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Abstract

The purpose of this paper is to explain the interest and importance of (ap-
proximate) models and model selection in Statistics. Starting from the very
elementary example of histograms we present a general notion of finite dimen-
sional model for statistical estimation and we explain what type of risk bounds
can be expected from the use of one such model. We then give the performance of
suitable model selection procedures from a family of such models. We illustrate
our point of view by two main examples: the choice of a partition for designing a
histogram from an n-sample and the problem of variable selection in the context
of Gaussian regression.

1 Introduction: a story of histograms

1.1 Histograms as graphical tools

Assume we are given a (large) set of real valued measurements or data x1, . . . , xn,
corresponding to lifetimes of some human beings in a specific area, or lifetimes of
some manufactured goods, or to the annual income of families in some country, . . . .
Such measurements have a bounded range [a, b] which is often known in advance
(for instance [0, 120] would do for lifetimes of human beings) or can be extrapolated
from the data using the extreme values. By a proper affine transformation this range
can be transformed to [0, 1], which we shall assume here, for the simplicity of our
presentation. To represent in a convenient, simplified, but suggestive way, this set
of data, it is common to use what is called a histogram. To design a histogram, one
first chooses some finite partition m = {I0, . . . , ID} (D ∈ N) of [0, 1] into intervals
Ij, generated by an increasing sequence of endpoints y0 = 0 < y1 < . . . < yD+1 = 1
so that Ij = [yj, yj+1) for 0 ≤ j < D and ID = [yD, yD+1]. Then, for each j, one
computes the number nj of observations falling in Ij and one represents the data set
by the piecewise constant function ŝm defined on [0, 1] by

ŝm(x) =

D∑

j=0

nj

n|Ij |
1lIj

(x) with nj =

n∑

i=1

1lIj
(xi) and |Ij | = yj+1 − yj. (1.1)
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Any such histogram ŝm provides a summary of the data with three obvious properties.
It is nonnegative; its integral is equal to one (

∫ 1
0 ŝm(x) dx = 1) and it belongs to the

(D + 1)-dimensional linear space Vm of piecewise constant functions built on the
partition m, i.e.

Vm =




 t =
D∑

j=0

aj1lIj

∣∣∣∣∣∣
a0, . . . , aD ∈ R




 . (1.2)

If the points yj are equispaced, i.e. all intervals Ij have the same length (D + 1)−1,
the partition and the histogram are called regular. If D ≥ 1 and all intervals do not
have the same length, the partition is called irregular.

Even within this very elementary framework, some questions are in order: what is
a “good” partition, i.e. how can one measure the quality of the representation of the
data by a histogram, and how can one choose such a good partition? One can easily
figure out that a partition with too few intervals, as compared with n, will lead to
an uninformative representation. Alternatively, if there are too few data per interval
the histogram may be quite erratic and meaningless. But these are purely qualitative
properties which cannot lead to a sound criterion of quality for a partition which
could be used to choose a proper one.

1.2 Histograms as density estimators

1.2.1 The stochastic point of view

To go further with this analysis, we have to put the whole thing into a more math-
ematical framework and a convenient one, for this type of problem, is of statistical
nature. In many situations, our data xi can be considered as successive observations
of some random phenomenon which means that xi = Xi(ω) is the realization of a
random variable Xi from some probability space (Ω,A, P) with values in [0, 1] (with
its Borel σ-algebra). If we assume that the random phenomenon was stable during
the observation period and the measurements were done independently of each other,
the random variables Xi can be considered as i.i.d. (independent and identically dis-
tributed) with common distribution Q so that

P[{ω ∈ Ω |X1(ω) ∈ A1, . . . ,Xn(ω) ∈ An}] =

n∏

i=1

Q(Ai),

for any family of Borel sets A1, . . . , An ⊂ [0, 1]. Such assumptions are justified (at
least approximately) in many practical situations and (X1, . . . ,Xn) is then called an
n-sample from the distribution Q.

With this new probabilistic interpretation, ŝm = ŝm(x, ω) becomes a random func-
tion, more precisely a random element of Vm, and (1.1) becomes

ŝm(x, ω) =

D∑

j=0

Nj(ω)

n|Ij |
1lIj

(x) with Nj(ω) =

n∑

i=1

1lIj
(Xi(ω)). (1.3)

From now on, following the probabilistic tradition, we shall, most of the time, omit
the variable ω when dealing with random elements.

It follows from (1.3) that the random variables Nj are binomial random variables
with parameters n and pj = Q(Ij) and, if we assume that Q has a density s with
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respect to the Lebesgue measure on [0, 1], then pj =
∫
Ij

s(x) dx. If s also belongs to

L2([0, 1], dx), the piecewise constant element sm =
∑D

j=0 pj|Ij |−11lIj
of L∞([0, 1], dx)

is the orthogonal projection of s onto Vm and

pj =

∫

Ij

sm(x) dx and ‖s − ŝm‖2 = ‖s − sm‖2 + ‖sm − ŝm‖2, (1.4)

where ‖t‖ denotes the L2-norm of t.

1.2.2 Density estimators and their risk

From a practical point of view, even if it is reasonable to assume that the variables
Xi are i.i.d. with distribution Q and density s = dQ/dx, this distribution is typically
unknown and its density as well and it is often useful, in order to have an idea of
the stochastic nature of the phenomenon that produced the data, to get as much
information as possible about the unknown density s. For instance, comparing the
shapes of lifetime densities among different populations or their evolution with time
brings much more information than merely comparing the corresponding expected
lifetimes. The very purpose of Statistics is to derive information about the determin-
istic, but unknown, parameter s from the stochastic, but observable, data Xi(ω). In
our problem, ŝm, which is a density, can be viewed as a random approximation of s
solely based on the available information provided by the sample X1, . . . ,Xn, i.e., in
statistical language, an estimator of s. The distortion of the estimated density ŝm

from the true density s can be measured by the quantity ‖s − ŝm‖2. It is clearly not
the only way but this one, as seen from (1.4), has the advantage of simplicity. Note
that ‖s− ŝm‖2 is a random quantity depending on ω as ŝm does. In order to average
out this randomness, the statisticians often consider, as a measure of the quality of
the estimator ŝm, its risk at s which is the expectation of the distortion ‖s − ŝm‖2

given by

R(ŝm, s) = Es

[
‖s − ŝm‖2

]
=

∫
‖s − ŝm(ω)‖2 dPs(ω).

Here Ps and Es respectively denote the probability and the expectation of functions of
X1, . . . ,Xn when these variables are i.i.d. with density s. Of course, due to random-
ness, R(ŝm, s) does not provide any information on the actual distortion ‖s − ŝm(ω)‖2

in our experiment. But, by the law of large numbers, it provides a good approxima-
tion of the average distorsion one would get if one iterated many times the procedure
of drawing a sample X1, . . . ,Xn and building the corresponding histogram. The im-
portance of the risk, as a measure of the quality of the estimator ŝm also derives from
Markov Inequality which implies that, for any z > 0,

Ps

[
‖s − ŝm‖ ≥

√
zR(ŝm, s)

]
≤ z−1. (1.5)

Hence, with a guaranteed probability 1−z−1, the distance between s and its estimator
is bounded by

√
zR(ŝm, s). When z is large, there are only two cases: either we were

very unlucky and an event of probability not larger than z−1 occurred, or we were
not and ‖s − ŝm‖ ≤

√
zR(ŝm, s). Of course, there is no way to know which of the

two cases occured, but this is the rule in Statistics: there is always some uncertainty
in our conclusions.
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1.2.3 Risk bounds for histograms

In any case, (1.5) shows that the risk can be viewed as a good indicator of the
performance of an estimator. Moreover, it follows from (1.4) that it can be written
as

R(ŝm, s) = ‖s − sm‖2 + Es

[
‖sm − ŝm‖2

]
. (1.6)

With this special choice of distortion, the risk can be decomposed into the sum of two
terms. The first one has nothing to do with the stochastic nature of the observations
but simply measures the quality of approximation of s by the linear space Vm since
it is the square of the distance from s to Vm. It only depends on the partition and
the true unknown density s, not on the observations.

The second term in the risk, which is due to the stochastic nature of the obser-
vations, hence of ŝm, can be bounded in the following way, since Nj is a binomial
random variable with parameters n and pj and both sm and ŝm are constant on each
interval Ij :

Es

[
‖sm − ŝm‖2

]
=

D∑

j=0

Es

[∫

Ij

(sm(x) − ŝm(x))2 dx

]

=

D∑

j=0

Es

[
|Ij |
(

pj

|Ij |
− Nj

n|Ij |

)2
]

=
D∑

j=0

1

n2|Ij|
Var(Nj) =

1

n

D∑

j=0

pj(1 − pj)

|Ij|
. (1.7)

This quantity is easy to bound in the special case of a regular partition since then
|Ij| = (D + 1)−1 and we get, using the concavity of the function x 7→ x(1 − x),

Es

[
‖sm − ŝm‖2

]
=

(D + 1)2

n

D∑

j=0

pj(1 − pj)

D + 1

≤ (D + 1)2

n

∑D
j=0 pj

D + 1

(
1 −

∑D
j=0 pj

D + 1

)
=

D

n
. (1.8)

Note that D = 0 corresponds to the degenerate partition m0 = {[0, 1]} for which
sm0

= 1l[0,1] which is the density of the uniform distribution on [0, 1], independently
of s. Then ŝm0

= sm0
= 1l[0,1] and R(ŝm0

, s) = ‖s − 1l[0,1]‖2.
For general irregular partitions we derive from (1.4) that pj ≤ |Ij|‖sm‖∞, hence,

by (1.7),

Es

[
‖sm − ŝm‖2

]
≤ ‖sm‖∞

n

D∑

j=0

(1 − pj) =
D‖sm‖∞

n
. (1.9)

There is actually little space for improvement in (1.9) as shown by the following
example. Define the partition m by Ij = [αj, α(j+1)) for 0 ≤ j < D and ID = [αD, 1]
with 0 < α < D−1. Set s = sm = (αD)−1 (1 − 1lID

). Then pj = D−1 for 0 ≤ j < D
and, by (1.7),

Es

[
‖sm − ŝm‖2

]
=

D − 1

αDn
=

(D − 1)‖sm‖∞
n

.
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If we make the extra assumption that s belongs to L∞([0, 1], dx), then ‖sm‖∞ ≤ ‖s‖∞
and (1.9) becomes Es

[
‖sm − ŝm‖2

]
≤ ‖s‖∞n−1D. This bound is also valid for regular

partitions but always worse than (1.8) since ‖s‖∞ ≥ 1 for all densities with respect to
Lebesgue measure on [0, 1] and strictly worse if s is not the uniform density. Finally,
by (1.6),

R(ŝm, s) ≤ ‖s − sm‖2 + ‖s‖∞n−1D. (1.10)

As we shall see later the rather unpleasant presence of the unknown and possibly
unbounded ‖s‖∞ factor in the second term is due to the way we measure the distance
between densities, i.e. through the L2-norm.

1.3 A first approach to model selection

1.3.1 An alternative interpretation of histograms

The decomposition (1.4) suggests another interpretation for the construction of ŝm.
What do we do here? Since s is possibly a complicated object, we replace it by a
much simpler one sm and estimate it by ŝm. Note that sm is unknown, as s is, and
what is available to the statistician is the partition m, the corresponding linear space
Vm and, consequently, the set Sm of all densities belonging to Vm, i.e.

Sm =




t =

D∑

j=0

aj1lIj
(x)

∣∣∣∣∣∣
a0, . . . , aD ∈ R+ and

D∑

j=0

aj|Ij | = 1




 . (1.11)

It is a convex subset of some D-dimensional linear space and sm is given by ‖s−sm‖ =
inft∈Sm ‖s− t‖. It is the best approximation of s in Sm. As to ŝm it only depends on
the set Sm and the observations in the following way, as can easily be checked:

ŝm = argmax
t∈Sm

n∑

i=1

log(t(Xi)),

which means that it maximizes the so-called likelihood function t 7→ ∏n
i=1 t(Xi) for

t ∈ Sm, the likelihood at t being the joint density of the sample computed at the
observations. The estimator ŝm is called the maximum likelihood estimator (m.l.e. for
short) with respect to Sm. Note that, if s = sm actually belongs to Sm, the m.l.e.
converges in probability to s at rate at least as fast as n−1/2 when n goes to infinity
since then, by (1.5), (1.6) and (1.9),

Ps

[
‖s − ŝm‖ ≥ n−1/2

√
z‖sm‖∞D

]
≤ z−1.

