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Abstract

We design and study Schwarz Waveform relaxation algorithms for the linear Schrédinger equation
with a potential in one dimension. We show that the overlapping algorithm with Dirichlet exchanges
of informations on the boundary is slowly convergent, and we introduce two new classes of algorithms:
the optimized Robin algorithm and the quasi-optimal algorithm. We study the well-posedness and
convergence, in the overlapping and the non overlapping case, for constant or non constant potentials.
We then design a discrete algorithm, based on a finite volumes approach, which permits to obtain
convergence results through discrete energies. We also present a quasi-optimal discrete algorithm,
based on the transparent discrete boundary condition of Arnold and Ehrhardt [1]. Numerical results
illustrate the performances of the methods, even in the case where no convergence result is at hand.

1 Introduction

Domain decomposition algorithms for wave propagation or advection diffusion problems have been de-
signed recently, using two concepts : waveform relaxation algorithms for ordinary differential equations,
and absorbing boundary conditions. This approach leads to algorithms which solve the problem iteratively
in each subdomain on the whole time interval (with possibly time windows), and exchange informations
on the boundary at the end of the time interval. At early stage, Dirichlet transmission conditions where
used with overlapping subdomains [4]. Then absorbing boundary conditions were used with or without
overlap to improve this exchange of information, thus accelerating enormously the convergence. They
were called optimized Schwarz Waveform Relaxation (SWR) algorithms [5][2].

We intend here to investigate the design of such algorithms for the linear Schrédinger equation with
a potential, in one space dimension, for two subdomains. We prove rigorously the convergence of the
classical one, with overlapping subdomains, exchanging Dirichlet data on the boundaries, for a constant
potential.

The key point of the new algorithms is to notice that the convergence in two iterations is obtained
when using transparent boundary operators as transmission operators between the subdomains, even
in the non-overlapping case. However, they are not available for a general potential, and we prove
the convergence of the non overlapping algorithm when using the transparent operators corresponding
to the value of the potential on the boundary. The proof uses energy estimates. We also study the
possibility of using simpler transmission conditions on the boundary, of complex Robin type. We prove
the algorithms to be well-posed and convergent. For overlapping domains, we use Fourier transform
in time and exact resolution of the equation in space, and therefore use a constant potential. For non
overlapping subdomains, the proof involves energy estimates, and holds for a non constant potential. We
also study thoroughly the possibility of optimizing the convergence factor for a constant potential.

We then introduce a finite volume discretization of the algorithm. In the interior, it produces the Crank
Nicolson scheme, widely used in the linear and nonlinear computations for the Schrodinger equation,
whereas the Robin transmission conditions are naturally taken into account. This idea was first introduced
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in [5] for the wave equation in one dimension. Using a discrete Laplace transform in time, we study
the well-posedness and the convergence of the overlapping discrete algorithms, with Dirichlet or Robin
exchange of data, for a constant potential. The convergence of the non overlapping Robin SWR is proved
with discrete energy estimates.

We finally illustrate and extend the results through numerical simulations, for various types of poten-
tial, like constant, barrier, parabolic or linear. We show how slow the convergence is with Dirichlet SWR,
and how the optimized SWR improves the convergence. We also show, without proof of convergence,
that the best algorithm by far is obtain by using discrete transparent boundary condition designed by
Arnold and Ehrhardt precisely for the Crank-Nicolson scheme [1].

Though our results hold only with two subdomains, they clearly extend to any number of subdomains.
On another hand due to the the great complexity of the analysis, we restricted ourselves to one dimension
in space.

2 Model Problem and Function Spaces

Let V be a real potential in L>°(R). We consider here the Schrodinger equation:

Lu :=104u + Oppu + Vu = f, (2.1)

with the initial condition
u(z,0) = uo(z). (2.2)
We first recall some definitions of functional spaces. Let Q be an open subset of R. The complex Hilbert
space L%(Q), is equipped with the hermitian product (f,g) = [,(fg)(z)dz and the norm || - ||. Then,

for r an integer, H"(f2) is the Sobolev space of distributions in D’(€2), whose derivatives of order up to
r are in L?(Q2). The Sobolev space H" () is equipped with the norm |[v]|grq) = (X ja<r || Dv]|?)z.
If r is not an integer, the space H"(Q) is defined by interpolation. For the time directioﬁ, we will use
another characterization. The Sobolev space H"(R) for real r is also the set of tempered distributions u
in S’(R), whose Fourier transform 4 is such that (1 +72)7/24 is in L?(R). The space H"(R) is equipped
with the norm ||ul|g®) = [|(1 4 72)"/2a||. Then H"(0,T) is the set of restrictions of elements in H"(R),
and equipped with the quotient norm |[u|| g+, 7y = inf { |U| gr®), U = u a.e. in (0,T)}. Note that if r
is an integer, the second definition is equivalent to the first one, see [6].

Lemma 2.1 (A priori estimates) Ifu is a smooth solution of (2.1), (2.2) in Rx(0,T), then it satisfies
for any positive time t the inequalities:

D017 < 17O + DI (23)
L oeut 7 < 1FC0I + 2000 DI + VI3 fut, D (24)

Proof The first result is obtained by multiplying (2.1) by @, taking the imaginary part, integrating in
space by parts, using the Cauchy-Schwarz inequality on the right-hand side, together with the inequality

1
af < g a® + % G2, forall a,8 € R, and n > 0. (2.5)

Remark that the term involving the real potential V' vanishes when taking the imaginary part.

The second inequality is obtained by multiplying (2.1) by 0;u, taking the real part, integrating in
space by parts, using the Cauchy-Schwarz inequality on the right-hand side, together with (2.5). |
A weak solution of (2.1) in R x (0,7 is defined to be a u € D'(0,T; H*(R)), such that for any v in H*(R),

d
iﬁ(u,v) — (Opu, 0yv) + (Vu,v) = (f,v) in D'(0,T). (2.6)
There is an existence theorem in L?(0,7; H'(R)) under convenient assumptions on ug and f, but

the domain decomposition algorithms will require more regularity. We therefore introduce now for any
domain £ C R the anisotropic Sobolev spaces, defined in [6] as

H™(Q % (0,T)) = L*(0,T; H"(Q)) N H*(0, T; L*()). (2.7)



If wis in H™*(Q x (0,T)), then for any integer j and k, we have

o7 ok W ik

— — H’V — T — = j— -— —

507 i € H*Y(Q x (0,T)), where =5 1 (r + S). (2.8)
Theorem 2.2 (Existence and uniqueness) If the initial value ug is in H?(R), the real potential V is
in L= (R), and the right hand side f is in H*(0,T; L*(R)), then there exists a unique solution u of (2.6)

in H>\(R x (0,T)).

Proof This classical result is obtained by a Galerkin method, using the a priori estimates of Lemma 2.1.
We first apply (2.3) to u and dyu, with ius(-,0) = f(-,0) — Oppuo — Vug € L3(R), then apply (2.4) to u.
This gives bounds for u, d;u and d,u in L>(0,T, L?(2)). Equation (2.1) gives d,,u in L%(0,T, L?(Q2)),
which concludes the proof. |

At the interfaces between subdomains, the Schwarz waveform relaxation algorithm will need traces
of the subdomain approximations to the solution. We therefore introduce the space V™5(Q x (0,7")) of
traces of functions in H™*(Q x (0,7')) for the half-line @ = R_ (and similarly for Q = R;). Denoting by
fr the trace of the k-th derivative in time at t = 0, and by g; the trace of the j-th derivative in space on
the boundary {0} x (0,T), the trace space V"*(2 x (0,T)) is defined for T' = 400 by

VR % (0,7)) = { ((F)rco s 07)jc-3) € Tica s HP*(Q) % TL;cp sy H9(0,T),

2

pe=Ee—h=d) p=20-j-1)

0Fg;i(0)=0lfu(0), HfL+E<1-L(L4], (2.9)
104 1le") Oy (0P <o, if L4 E—1— 324 1),
Theorem 2.3 For positive real numbers r and s such that 1 — %(% + %) > 0, the trace map
oFu du
we (G @0)e, y (550.0),, ) (2.10)
is defined and continuous from H™*(Q x (0,T)) onto V™*(2 x (0,T)).
Proof The proof can be found in [6]. ]

3 Classical Schwarz Waveform Relaxation

We decompose the spatial domain © = R into two overlapping subdomains ; = (—o0, L) and Qs =
(0,00), with L > 0. The overlapping Schwarz waveform relaxation algorithm consists in solving iteratively
subproblems on Q1 x (0,T) and Q5 x (0, T') using as a boundary condition at the interfacesz = 0and z = L
the values obtained from the previous iteration. The algorithm is thus for iteration index k = 1,2,...
given by

Luf = fin Q; x (0,7), Lul = fin Qy x (0,7),
u¥(-,0) = ug in Q, ub(-,0) = up in Q, (3.1)
ub(L,-) = uk=1(L,-) in (0,7), uk(0,) = w¥71(0,-) in (0,7).

For the initial guess, we only need to provide boundary data, and the convention will be that
gr :Ug(L,), g0 :u(l)(o?)

