of ¢y + ¢5)/Y for ¢ — ¢ = 0.1 (left) and¢; — ¢ = 1.0 (right)

In Fig. [18 we represent. for different values ofY’; it shows how the sum of corrections (MLLA and
NMLLA) stay under control in the confidence intervpl (154pr¥” = 5.2 one reaches a regime where it
becomes slightly larger than1 away from the regiom; ~ xo (see upper curve on the right of F[g] 18)
but still, sincel (which is the leading term in the numerator pf](64}) 0.1, our approximation can be

trusted.

E.1.5 The global role of corrections in the iterative procedre

Fig.[I9 shows the role af, on the correlation function: we represent the bare funatignY', (see[9p)
as in Fig[1p, together with) (p4). FOf; — (o) = 0.1 (¢4 =~ £3) and(¢; — £3) = 1.0, it is shown hows,.
modifies the shape and size®fp T,. Whent; # / ((¢1 — ¢2) = 1.0), é. decreases the correlations.
They are also represented as a functiof¢of- ¢5) when(¢; + ¢2) is fixed (t06.0 and7.0). The increase
of 5. as one goes away from the diagofigk (5 (see Fig[q8 fo(¢; — ¢3) = 1.0) explain the difference
between the green and blue curves; this substantially nesdtiie tail of the correlations.

WhenY gets larger, the role of, decreases: & = 7.5 (LHC conditions) the difference between the
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Figure 19:C, (blue) compared witkxp T, (green)

two curves becomes negligible.

E.2 Quarkjet
E.2.1 ¢ and its derivatives

Fig. |20 displays the derivatives, and¢, together with those), and, for the gluon jet, al” = 5.2.
There sizes and shapes are the same since the logarithrviatides of the single inclusive distributions
inside a gluon or a quark jet only depend on their shapes @haalizations cancel in the ratio), which
is the same in both cases. The mismatch at siladltweeny, and), stems from the behavior af,,

W =9 —oo. Therefore, in the interval of applicability of the soft apgimation [11h) and[(116) can
be approximated by, andz, respectively.

E.2.2 A(f1,02,Y)
The last statement n E.P.1 numerically supports the apmation (117), that is

AxA+0RR).
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Figure 21:exp (T,) as a function of; + /5 (left) and,¢; — 45 (right) forY = 5.2

We get rid of the heavy)(~2) factor in {11¥) to ease our numerical calculations. Herreepehavior of
A is already given in Fid. 14.

E.2.3 T, andits derivatives

The smooth behavior afxp Y, is displayed in Fig[21 as a function of the su + ¢,) for fixed

(¢1 — L) and vice versa. The normalization @fp Y, — 1) is roughly twice Iargerk% ~ 2) than
that of (exp T, — 1). We then consider derivatives of this expression to get tleesponding iterative
corrections shown in Fig. P2. The behavior®f ,(O(13)), T4, (O(13)) and Y, ¢, (O(43)) is in good
agreement with our expectations as far as the order of matgnénd the normalization are concerned

(see also Fid. 16).

itis also important to remark tha,,¢, Ty,e, T,ey arex F=T0, Toe, T ey -
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Figure 22: Correction¥, ,, T, , andY, ,, as functions of; + ¢, for £; — /5 = 0.1 (left) and/; — {5 =
1.0 (right) atY = 5.2

E.2.4 51, 52 and gc

We define S

0. = 01 + 09
as it appears in both the numerator and denominatdr pf (B4igl[23 are displayedh, 4> and their sum
0. as functions of the surt?; + ¢2) at fixed(¢1 — ¢2) (¢1 — €2 = 0.1, left) (¢1 — ¢2 = 1.0, right).
At Y = 5.2, which corresponds tgg = 0.5, the relative magnitude 0?1 and 52 is inverted© with
respect to what is expected from respectively MLLA and NMLtdxrections (see subsectipn|4.2). This
is the only hint that, at this energy, the expansion shoulgusted to include all NMLLA corrections to
be reliable.

Large cancellations are, like for gluons, seen to occuy,jmaking the sum of corrections quite small.
In order to study the behavior 6f asY increases, it is enough to look at Fjg] 24 where we compare
atY =5.2, 6.0, 7.5.

E.2.5 Global role of corrections in the iterative procedure

Itis displayed in Fig[ 454, does not affectxp T, near the main diagonaly( = ¢5), but it does far from
it. We find the same behavior as in the case of a gluon jet.

F COMPARING DLA AND MLLA CORRELATIONS

In Fig. 26 we compare the quark correlator at DLA and MLLA. Targe gap between the two curves
accounts for the energy balance that is partially restanedliLA by introducing hard corrections in
the partonic evolution equations (termsa, b and %); the DLA curve is obtained by setting b and%

to zero in [64) and[(84)¢, is a practically constant function &f + ¢ in almost the whole range, and
decreases whefy + /o — 2Y by the running of,. The MLLA increase ofC, with ¢; + ¢, follows
from energy conservation. Similar results are obtained for

%t has been numerically investigated that the expectedivelarder of magnitude of; andd. is recovered fol” > 8.0
(this value can be eventually reached at LHC).
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