The m.l.e. therefore appears to be a suitable estimator to use if the model Sm is
correct, i.e. if s ∈ Sm. When we use the histogram estimator ŝm, we just do as if s
did belong to Sm, using Sm as an approximate model for s. The resulting risk is then
the sum of two terms, an approximation error equal to the square of the distance
from s to Sm and due to the fact that s does not in general belong to the model

Sm, and an estimation term Es

[
‖sm − ŝm‖2

]
which is the risk corresponding to the

estimation within the model when s = sm since ‖sm − ŝm‖2 has the same expectation
when the observations are i.i.d. with density s or sm.
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1.3.2 Model selection and oracles

Let us denote by mD the regular partition with D + 1 pieces and set SD = SmD
,

ŝD = ŝmD
and sD = smD

, for simplicity. It follows from (1.6) and (1.8) that

R(ŝD, s) ≤ ‖s − sD‖2 + n−1D. (1.12)

From the approximation point of view, a good partition should lead to a small value of
‖s−sD‖ which typically requires a partition into many intervals, hence a large value of
D, while the estimation point of view requires a model SD defined by few parameters,
hence a small value of D. Obviously, these requirements are contradictory and one
should look for a compromise between them in order to minimize the right-hand side
of (1.12). Unfortunately, the value Dopt which satisfies

‖s − sDopt‖2 + n−1Dopt = inf
D∈N

{
‖s − sD‖2 + n−1D

}

cannot be computed since it depends on the unknown density s via the approximation
term ‖s−sD‖ and is not accessible to the statistician. This is why the random variable
ŝDopt based on the partition mDopt is called an “oracle”. It is not an estimator because
it makes use of the number Dopt which is unknown to the statistician. The problem of
model selection is to find a genuine estimator, solely based on the data, that mimics
an oracle, i.e. to use the data X1, . . . ,Xn to select a number D̂(X1, . . . ,Xn) such that
the resulting histogram s̃ = ŝD̂ has a performance which is comparable to that of the
oracle:

R(s̃, s) ≤ C
[
‖s − sDopt‖2 + n−1Dopt

]
,

where C is a constant that neither depends on the unknown density s nor on n.

1.3.3 An illustrative example

Still working with the regular partitions mD, let us now assume that the unknown
density s satisfies some Hölderian continuity condition,

|s(x) − s(y)| ≤ L|x − y|β, L > 0, 0 < β ≤ 1 for all x, y ∈ [0, 1]. (1.13)

If 0 ≤ j ≤ D and x ∈ Ij, then sD(x) = s(y) for some y ∈ Ij , hence |s(x) − sD(x)| ≤
L(D + 1)−β , from which we derive that ‖s − sD‖2 ≤ ‖s − sD‖2

∞ ≤ L2(D + 1)−2β .
Therefore (1.12) implies that R(ŝD, s) ≤ n−1D + L2(D + 1)−2β . Since the minimum

of the function x 7→ n−1x+L2x−2β is obtained for x =
(
2βnL2

)1/(2β+1)
, we choose D

so that D + 1 is the smallest integer ≥
(
nL2

)1/(2β+1)
. If nL2 ≤ 1, this leads to D = 0

and R(ŝ0, s) ≤ L2 ≤ n−1. Otherwise, and this necessarily happens for large enough

n, 1 ≤ D <
(
nL2

)1/(2β+1)
, hence R(ŝD, s) ≤ 2

(
Ln−β

)2/(2β+1)
. Finally, in any case,

R(ŝD, s) ≤ max

{
2
(
Ln−β

)2/(2β+1)
;n−1

}
.

Unfortunately, we can only get a risk bound of this form if we fix D as a function of
L and β, as indicated above. Typically, L and β are also unknown so that we do not
know how to choose D and cannot get the right risk bound. The situation is even
more complicated since, for a given s, there are many different pairs L, β that satisfy
(1.13), leading to different values of D and risk bounds. Of course, one would like
to choose the optimal one which means choosing the value of D that minimizes the
right-hand side of (1.12).
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1.4 A brief summary of this paper

The study of histograms as density estimators shows us that a convenient method
to estimate a complicated object as a density s on [0, 1] works as follows: choose an
approximate model Sm for s involving only a limited number of unknown parameters
and then do as if the model were correct, i.e. if s ∈ Sm, using an estimator ŝm which
is a good estimator when the model is actually correct. The resulting risk is the
sum of an approximation term which measures the quality of approximation of s by
the model and an estimation term which is roughly proportional to the number of
parameters needed to describe an element of the model, reflecting its complexity.
As a consequence, a good model should be simple (described by few parameters)
and accurate (close to the true density s). Unfortunately, because of the second
requirement, a theoretical choice of a good model should be based on the knowledge
of s. Given a family of possible models, a major problem is therefore to understand
to what extent one can guess from the data which model in the family is appropriate.

The remainder of this paper is devoted to giving some hints to justify and under-
stand the various steps needed to formally develop the previous arguments. The next
section will present the classical parametric theory of estimation which assumes that
one works with the correct model and that this model satisfies some specific regularity
conditions. Under such conditions the m.l.e. enjoys some good asymptotic properties
that we shall recall, but this classical theory does not handle the case of approximate
models or infinite dimensional parameters. It has therefore been extended in the
recent years in many directions to (partly) cover such situations. We shall present
here one such generalization that attempts to solve (at least theoretically) most of the
difficulties connected with the classical theory. In Section 3, we shall depart from the
classical theory, assuming only an approximate model and checking on some examples
that the results we got for histograms essentially extend to these cases with a risk
bounded by an approximation term plus an estimation term which again leads to the
problem of selecting a good model. Section 4 is devoted to a more general approach
to estimation based on an approximate model with finite dimension for a suitably
defined and purely metric notion of dimension. We show here that some specific es-
timators (sometimes discretized versions of the m.l.e., sometimes more complicated
ones) do lead to risk bounds of the required form: an approximation term plus an
estimation term which is proportional to the dimension (when suitably defined) of
the model. In the last section, we explain how to handle many such approximate
models with finite dimensions simultaneously. Ideally, we would like to choose, using
only the data, the best model in the family, i.e. the one with the smallest risk. This is
unfortunately not possible, but we shall explain to what extent one can approximate
this ideal risk.

2 Some historical considerations

2.1 The classical parametric point of view

To be specific, let us assume again that our observations X1, . . . ,Xn are i.i.d. random
variables with an unknown density s with respect to some reference measure ν defined
on the underlying measurable set (E, E) (not necessarily the Lebesgue measure on

7



[0, 1]) so that the joint distribution Ps of the observations on En is given by

dPs

dν⊗n
(x1, . . . , xn) =

n∏

i=1

s(xi).

In the sequel, we shall call the problem of estimating the unknown density s from the
i.i.d. sample X1, . . . ,Xn the density estimation problem or the i.i.d. framework.

The classical parametric approach to density estimation that developed after mile-
stone papers by Fisher (1921 and 1925) up to the sixties and is still quite popular
nowadays is somewhat different from what we described before. It typically assumes
a parametric model S for s, which means that the true unknown density s of our
observations belongs to some particular set S = {tθ | θ ∈ Θ} of densities parametrized
by some subset Θ of a Euclidean space R

k. Then s = tθ0
for some particular θ0 ∈ Θ

which is called the true parameter value. One assumes moreover that the mapping
θ 7→ tθ from Θ to S is smooth (in a suitable sense) and one-to-one, so that estimating
s is equivalent to estimating the parameter θ0. An estimator θ̂n(X1, . . . ,Xn) of θ0 is
then defined via a measurable mapping θ̂n from En to Θ (with its Borel σ-algebra)
and its quadratic risk is given by

R(θ̂n, θ0) = Es

[
‖θ̂n − θ0‖2

]
,

where ‖ · ‖ now denotes the Euclidian norm in R
k. Typical examples of parametric

models for densities on the real line are given by
i) the Gaussian densities N

(
µ, σ2

)
with θ =

(
µ, σ2

)
and Θ = R × (0,+∞) given

by

tθ(x) =
1√

2πσ2
exp

[
− 1

2σ2
(x − µ)2

]
;

ii) the gamma densities Γ(v, λ) with θ = (v, λ) and Θ = (0,+∞)2 given by

tθ(x) = [Γ(v)]−1λvxv−1 exp[−λx];

iii) the uniform density on the interval [θ, θ +1] given by t(θ) = 1l[θ,θ+1] with θ ∈ R.

2.2 The maximum likelihood method

2.2.1 Consistency and asymptotic normality of the parametric m.l.e.

Fisher’s approach to parametric estimation is mainly connected with the method of
maximum likelihood. We recall from Section 1.3.1 that the likelihood function on Θ
is given by θ 7→∏n

i=1 tθ(Xi) and a maximum likelihood estimator θ̂n is any maximizer
of this function or equivalently of the log-likelihood function

L(θ) =
n∑

i=1

log
(
tθ(Xi)

)
.

For Gaussian densities, the maximum likelihood estimator θ̂n =
(
µ̂n, σ̂2

n

)
is unique and

given by µ̂n = n−1
∑n

i=1 Xi and σ̂2
n = n−1

∑n
i=1 (Xi − µ̂n)2. Moreover θ̂n converges

in probability to the true parameter θ0 when n goes to infinity. We say that θ̂n is
consistent. Unfortunately, this situation is not general. The study of our second and
third examples show that explicit computation of the m.l.e. is not always possible
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(gamma densities) or the m.l.e. may not be unique (uniform densities). One can also
find examples of inconsistency of the m.l.e., but, as shown by Wald (1949), it can be
proved that, under suitably strong assumptions, any sequence of maximum likelihood
estimators is consistent.

If the mapping θ 7→ lθ(x) = log
(
tθ(x)

)
satisfies suitable differentiability assump-

tions, the parametric model is called regular. This is the case for the Gaussian and
gamma densities, not for the uniform. If the model is regular and the m.l.e. is con-
sistent we can expand the derivative of the function L in a vicinity of θ0 when it is
an inner point of Θ. Restricting ourselves, for simplicity, to the case Θ ⊂ R, we get

L′(θ) = L′(θ0) + (θ − θ0)L
′′(θ0) + (1/2)(θ − θ0)

2L′′′(θ′)

and since θ̂n is a maximizer for L,

L′(θ̂n) = 0 = L′(θ0) + (θ̂n − θ0)L
′′(θ0) + (1/2)(θ̂n − θ0)

2L′′′(θ′n),

for some sequence (θ′n) converging to θ0 in probability as θ̂n does. Equivalently,

setting δn =
√

n
(
θ̂n − θ0

)
,

0 =
1√
n

n∑

i=1

l′θ0
(Xi) +

[
1

n

n∑

i=1

l′′θ0
(Xi)

]

δn +
θ̂n − θ0

2

[
1

n

n∑

i=1

l′′′θ′n
(Xi)

]

δn. (2.1)

Since
∫

tθ(x) dν(x) = 1 for all θ, it follows from the regularity assumptions that

Es

[
l′θ0

(Xi)
]

=

∫
[t′θ0

(x)/tθ0
(x)]tθ0

(x) dν(x) =

∫
t′θ0

(x) dν(x) = 0

and

Es

[
l′′θ0

(Xi)
]

=

∫
[t′′θ0

(x)/tθ0
(x)]tθ0

(x) dν(x) −
∫

[t′θ0
(x)/tθ0

(x)]2tθ0
(x) dν(x)

= 0 −
∫ (

[t′θ0
(x)]2/tθ0

(x)
)

dν(x) = −I(θ0),

where the last equality defines the Fisher Information I(θ0). Moreover

Var
[
l′θ0

(Xi)
]

= Es

[(
l′θ0

(Xi)
)2]

=

∫
[t′θ0

(x)/tθ0
(x)]2tθ0

(x) dν(x) = I(θ0).