We first study the well posedness of algorithm (3.1), and then analyze its convergence properties.

3.1 Well Posedness of the Algorithm

Without loss of generality, we consider the subdomain problem on €; only,
Lv=finQ x (0,T),
v(+,0) = up in Q, (3.2)
v(L,") =g in (0,7).



Proposition 3.1 Let V be a real constant. If f € HY(0,T; L%(1)), ug € H*(Qy) and g € H3(0,T),
and if the compatibility condition
uo(L) = g(0) (3.3)

is satisfied, then problem (8.2) has a unique solution v in H°(Qy x (0,T)). Furthermore v(0,-) is in
H1(0,T), and the following compatibility formula is valid:

lim v(0,t) = ug(0). (3.4)

t—04

Remark 3.2 By the Sobolev Embedding Theorem [6], ug is continuous on Q1, v(0,-) and g are continuous
on [0, T], which gives a classical meaning to equalities (3.3) and (3.4).

Proof We start with the uniqueness result. Since the problem is linear, we consider vanishing data.
Multiplying the equation by v, taking the imaginary part and integrating by parts in space yields

d 2
Sl =o,

and thus v = 0. As for the existence result, we shall use Fourier transform in time. We define w =
v — u, where u is the solution of (2.1),(2.2) in R x (0,7). w is a solution of the Schrodinger equation,
with homogeneous right-hand side and initial value, and boundary data w(L,-) = h in (0,T), where
h =g —u(L,-). By Trace Theorem 2.3, since u is in H21(Q x (0,T)), w(L,-) is in H3(0,T), and so is h.
We now show an existence result for w, or rather for z = we™!, solution of the intermediate problem
101z + 124 Ogaz +Vz=0in Q x (0,T),
z(+,0) = 0 in 4, (3.5)
2(L,") = hy in (0,T),
with hy = he™t. By the compatibility condition (3.3), h1(0) = h(0) = g(0) — u(L,0) = g(0) — uo(L) = 0.
Hence we can extend hy in H3/4(R) by H; vanishing on (—oc,0). We extend problem (3.5) in time on

R, and the solution coincides with z on (0, 7). Therefore we still call it z. For ¢ in L?*(R), the Fourier
transform of ¢ is given by

Fo(r) = () = == [ oty
We now Fourier transform in time the first equation in (3.5), and get
(t—T4+ V)24 022 =0,
from which we deduce the exact formula
Ha,7) = Hy(r)e V=L o o[, (3.6)

(1 —V —1i)/? is the unique analytic determination of the square root of 7 — V — i with positive real part:

NN W s e S S 0 s
(T=V—i)/"= 5 —i 5 . (3.7)

The norm of z in L2(Q; x R) is now given by the Parseval identity,

1ol emy = 12220 cry = H i
VIRV 07y
When 7 — +o00, the real part of (1 —V — i)1/2 has the following behavior:
VTR0 (e o,
R Vo 8 58)

~ 1
, <O’ - 2\—1/4
vt T 2(1-|-7') , T<0.



Therefore, we have ||z|[z2(, xr) < [[H1llg1/a(gy, and taking the infimum on all the extensions Hy of hy
we obtain

2l L2007, 2(00)) < 12l 22000 xR) < [Pl grasay - (3.9)

We now evaluate 0,z the same way:

(r—V -2
02| L2 (0, x®) = —I1,(7)
V2Re (r —V —i)1/2 L2®)
Since
-V | Q+E@-VH (14 72)3/8
V2Re (r =V —i)12|  |\/2Re(r -V —i)1/2| ™~ ’

we get the upper bound
1022\ oo 0,7, £2(01)) < 1Pl grasary -

Therefore (3.6) defines the Fourier transform of a function z in H9(Q; x (0,T)), solution of (3.5). This
proves the existence of w, and hence of v, in H*°(€; x (0,T)). We now prove that 2(0,.) is in H>/%(0,T).
Due to (3.6), we have

2(0,7) = Hy(r)e V0L (3.10)
and |2(0,7)] < |ﬁ1(7)| Since hy is in H3/4(0,T), so is (0, ), and

11200, M garaco,ry < IHill grarago,)-

As for the compatibility relation, since H; is supported in R, Hy is analytic in the half-plane Zm 7 < 0,
and by (3.10) and Paley-Wiener Theorem (see e.g. [9]), 2(0,-) is supported in R.. Since we just proved
that z(0,-) is in H3/%(0,T), and since H/*(0,T) c C([0,T]) by the Sobolev Embedding Theorem [6], we
have lim¢_.o, 2(0,t) = 0. By the definition of z, it implies that lim; o, v(0,t) = lim;_o, u(0,t). Since u is
in H*1(Q2x(0,T)), by Trace Theorem 2.3, it satisfies the compatibility conditions lim;—.o, u(0,t) = uo(0),
which establish relation (3.4) and concludes the proof of the proposition. |

The preceding result ensures that the subdomain problems are well posed in the classical algorithm,
provided the initial and boundary conditions satisfy the compatibility condition (3.3) for each iteration
step, as stated in the next Theorem.

Theorem 3.3 Let g, and go be given in H1(0,T), such that g1,(0) = ug(L) and go(0) = uo(0). Let V be
a real constant. Then (8.1) defines a sequence of iterates (u¥,u%) in HYO(Qy x (0,T)) x H(Q2 x (0,T)),
with u%(0,-) and uk(L,-) in H1(0,T), with the compatibility relations

lim u¥(0,t) = ug(0), lim uf(L,t) = ug(L).
t%0+ t%0+

Proof The proof is done by induction. Let g7 and go be given in H%(O,T), such that g7,(0) = uo(L)
and go(0) = uo(0). By Proposition 3.1, this defines a unique first iterate (u},us) in H*°(Q; x (0,T)) x
HY0(Qy x (0,T)), ut(0,-) in H%(0,T) and ud(L,-) in H3(0,T). Furthermore we have the compatibility
relations limy_.o, u}(0,?) = uo(0) and lim;_.¢, u3(L,t) = uo(L), which in turn enables to define a second
iterate (u?,u2), and so on. |

3.2 Convergence of the Algorithm

By linearity, the error between the solution v and the iterates ué?, Jj = 1,2, of algorithm (3.1) satisfies a
homogeneous Schrédinger equation with homogeneous initial condition. We therefore study in the sequel
the homogeneous problem with data on the interfaces only. Let hy and hg be given in H %(O,T) with
hr(0) = 0 and ho(0) = 0, to satisfy the compatibility conditions, and let (e1,e2) be the solution in
H?1(Qy x (0,T)) x H>1(Q2 x (0,T)) of the equations

Ler=0in Q x (0,7), Leo =0in Qo x (0,7),
e1(-,0) = 0 in Q, e2(-,0) = 0 in Qs (3.11)
61(L7 ) =hy in (07T)7 62(07 ) = hg in (OvT)



Our analysis is based again on the Fourier transform in time. We define for r > % the one-sided space
oH"(0,T) = {¢ € H'(0,T),$(0) = 0},
equipped with the norm
|6l om0,y = inf { ||| grry, ® = ¢ a.e. in (0,T),® =0 a.e. in (—o0,0)}.

Lemma 3.4 Suppose L > 0. Let V be a real constant. The map Gp associated with the equations (3.11),

Gp : (e thp, e thy) — (e tea(L,-), e e1(0,-)), (3.12)
is a contraction on (oH3(0,T))%. The local convergence factor is defined as

Op(r,L) = e~ (r=V='’L (3.13)

Moreover, if L > 0 and if there is Tz > 0 such that e~thy, and e~thg vanish outside [—Tmasz, +00), then
Gp is a strict contraction: defining the maximal convergence factor as

1/2
“I'max 1 maxr 2
O (Tmass L) = exp —< Tmar £V Y + (Timaz — V) ) L| <1, (3.14)

one has

IGp (e~ hrye™"ho) | < Op(Tmaz, L) (e hr, e ho), (3.15)

(% 0,17))2 "i0,1)2

Remark 3.5 The assumptions on the supports of the data will be satisfied in the numerical computations
since the mazimal numerical frequency 8 Tmax = 7/ At.

Proof By the existence result in Proposition 3.1, Gp maps (oH %(O,T))2 into itself. We now multiply
hy, and ho in Hi(0,T) by e, extend the result by Hy, and Hy in H1(R), vanishing on (—oc0,0), extend
(3.11) in time on R, define E; = eje~", and Fourier transform the resulting equation in time as in the
proof of Proposition 3.1. We find again

By = Hy(r)e V=900 By = Hy(r)em Vo0 (3.16)
which gives F(Gp(e~thy,e th))(T) = 0p(r, L)(F(e tho)(r), F(e thr)(7)), and

|F(Gp(e™ he,e™"ho))(7)] < _Sup )|9D(T»L)||(7:(6_th0)(T)»f(e_thL)(T))L
TE|=Tmaz,+00
We have by (3.7)
sup |0D(7—7 L)| = |9D(_7—mam7 L)| = GD(TmaafJaL)v

TG[*Tma:m‘FOO)

which finally yields (3.15). [ |

We now prove the convergence of the overlapping Schwarz waveform relaxation algorithm.

Theorem 3.6 Let an initial guess (go,gr) in (H3(0,T))? such that go(0) = uo(0) and gr.(0) = ug(L).
Let V be a real constant. Suppose there is a Tymaz > 0 such that e~thy and e~thy vanish outside
[~ Tinaw, +00), with hg = go — u(0,-) and hy, = g — u(L,-). Then the iterates (u¥,uk) of algorithm
(3.1) converge in L?>(Qy x (0,T)) x L?(Q x (0,T)) to the solution of (2.1), (2.2).

k k

Proof The errors €] = uj —u, j = 1,2, satisfy for k > 2 the equations

Lek =0in Q x (0,7), Lek =0in Qy x (0,7),
ek(-,0) =0in Q, ek (-,0) =0 in Q, (3.17)
elf(Lv ) = eg_l(Lv ) in (OvT)v 6126(07 ) = elf_l(ov ) in (OvT)



For positive k, we introduce the interface functions k¥ = e5(L,-) and hf = €¥(0,-) and denote by h} = hg

and h9 = hy. Using Lemma 3.4, we obtain first by formula (3.6) and induction that if e—f/’h\L and

—

e~tho vanish outside [~Tynaz, +00), then for any k, e=th% and e~*h% vanish outside [—Tyqa, +00) as well.
Second, introducing the map Gp given in (3.12), we have

(e_th];frl’ e_th§+1) = gD(e_thg, fth]Z) = g%)(e_thlzil’ e_thloﬁil)’
which proves that

(e 'hi¥ e "hg") = G (e7'hY, e " h), (3.18)

(3T, e ) = GHFL (e g, e hY) (319)
and thus by Lemma 3.4

||(6_thlz, e_thg)” < @D(Tmarv L)kH(e_th%? e_thg)”

(Hi0,1))2 = (H(0,1))2°

with © p(Tmaz, L) given in (3.14). By estimate (3.9), we deduce that

le™ el L2, x0.1)) < @D(TmamL)kiln(eith%’eithg)”(H%(O,T))w
and therefore A T —t k
e 22, x0.my) < € lle "€} L2, x0.y)

< eT(‘)D(Tmara L)k_l || (e_th(l)/’ e_thg)”(H% (0,1))2

which yields

€51 20, x 0.1)) < €7 Op(Timaw, L) HI(R, h)| (3.20)

H(0,1)2

|
Theorem 3.6 shows that the overlapping Schwarz waveform relaxation algorithm converges, that the
convergence factor © p(Timax, L) is at least linear, and independent of the length of the time interval. It
does however depend on the overlap L, as all overlapping Schwarz methods do, but also on the smaller
negative frequency —7p,qz. It tends to 1 when L tends to 0, and also when 7,4, tends to infinity, which
differs from what happens for wave equations [5] or parabolic equations [2].

4 Optimal Schwarz Waveform Relaxation Algorithm

We proved in previous works that the best choice for the transmission conditions would be to use trans-
parent boundary operators in the sense we describe now. Let S; and Sa be linear operators acting only
in time. We introduce the algorithm

Luf = fin Q x (0,7), Luk = fin Qo x (0,7),
U’If(70) = up in Ql) U;é(,O) = ug in QQ,
(0 + S)UF (L, ) = (0 + S)uE"Y(L, ) in (0,T),  (9s + S2)uk(0,-) = (8, + S2)ub~1(0,) in (0,7).

(4.1)
We define the symbol o; of §;(8;) by o;(7) := S;(i1).

Theorem 4.1 Let V be a real constant. Algorithm (4.1) converges to the solution u of (2.1) in two
iterations for all initial guesses ud and u3, independently of the size of the overlap L > 0, if and only if
the operators S1 and Sy have the corresponding symbols

o1 =T -2 oy=—(r-V)¥/? (4.2)
with
V=V ifr>V,

4.3
—iV—T+VifTt<V. (4.3)

(T—V)1/2:{



Proof Using the Fourier transform with parameter 7 as before, and the equations for the error with
vanishing data, we find the errors to be given by

eha,7) =t (@D, r) = B e T k21 (44)
With the general transmission conditions in (4.1), we obtain for k£ > 1,

ak((T—V)1/2 +01) — ﬁkil(_(T_V)l/Q—’—0’1)67(7—7‘/)1/2[17

BE(—(r = V)2 4+ 05) = oF (1= V)2 4 o) -V, (45)

Now for an arbitrary initial guess u{ and u3, the coefficients o' and 3! will in general not vanish. Since
—(r=WY2 406, = (1 =V)? 405 =0 implies (t — V)2 + 01 #0 and —(1 — V)2 + 05 # 0, we ob-
tain from (4.5) that o? and 82 are identically zero if and only if —(7— V)2 40y = (1=V)/? 40, =0. B

For variable potentials, the optimal operators are in general not at hand. We present here and
will compare two approximations of those. The first one is to use a “frozen coefficients” variant of

these operators. The second one is to replace them by a constant, obtaining “Robin type” transmission
conditions, and to optimize them by minimizing the convergence factor in the constant case.

5 The Quasi-optimal Algorithm

We use as transmission operators the optimal operators for the constant potential equal to the value of

V on the interface. The quasi-optimal algorithm is thus for iteration index k = 1,2,... given by
Luf = fin Q1 x (0,7), Luk = fin Qy x (0,7),
u’f(,O) = up in Q, ug(,O) = ug in Qo,

(@ + /=0, — V(L))ub (L, ) (0 — /=0, = V(0))u5(0, )
= (00 + /=10, = V(L))us~(L,-) in (0, T), = (0s — /=10, = V(0))uy~'(0,-) in (0,T)
where /—i0; — V(z) is the operator acting only in time with symbol:

V(g2 = T=V(z)if 7 > V(2),
(= Vi) { —i/ =T+ V(x)if 7 < V(z). (5:2)

Though being not differential, this operator is still easy to use numerically [1].
We call the algorithm (5.1) quasi optimal, in the sense that it is optimal for a constant potential. It
is initialized by using only boundary data, therefore we define formally

gL = (0y + \/m)ug(l/, Y, go = (0p —/—10; — V(O))U?(O’ )

5.1 Well-posedness of the algorithm

For a constant potential, the proof of well-posedness relies on Fourier transform in time and exact com-
putation of the solution as in (3.6). We do not have a proof of well-posedness in the case where V is
a variable potential. On the other hand, we are able to prove the convergence of the non overlapping
algorithm in that case as shown in the next section.

5.2 Convergence of the Non-Overlapping Algorithm for a non constant po-
tential V

We prove the convergence of the quasi-optimal algorithm when there is no overlap ,i.e. L =0, and when
T = +o0.

Theorem 5.1 Let L =0 and T = +oo. Let V and V' belong to L™(R). Then the iterates (uf,u%) of
algorithm (5.1) converge in

(HY40,T, L2(0)) N H=Y40, T, H' (1)) x (HY4(0,T, L*(Q)) N H~/4(0, T, H' (%))
to the solution of (2.1), (2.2).



Proof The errors e? = uf —u, j = 1,2, satisfy for k£ > 2 the equations
Le¥ =0in Q; x (0,400), Lek =0in Qy x (0, +00),
e¥(-,0) =0 in Q, ek (-,0) = 0 in Qo,
(9 + /0, — V(0))ek (0, ) (0r — /—i0r — V(0))e5(0, )
= (9y + /=0, — V(0))es~1(0, ) in (0, +00), = (9p — /=i, — V(0))ef71(0,-) in (0, 4+00).
(5.3)
We introduce 1 > 0 satisfying
n 2 V172 g (5.4)

Let Ek be the extension of e "tek to R x ; vanishing on (—o0,0) x ;. E;“, j =1,2, satisfy for k > 2
the equatlons

(i0; + Ope + V +in)E¥ = 0in Q; x R, (i0; + Ope + V +in)EX = 0in Q x R,
(8 + /=0, = V(0) —in)EY (0, ) (8 — /=0, = V(0) — in)E5 (0, )
= (Dp 4+ /=10, — V(0) —in) ES~1(0,-) in R, = (0p — /=10, — V(0) —in) EF~1(0,-) in R,
(5.5)
where we have used the fact that e?(-, 0) =0in Q;, j = 1,2, and the identity
e M/ =i, — V(0)e™ = \/—id; — V(0) — in.
Here, \/—i&g — V(z) — in is the operator acting only in time with symbol:
(1= V(2) —in)*/? (5.6)

where (7 — V(x) —in)'/? is the unique analytic determination of the square root with positive real part.