It then follows from the law of large numbers that

1

n

n∑

i=1

l′′θ0
(Xi)

P→ Es

[
l′′θ0

(Xi)
]

= −I(θ0)

and from the central limit theorem that

1√
n

n∑

i=1

l′θ0
(Xi) N (0, I(θ0)),

where
P→ and  denote respectively the convergences in probability and in distribu-

tion. The regularity assumptions also ensure that n−1
∑n

i=1 l′′′θ′n
(Xi) is asymptotically

9



bounded so that the third term in (2.1) is asymptotically negligible as compared to
the other two. We finally deduce from (2.1) that

δn =
√

n(θ̂n − θ0) N
(
0, [I(θ0)]

−1
)
. (2.2)

This is the so-called asymptotic normality and efficiency of the maximum likelihood
estimator and a formal proof of this result can be found in Cramér (1946, Sec-
tion 33.3). It can also be proved that the asymptotic variance [I(θ0)]

−1 of δn is,
in various senses, optimal, as shown by Le Cam (1953) and Hajek (1970 and 1972).
Much less restrictive conditions of regularity which still imply the asymptotic nor-
mality and efficiency of the m.l.e. have been given by Le Cam (1970) — see also
Theorem 12.3 in van der Vaart (2002) —. A good account of the theory can be found
in Ibragimov and Has’minskii (1981). A more recent point of view on the theory of
regularity and the m.l.e., based on empirical process theory, is to be found in van der
Vaart (1998).

2.2.2 A more general point of view on the maximum likelihood method

The limitations of the classical parametric theory of maximum likelihood have been
recognized for a long time. We already mentioned problems of inconsistency. Exam-
ples and further references can be found in Le Cam (1990). Moreover, although it is
widely believed among non-specialists that (2.2) typically holds, this is definitely not
true, even under consistency. For instance, if tθ = θ−11l[0,θ] is the uniform density on

[0, θ] and Θ = (0,+∞), the m.l.e. satisfies n(θ0− θ̂n) Γ(1, θ0). Additional examples
can be found in Ibragimov and Has’minskii (1981, Chapters 5 and 6) showing that
neither the rate

√
n nor the limiting normal distribution are general.

Another drawback of the classical point of view on maximum likelihood estimation
is its purely asymptotic nature. Not only does it require specific assumptions and can
fail under small departures from these assumptions but it tells us nothing about the
real performances of the m.l.e. for a given (even large) number n0 of observations,
just as the central limit theorem does. Suppose that our observations X1, . . . ,Xn are
i.i.d. Bernoulli variables taking only the values 0 and 1 with respective probabilities
1 − θ0 and θ0 and Θ = [0, 1]. Then θ̂n = n−1

∑n
i=1 Xi and, if 0 < θ0 < 1, δn =√

n(θ̂n − θ0)  N (0, θ0[1 − θ0]) as expected. But it is well-known that if n = 1000
and 0 < θ0 ≤ 0.002, the distribution of θ̂n looks rather like a Poisson distribution
with parameter 1000θ0 than like a normal N (θ0, n

−1θ0[1 − θ0]) as predicted by the
asymptotic theory. A discussion about the relevance of the asymptotic point of view
for practical purposes can be found in Le Cam and Yang (2000, Section 7.1).

A further limitation of the classical m.l.e. theory is the fact that the assumed
parametric model is true, i.e. the unknown distribution of the observations has a
density s with respect to ν which is of the form tθ0

for some θ0 ∈ Θ. If this assumption
is violated, even slightly, the whole theory fails as can be seen from the following
example. We assume a Gaussian distribution Pθ = N (θ, 1) with density tθ with
respect to the Lebesgue measure and Θ = R but the observations actually follow the
distribution Q = (99P0 + P300)/100. It is actually rather close to the P0 distribution,
which belongs to the model, in the sense that, for any measurable set A, |Q(A) −
P0(A)| ≤ 1/100. Nevertheless, the m.l.e. n−1

∑n
i=1 Xi converges to 3 so that the

estimated distribution based on the wrong model will be close to P3, hence quite
different from the true distribution which is close to P0.
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For all these reasons, the classical approach to maximum likelihood estimation
has been substantially generalized in the recent years. Nonparametric and semipara-
metric maximum likelihood allows to deal with families of distributions Ps where s
belongs to some infinite-dimensional set, while sieved m.l.e. involves situations where
the true distribution does not belong to the model. Both extensions lead to truely
nonasymptotic results. Among the many papers dealing with such extensions, let us
mention here Grenander (1981), Silverman (1982), Wahba (1990), Groeneboom and
Wellner (1992), van de Geer (1993, 1995 and 2000), Birgé and Massart (1993 and
1998), Shen and Wong (1994), Wong and Shen (1995), van der Vaart and Wellner
(1996), Barron, Birgé and Massart (1999) and Massart (2006). Let us now explain
what are the novelties brought by some of these extentions.

3 An alternative point of view

3.1 Nonparametric density estimation

The assumption that the unknown density s of the observations belongs to a para-
metric model, i.e. a smooth image of some subset of a Euclidean space, appears to
be definitely too strong and unsatisfactory in many situations. Let us give here two
illustrations. If we assume that s belongs to the set S1 of Lipschitz densities on [0, 1]
(i.e. s satisfies |s(x) − s(y)| ≤ |x − y|), one cannot represent S1 in a smooth way
by a finite number of real parameters. The same holds if we simply assume that
s ∈ S2, the set of all densities in L2([0, 1], dx). In this case, given some orthonormal
basis (ϕj)j≥1 of L2([0, 1], dx), there exists a natural parametrization of S2 by l2(N

⋆)
(N⋆ = N \ {0}) via the coordinates, but it is definitely not finite-dimensional. These
two problems are examples of nonparametric density estimation problems.

3.1.1 Projection estimators

In order to solve the second estimation problem, Cencov (1962) proposed a general
class of estimators called projection estimators. The idea is to estimate the coefficients
sj of s in the orthonormal expansion s =

∑+∞
j=1 sjϕj using estimators ŝj chosen in

such a way that
∑+∞

j=1 ŝ2
j < +∞ a.s. so that ŝ =

∑+∞
j=1 ŝjϕj belongs to L2([0, 1], dx)

a.s.. Since sj =
∫ 1
0 s(x)ϕj(x) dx = Es[ϕj(Xi)], a natural estimator for sj is ϕj =

n−1
∑n

i=1 ϕj(Xi). Indeed

Es

[
ϕj

]
= sj and Var

(
ϕj

)
= n−1 Var(ϕj(X1)) ≤ n−1

∫ 1

0
ϕ2

j (x)s(x) dx. (3.1)

Assuming, for simplicity, that we take for (ϕj)j≥0 the trigonometric basis which is
bounded by

√
2, we derive that Var

(
ϕj

)
≤ 2/n. We cannot use

∑+∞
j=1 ϕjϕj as an

estimator of s because the series does not converge. This is actually not surprising
because we are trying to estimate infinitely many parameters (the sj) from a finite
number of observations. But, for any finite subset m of N

⋆, the estimator ŝm =∑
j∈m ϕjϕj does belong to L2([0, 1], dx) and

‖ŝm − s‖2 =
∑

j∈m

(
ϕj − sj

)2
+
∑

j 6∈m

s2
j .

11



If we denote by |m| the cardinality of m, we conclude from (3.1) that

Es

[
‖ŝm − s‖2

]
≤ 2n−1|m| + ‖sm − s‖2 with sm =

∑

j∈m

sjϕj . (3.2)

Note that ŝm is not necessarily a genuine estimator, i.e. a density, but this is a minor
point since S2 is a closed convex subset of L2([0, 1], dx) on which we may always
project ŝm, getting a genuine estimator which is even closer to s than ŝm.

3.1.2 Approximate models for nonparametric estimation

The construction of the projection estimator ŝm can also be interpreted in terms of
a model since it is actually based on the parametric model

Sm =




 t =
∑

j∈m

tjϕj

∣∣∣∣∣∣
tj ∈ R for j ∈ m




 .

To build ŝm, we proceed as if s did belong to Sm, estimating the |m| unknown
parameters sj for j ∈ m by their natural estimators ϕj . But there are three main
differences with the classical parametric approach:

i) we do not assume that s ∈ Sm so that Sm is an approximate model for the true
density;

ii) apart from some exceptional cases, like histogram estimation, projection esti-
mators are not maximum likelihood estimators with respect to Sm;

iii) there is no asymptotic point of view here and the risk bound (3.2) is valid for
any value of n.

The histogram estimator can actually be viewed as a particular projection estima-
tor. With the notations of Section 1, we set ϕj = |Ij|−1/21lIj

for 1 ≤ j ≤ D, we
complete this orthonormal family into a basis of L2([0, 1], dx) and take for m the set
{1, . . . ,D}. Then, for j ∈ m,

ϕj = n−1
n∑

i=1

|Ij|−1/21lIj
(Xi) = n−1|Ij |−1/2Nj and

∑

j∈m

ϕjϕj = ŝm.

3.2 Approximate models for parametric estimation

3.2.1 Gaussian linear regression

An extremely popular parametric model is Gaussian linear regression. In this case
we observe n independent variables X1, . . . ,Xn from the Gaussian linear regression
set up

Xi =

p∑

j=1

βjZ
j
i + σξi for 1 ≤ i ≤ n, (3.3)

where the random variables ξi are i.i.d. standard normal while the numbers Zj
i , 1 ≤

i ≤ n denote the respective deterministic and observable values of some explanatory
variable Zj. Here, “variable” is taken in its usual sense of an “economic variable” or
a “physical variable”. Practically speaking, Xi corresponds to an observation in the
ith experiment and it is assumed that this value depends linearily on the values Zj

i

of the variables Zj , 1 ≤ j ≤ p in this experiment but with some additional random
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perturbation represented by the random variable σξi. We assume here that all p
parameters βj are unknown but that σ is known (this is not usually the case but
will greatly simplify our analysis). This set-up results in a parametric model with p
unknown parameters, since the distribution in R

n of the vector X with coordinates
Xi is entirely defined by the parameters βj . More precisely, the random variables
X1, . . . ,Xn are independent with respective normal distributions N

(
si, σ

2
)

with si =∑p
j=1 βjZ

j
i . Equivalently X is a Gaussian vector with mean vector s = (si)1≤i≤n and

covariance matrix σ2In where In denotes the identity matrix in R
n. If we denote by

Z
j the vector with coordinates Zj

i and assume that the vectors Z
j , 1 ≤ j ≤ p span

a p-dimensional linear space Sp, which we shall do, it is equivalent to estimate the
parameters βj or the vector s ∈ Sp.

The estimation problem can then be summarized as follows: observing the Gaus-
sian vector X with distribution N

(
s, σ2In

)
with a known value of σ, estimate the

parameter s which is assumed to belong to Sp. This is a parametric problem similar
to those we considered in Section 2 and it can be solved via the maximum likelihood
method. The density of X with respect to the Lebesgue measure on R

n and the
log-likelihood of s are respectively given by

1

(2πσ2)n/2
exp

[

− 1

2σ2

n∑

i=1

(xi − si)
2

]

and − n

2
log
(
2πσ2

)
− 1

2σ2

n∑

i=1

(Xi − si)
2,

so that the maximum likelihood estimator ŝp over Sp is merely the orthogonal pro-
jection of X onto Sp with risk Es

[
‖s − ŝp‖2

]
= σ2p. This estimator actually makes

sense even if s 6∈ Sp since, whatever the true value of s ∈ R
n,

Es

[
‖s − ŝp‖2

]
= σ2p + inf

t∈Sp

‖s − t‖2. (3.4)

The risk is the sum of two terms, one which is proportional to the number p of
parameters to be estimated and another one which measures the accuracy of the
model Sp we use. This second term vanishes when the model is correct (contains s).

3.2.2 Model choice again

In the classical regression problem, the model Sp is assumed to be correct so that
Es

[
‖s − ŝp‖2

]
= σ2p but this approach leads to two opposite problems. In order to

keep the term σ2p in (3.4) small, we may be tempted to put too few explanatory
variables in the model, omitting some important ones so that not only s 6∈ Sp but
inft∈Sp

‖s− t‖2 may be very large, possibly larger than σ2n. In this case, it would be
wiser to use the largest possible model R

n for s and the corresponding m.l.e. ŝ = X

resulting in the better risk Es

[
‖s − ŝ‖2

]
= σ2n. In order to avoid this difficulty, we

may alternatively introduce many explanatory variables Zj in the model Sp. Then
even if it is correct, we shall get a large risk bound σ2p. It may then happen that
only a small number q of the p explanatory variables determining the model are
really influential. This means that if Sq is the linear span of those q variables, say
Z1, . . . , Zq, inft∈Sq

‖s − t‖2 is small. As a consequence, the risk bound of the m.l.e.

ŝq with respect to Sq, i.e. σ2q + inft∈Sq
‖s − t‖2 may be much smaller than σ2p.