Multiplying the equation of E} in (5.5) by \/—i0; — V(z) — inE¥, taking the real part, integrating in
time, and integrating by parts in space yields

Re / / (—idy — V(z) — in)EF\/—i0; — V(x) — inEFdxdt
+Re / / \/ 10y — — N0y E Oy E{“dmdt
(5.7)
~Re [ 9B 0.0 V) — 0. )t
= —Re // 2)0, Ef\/—i0; — V(x) — in lE:’fdxdt
where we have used the identity
- - - - V'(x) - ——1
Dx(\/ =0y — V(z) —inw) = \/—id; — V() — i1 dpw — V=id = V(z) —in  w.
By using Plancherel in time and
Re (ab) = (|6hL b* — Ja —b*)
we obtain:
[ [ Re(mVE a0 + (¢ Vi) B )P
// Re (/7T —V(x) —in)|0a Ek(T x)|*dxdr
/ 0.550,.) — /=i, — V(0) — Bt 0, ) P ()
/ 0.550,.) + /=i, — V(0) — B0, )P
AT e[ / ~ V()?) 0B ()| (7, ) ddr



We have ) 0
e / / (1 + (1 — V(@))2) 4|8, B} (r, )| EF (7. 2) | dedr

// Re(\/T— ( ) — )|8 Ek(r, x)|2dzdr (5.9)
! k 2
s Re (/7= V(z) —in )(77 + (1 =V(z))?)=
Now as
1/2
Re T—v(x)—m):< +\/T‘ +”>
we get
- n
_ _ > 1
Re (/T —=V(x)—in) > ET (= V@)D (5.10)
which in turn yields
20,2 _ 2y1/2 3
Re (\/r— V(@) — )02 + (v~ Vi) » TV 2
Therefore: i
V17 1
8 JRe(VT V(@) —in)(n*+ (1= V(x))?)?
!/
< Wl (r=v@ = + (- - Vie)?)? (5.11)
1 1
< GRe(VT = V() —in)(n* + (7 = V(@))*)?
where we have used (5.4) to get the last inequality. Thus, using (5.8), (5.9) and (5.11) we obtain:
// Re (V1 — V(@) — i) + (1 = V(2))*)V*|E} (r, 2) dadr
// Re (/17— V(x) —in)|0, Ek(T z)[*dadr
(5.12)
+5 [ 100, = V=0 = V) = im0, )Pt
<= 1 / |0, EF(0,.) +\/—i0; — —inE¥0,.)dt.
Introducing the boundary operators Bt = 9, + v/—i0; — V(0) —in, and B~ = 9, — \/—i0; — V(0) — in
and the energy
w= [ [ Re(WTTV@ IO + (¢ V) it P
(5.13)
// Re (/T —V(z) —in )|3 w(T, z)|*dedr
we can rewrite (5.12) as
B+ 1/ |B~EF|2dt < 1/ |BY EF2dt. (5.14)
2 Jr 2 Jr
Similarly, we obtain for E¥
k) 4 1/ B+ EYPdt < 3/ B~ B Pt (5.15)
2 Jr 2 Jr
where the energy Js is defined by
+oo
Baw) = [ [ Re(T=V@ =m0 + (7 = V@) Plar ) Pdedr
0 (5.16)

//+OOR6 VT =V(z)—in )|(9 w(T, z)|>dxdr.
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Now note that the transmission conditions in (5.5) can be expressed with the operators B* as
BiEf(Ov ) = BiEg_l(Ov ')7 B+E§(O7 ) = B+E1k_1(07 )

Replacing the corresponding terms in the equations (5.14) and (5.15), and adding, we find
1 1
JL(EY) + Jo(B3) + 5/(|B*Ef|2 + BT ES)dt < - /(|B By 4 BT EST ). (5.17)
R

Summing (5.17) in k, we get a telescopic sum on the interfaces and therefore

K
+ JQ E.
; 2)) (5.18)

%/(|B EE2 4 |BYEE )t < 1/(|B Y2 + |B*EY|2)dt.
R

The sum of the energies over all the iterates remains bounded. Hence the energy Jy(E}) 4 Jo(E%) needs
to go to zero.
Finally, using (5.10) and the definitions (5.13) and (5.16) of J; and Ja, we see that

Jl(w) > ||w||§{1/4(0’T’L2(Ql)) + Haxw”z*/‘l(O,T,L?(Ql)) (5.19)

and
JQ(U)) Z ||w||%-]1/4(07T7L2(Q2)) + ||azw||§.[—1/4(07T7L2(Q2))« (520)

Therefore, the algorithm (5.1) converges in

(HY4(0,T, L*(Q)) N H=Y4(0,T, H' (1)) x (HY*(0,T, L*(Q)) N H~Y4(0, T, H*(9s))).

6 The Algorithm with Robin Transmission Conditions

A simple alternative to the previous approach is to use Robin transmission conditions, i.e. to replace the

optimal operators S; by S; = =Sz = —ipl where p is a real number.
Luf = fin Q1 x (0,7T), Luk = fin Qy x (0,7),
Ulf(,()) = up in le Ug( 0) = g in Qg,
(02 — ip)uf(L,") = (0n — ip)us~"(L,-) in (0,T), \ (8, +ip)u(0,-) = (0 + ip)uy~"(0,-) in (0, 7).

(6.1)

Remark 6.1 This choice of transmission operators corresponds to the lower order rational approximation
of the optimal operator introduced in [11].

In this case the convergence factor p is equal to

2
D+ (T =V)'2\ vy
L _— T 2
p(T D, ) (lp — (’T V)1/2 € ) (6 )

and thus we have |p(7,p, L)| = e 2V7=VLif 1 >V, and |p(1,p, L)| = % V::I‘é | Yifr<V. Therefore,

in order for the algorithm to converge, we shall need that p > 0.
The algorithm is initialized by using only boundary data, therefore we define formally

gL ‘= (3,L - ’Lp)Ug(L, ')v go ‘= (813 + Zp)u(l)(o’ )

11



6.1 Well Posedness of the Algorithm

Without loss of generality, we only study the well posedness of the subdomain problem on 2,

Lo=finQ x(0,T),
’U(',O) = Up in Ql, (63)
(0zv —ipv)(L,-) = g in (0,T).

The following proposition gives existence, uniqueness and regularity of the solution.

Proposition 6.2 Let the real potential V be in L°°(Q). Suppose f is in H(0,T; L*(Q1)), uo in H2(Q1),
g in HY(0,T), with the compatibility conditions

Ozuo(L) — ipuo(L) = g(0). (6.4)
Then, for p > 0, problem (6.3) has a unique solution v in H>1(; x (0,7T)). Furthermore, suppose V

is constant, f is in H*((0,T) x Q1), uo in H*(1). Then v(0,-) and 9,v(0,-) are in H*(0,T), and the
following compatibility relation is satisfied:

tli%1+(8wv(0, t) + ipv(0,t)) = pup(0) + ipue(0). (6.5)

Proof (i) First a priori estimates. Multiplying equation (6.3) by o, integrating by parts in space, using
the boundary condition and taking the imaginary part, we obtain

5 GO +plo(L, 1) = Zm (£, 1), v( 1) — g()o(L, 1)), (6.6)

where we have used the fact that the potential V is real. By the Cauchy-Schwarz inequality, and applying
(2.5) to both terms of the right-hand side, we get after an integration in time

o B2 +p / o(Los)Pds < fuoll?+ / FCs)2ds + }9 / lo(s) 2 ds
t
. 2
+/0 [lv(-, 8)||* ds. (6.7)

Applying the Gronwall Lemma gives the first bounds for v:

1
[0l F o0 0722000y T PIO(E M T20.7) < €7 (lwoll® + 1 7207, 22(00)) + ;HQH%Q(O,T))' (6.8)

We apply (6.8) to d;v, with the initial condition dyv(-,0) = —i(f(-,0) — Opzuo — Vug) € L*(Q1). By the
regularity assumptions on the data, and the Trace Theorem in time for f, we obtain

Hat’UH%OO(O,T;L?(Ql)) + [|0wv(L, ')H%?(O,T) < CeT(”uO”%{?(Ql) + ||V||2Loo(91)||U0||2L2(Ql)
1
+ 17 o, p200)) + 5”9”%11(01))' (6.9)

(i1) Second a priori estimates. We now multiply equation (6.3) by 0,0, integrate by parts in space, using
the boundary condition, and take the real part. We obtain

—%Il&gvll2 +2pReiv(L, )0o(L, ) = —2Re (98,0(L, -)) + 2Re (Vu(-, 1), 8;v (-, 1)) + 2Re (f (-, ), 0 (-, 1)),

which implies

100 (- )1* < pllv(Ls 20,7y + @+ DIOev(L, )7 20,7y + 201060l F2 0,7y x0)
+ HVH%OO(QI)||U||%2((O,T)><Ql) + ||f||%2((O,T)><Ql) + ||9||%2(0,T) + |0z,
and by (6.8), (6.9),

”aﬂvv('7t)||2L°°(O,T;L2(Ql)) < CeT(HUOH?‘I?(Ql) + ”V”QLOO(Ql)”uO”QL?(Ql) + ||f||%rl(o,T;L2(Ql)) + ||g||?'-11(0,T))'
(6.1

12



Finally, using the equation Lv = f and (6.9), we have

||3m’U(‘vt)||%oo(o,T;L2(szl)) < CeT(”uOH%IZ(Ql) + ||V||%oo(91)||uo||%2(91) + ”f”%il(O,T;Lz(Ql)) + ||9||%11(0(,6T)1)1~)

By (6.8),(6.9),(6.10) and (6.11), we have a bound on v in H>!(Q; x (0,7)), and on v(L,-) in H*(0,T).
This is sufficient to obtain existence and uniqueness in these spaces by the Galerkin method. Further-
more, by the Trace Theorem in H*'(9; x (0,T)), we have v(0,-) in H3/4(0,T).

(#i7) Third a priori estimates.
We now prove that v(0,-) is actually in H'(0,7). With the additional assumptions on the data, the
solution u of (2.1), (2.2) is in H*?(Qy x (0,T)) [6]. We use the same sketch as in Proposition 3.1: we
introduce the auxiliary problem satisfied by z = e~ (v — u) in ; x (0,7):

101z + 124 Opaz+Vz=0in O x (0,7),
z(+,0) = 0 in Qq, (6.12)
0:2(L,-) = ipz(L,-)+ h in (0,T),

with h(t) = e *(g(t)—0,u(L,t)+ipu(L,t)). The boundary data h is in H'(0,7'). Due to the compatibility

conditions (6.4), we can extend h in H'(R) by H, vanishing for negative ¢, and we have through Fourier
transform in time,

ﬁI(T) —(r=V=)Y?(L—2z)
(T—V—i)l/z—ipe , x < L. (6.13)

Since Zm (1 — V —i)/2 < 0, we have |2(0,7)| < %|IAI(T)|, and

2z, T) =

1
1200, Mz 0,m) < 5||h||H1(o,T),
which proves that v(0,-) is in H*(0,7'), and

10(0, 7 0.y < Ce™ (lullFra @, xory + l9lFro.r)- (6.14)

To conclude the proof of the Proposition, we need to prove (6.5). Since u is in H*2(Q; x (0,T)), it
satisfies

Jim (02u(0,t) + ipu(0,t)) = Orup(0) + ipug(0).

—U4

Therefore we only need to prove that

lim (9,2(0,t) +ipz(0,t)) = 0.
t—>0+

Since h(0) = 0, using the boundary condition, this amounts to proving that lim; .o, 2(0,t) = 0, which
can be established as in Proposition 3.1.
|

The same result also holds on subdomain 29, leading to an existence result for the algorithm:

Theorem 6.3 Let V be a real constant. Let p > 0, and let gr, and go be given in H'(0,T), with the
compatibility conditions

9zuo(L) — ipuo(L) = gr(0),  Ozuo(0) + ipuo(0) = go(0). (6.15)

Then (6.1) define a sequence of iterates (u¥,uk) in H**(Qy x (0,T)) x H**(Qa x (0,T)), with u¥(0,-),
0,uk(0,-), ub(L,-) and O,ul(L,-) in H'(0,T). Furthermore, at each step k, the following compatibility
relations are fulfilled:

lim (9, uf(0,t) + ipu¥(0,1)) = 9,u0(0) + ipue(0),

t—04

A k (6.16)
tlirgl (Ozus(L,t) —ipus(L,t)) = Opuo(L) — ipuo(L).
—04
Proof The proof is done by induction using Proposition 6.2. |

13



6.2 Convergence of the Overlapping Algorithm

Let hz and hg be given in H'(0,T). Let (e1, e2) be the solution in H?1(Qy x (0,7)) x H*(Q x (0,T))
of the problem

Ler =0in Q1 x (0,7T), Les =0 in Qs % (0,T),
61(',0) =0in Ql, 82(-,0) =0in Qg, (617)
(0x —ip)er(L,-) = hyr, in (0,T), | (0 +1ip)e2(0,-) = ho in (0,7T).

Lemma 6.4 Let V be a real constant. For L >0 and p > 0, the map Gy associated with (6.17),
Go: (e thr, e thy) — (e " (Opea — ipea)(L, ), e (Dper + iper)(0,)), (6.18)
is a contraction of (¢H(0,T))2. The local convergence factor is defined as

(1—V -2 +ip

o7, L) = C(r=V-i)2—ip

O0p(r, L). (6.19)

Moreover, if there is Tmaz > 0 such that e~thy and e~thg vanish outside [—Tmaq, +00), then Gy is a strict
contraction:

1Go(e™ b, e ho) || (#0172 < O0(Timaa, L) (€ hr, e o)l (1 0.1))2 (6.20)
with ©o(Tmazs L) = SUPre[—ry0n,+00)|00(T, L)| < 1.
Proof The proof is analogous to the proof of Lemma 3.4 using Fourier analysis. We can multiply Ay,

and hg in oH'(0,T) by e !, extend the result by H; and Hy in H'(R), vanishing on (—o0,0), extend
(6.17) in time on R, define E; = e;e™", and Fourier transform the resulting equation in time. We obtain:

A ﬁL(T) —(T—V—Z)l/z(L—.’L‘) ~ ﬁO(T) —(T—V—i)1/2.’L‘
b n) = i 7 - Balen) = o e, ’

which gives F(Go(e thy,e " ho))(T) = Oo(, L)(F(e *ho,e "hr)(7)), and

[F(Gole™"hr, e ho))(T)] < sup |0o(7, L)I[(F(e™"ho) (1), F (e hr)(T))].

TE[—Tmaz,+00)

Since p > 0, we have sup,¢(_r, .. +o0) [00(7, L)| < ©p(Tinas, L), and thus
Go(h, ko)l 0,72 < ©D(Tmaws L) (hry ko)l (1 (0,7))2-

Since © p(Timaz, L) < 1, the result follows. [ |
From the proof of this Lemma, we can see that the contraction of the overlapping Schwarz waveform re-
laxation map with Robin transmission conditions, Gy given in (6.18), is at least as good as the contraction
of the classical map with Dirichlet transmission conditions, Gp given in (3.12), whatever choice we make
for the parameter p > 0 in the Robin transmission conditions. We use now the contraction property from
Lemma 6.4 to prove convergence of the new algorithm.

Theorem 6.5 Let V be a real constant. Let an initial guess (go,gr) in (H'(0,T))? such that the com-
patibility conditions (6.15) are fulfilled. Suppose hg = go — 9,u(0, ) — ipu(0,-) and hy, = gr, — du(L,-) +
ipu(L,-) are such that e~thy, and e~thy vanish outside [~Tpaz, +00). For p > 0, the solution (u¥,uk) of

algorithm (6.1) converges in L*(Q x (0,T)) x L?(Q2 x (0,T)) to the solution u of (2.1).

Proof We define the errors e? = u;“ —u, j = 1,2, solution of the homogeneous algorithm, and introduce

the interface functions k¥ = (9,.e5 —ipek)(L,) and hk = (9,.€¥ +ipek)(0,-). Using the map Gy, we obtain
by induction

(e7thY e7thk) = GE(e7thY ,e7th)), for k even, (e7'h%, e thE) = GE(e7th,e7thY) for k odd.
By Lemma 6.4, we have

(e~ Ry e " h) | (202 < (O0(Tmazs L))* (e Y, €™ h) | (a1 0,1y)2-
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In the same way as in (3.6), we obtain with obvious notations the exact formula

—— H U)o v
e~tek(z, 1) = = Vl— iz = ipe (r=V=i) (L=2)  p < L. (6.21)
Since |(7 — V —i)'/2 —ip| > p, we have as in (3.9),
1
—t_k —tp k—1 —tp k—1
lle t€1||L2(0,T,L2(S21)) < ; He thL HH1/4 OT) H th HHl (0,T) " (6.22)

An estimate of the form (6.22) also holds for e, and we finally have like in (3.20),

||e§C ||L2(Qj % (0,7T)) < eT@O(Tmar; L)kil || (h%, hg) || (H(0,T))25 (623)
which completes the proof. |

6.3 Convergence for the Non-Overlapping Algorithm

We now assume that there is no overlap, i.e. L = 0. We first analyze the convergence of the algorithm
in the appropriate Sobolev spaces. The convergence analysis for the non-overlapping case is based on
energy estimates and follows an idea from [7], which has widely been used since (see [3], [8] for steady
problems, [5] for evolution equations).

Theorem 6.6 Without overlap, L = 0, the Schwarz waveform relazation algorithm (6.1) converges for
p > 0in L°°(0,T; L*(Q1)) x L>=(0,T; L?(Q2)) to the solution u of (2.1), (2.2) for any initial guess (go, g1.)
in (H'(0,7))? and any real potential V in L>(R).

Proof We use the energy estimate (6.6) in Q; for the error ¥, and the corresponding energy estimate

in Qy for the error e,

=k + Zm (0.5 0) F0) = o, (6.24)

1d

5 Sl — Tm (9,65(0) 50)) = 0. (6.25)
Introducing the boundary operators BT = 9, +ip, B~ = 9, —ip, and rewriting the terms on the interface

in the form

Tm (9,¢(0, ) £(0,)) = %qrﬁe(o, 2 = Be(0,)2),

we obtain the new energy estimates

1 1
2 + k 2 _ -k 2
—|B . =—|B . 6.26

S ek +4p| F0.)1 = LIB ek, (6.26)
L4 —lles|? + IB_e’“(O o= L [B*e5(0,-)|? (6.27)
9a 2 1p 2(Y, i 2(U, )" .