These examples show that, even in the parametric case, the use of an approximate
model may be preferable to the use of a correct model, although a grossly wrong
model may lead to terrible results. The choice of a suitable model is therefore crucial:
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a large model including many explanatory variables automatically results in a large
risk bound due to the component σ2p of the risk in (3.4) while the choice of a too
parsimonious model including only a limited number of variables may result in a poor
estimator based on a grossly wrong model if we have omitted some very influential
variables.

A natural idea to solve this dilemma would be to start with some large family
{Sm,m ∈ M} of linear models indexed by some set M and with respective dimensions
Dm. For each of them, the corresponding m.l.e. ŝm (the projection of X onto Sm)
satisfies

Es

[
‖s − ŝm‖2

]
= σ2Dm + inf

t∈Sm

‖s − t‖2,

and an optimal model Sm is one that minimizes this quantity. But, as in the case of
histograms, this optimal model depends on the unknown parameter s via inft∈Sm

‖s−
t‖ so that ŝm is an “oracle”, not a genuine estimator. Since this oracle is not available
to the statistician, he has to try an alternative method and use the observation X

to build a selection procedure m̂(X) of one model Sm̂, estimating s by s̃ = ŝm̂. An
ideal model selection procedure should have the performance of an oracle, i.e. satisfy

Es

[
‖s − s̃‖2

]
= inf

m∈M

{
σ2Dm + inf

t∈Sm

‖s − t‖2

}
, (3.5)

but such a procedure cannot exist and the best that one can expect is to find selection
procedures satisfying a risk bound which is close to (3.5).

4 Model based statistical estimation

In three different contexts, namely histogram estimation for densities, projection
estimation for densities and Gaussian linear regression, we have seen that the use
of an approximate model associated with a convenient estimator with values in the
model leads to three risk bounds, namely (1.12), (3.2) and (3.4), which share the
same structure. These bounds are the sum of two terms, one is the squared distance
of the unknown parameter to the model, the second is proportional to the number of
parameters that are involved in the model. One can therefore wonder to what extent
this situation is typical.

4.1 A general statistical framework

Before we proceed to the solution of the problem, let us make the statistical framework
on which we work somewhat more precise. We observe a random phenomenon X(ω)
(real variable, vector, sequence, process, set, . . . ) from the abstract probability space
(Ω,A, P) with values in the measurable set (Ξ,X ) and with unknown probability
distribution PX on (Ξ,X ) given by

PX [A] = P
[
X

−1(A)
]

= P [{ω ∈ Ω |X(ω) ∈ A}] for all A ∈ X .

The purpose of statistical estimation is to get some information on this distribution
from one observation X(ω) of the phenomenon. We assume that PX belongs to
some given subset P = {Pt, t ∈ M} of the set of all distributions on (Ξ,X ), where M
denotes a one-to-one parametrization of P. We moreover assume that M is a metric
space with a distance d. Therefore PX = Ps for some s ∈ M and we want to estimate
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Ps, or equivalently s, in view of this one-to-one correspondence which also allows us
to consider d as a distance on P as well. As in Section 1.2.2, we look for an estimator
of s, i.e. a measurable mapping ŝ from (Ξ,X ) to M (with its Borel σ-algebra) such
that ŝ(X) provides a good approximation of the unknown value s. Such a mapping
is called an estimator of s. We measure the performance of the estimator ŝ(X) via
its quadratic risk

R (ŝ, s) = Es

[
d2 (s, ŝ)

]
. (4.1)

There is a very large number of possibilities for the choice of P depending on the
structure of (Ξ,X ) and the problem we have to solve. In this paper we focus on the
two particular but typical examples that we considered earlier, namely the density
estimation problem and the Gaussian regression problem which amounts to the esti-
mation of the mean of a Gaussian vector. In both cases Ξ = En is a product space
with a product σ-algebra X = E⊗n so that X is the vector (X1, . . . ,Xn) and the Xi

are random variables with values in (E, E).

Density estimation For the density estimation problem we are given some refer-
ence measure ν on (E, E) and we assume that the Xi are i.i.d. random variables with
a density s with respect to ν, in which case M can be chosen as the set of all densities
with respect to ν, i.e. the subset of L1(ν) of nonnegative functions which integrate
to one. Such a situation occurs when one replicates the same experiment n times
under identical conditions and assumes that each experiment has no influence on the
others, for instance when we observe the successive outcomes of a “roulette” game.
Then, for each t ∈ M , Pt has the density

∏n
i=1 t(xi) with respect to µ = ν⊗n.

Gaussian regression This is the case that we considered in Section 3.2 with (E, E)
being the real line with its Borel σ-algebra. Here X is a Gaussian vector in R

n with
known covariance matrix σ2In. Then M = R

n and t = (t1, . . . , tn) ∈ M is the
unknown mean vector of the Gaussian distribution Pt = N

(
t, σ2In

)
with density

gt(x) =
1

(2πσ2)n/2
exp

[

− 1

2σ2

n∑

i=1

(xi − ti)
2

]

, (4.2)

with respect to the Lebesgue measure µ on R
n.

4.2 Two point parameter sets

Before we come to the general situation, it will be useful to analyze a special, quite
irrealistic, but very simple case. Let us make the extra assumption that s belongs to
the smallest possible parameter set, i.e. a subset S of M containing only two elements
v and u. Note that the statistical problem would be void if S contained only one point
since s would then be known.

A solution to this estimation problem is provided by the maximum likelihood
method described in Section 2.2. Let µ be any measure dominating both Pv and
Pu (Pv + Pu would do) and denote by gv and gu the respective densities of Pv and Pu

with respect to µ. Then define an estimator ϕ̂(X) with values in S by

ϕ̂(X) =

{
v if gv(X) > gu(X);
u if gu(X) > gv(X).

(4.3)

15



Take any decision you like in case of equality. If s = v, we get

R (ϕ̂, s) = d2(v, u)Pv[ϕ̂ = u] ≤ d2(v, u)Pv [gu(X) ≥ gv(X)].

Since the distribution of X is Ps = Pv = gv · µ, Pv[gv(X) > 0] = 1 and

Pv[gu(X) ≥ gv(X)] = Pv

[√
gu(X)/gv(X) ≥ 1

]
≤ Ev

[√
gu(X)/gv(X)

]

=

∫

Ξ

√
gu(x)/gv(x) gv(x) dµ(x) =

∫

Ξ

√
gu(x)gv(x) dµ(x).

Hence R (ϕ̂, s) ≤ d2(v, u)ρ(Pv , Pu) with

ρ(Pv , Pu) = ρ(Pu, Pv) =

∫

Ξ

√
dPu

dµ
(x)

dPv

dµ
(x) dµ(x). (4.4)

It is easily seen that the definition of ρ(Pv , Pu) via (4.4) is independent of the choice
of the dominating measure µ. Since the same risk bound holds when s = u, we finally
get

sup
s∈{u,v}

R (ϕ̂, s) ≤ d2(v, u)ρ(Pv , Pu). (4.5)

This bound demonstrates the importance of the so-called Hellinger affinity ρ(P,Q)
between two probability measures P and Q. It satisfies in particular by the Cauchy-
Schwarz Inequality and the Fubini Theorem

0 ≤ ρ(P,Q) ≤ 1 and ρ
(
P⊗n, Q⊗n

)
= ρn(P,Q). (4.6)

It is, moreover, closely related to a well-known distance between probabilities, the
Hellinger distance h defined by

h2(P,Q) =
1

2

∫

Ξ

(√
dP

dµ
(x) −

√
dQ

dµ
(x)

)2

dµ(x) = 1 − ρ(P,Q). (4.7)

The Hellinger distance is merely the L2(µ)-distance between the square roots of the
densities with respect to any dominating measure µ (and actually independent of µ).
Here, we follow Le Cam who normalizes the integral so that the Hellinger distance
has range [0, 1]. An alternative definition is without the factor 1/2 in (4.7). He also
showed in Le Cam (1973) that

ρ(P,Q) ≥
∫

Ξ
inf

{
dP

dµ
(x);

dQ

dµ
(x)

}
dµ(x) ≥ 1 −

√
1 − ρ2(P,Q). (4.8)

It is easy to compute ρ(Pv, Pu) for our two special frameworks. In the case of
Gaussian distributions Pu = N

(
u, σ2In

)
and Pv = N

(
v, σ2In

)
, we get

ρ(Pv , Pu) = exp
[
−‖v − u‖2/

(
8σ2
)]

,

so that [− log ρ]1/2 is a multiple of the Euclidian distance between parameters, modulo
the identification of t and Pt. Note that, in general, [− log ρ]1/2 is not a distance since
it may be infinite and does not satisfy the triangle inequality. Setting d(v, u) = ‖v−u‖,
(4.5) becomes

sup
s∈{u,v}

R (ϕ̂, s) ≤ ‖v − u‖2 exp
[
−‖v − u‖2/

(
8σ2
)]

≤ 8e−1σ2,
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independently of v and u. In the i.i.d. case, we use the Hellinger distance to define the
risk, setting d(u, v) = h(u, v) = h(Pu, Pv) and (4.5) becomes, whatever the densities
v and u,

sup
s∈{u,v}

R (ϕ̂, s) ≤ h2(v, u)
[
1 − h2(v, u)

]n ≤ nn(n + 1)−(n+1) ≤ (ne)−1.

4.3 Two point models for the Gaussian framework

As we pointed out at the beginning of the last section, assuming that s is either v
or u is definitely irrealistic. A more realistic problem would rather be as follows: s
is unknown but we believe that one of two different situations can occur implying
that s is close (not necessarily equal) to either v or u. Then it seems natural to
use S = {v, u} as an approximate model for s and just proceed as before, using the
estimator ϕ̂(X) defined by (4.3). We can then try to mimic the proof which lead to
(4.5), apart from the fact that the argument leading to

Pv[gu(X) ≥ gv(X)] ≤ ρ(Pv , Pu) = exp
[
−‖v − u‖2/

(
8σ2
)]

then fails. One can instead prove the following result (Birgé, 2006).

Proposition 1 Let Pt denote the Gaussian distribution N
(
t, σ2In

)
in R

n. If X is
a Gaussian vector with distribution Ps and ‖s − v‖ ≤ ‖v − u‖/6, then

Ps[gu(X) ≥ gv(X)] ≤ exp
[
−‖v − u‖2/

(
24σ2

)]
.

We can then proceed as before and conclude that, if ‖s − v‖ ≤ ‖v − u‖/6, then

R (ϕ̂, s) ≤ 2
(
‖s − v‖2 + Es

[
‖ϕ̂ − v‖2

])

≤ 2
(
‖s − v‖2 + ‖v − u‖2 exp

[
−‖v − u‖2/

(
24σ2

)])

≤ 2‖s − v‖2 + 48e−1σ2.

A similar bound holds with u replacing v if ‖s−u‖ ≤ ‖v−u‖/6. Finally, if min{‖s−
v‖, ‖s − u‖} > ‖v − u‖/6, since ϕ̂ is either v or u,

R (ϕ̂, s) ≤ (max{‖s − v‖, ‖s − u‖})2
≤ (min{‖s − v‖, ‖s − u‖} + ‖v − u‖)2
≤ 49(min{‖s − v‖, ‖s − u‖})2.

We finally conclude that, whatever s ∈ M , even if our initial assumption that s is
close to S is wrong,

R (ϕ̂, s) ≤ 48e−1σ2 + 49 inf
t∈S

‖s − t‖2,

which, apart from the constants, is similar to (3.4).

4.4 General models for the Gaussian framework

4.4.1 Linear models

Instead of assuming that s is close to a two-points set, let us now assume that it
is close to some D-dimensional linear subspace V of R

n (D > 0). Choose some
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λ ≥ 4
√

3σ and, identifying V to R
D via some orthonormal basis, consider the lattice

S = (2λZ)D ⊂ V . The maximum likelihood estimator ŝ(X) with respect to S is given
by ŝ(X) = argmaxt∈S gt(X). Its unicity follows from the facts that S is countable
and Ps[gt(X) = guX)] = 0 for each pair (t, u) ∈ S2 such that t 6= u. As to its
existence (with probability one), it is a consequence of the following result.