Now note that the transmission conditions can be expressed with the operators B* as

Biellc(()? ) Bi 5 1(07 ')7 B+e’2c(07 ) = B+elf_1(07 )

Replacing the corresponding terms in the two equations (6.26) and (6.27), we find

dwwe, L or g 2 | P 2

~ . = — . 2
ZIEIP+ o IBr 007 = B0, (6.28)
L2 + -1B-e5(0, ) = —[B*eE1(0, ) (6.29)
dt"? 2p 220 T2 P '

Adding these two equations and summing in k, we get a telescopic sum on the interfaces and therefore

K

(6.30)

??‘
;-.

d
S ler ] + llez 1)
1

— (IBT K2 - K2 N — (IRt L02 — 012 .
4 (BTEl P+ 1B7EE)0,) = 3 (B + 15-€)(0, ).
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We can now integrate in time, and since the initial values of the error vanish, the sum of the energies over
all the iterates remains bounded. Hence the energy in the iterates needs to go to zero and the algorithm
converges. [ |

6.4 Optimization of the Algorithm with Overlap

We suppose here the potential to be constant. According to (6.2), the convergence factor associated to
Robin transmission conditions is

ip + (T — V)1/2>2€—2T1/2L

o Y , (6.31)

p(r.p, L) = (
In practical computations, only a bounded range of frequencies are present: |7| € [Tyin, Tmaz]- For a
discretization with time-step At, we have Tyae = 7/At, Tinin = 7/T. We define D = (—Timaz, —Tmin) U

(Twmins Tmaz ), and for a given potential V', the evanescent region Ey = {7 € D,7 > V}, and the propa-
gating region Py = {7 € D,7 < V}. The modulus R(7,p, L) of the convergence factor is given by:

e~ 2VT-VL if 7 >V, evanescent region Ey
R(Tvva): (p_\/V_T
p+VvVV -1

In order to accelerate the convergence of the algorithm, we want to find a real positive number p
which minimizes R over D. Since the behavior of R in Ey does not depend on p, we can only minimize
the convergence factor in the propagating region. The following min max problem is the key of the
minimization in Py,. We introduce the function

flon) = (252 ) (6.33)

pts

2 . . (6.32)
if 7 <V, propagating region Py .

and the best approximation problem: find p* > 0 such as to realize

inf sup f(s,p). (6.34)
p>0 se(

Smin ,Srnax)

Problem (6.34) is quite simple and can be treated at hand.

Lemma 6.7 The best approzimation problem (6.34) has a unique solution p*, defined by f(Smin,p*) =
f(8maz,p*), and given by

2
\/S — 7/ Smi
p* = (Sminsmazc)l/QaS* = Sminaf* = f(s*,p*) = (%) .

Proof It is easy to see that for any positive p,

2
S - .
(M) if p < \/SimawSmin,

p—s Smaz + D
sup p—+s = 2
€(Smin,Smazx — Smi i
S€(5min-5mas) (u) it p > \/Emazdmin.
P+ Smin

2
b—s . . . .

m is now decreasing on (0, \/SmazSmin) and increasing on
p+s

(\/SmazSmin, +00). It has a unique minimum, attained for p* = \/SmazSmin- [ |

We are able now to study the minimization of the convergence rate over the propagating region, and to
calculate the optimal value. In the sequel |s] is floor(s), the integer part of the real number s, and [s]
is ceil(s) = floor(s) + 1.

The function p = Supse[sminvsmaw]<

Case 1, V < —Tpas: Pv =0, By =D.

Vp > 0, maj%(R = e 2LV =Tmaz=V
TE
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Case 23 —Tmaz < V< —Tmin: PV = (_Tmazv V), EV = (‘/7 _Tmin) U (TminaTmaz)'
In this case, max,cp R = 1. However, we can make a more precise analysis. In the discrete case,

7 takes only discrete values 7, = kn/T, for 1 < k < K = %. If —V is none of the 7, we
can counsider values of 7 in (—Tymaw, —7=) U (=74, —=Tmin) U (Tmin, Tmaz) With 7— = f;‘f 1 Tmins

Ty = LTmVJTmm We now have Py = (—Tmaxz, —7—), and by Lemma 6.7, max,¢cp, R is minimal
when p = p* = (V 4 Timaz)(V + 72))/4, and is equal to R(—Tyas, p*, L) = R(—7_,p*, L).

14 _ (v 1/4
* 1/4 * _ (V + Tmaw) ( + T—) 2T =V
P = ((V+Tmaa)(V47-)) /7, ITneal)ch(T,p L) = max<(v s T (V £ 7 )T e .
Case 3’ —Tmin < V < Tmin- PV = (_T’rnaza _Trnin)a EV = (Trnin)T’rnaz)-
By Lemma 6.7, the norm of R in Py is minimal for p* = (V + T )(V + Tmm))l/‘l. The corre-
sponding convergence factor is R(—Tyaz, p*, L). On the other hand, marg, R = e~ 2ELVmin =V,

(V + Timaz) /4 = (V + Tynin) /4 2Lﬁ)

* . 1/4 * _
p = ((V+T7nzn)(v+77naz)) ) Iglea[))(R(ﬂp 7L) - max((v + Trnaw)l/4 4 (V + 7-Tm,n)l/él’e

Note that this case includes the free Schrédinger equation, i.e. the case V = 0.

Case 4, Thmin <V < Timaz: Pv = (—Tmazs —Tmin) U Tmins V), Bv = (V, Trmaz)-
Again max,cp R = 1, and we introduce the frequencies , 7_ = LL_JT,,”‘”, T = v 17min. We

Tmin Tmin

now have Py = (—Tmaz, —Tmin) U (Tmin, 7= )y Bv = (T4, Tmaz ), and

H}%XR = max(f(_Tmaz - va)v f(_Tmin - Mp)v f(Tmin - Mp)v f(T* - V’P))
As a function of p, it is first equal to f(—Tmaz — V, p), then to f(7— —V,p). It is minimal when these
quantities are equal , i.e. when px = (V — 7_)(V + Tpmaz))'/*. The corresponding convergence
factor is R(—7_,p*, L).

— 1/4 _ 1/4

* = — 1/4 * _ (V T—) (V+T771am) Y v

p = ((V-m_)(V+Tmas)) ", lgleagR(T,p ,L) = max((v V7 (V—i—Tmaz)l/‘*’e VT .

Case 5, V > Tyew: Pv = D, Ey = (0. By Lemma 6.7, the minimum value is attained for p* =
(V2 =72 )4 and R* = R(Tmae, 0", V).

maxr

(V + Tmax)l/4 - (V — Tmax)l/4 672Lm).

* 2 _ 2 1/4 * _
p =V = Thaw) s ITneagR(T,p , L) _max((V—I—me)l/‘*+(V—Tmax)1/4’

max

7 Construction of the Discrete Algorithms

7.1 Discretization of the equation

We first discretize (2.1). Az and At are the discretization parameters in space and time respectively, the
discrete points in space are denoted by z; = jAx, and in time t" = nAt, with At = T/N. The discrete
difference operators are defined by

U(J + 17”) — U(Jv TL) U(Jv TL) — U(J — 17”)

+ . . - s —
v = LV ZUG o by 2 L ey 1))
t 2 2
We shall use the Crank Nicolson scheme
LU(j,n) :=iDfU(j,n)+ DfD;UGn+ 3+ V(i) U(j,n+ 3) = F(j,n+3), (7.2)

which is unconditionally stable, second order in time and space. The scheme is completed with the initial
condition U(j,0) = ug(z;).
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7.2 Discretization of the classical Schwarz algorithm

We suppose that L = ¢Az. The points in Q7 are numbered from —oo to ¢, and the points in Qs are
numbered from 0 to +o00. We denote the numerical approximation to u¥(jAz,nAt) on ©; at iteration
step k by UF(j,n). The discrete form of algorithm (3.1) is:

iDf UL (j,n) + DEDZUT(Gin+ 5) + V) UF(Gin+ 3) = F(Gn+ ) for j 6,0 <n < N,

UY(5,0) = U(5,0) for j <,

Ub(,n+3) =UF'n+L)for0<n <N,

iDf U5 (j,n) + DEDZU (Gt 3) + V() U3 (G + 3) = F(in+ 3) for j 20,0 <n < N,

U3 (j,0) = U(5,0) for j > 0,

Us(O0,n+ 1) =UF0,n+ 1) for0 <n < N.

(7.3)

Remark 7.1 Since the initial values are given for all discrete values, the transmission conditions in
(7.8) are equivalent to UF(£,n) = US=Y(¢,n) and US(0,n) = UF~1(0,n).

7.3 Discretization of the boundary value problem with Robin boundary con-
dition
The Crank-Nicolson scheme can be obtained through a finite volumes procedure. This approach takes a

better account of the Robin boundary condition, as was first noticed in [5], in relation with the Schwarz

waveform relaxation for the wave equation. The function u is assumed to be a constant in (:cj 1,01 ) X
2 2

(tnfé’tmr%)’ with the notations Tl =T, + Az/2, tni% = t, = At/2. Its derivative in time dsu is

_1a30j+1) X (tnytny1), equal to D U(j,n), and its derivative in space d,u is constant
2 2

in (a:j,a:j+1) X (tn—%’tn+

D = (xj—%’xj+%) X (tn,tn+1). Integrating on D yields the Crank Nicolson scheme (7.2) in the interior.