Proposition 2 For s an arbitrary point in M = R
n, s′ ∈ S, and

y ≥ y0 = max
{

λ
√

2D, 6‖s′ − s‖
}

, (4.9)

then

Ps

[
∃t ∈ S with ‖s′ − t‖ ≥ y and gt(X) ≥ gs′(X)

]
≤ 1.14 exp

[
− y2

48σ2

]
. (4.10)

Proof: Let Sk =
{
t ∈ S

∣∣ 2k/2y ≤ ‖s′ − t‖ < 2(k+1)/2y
}

with cardinality |Sk|. If we
denote by P (y) the left-hand side of (4.10), we get

P (y) ≤
+∞∑

k=0

Ps[∃t ∈ Sk with gt(X) ≥ gs′(X)] ≤
+∞∑

k=0

|Sk| sup
t∈Sk

Ps[gt(X) ≥ gs′(X)].

(4.11)
Since, for t ∈ Sk, ‖s′ − t‖ ≥ 2k/2y ≥ 6‖s′ − s‖, we may apply Proposition 1 to get

sup
t∈Sk

Ps[gt(X) ≥ gs′(X)] ≤ exp
[
−2ky2/

(
24σ2

)]
. (4.12)

Moreover, for any ball B(s′, r) with center s′ and radius r = xλ
√

D with x ≥ 2,

|S ∩ B(s′, r)| < exp
[
x2D/2

]
. (4.13)

To prove this, we apply the next inequality which follows from a comparison of the
volumes of cubes and balls in R

D as in the proof of Lemma 2 from Birgé and Massart
(1998).

|S ∩ B(s′, r)| ≤ (πe/2)D/2

√
πD

(
r

λ
√

D
+ 1

)D

< exp[D(0.73 + log(x + 1))].

We then get (4.13) since x ≥ 2. Applying it with r = 2(k+1)/2y ≥ 21+k/2λ
√

D by
(4.9), leads to |Sk| ≤ exp

[
2k(y/λ)2

]
. Together with (4.11) and (4.12), this shows that

P (y) ≤
+∞∑

k=0

exp

[
2k y2

λ2
− 2k y2

24σ2

]
≤

+∞∑

k=0

exp

[
−2k y2

48σ2

]

= exp

[
− y2

48σ2

] +∞∑

k=0

exp

[
− y2

48σ2

(
2k − 1

)]
.

The conclusion follows from the fact that y2 ≥ y2
0 ≥ 2λ2D ≥ 2λ2 ≥ 96σ2.

Proposition 2 implies that, for y ≥ y0, there exists a set Ωy ⊂ Ω with Ps(Ωy) ≥
1− 1.14 exp

[
−y2/

(
48σ2

)]
and such that, for ω ∈ Ωy, the function t 7→ gt(X(ω)) has
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a maximum in the ball B(s′, y). This shows that, if ω ∈ Ωy, the m.l.e. ŝ(X(ω)) exists
and satisfies ‖ŝ(X) − s′‖ ≤ y. As a consequence, the m.l.e. ŝ(X) exists a.s. and

Es

[
‖ŝ(X) − s′‖2

]
=

∫ +∞

0
Ps

[
‖ŝ(X) − s′‖2 ≥ z

]
dz

≤ y2
0 +

∫ +∞

y2

0

Ps

[
‖ŝ(X) − s′‖ ≥ √

z
]
dz

≤ y2
0 + 1.14

∫ +∞

y2

0

exp
[
− z

48σ2

]
dz

= y2
0 + 1.14 × 48σ2 exp

[
−y2

0/
(
48σ2

)]

≤ y2
0 + 55e−2σ2.

Then

Es

[
‖ŝ(X) − s‖2

]
≤ 2

[
‖s − s′‖2 + Es

[
‖ŝ(X) − s′‖2

]]

≤ 2
[
‖s − s′‖2 + y2

0 + 55e−2σ2
]

≤ 2
[
37‖s − s′‖2 + 2λ2D + 55e−2σ2

]
.

Note that the construction of S as a lattice in V implies that any point in V is at a
distance of some point in S not larger than λ

√
D which means that one can choose

s′ in such a way that ‖s − s′‖ ≤ inft∈V ‖s − t‖ + λ
√

D. With such a choice for s′, we
get

Es

[
‖ŝ(X) − s‖2

]
≤ 2

[
74 inf

t∈V
‖s − t‖2 + 76λ2D + 55e−2σ2

]
.

Setting λ to its minimum value 4
√

3σ, we conclude, since D ≥ 1, that

Es

[
‖ŝ(X) − s‖2

]
≤ 148 inf

t∈V
‖s − t‖2 + 7311σ2D. (4.14)

4.4.2 General models with finite metric dimension

Note that, apart from the huge constants that we actually did not try to optimize
in order to keep the computations as simple as possible, (4.14) is quite similar to
(3.4), although we actually used a different estimation procedure, and also a different
method of proof which has an important advantage: it did not make any use of the
fact that V is a linear space. What we actually used are the metric properties of the
D-dimensional linear subspace V of M = R

n, which can be summarized as follows.

Property P Whatever η > 0, one can find a subset S of M such that:
i) for each t ∈ V there exists some t′ ∈ S with ‖t − t′‖ ≤ η;
ii) for any ball B(t, xη) with center t ∈ M and radius xη,

|S ∩ B(t, xη)| ≤ exp
[
x2D/2

]
for x ≥ 2.

In the previous example we simply defined S so that η = λ
√

D = 4σ
√

3D.
The fact that the previous property of V was a key argument in the proof motivates

the following general definition.
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Definition 1 Let S be a subset of some metric space (M,d) and D be some real
number ≥ 1/2. We say that S has a finite metric dimension bounded by D if, for
every η > 0, one can find a subset Sη of M such that:

i) for each t ∈ S there exists some t′ ∈ Sη with d(t, t′) ≤ η (we say that Sη is an
η-net for S);

ii) for any ball B(t, xη) with center t ∈ M and radius xη,

|Sη ∩ B(t, xη)| ≤ exp
[
x2D

]
for x ≥ 2.

Note that any subset of S also has a finite metric dimension bounded by D. It follows
from the Property P that a D-dimensional linear subspace of a Euclidean space has a
metric dimension bounded by D/2. Note that, apart from the factor 1/2, this result
cannot be improved in view of the following lower bound for the metric dimension of
a D-dimensional ball.

Lemma 1 Let S be a ball of the metric space (M,d) which is isometric to a ball in
the Euclidean space R

D. Then a bound D for its metric dimension cannot be smaller
than D/13.

Proof: Let S = B(t, r) have a finite metric dimension bounded by D and η < r/3. One
can find Sη in M which is an η-net for S and such that N = |Sη∩B(t, 3η)| ≤ exp

[
9D
]
.

Moreover, Sη is also an η-net for B(t, 2η) so that B(t, 2η) can be covered by the N balls
with radius η and centers in Sη ∩B(t, 3η). Since B(t, 3η) ⊂ S we can use the isometry
to show, comparing the volumes of the balls, that N ≥ 2D so that 9D ≥ D log 2 and
the conclusion follows.

Introducing Definition 1 in the proof of Proposition 2, we get the following result.

Theorem 1 Let X be a Gaussian vector in R
n with unknown mean s and known

covariance matrix σ2In. Let S be a subset of the Euclidean space R
n with a finite

metric dimension bounded by D. Then one can build an estimator ŝS(X) of s such
that, for some universal constant C (independent of s, n and S),

Es

[
‖ŝS(X) − s‖2

]
≤ C

[
inf
t∈S

‖s − t‖2 + σ2D

]
. (4.15)

This theorem implies that we can use for models non-linear sets that have a finite
metric dimension. In particular, various types of manifolds could be used as models.
To build the estimator ŝS(X), we set η = 4σ

√
6D and choose an η-net Sη for S

satisfying the properties of Definition 1. Then we take for ŝS(X) the m.l.e. with
respect to Sη.

4.5 Density estimation

When we want to extend the results obtained for the Gaussian framework to density
estimation we encounter new difficulties. The two key arguments used in the proof of
Proposition 2 are that V has a finite metric dimension and Proposition 1. For i.i.d.
observations X1, . . . ,Xn with density s and in view of the fact that

Ps

[
n∏

i=1

u(Xi) ≥
n∏

i=1

v(Xi)

]
≤ exp

[
−nh2(u, v)

]
if s = v,

an analogous result would be as follows:

20



Conjecture C Let X1, . . . ,Xn be i.i.d. random variables with an unknown density s
with respect to some measure ν on (E, E). There exist two constants κ ≥ 2 and A > 0
such that, whatever the densities u, v on (E, E) such that h(s, v) ≤ κ−1h(u, v), then

Ps

[
n∏

i=1

u(Xi) ≥
n∏

i=1

v(Xi)

]
≤ exp

[
−Anh2(u, v)

]
.

If this conjecture were true one could mimic the proof for the Gaussian case, starting
from a subset S of the metric space (M,h) with finite metric dimension, choosing a
suitable η-net Sη for S and computing the m.l.e. with respect to Sη to get an analogue
of Theorem 1. Unfortunately Conjecture C is wrong and, as a consequence, one can
find stuations in the i.i.d. framework where the m.l.e. with respect to Sη does not
behave at all as expected. To get an analogue of Theorem 1 for density estimation,
one cannot work with the maximum likelihood method any more. An alternative
method that allows to deal with the problem of density estimation has been proposed
by Le Cam (1973 and 1975) who also introduced a notion of metric dimension, and
then extended by the present author in Birgé (1983 and 1984). In the sequel, we shall
follow the generalized approach of Birgé (2006) from which we borrow this substitute
to Conjecture C:

Proposition 3 Let X1, . . . ,Xn be i.i.d. random variables with an unknown density
s with respect to some measure ν on (E, E). Whatever the densities u, v, one can
design a procedure ϕu,v(X1, . . . ,Xn) with values in {u, v} and such that

Ps [ϕu,v(X1, . . . ,Xn) = u] ≤ exp
[
−(n/4)h2(u, v)

]
if h(s, v) ≤ h(u, v)/4;

Ps [ϕu,v(X1, . . . ,Xn) = v] ≤ exp
[
−(n/4)h2(u, v)

]
if h(s, u) ≤ h(u, v)/4.

The main difference with Conjecture C lies in the fact that the procedure ϕu,v does not
choose between u and v by merely comparing

∏n
i=1 u(Xi) and

∏n
i=1 v(Xi). It is more

complicated. This implies that, in this case, we have to design a new estimator ŝS(X),
based on Proposition 3, to replace the m.l.e.. The construction of this estimator is
more complicated than that of the m.l.e. and we shall not describe it here. The
following analogue of Theorem 1 is proved in Birgé (2006).

Theorem 2 Let X = (X1, . . . ,Xn) be an i.i.d. sample with unknown density s with
respect to some measure ν on (E, E) and (M,h) be the metric space of all such densi-
ties with Hellinger distance. Let S be a subset of (M,h) with a finite metric dimension
bounded by D. Then one can build an estimator ŝS(X1, . . . ,Xn) of s such that, for
some universal constant C,

Es

[
h2
(
ŝS, s

)]
≤ C

[
inf
t∈S

h2(s, t) + n−1D

]
. (4.16)

Analogues of Proposition 3 do hold for various statistical frameworks, although not
all. Additional examples are to be found in Birgé (2004 and 2006). For each such
case, one can, starting from a model S with finite metric dimension bounded by D,
design a suitable estimator ŝS(X) and then get an analogue of Theorem 2. Within
the general framework of Section 4.1, the resulting risk bound takes the following
form:

Es

[
d2
(
ŝS, s

)]
≤ C1 inf

t∈S
d2(s, t) + C2D for all s ∈ M, (4.17)
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where the constants C1 and C2 depend on the corresponding statistical framework
— compare with (4.15) and (4.16) — but not on s or S. The main task is indeed to
prove the proper alternative to Proposition 3. Once this has been done, (4.17) follows
more or less straightforwardly.

To what extent can maximum likelihood or related estimators provide bounds of
the form (4.17) has been studied in various papers among which van de Geer (1990,
1993, 1995 and 2000), Shen and Wong (1994) and Wong and Shen (1995), Birgé
and Massart (1993 and 1998), Györfi, Kohler, Kryżak and Walk (2002) and Massart
(2006).