As for the boundary conditions, we start with the right boundary:

constant in (xj

1), equal to DFU(j,n). The control volume around a grid point (z;,t,) is
2

7.3.1 Construction of the discrete Robin boundary condition on the right boundary

We start with the continuous boundary condition
(Oyv — ipv)(L,-) = g, in (0,T). (7.4)

We first integrate the equation on the control volume (z, 1,x¢) X (tn,tn41). For the time derivative we
2
obtain
tny1  pxe 1
/ / Opu(z,t) dedt ~ §AxAtD;“U(£, n),
tn T 1
-3

and for the second derivative in space

Xy tnt1 tnt1 tn+1
/ / Opzu(z,t) dedt = / Ozu(xe, t) dt — / &ru(ﬂfl,l ,t) dt.
z 1 Jtn t t 2
=3

ln n

The space derivative d,u(z, 1,t) is approximated on (tn,t,41) by D U(¢,n + 3). Integrating all the
2
terms leads to
1 tn1
igATADFU(Cm) — MD;U(En+ 1) + / Duu(we, t) dt
tn (7.5)
1 1
+ §AzAtV(€)U(€,n +1) = 5AgcAtF(z,n + 3).

In order to evaluate the time integral on the left, we integrate the boundary condition (7.4) on
(tn,tn+1)l

tnt1 tnt1
/ Doule,t) dt — ipAIU(6n + 1) ~ / on(t) dt. (7.6)
t t

n n
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We define, for n > 0, G.(n) = 2 tf:“ gr(t) dt, and the boundary operator

' A
B, U(f,n) = D;U(l,n+ 1) —ipU(lin+ L) — %AxDjU(e, n) — 7”3V(6)U(e,n +L, (77

and the discrete condition on the right boundary of €, is

B,U(f,n) = Gy(n) — ﬁ F(t,n+1). (7.8)

7.3.2 Construction of the discrete Robin boundary condition on the left boundary

The continuous boundary condition is
(0zv + ipv)(L,-) = g in (0,T). (7.9)

We first integrate the equation on the control volume (zg,21) X (tn,tn+1). For the time derivative we
2

obtain

1 tn+1
/ 2/ Opu(x, t) dedt = —A:L‘AtD+U(O n),
tn

and for the second derivative in space

tn+1 (L‘l tn+1 tn+1
/ / 3 Oypu(e, ) dudt = / Dou(L, 1) di — / Duu(zo, 1) dt.
tn o tn tn

The space derivative d,u(x1,t) is approximated by DFU(0,n + 1), and we obtain
2

1 tn41
i5ATADFU(0,n) + ADFU(O,n + 1) - / Duu(o, t) dt
. . tn (7.10)
+ §AxAtV(O)U(O,n +1)= EAxAtF(O,n—i- ).
To evaluate the integral on the left-hand side, we integrate the boundary condition (7.9) on (¢, tn41):

tnt1 tnil
/ Opu(xo, t) dt +ipAtU(0,n+ %) = / gi(t) dt. (7.11)
tn tn

We define, for n > 0, Gi(n) = 25 f::“ g-(t) dt, and the boundary operator for 0 <n < N,

j A
B,U(0,n) :=DFU(0,n+ 1) +ipU(0,n+ 1)+ %AijU(O,n) + TxV(O)U(O,n +1). (7.12)
The discrete condition on the right boundary of €2 is
A
ByU(0,n) = Tx F(O,n+ 1)+ Gi(n). (7.13)

We now describe the discrete algorithm.

7.4 The discrete Robin Schwarz relaxation algorithm

We first need in each subdomain to extract at step k the transmission conditions for the neighbor at step
k+1.

7.4.1 Extraction of the transmission data in

For u solution of the Sghrodmger equation in Q, and U an approximation with data G,, we must now
evaluate Gy(n) = = o (Opu + ipu)(0,t) dt. We proceed as in (7.5), integrating the equation on the
control domain (3671,2@0) X (tn,tnt1), and obtain

2

1 tn+1
ZEAxAtD:“U(O,n) —AtD;U0,n+ 1) + /t Opu(zo, t) dt

1 1
+ gAxAtV(O)U(O,n +1)= 5AxAtF(o,n +1).
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Therefore we can evaluate Gy by defining the extraction boundary operator BeU (n) by

. A A
BuU(0,n) := D;U(0,n+4) +ipU(0,n + ) = i—=D; U(0,m) = -V(0)U(0,n + }),
(7.14)

G (n) = B (0,m) + 52 F(O.n+4).

7.4.2 Extraction of the transmission data in (9

For u solution of the Schrédinger equation in €22, and U an approximation with data G;, we must now
evaluate Gr(n) = 7 :"“(azu —ipu)(¢,t) dt. We proceed as in (7.10), integrating the equation on the
control domain (zy, xé+l) X (tn,tn+1), and obtain

2

1 tnil
i5ATADFU(6,m) + MDFU(En+ 1) - /t Dutu(we, t) di+

%AzAtV(B)U(& ntl) = %AzAtF(@, n+ 1),

Therefore we can evaluate G, by defining the extraction boundary operator B,.U(n) by

~ A A
B,U(t,n) := DU, n+ 1) —ipU(l,n+ L) + z‘TxDjU(e, n) + Txv(g)U(ganr b,

(7.15)
G.U(n) = B,U(t,n) — % F(t,n+ ).

Remark 7.2 (extraction of the Robin data without overlap) In the case where { = 0, Gi(n) is
nothing else but G,(n) + 2ipU(0,n + %), and G.(n) = Gi(n) — 2ipU(0,n + ), which simplifies the
procedure.

7.4.3 The discrete algorithm

Let G% and G be given. We define, for k > 1,

LU (j,n) =F(j,n+3) for —co<j<l, 0<n<N,

U{c(j,O) = ’U,()(mj) for —c0<j <Y, (716)
A

B.UF(t,n) = G (n) — ;F(f,n + 1) for 0<n <N,

LU} (j,n) = F(j,n+1%) for0<j < +o0, 0 <n <N,

U3 (5,0) = uo(x;) for 0 < j < +o0, (7.17)

BU¥(0,n) = GE=1(n) + % FO,n+3) for0<n <N,

and compute
& P Ax 1
Gi(n) = B.U5(l,n) — - F(l,n+3) for 0<n <N,

] o (7.18)
GE(n) = BUF(0,n) + - FO,n+3) for 0<n <N,
where the discrete transmission operators B; and B; are summarized below
; A
B,Uy(t,n) := D7 Ur(6n + 4) —ipUh(6,n + ) = 58Df Us(lm) = SV (OUL (G n + 3),
) A
BuUs(0,n) = DFUa(0,n + §) +ipU (0,n + 1) 5 A Df Ua(0,m) + -V (0)U (0,n + 1),
(7.19)

. A A
BuUi(0,n) = D; Us(0,n+ §) +ipUs (0,n + §) = i—= D} Us(0,n) = =V (O)UL(0,n + 3),

. A A
B,Us((,n) = DFUs(t,n+ 3) = ipUa(,n + 3) + i—-DF Us(bm) + SV(OUz(6n + 3).
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The previous formulas are useful for the practical implementation of the algorithm. In the forthcoming
convergence analysis, we shall use the transmission conditions in the form

B, Uf(€,n) = B,UY 1 (4,n) — AxF(f,n + 1),

e 1 (720)
BU;(0,n) = BeUP ™ (0,n) + AzF(0,n + 3).

7.5 The quasi optimal discrete algorithm

In [1] were designed discrete transparent boundary condition for the Crank Nicolson scheme, in the case
of a constant potential outside the domain. They are given by

n+1
BIU(t,n) :=U(l—Lin+ 1)+ U —1,n)— > Si(n—m+1)U(L,m) =0, (7.21)
m=1
n+1
BfU(0,n):=U(L,n+1)+U(L,n) = > _ So(n—m+1)U(0,m) =0, (7.22)
m=1
where the coefficients S;(m) are given by the table
Az? 2 L ig )2 2 2\ P2 2\\1/4
R=2", 0 = —V(z;)A2?, o; = 5% (R?+ ) (R + (05 +4)%) ",
(R? + 40, +0?) o;+2
Hj = 5 N o - . 5 1/27¢j=arctan 2R —RQ_ZO_GQ‘)’
((R? +03)(R? + (05 +4)%)) P79 (7.23)
iR (o] iR ag; —ids Q5 o4,
S0 =1= 5+ —aj, (1) =1+ + 5 +ague ™, 85(2) = L™ (uj = 1),
2m — 1 . -2
Si(m+2) = o pie %S (m+1) — m-s e~ 2% 8;(m), m > 1.