5 Model selection

Let us consider a statistical framework for which an analogue of Proposition 3 holds
so that any model S with finite metric dimension bounded by D provides an es-
timator ŝS(X) with a risk bounded by (4.17). Then the quality of a given model
S for estimating s can be measured by the right-hand side of (4.17). Since this
quality depends on the unknown s via the approximation term inft∈S d2(s, t), we

cannot know it. Introducing a large family {Sm,m ∈ M} of models, each one with
finite metric dimension bounded by Dm, instead of one single model, gives more
chance to get an estimator ŝm = ŝSm

in the family with the smaller risk bound

infm∈M

{
C1 inft∈S d2(s, t) + C2Dm

}
. Since we do not know which estimator reaches

this bound, the challenge of model selection is to design a random choice m̂(X) of
m such that the corresponding estimator ŝm̂ approximately reaches this optimal risk,
i.e. satisfies

Es

[
d2(s, ŝm̂)

]
≤ C inf

m∈M

{
C1 inf

t∈Sm

d2(s, t) + C2Dm

}
, (5.1)

for some constant C independent of s and the family of models.

5.1 Some natural limitations to the performances of model selection

Let us show here, in the context of Gaussian regression, that getting a bound like
(5.1) for arbitrary families of models is definitely too optimistic. If, in this context,
(5.1) were true, we would be able to design a model selection procedure m̂ satisfying,
in view of (4.14)

Es

[
‖s − ŝm̂‖2

]
≤ C ′ inf

m∈M

{
σ2Dm + inf

t∈Sm

‖s − t‖2

}
, (5.2)

for some universal constant C ′, independent of s, n and the family of models. It is
not difficult to see that this is impossible, even if we restrict ourselves to countable
families of models. Indeed, if (5.2) were true, we could choose for {Sm,m ∈ M} a
countable family of one-dimensional linear spaces such that each point s ∈ R

n could
be approximated by one space in the family with arbitrary accuracy. We would then
get Dm = 1/2 for each m and (5.2) would imply that

Es

[
‖s − ŝm̂‖2

]
≤ C ′σ2/2 for all s ∈ R

n.

But it is known that the best bound one can expect for any estimator ŝ uniformly
with respect to s ∈ R

n is
sup
s∈Rn

Es

[
‖s − ŝ‖2

]
= nσ2,
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which contradicts the fact that C ′ should be a universal constant. One actually has
to pay a price for using many models simultaneously and, as we shall see, this price
depends on the complexity (with a suitable sense) of the chosen family of models.

5.2 Risk bounds for model selection

5.2.1 The main theorems

We shall not get here into the details of the construction of the selection procedure
that we use but content ourselves to give the main results and analyze their con-
sequences. A key idea for the construction appeared in Barron and Cover (1991).
Further approaches to selection procedures have been developed in Barron, Birgé
and Massart (1999), Birgé and Massart (1997 and 2001), van de Geer (2000), Györfi,
Kohler, Kryżak and Walk (2002) and Massart (2006) who provides an extensive list of
references. We follow here the approach based on dimension from Birgé (2006), pro-
viding hereafter two theorems corresponding to our two problems of interest, Gaussian
regression and density estimation. In both cases, the construction of the estimators
requires the introduction of a family of positive weights {∆m,m ∈ M}, to be chosen
by the statistician and satisfying the condition

∑

m∈M

exp [−∆m] ≤ 1. (5.3)

In case of equality in (5.3), the family {qm}m∈M with qm = exp [−∆m] defines a
probability Q on the family of models and choosing a large value for ∆m means
putting a small probability on the model Sm. One can then see qm as a probability
that the statistician puts on Sm and which influences the result of the estimation
procedure, as shown by the next theorems. Such an interpretation of the weights
∆m corresponds to the so-called Bayesian point of view. A detailed analysis of this
interpretation can be found in Birgé and Massart (2001, Sect. 3.4).

Theorem 3 Let X be a Gaussian vector in R
n with unknown mean s and known

covariance matrix σ2In. Let {Sm,m ∈ M} be a finite or countable family of subsets
of R

n with finite metric dimensions bounded by Dm, respectively. Let {∆m,m ∈ M}
be a family of positive weights satisfying (5.3). One can build an estimator s̃(X) of
s such that, for some universal constant C,

Es

[
‖s − s̃‖2

]
≤ C inf

m∈M

{
σ2 max

{
Dm,∆m

}
+ inf

t∈Sm

‖s − t‖2

}
. (5.4)

Theorem 4 Let X = (X1, . . . ,Xn) be an i.i.d. sample with unknown density s with
respect to some measure ν on (E, E) and (M,h) be the metric space of all such den-
sities with Hellinger distance. Let {Sm,m ∈ M} be a finite or countable family of
subsets of (M,h) with finite metric dimensions bounded by Dm, respectively. Let
{∆m,m ∈ M} be a family of positive weights satisfying (5.3). One can build an
estimator s̃(X1, . . . ,Xn) of s such that, for some universal constant C,

Es

[
h2 (s̃, s)

]
≤ C inf

m∈M

{
n−1 max

{
Dm,∆m

}
+ inf

t∈Sm

h2(s, t)

}
. (5.5)

Remark: The choice of the bound 1 in (5.3) has nothing canonical and was simply
made for convenience. Any small constant would do since we did not provide the
actual value of C which depends on the right-hand side of (5.3).
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5.2.2 About the complexity of families of models

The only difference between the ideal bound (5.2) and (5.4) is the replacement of Dm

by max
{
Dm,∆m

}
with weights ∆m satisfying (5.3) and we see, comparing (4.16)

and (5.5), that the same difference holds for density estimation. More generally, in a
framework for which an analogue of Proposition 3 holds, leading to (4.17), we proved
in Birgé (2006) that

Es

[
d2(s, ŝm̂)

]
≤ C inf

m∈M

{
C1 inf

t∈S
d2(s, t) + C2 max

{
Dm,∆m

}}
, (5.6)

holds instead of (5.1). In all situations, apart from the constant C, the loss with
respect to the ideal bound is due to the replacement of Dm by max

{
Dm,∆m

}
where

the weights ∆m satisfy (5.3). If ∆m is not much larger than Dm for all m, we have
almost reached the ideal risk, otherwise not and we can now explain what we mean
by the complexity of a family of models.

For each positive integer j, let us denote by H(j) the cardinality of the set Mj of
those m such that j/2 ≤ Dm < (j + 1)/2. If H(j) is finite for all j, let us choose
∆m = (j + 1)/2 + log+(H(j)) for m ∈ Mj where log+(x) = log x for x ≥ 1 and
log+(0) = 0. Then

∑

m∈M

exp[−∆m] =
∑

j≥1

∑

m∈Mj

exp[−(j + 1)/2 − log+(H(j))] ≤
∑

i≥2

exp[−i/2] < 1

and (5.3) holds. Moreover,

max
{
Dm,∆m

}
= ∆m ≤ 2Dm[1 + j−1 log+(H(j))] for m ∈ Mj .

If j−1 log+[H(j)] is uniformly bounded and the bound is not large, then (5.6) and
(5.1) are comparable and we can consider that the family of models is not complex.
On the other hand, if, for some j, log[H(j)] is substantially larger than j, ∆m is
substantially larger than Dm, at least for some m, which may result in a bound
(5.6) much larger than (5.1). If H(j) = +∞ for some j, (5.3) requires that ∆m be
unbounded for m ∈ Mj, which is even worse. A reasonable measure of the complexity
of a family of models is therefore supj≥1 j−1 log+[H(j)], high complexity of the family
corresponding to large values of this index.

5.3 Application 1: variable selection in Gaussian regression

Let us now give some concrete illustrations of more or less complex families of models
corresponding to the examples that motivated our investigations about model selec-
tion. To begin with, we consider the situation of Section 3.2.1 with a large number
p ≤ n of potentially influential explanatory variables Zj and set Λ = {1; . . . ; p}. For
any subset m of Λ we define Sm as the linear span of the vectors Zj for j ∈ m.
According to Section 4.4.2, Sm has a metric dimension bounded by |m|/2.

Let us assume that we have ordered the variables according to their supposed
relevance, Z1 being the more relevant. In such a situation it is natural to consider
the models spanned by the q more relevant variables Z1, . . . , Zq for 1 ≤ q ≤ p and
therefore to set M = M1 =

{
{1; . . . ; q}, 1 ≤ q ≤ p

}
. This is not a complex family of

models and the choice ∆m = |m| ensures that (5.3) holds. It follows from Theorem 3
that one can design an estimator s̃(X) satisfying

Es

[
‖s − s̃‖2

]
≤ C inf

m∈M1

{
σ2|m| + inf

t∈Sm

‖s − t‖2

}
. (5.7)
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Comparing this with the performance of the m.l.e. with respect to each model Sm

given by (3.4), we see that, apart from the constant C, we recover the performance
of the best model in the family.

This simple approach has, nevertheless, some drawbacks. First, we have to order
the explanatory variables which is often not easy. Then the result is really bad if we
make a serious mistake in this ordering. Imagine, for instance, that s only depends
on four highly influential variables so that if the variables had been ordered correctly,
the best model, i.e. the one minimizing σ2|m| + inft∈Sm

‖s − t‖2, would be S{1;2.3;4}

and the corresponding risk 4σ2. If one of these four very influential variables has
been neglected and appears in the sequence with a high index l, it may happen that,
because of this wrong ordering, the best model becomes S{1;...;l} leading to the much
higher risk σ2l.

In order to avoid the difficulties connected with variables ordering, one may intro-
duce many more models, defining M = M2 as the set of all nonvoid subsets m of

Λ. Since the number of nonvoid subsets of Λ with cardinality q is

(
p
q

)
≤ pq/q!, we

may choose ∆m = 1 + |m| log p to get (5.3) so that, by Theorem 3, one can find an
estimator s̃(X) satisfying

Es

[
‖s − s̃‖2

]
≤ C inf

m∈M

{
σ2(1 + |m| log p) + inf

t∈Sm

‖s − t‖2

}
. (5.8)

With this method, we avoid the problems connected with variables ordering and
may even introduce more explanatory variables than observations (p > n), hoping
that with so many variables at disposal, one can find a small subset m of them that
provides an accurate model for s. There is a price to pay for that! We now have a
complex family of models when p is large resulting in values of ∆m which are much
larger than |m| and we pay the extra factor log p in our risk bounds.

One can actually cumulate the advantages of the two approaches by mixing the two
families in the following way. We first order the p variables as we did at the beginning,
giving the smallest indices to the variables we believe are more influential and set again
M = M2. We then fix ∆m = |m| + 1/2 for m ∈ M1 and ∆m = 1 + |m| log p for
m ∈ M \M1 so that (5.3) still holds. Theorem 3 shows that

Es

[
‖s − s̃‖2

]
≤ C min

[
inf

m∈M\M1

{
σ2(1 + |m| log p) + inf

t∈Sm

‖s − t‖2

}

; inf
m∈M1

{
σ2(|m| + 1/2) + inf

t∈Sm

‖s − t‖2

}]
.

If our ordering of the variables is right, the best m belongs to M1 and we get an
analogue of (5.7). If not, we lose a factor log p from the risk of the best model as in
(5.8).

5.4 Application 2: histograms and density estimation

5.4.1 Problems connected with the use of the L2-distance in density es-
timation

Let us now come back to density estimation with histograms. In Section 1.2 we
used the L2-distance to measure the distortion between s and its estimator. This is
certainly the most popular and more widely studied measure of distortion for density
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estimation but it actually has some serious drawbacks as shown by Devroye and
Györfi (1985). For histograms it results in risk bounds (1.10) depending on ‖s‖∞ for
irregular partitions, which are not of the form

R(ŝm, s) ≤ C
[
‖s − sm‖2 + n−1|m|

]
,

for some universal constant C, independent of s, n and the partition m. It is actually
impossible to get an analogue of Theorem 2 where the L2-distance would replace the
Hellinger distance, as shown by the following proposition motivated by Theorem 2.1
of Rigollet and Tsybakov (2005). Indeed, if such a theorem were true, we could apply
it to the model S provided by this proposition and conclude that the corresponding
estimator ŝS would satisfy the analogue of (4.16) leading to the uniform risk bound

Es

[
‖ŝS − s‖2

]
≤ CD/(2n), for all s ∈ S

and some universal constant C, therefore independent of L. This would clearly con-
tradict (5.9) below for large enough values of L.

Proposition 4 For each L > 0 and each integer D with 1 ≤ D ≤ 3n, one can find
a finite set S of densities with the following properties:

i) it is a subset of some D-dimensional affine subspace of L2([0, 1], dx) with a metric
dimension bounded by D/2;

ii) sups∈S ‖s‖∞ ≤ L + 1;
iii) for any estimator ŝ(X1, . . . ,Xn) belonging to L2([0, 1], dx) and based on an i.i.d.

sample with density s ∈ S,

sup
s∈S

Es

[
‖ŝ − s‖2

]
> 0.0139DLn−1. (5.9)

Proof: Let us set a = D/(4n) ≤ 3/4, define θ by (1 − θ)/θ = 4nL/D and introduce
the functions f(x) = 1l[0,1[(x) and g(x) = −a1l[0,(1−θ)/D] + a(1 − θ)θ−11l](1−θ)/D],1/D[.

Then
∫ 1/D
0 g(x) dx = 0, supx g(x) = L, infx g(x) = −a ≥ −3/4 and

‖g‖2 =

∫ 1/D

0
g2(x) dx = a2 1 − θ

D

[
1 + (1 − θ)θ−1

]
=

a2(1 − θ)

θD
=

L

4n
. (5.10)

It follows that ‖f − (f + g)‖2 = L/(4n). Moreover

h2(f, f + g) =
1

2

∫ 1/D

0

[
1 −

√
1 + g(x)

]2
dx

=
1

2

∫ 1/D

0

[
2 + g(x) − 2

√
1 + g(x)

]
dx =

1

D
−
∫ 1/D

0

√
1 + g(x) dx

= D−1
[
1 − (1 − θ)

√
1 − a − θ

√
1 + a(1 − θ)θ−1

]

≤ D−1
[
1 −

√
1 − a

]
≤ D−1(2a/3) = (6n)−1, (5.11)

since a ≤ 3/4. Let us now set, for 1 ≤ j ≤ D, gj(x) = g
(
x − D−1(j − 1)

)
, so that

these D translates of g have disjoint supports and g1 = g. Let D = {0; 1}D with the
distance ∆ given by ∆(δ, δ′) =

∑D
j=1 |δj − δ′j |. For each δ ∈ D we consider the density

sδ(x) = f(x) +
∑D

j=1 δjgj(x) and set S = {sδ, δ ∈ D}. Clearly ‖sδ‖∞ ≤ L + 1 for all
δ ∈ D and it follows from (5.10) that

‖sδ − sδ′‖2 =

D∑

j=1

(δj − δ′j)
2

∫ 1/D

0
g2
j (x) dx =

L

4n

D∑

j=1

(δj − δ′j)
2 =

L

4n
∆(δ, δ′). (5.12)
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Moreover, since S is a subset of some D-dimensional affine subspace of L2([0, 1], dx),
it follows from the arguments used in the proof of Proposition 2 that its metric
dimension is bounded by D/2.

Defining Pδ by dPδ/dx = sδ, we derive from (5.11) that h2(Pδ, Pδ′) ≤ (6n)−1, hence
ρ(Pδ, Pδ′) ≥ ρ = 1 − (6n)−1, for each pair (δ, δ′) ∈ D2 such that ∆(δ, δ′) = 1. We
may then apply Assouad’s Lemma below to conclude from (5.12) that, whatever the
estimator δ̂ with values in D,

sup
δ∈D

Es

[
‖sδ̂ − sδ‖2

]
=

L

4n
sup
δ∈D

Es

[
∆
(
δ̂, δ
)]

≥ L

4n

D

2

[
1 −

√
1 − [1 − (6n)−1]2n

]
.

Let ŝ be any density estimator based on X1, . . . ,Xn and set δ̂(X1, . . . ,Xn) to satisfy
‖ŝ− sδ̂‖ = infδ∈D ‖ŝ− sδ‖ so that, whatever δ ∈ D, ‖sδ̂ − sδ‖ ≤ 2‖ŝ− sδ‖. We derive
from our last bound that

sup
δ∈D

Es

[
‖ŝ − sδ‖2

]
≥ 1

4
sup
δ∈D

Es

[
‖sδ̂ − sδ‖2

]
≥ LD

32n

[
1 −

√
1 − [1 − (6n)−1]2n

]
.

We conclude by observing that
[
1 − (6n)−1

]2n
is increasing with n, hence ≥ 25/36.

Lemma 2 (Assouad, 1983) Let {Pδ, δ ∈ D} be a family of distributions indexed
by D = {0; 1}D and X1, . . . ,Xn an i.i.d. sample from a distribution in the family.
Assume that ρ(Pδ , Pδ′) ≥ ρ̄ for each pair (δ, δ′) ∈ D2 such that ∆(δ, δ′) = 1. Then for
any estimator δ̂(X1, . . . ,Xn) with values in D,

sup
δ∈D

Eδ

[
∆
(
δ̂(X1, . . . ,Xn), δ

)]
≥ D

2

[
1 −

√
1 − ρ̄2n

]
≥ Dρ̄2n

4
, (5.13)

where Eδ denotes the expectation when the Xi have the distribution Pδ.

Proof: Let us set Pn
δ for the joint distribution of the Xi with individual distribution

Pδ and consider some measure µ which dominates the probabilities Pn
δ for δ ∈ D.

First note that the left-hand side of (5.13) is at least as large as the average risk

RB = 2−D
∑

δ∈D

Eδ

[
∆
(
δ̂, δ
)]

= 2−D
∑

δ∈D

∫ D∑

k=1

∣∣∣δ̂k − δk

∣∣∣ dPn
δ .

Then, setting Qj
k = 2−D+1

∑
{δ∈D | δk=j} Pn

δ with j = 0 or 1, we get

RB = 2−D
D∑

k=1




∑

{δ∈D | δk=0}

∫
δ̂k dPn

δ +
∑

{δ∈D | δk=1}

∫ (
1 − δ̂k

)
dPn

δ





=
1

2

D∑

k=1

(∫
δ̂k

dQ0
k

dµ
dµ +

∫ (
1 − δ̂k

) dQ1
k

dµ
dµ

)

≥ 1

2

D∑

k=1

∫
inf

{
dQ0

k

dµ
;
dQ1

k

dµ

}
dµ.

Since inf{x; y} is a concave function of the pair (x, y), it follows that

inf

{
dQ0

k

dµ
;
dQ1

k

dµ

}
≥ 2−D+1

∑

(δ,δ′)∈Dk

inf

{
dPn

δ

dµ
;
dPn

δ′

dµ

}
,
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with Dk = {(δ, δ′) | δk = 0, δ′k = 1, δj = δ′j for j 6= k}, hence

RB ≥ 1

2

D∑

k=1

2−D+1
∑

(δ,δ′)∈Dk

∫
inf

{
dPn

δ

dµ
;
dPn

δ′

dµ

}
dµ.

We now use (4.8) to conclude that

RB ≥ 1

2

D∑

k=1

2−D+1
∑

(δ,δ′)∈Dk

[
1 −

√
1 − ρ2

(
Pn

δ , Pn
δ′

)]
.

By assumption, ρ(Pδ , Pδ′) ≥ ρ̄ for (δ, δ′) ∈ Dk, hence ρ2
(
Pn

δ , Pn
δ′
)

= ρ2n(Pδ, Pδ′) ≥
ρ̄2n. The conclusion follows.

5.4.2 Partition selection for histograms

If we use the Hellinger distance instead of the L2-distance to evaluate the risk of
histograms, we can improve (1.10), getting a universal bound which does not involve
‖s‖∞. We recall that Sm is the set of densities which are constant on the elements of
the partition m as defined in (1.11).

Theorem 5 Let s be some density with respect to the Lebesgue measure on [0, 1],
X1, . . . ,Xn be an n-sample from the corresponding distribution and m = {I0, . . . , ID}
be a partition of [0, 1] into intervals Ij with respective lengths |Ij|. Let ŝm be the
histogram estimator based on this partition and given by

ŝm(x) =

D∑

j=0

[
1

n|Ij|
n∑

i=1

1lIj
(Xi)

]
1lIj

(x).

The Hellinger risk of ŝm is bounded by

Es

[
h2(s, ŝm)

]
≤ 2 inf

t∈Sm

h2(s, t) + D/(2n). (5.14)

Proof: It is shown in Birgé and Rozenholc (2006) that

Es

[
h2(s, ŝm)

]
≤ h2(s, sm) +

D

2n
with sm =

D∑

j=0

[
1

|Ij |

∫

Ij

s(x) dx

]
1lIj

.

Let f be the L2-orthogonal projection of
√

s onto the linear span Vm of 1lI0 , . . . , 1lID
.

Then

f =
D∑

j=0

[
1

|Ij |

∫

Ij

√
s(x) dx

]
1lIj

and
∥∥f −√

s
∥∥2 ≤ 2h2(s, t) for all t ∈ Vm.

Setting sm =
∑D

j=0 aj1lIj
and f =

∑D
j=0 bj1lIj

, we get from Jensen’s Inequality that
bj ≤ √

aj . It follows that

h2(s, sm) = 1 −
D∑

j=0

∫

Ij

√
ajs(x) dx = 1 −

D∑

j=0

√
ajbj|Ij | ≤ 1 −

D∑

j=0

b2
j |Ij |,
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while

∥∥f −√
s
∥∥2

= 1 +

D∑

j=0

∫

Ij

b2
j dx − 2

D∑

j=0

∫

Ij

bj

√
s(x) dx = 1 −

D∑

j=0

b2
j |Ij|.

Hence
h2(s, sm) ≤

∥∥f −√
s
∥∥2 ≤ 2 inf

t∈Sm

h2(s, t). (5.15)

If, in particular,
√

s is Hölder continuous and satisfies (1.13), we derive as in Sec-
tion 1.3.3 that one can find a regular partition m, depending on L and β, such that,

Es

[
h2(s, ŝm)

]
≤ max

{
(5/2)

(
Ln−β

)2/(2β+1)
;n−1

}
. (5.16)

Then, a useful remark is as follows. If we have at disposal a sample X1, . . . ,X2n of
size 2n and a family M of partitions of [0, 1], one can use the first half of the sample
to build the corresponding histograms ŝm(X1, . . . ,Xn) and use the second half of
the sample to select one estimator in the family. For this, we merely have to apply
Theorem 4 to the sample Xn+1, . . . ,X2n conditionally on X1, . . . ,Xn. Conditionally
on X1, . . . ,Xn, each histogram ŝm is simply a density which can be considered as a
model Sm containing only one point, hence with a finite metric dimension bounded
by 1/2. Let {∆m,m ∈ M} be a family of weights satisfying

∑

m∈M

exp [−∆m] ≤ 1 and ∆m ≥ 1 for all m. (5.17)

We derive from Theorem 4 applied to the models Sm = {ŝm} that there exists an
estimator s̃(X1, . . . ,X2n) such that

Es

[
h2 (s̃, s)

∣∣X1, . . . ,Xn

]
≤ C inf

m∈M

{
n−1∆m + h2

(
s, ŝm(X1, . . . ,Xn)

)}
.

Integrating with respect to X1, . . . ,Xn and using (5.14) finally leads to

Es

[
h2 (s̃, s)

]
≤ C inf

m∈M

{
n−1∆m + 2 inf

t∈Sm

h2(s, t) + (|m| − 1)/(2n)

}

≤ C ′ inf
m∈M

{
n−1 max{|m|,∆m} + inf

t∈Sm

h2(s, t)

}
. (5.18)

5.4.3 A straightforward application of partition selection

To give a concrete application of this result, let us introduce some special classes of
partitions. For any finite partition m = {I0, . . . , ID} into intervals, we denote by
Am the set {y0 < . . . < yD+1}, y0 = 0, yD+1 = 1 of endpoints of the intervals Ij .
Introducing, for k ≥ 1, the set Jk of dyadic numbers {j2−k, 0 ≤ j ≤ 2k}, we denote
by MD,k, for 1 ≤ D < 2k, the set of those partitions m which satisfy

|m| = D + 1; Am ∈ Jk and Am 6∈ Jk−1.

Denoting by m0 the trivial partition with one element [0, 1], we define M by

M = {m0}
⋃



⋃

k≥1

⋃

1≤D<2k

MD,k



 .
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The partitions in M are dense in the set of finite partitions into intervals in the
following sense: given any such partition m, an element t in Sm, as defined by (1.11),
and ε > 0, we can find m′ ∈ M and t′ ∈ Sm′ such that h(t, t′) ≤ ε. This means
that the approximation properties of

⋃
m∈M Sm are the same as those of all possible

histograms. Since |MD,k| ≤
(

2k − 1
D

)
≤ 2kD, if we set ∆m = ∆0

m = [(k + 1)(D +

1) + 1] log 2 for m ∈ MD,k and ∆m0
= 1, we get

∑

k≥1

∑

1≤D<2k

∑

MD,k

e−∆0
m ≤

∑

k≥1

∑

1≤D<2k

2−k−D−2 ≤ 1

4

∑

k≥1

2−k
∑

D≥1

2−D =
1

4
.

It follows that (5.17) holds so that by (5.18), one can find an estimator s̃(X1, . . . ,X2n)
which satisfies

Es

[
h2 (s̃, s)

]
≤ C inf

k≥1
inf

1≤D<2k
inf

m∈MD,k

{
kD

n
+ inf

t∈Sm

h2(s, t)

}
. (5.19)

If, in the right-hand side of (5.19), we set m to be the regular partition with 2k

elements, which belongs to MD,2k−1, we get a bound of the form

Es

[
h2 (s̃, s)

]
≤ C

[
k2kn−1 + inf

t∈Sm

h2(s, t)

]
.

For densities s with
√

s satisfying (1.13), we get

Es

[
h2 (s̃, s)

]
≤ C ′ inf

k≥1

{
k2kn−1 + L22−2kβ

}
,

but an optimization with respect to k does not allow to recover the bound (5.16)
because of an extra factor log

(
nL2

)
. This factor is connected with the complexity

of the families MD,k which forces us to fix ∆m much larger than |m| = D + 1 for
most elements of MD,k when k is large. Most, but not all! It is in particular easy
to modify the value of ∆m for the regular partitions without violating (5.17). If mk

denotes the regular partition with 2k elements and MR the set of such partitions, we
may choose ∆mk

= |mk| instead of ∆0
m so that

∑

m∈MR

e−∆m =
∑

k≥0

e−2k

< 0.522

and (5.17) still holds. It is easy to check that, with this new choice of the weights for
the regular partitions, we improve the estimation for those densities such that

√
s is

Hölder continuous. In particular, if
√

s satisfies (1.13) for some unknown values of L
and β,

Es

[
h2 (s̃, s)

]
≤ C max

{(
Ln−β

)2/(2β+1)
;n−1

}
, (5.20)

which is comparable to (5.16) although L and β are unknown, the only loss being at
the level of the constant C.

5.4.4 Introducing more sophisticated Approximation Theory

The consequences of the previous modification of the weights for partitions in MR

is a simple illustration of the use of elementary Approximation Theory to improve
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the estimation of smooth densities. One can actually do much better with the use
of more sophisticated Approximation Theory. In a milestone paper, Birman and
Solomjak (1967) introduced a family MT of partitions of the cube [0, 1]k which are
such that piecewise constant (and more generally piecewise polynomials) based on
the partitions in the family have excellent approximation properties with respect
to functions in Sobolev spaces (and functions of bounded variation when k = 1).
Moreover, Birman and Solomjak provide a control on the number of such partitions
with a given cardinality. For the case k = 1 which is the one we deal with here, the
number of elements m of MT with |m| = D is bounded 4D which allows us to set
∆m = 2D for those partitions.

The algorithm leading to the construction of the partitions in MT , which is called
an “adaptive approximation algorithm”, is also described in Section 3.3 of DeVore
(1998) and it works as follows. We choose a positive threshold ε and some non-
negative functional J(f, I) depending on the function f to be approximated and the
interval I. Roughly speaking, the functional measures the quality of approximation
of f by a piecewise constant (or more generally a piecewise polynomial) function on
I. At step one, the algorithm starts with the trivial partition m1 = m0 with one
single interval. At step j it provides a partition mj into j intervals and it checks
whether supI∈mj J(f, I) ≤ ε or not. If this is the case, the algorithm stops, if not we
choose one of the intervals I for which the criterion J(f, I) ≤ ε is violated and divide
it into two interval of equal length to derive mj+1. Then we iterate the procedure.
For the functions f of interest, which satisfy some smoothness condition related to
the functional J , the procedure necessarily stops at some stage, leading to a final
partition m. Let MT be the set of all the partitions that can be obtained in this
way. Then MR ⊂ MT . Building a partition m in MT is actually equivalent to
growing a complete binary tree for which the initial interval [0, 1] corresponds to the
root of the tree, each node of the tree to an interval and each split of an interval
to adding two sons to a terminal node of the tree, the partition m being in one-to-
one correspondance to the set of terminal nodes of the tree. When viewed as a tree
algorithm, this construction is similar to the CART algorithm of Breiman, Friedman,
Olshen and Stone (1984). The analysis of CART from the model selection point of
view that we explain here has been made by Gey and Nédélec (2005).

It follows from the correspondence between the partitions in MT and the complete
binary trees that the number of elements m of MT such that |m| = j + 1, j ∈ N,
is equal to the number of complete binary trees with j + 1 terminal nodes which is

given by the Catalan numbers (j + 1)−1

(
2j
j

)
. Setting ∆1

m = 2|m| for m ∈ MT

and using

(
2j
j

)
≤ 4j which follows from Stirling’s expansion, we derive that

∑

m∈MT

e−∆1
m ≤

∑

j≥0

e−2(j+1)

j + 1

(
2j
j

)
≤
∑

j≥0

4je−2(j+1)

j + 1
<

1

4
.

It follows that (5.17) holds if we set ∆m = ∆1
m for m ∈ MT and ∆m = ∆0

m for
m ∈ M\MT and we then derive from (5.18) that not only (5.19) still holds but also

Es

[
h2 (s̃, s)

]
≤ C inf

m∈MT

{
n−1|m| + inf

t∈Sm

h2(s, t)

}
,

which is indeed a substantial improvement over (5.19). In particular, since MT

contains MR, (5.20) still holds when
√

s is Hölderian, but the introduction of the
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much larger class MT leads to a much more powerful result which follows from the
approximation properties of functions in Vm given by (1.2) with m ∈ MT . We refer
the reader to the book by DeVore and Lorentz (1993) for the precise definitions of
Besov spaces and semi-norms and the variation Var∗ in the following theorem.

Theorem 6 Let MT be the set of partitions m of [0, 1] previously defined. For any
p > 0, α with 1 > α > (1/p − 1/2)+, any positive integer j and any function t
belonging to the Besov space Bα

p,∞([0, 1]) with Besov semi-norm |t|Bα
p,∞

, one can find
some m ∈ MT with |m| = j and some t′ ∈ Vm such that

‖t − t′‖2 ≤ C(α, p)|t|Bα
p,∞

j−α, (5.21)

where ‖ · ‖2 denotes the L2(dx)-norm on [0, 1].
If t is a function of bounded variation on [0, 1], there exists m ∈ MT with |m| = j

and t′ ∈ Vm such that ‖t − t′‖2 ≤ C ′ Var∗(t)j−1.

The bound (5.21) is given in DeVore and Yu (1990). The proof for the bounded
variation case has been kindly communicated to the author by Ron DeVore.

Applying the previous theorem to t =
√

s, we may always choose for t′ the pro-
jection of

√
s onto Vm and it follows from (5.15) that the result still holds with

t′ =
√

sm. In particular, if
√

s ∈ Bα
p,∞([0, 1]), then for a suitable m with |m| = j,

h2(s, sm) ≤ C(α, p)|t|2Bα
p,∞

j−2α. Putting this into (5.18) with ∆m = 2j and optimizing

with respect to j shows that

Es

[
h2 (s̃, s)

]
≤ C max

{(
|t|Bα

p,∞
n−α

)2/(2α+1)
;n−1

}
if
√

s ∈ Bα
p,∞([0, 1]).

Similarly, we can show that

Es

[
h2 (s̃, s)

]
≤ C max

{(
Var∗

(√
s
)
/n
)2/3

;n−1
}

if
√

s has a bounded variation.

5.5 Model choice and Approximation Theory

In any statistical framework for which we can prove a risk bound of the form (5.6)
provided that (5.3) holds, the technical problem of model selection can be considered
as being solved but the question of how to choose the family of models to which we
shall apply the procedure remains. There is no general recipe to make such a choice
without any “a priori” information on s. If we have some information about the
true s or at least we suspect that it may have some specific properties, or if we wish
that some particular s should be accurately estimated, we should choose our family
of models in such a way that the right-hand side of (5.6) be as small as possible
for the s of interest. Finding models of low dimension with good approximation
properties for some specific functions s is one purpose of Approximation Theory.
One should therefore base our choice of suitable families of models on Approximation
Theory, which accounts for the numerous connections between modern Statistics and
Approximation Theory.

We may also have the choice between several families of models with different ap-
proximation properties and complexity levels. Typically, the more complex families
have better approximation properties but we have to pay a price for the complexity.
A good example is the alternative regular versus irregular partitions for histograms.
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As shown in the previous sections, it is possible to mix families with different approxi-
mation and complexity properties by playing with the weights ∆m. In particular, it is
important that as many models as possible, and particularly those with good approx-
imation properties with respect to functions of greater interest, do satisfy ∆m ≤ c|m|
for some fixed constant c. The introduction of the family of models {Sm,m ∈ MT }
in Section 5.4.4 illustrates this fact. These models, which have especially good ap-
proximation properties with respect to a large class of Besov spaces, form a much
richer class than those soleley based on regular partitions. Nevertheless, the number
of such models with dimension D remains bounded by exp[c′D], which allows to fix
∆m of the order of D for these models. By (5.6), this implies that, when we use
such a family of models, the performance of the estimator based on model selection
is almost (up to constants) as good as the performance of the estimator based on the
best individual model.

A detailed analysis of the problems of model choice is given in Section 4.1 of Birgé
and Massart (2001) which also provides additional information about the relationship
between model selection and Approximation Theory. Further results in this direc-
tion are to be found in Barron, Birgé and Massart (1999). It follows from these
presentations that all results in Approximation Theory that describe precisely the
approximation properties of some particular classes of finite dimensional models are
of special interest for the statistical applications we have in mind. Statistics has been
using various approximation methods and we would like to emphasize here two main
trends. One is based on approximation of functions by piecewise polynomials (or sim-
ilar functions like splines), some major references here being Birman and Solomjak
(1967) and the book by DeVore and Lorentz (1993). The statistical methods based
on this approach to approximation lead to estimators which are generalizations of
histograms, the selection procedure handling the choice of the partition (and also,
possibly, the degree of the polynomials). Another trend is based on the expansion
of functions on suitable bases, formerly the trigonometric basis, more recently bases
derived from a multiresolution analysis (wavelet bases and the like). The related
estimators are based on the estimation of the coefficients in the expansion and the
selection chooses the finite set of coefficients to be kept in the expansion of the fi-
nal estimator. Statistical procedures based on wavelet thresholding are of this type.
Theorem 6 based on DeVore and Yu (1990) provides a set of partitions which are
relevant for approximation of functions in Besov spaces. A parallel result by Birgé
and Massart (2000) applies to the second approach, providing a family of subsets of
coefficients to keep in order to get similar approximation properties. A good overview
of nonlinear approximation based on wavelets or piecewise polynomials with many
useful references is to be found in DeVore (1998).

The use of metric entropy or dimensional arguments in Statistics is not new. The
first general results connecting the metric dimension of the parameter set to the
performance of estimators are given by Le Cam (1973 and 1975) and statistical ap-
plications of the classical entropy results by Kolmogorov and Tikhomirov (1961) are
developed in Birgé (1983). An up to date presentation with extensions to model
selection following ideas by Barron and Cover (1991) is in Birgé (2006). There is
also a huge amount of empirical process literature based on entropy arguments with
statistical applications. Many illustrations and references are to be found in van der
Vaart and Wellner (1996), van der Vaart (1998), van de Geer (2000) and Massart
(2006). More generally, connexions between estimation and Approximation Theory,
in particular via wavelet thresholding, have been developed in many papers. Besides
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the authors’ works already cited, a short selection with further references is as fol-
lows: DeVore, Kerkyacharian, Picard and Temlyakov (2004), Donoho and Johnstone
(1994, 1995, 1996 and 1998), Donoho, Johnstone, Kerkyacharian and Picard (1995,
1996 and 1997), Kerkyacharian and Picard (1992 and 2000) and Johnstone (1999).
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BIRGÉ, L. and MASSART, P. (1997). From model selection to adaptive estimation. In

Festschrift for Lucien Le Cam: Research Papers in Probability and Statistics (D. Pollard, E.
Torgersen and G. Yang, eds.), 55-87. Springer-Verlag, New York.
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UMR 7599 “Probabilités et modèles aléatoires”
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