+1 m+1

Using these transparent boundary operators as transmission operator in the domain decomposition pro-
cess, we write, for k> 1,and 1 <n < N,

Bl Uf(¢,n) = Gy '(n), BJU5(0,n) =Gy '(n) (7.24)
where, for 1 <n < N,
n+1
Gh(n) =4US(t,n+ 2) =205t + 1,0+ 3) = D Se(n —m + 1)UL (¢, m)
m=1
A 2
- 2iT’j(U§(5, n+1) — UE(0,n)) — 2022V (OUE(L,n + 1) + 2802 F (6,n + 1),
' (7.25)
n+1
Gi(n) =4UF(0,n+ 1) = 20F(=L,n+ 1) = Y So(n — m+ 1)UL (0,m)
m=1
A 2
- 2iT”;(Uf(0, n+1) = UF0,n)) — 2822V (0)UF(0,n + L) + 2A22F(0,n + 1).

Here, we do not find Gy and G, through a finite volume procedure. Instead, we simply choose Gy and
Gr, such that we obtain the Crank Nicolson scheme (7.2) when U = U; = Us (i.e. after the domain
decomposition method has converged).

8 Convergence of the Discrete Algorithms
For the overlapping algorithms, the convergence will be obtained by a normal modes analysis, whereas

energy estimates will prove the convergence in the non-overlapping case. We start by the study of the
discrete Crank Nicolson scheme.
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8.1 The Crank Nicolson scheme

In this section, V' is a real constant. We introduce the normal mode analysis, as described in [10]. The
discrete Laplace transform of a grid function w = {wy, }»>0 on a regular grid with time step At is defined
for n > 0 by

1 T
Lw(s) =w(s) = —=At e, s=n+ir, |1] < —, 8.1
()= 006) = =ar Y n+in I < 4 (5.1
and the inversion formula is given by
1 (3T A i / PN
Wy = — et w(s)dr = — 2" w(z)dz.
V2T /Aﬂt ( ) V2T J|z|=enat ( )
The corresponding norms are
1 . A . 1
lwllp.ae = (At Y e w, )z, @], = (/ |@(n +ir)|*dr)? (8.2)
n>0 — A1
and we have Parseval’s equality
[lwlln,ae = llw]]y- (8.3)
Suppose now W (j,n) to be a solution of the difference equation
iDFW (j,n) + DEDZW(j,n+3) + VW(j,n+3) =0, (8.4)

with initial condition W(4,0) = 0. We denote by W(j, s) the discrete Laplace transform in time of
W (j,n). Equation (8.4) becomes the difference equation in one variable, s acting as a parameter

W(j = 1,8) + 2(ivh(2) = 1+ A2*V)W (G, ) + W(j +1,5) = 0, (85)
with z = e*2t h(z) = z: and v = Ax?/At. Function h is a well-known homographic function, whose

properties we summarize now:
Lemma 8.1 1. The function h maps the circle of center O and radius 1 onto the line Re Z = 0.

2. The function h maps the exterior of the closed disk of center O and radius 1 onto the half-plane
Re Z > 0.

3. The function h maps any circle of center O and radius a > 1 onto the circle of center (a*+1)/(a®*—1)
and radius 2a/(a® — 1).

We introduce the characteristic second order equation
2+ 2(ivh(z) — 1+ A2®V)r +1=0. (8.6)
The roots of (8.6) satisfy
rer_ =1, ri4+r_=2(1—-Az?V —iyh(2)). (8.7)

Lemma 8.2 For |z| > 1 (i.e. n > 0), equation (8.6) has two distinct roots ro with |r—| < 1 < |r4|.
Furthermore these roots are not real.

Proof Suppose |z| > 1. By (8.7), the first assertion in the lemma holds true, unless |r_| = |ry| = 1.
In that case we have r_ = 71, and therefore r1 + r_ is real, which implies by (8.7) that h(z) is pure
imaginary. This last assertion is equivalent by Lemma 8.1 to |z| = 1, hence the contradiction. |

We deduce from Lemma 8.2 that for n > 0, any solution of (8.5) is a linear combination of the powers of

r4 and r_. Then for W(, s), with vanishing initial data, solution to (8.5), to be square integrable in Q;,
there must be a function a;(s) such that

W(j,s) = ai(s)rl ™", j <€ iti=1,W(j,s) = a;(s)r’ j>0if i =2. (8.8)
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8.2 The classical Schwarz relaxation algorithm

Let U be the solution of the Crank-Nicolson scheme (7.2) in N x {0,...,N}. Let UF be the iterates
of algorithm (7.3). Then the errors W = UF — U/, satisfy the same algorithm with vanishing data.
Therefore, they have the form (8.8): there exists functions a¥(s) such that

WG, s) = af(s)ri™", j < 03 WE (G, s) = ax(s)r § 2 0. (8.9)
The transmission conditions in (7.3) impose
a¥(s) = ah=V(s)rl | ab(s) = a" "1 (s)rt. (8.10)

Defining the convergence factor as
Rp(z,7,0) =7, (8.11)

we have the formula

WG, ) = REWL (), WE2(5,) = RETWE (),

- (8.12)
W3R, ) = REWS (j,), W3H2(j,-) = RETIWLGG, ).
Lemma 8.3 For fized n > 0, the convergence factor Rp(z,~,£) is bounded by
o et — 1
Rp(z,7, , b=y———. 8.13
|Rp(2,7,0)] < ETIrey e (8-13)
When At and Ax tend to zero, we have the asymptotic result

Rp(2,7,0] S 1- thAa?/2, (8.14)

Proof We write 7_ = pe’. Since r_r, = 1, we can write by (8.7),
Y] 2 .
pe’ + =7 =2(1 — Az"V —iyh(2)).
P
Taking the imaginary part we obtain

1
(p— —)sinf = —2yRe h(z).
p

Since 6 # 0, we can define

Reh(z
¢ =7— E)).

Sin
Since p < 1, ¢ is positive.

1
Vs P S
Ver+1+0¢
Since n > 0, Reh(z) = tii; is positive, and therefore sin 6 is positive, and ¢ > yRe h(z). By Lemma
8.1, Re h(z) lives on the circle with center (a? +1)/(a? — 1) and radius 2a/(a? — 1), with a = ", The
minimum value of Re h(z) is therefore (a — 1)/(a + 1) which yields (8.13).
Suppose now that the mesh sizes tend to zero. It is easy to see that ® ~ ynAt/2. Therefore

|Rp(2,7,0)] S 1—lynAt/2,
and hence (8.14) by using the definition of ~.

We introduce the discrete norms in space and time

W la, mae = (AtAz 37 3" e 2mAU W (j,n) )3 (8.15)

JEQ; n>0
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Theorem 8.4 Let V be a real constant. Let Ulﬂ“ be the iterates of algorithm (7.3). For nAt sufficiently
small but non-zero, and Az sufficiently small, we have

1U; = U

aumar S (1= Az?/2)1 max [|Up]la, .t

Proof By (8.12), the error W} is given by /V[Z.k(j, s) = RE1(z, 7,€)W (4, s) for any j,s, with i’ =7 if k
is odd and ¢/ # i is k is even. By Lemma 8.3, we can write

IWEIE, ar = \Rp (2,7, OP* V) [W(2)||3, dz
| | At
z|l=en~t

< s 1RoGyOPS [ TR, -
—enAt

sl =enat

S (1= pAz? /20D UL, ac

Remark 8.5 For |z| =1, when ry are real |Rp(z,7,¢)| < 1. However, for |z| =1, when r4+ are complex
conjugate |Rp(z,v,£)| = 1 : the purely propagative modes are not damped by the overlap.

8.3 The overlapping Robin Schwarz relaxation algorithm
We consider now algorithm (7.16,7.17,7.18) with transmission conditions (7.20). If U is the solution of
the Crank-Nicolson scheme in N x {0,..., N}, it satisfies B,U(¢,n) = B,U(¢,n) — AzF({,n + ), and
B,U(0,n) = BeU(0,n) + AzF(0,n + %). Therefore the errors satisfy the algorithm with vanishing data,
and we can apply the results of Section 8.1: there exist functions a¥(s) such that

Wi (js) = af(s)r=" G < £, WS(j,s) = as(s)rl, j > 0. (8.16)
The transmission conditions in (7.20) impose

af(s) = Rr(z,7)ay " (s),a5(s) = Rr(z,7)ai™ ' (s), with

1— Az?V —r_ —iyh(z2) + ipAx
1—Az?V —r_ —ivh(z) — ipAz
We already proved that |Rp(z,v,£)| < 1. We only need to study the other term

RR(Za YDy 6) = _RD(Z7 e e)

(8.17)

1 — Az?V —r_ —iyh(z2) + ipAx
1— Az2V —r_ —iyh(z) — ipAx’

a(z,v,p) =

For positive p, its modulus is bounded by 1 if and only if Zm (1 — Az?V —r_ —iyh(z)) < 0. In the proof
of Lemma 8.3, we proved that Reh(z) > 0, and Zmr_ > 0. Therefore |a(z,v,p)| < 1 for any strictly
positive p.

Remark 8.6 For |z| =1, when ry are real |Rp(z,7,¢)| < 1 which yields |Rr(z,7v,¢)| < 1. For |z| =1,
when r+ are complex conjugate |Rp(z,7v,0)] =1 and

\/1— (1 — Az2V + ytan 794)2 — pAx

|RR(25’7ap7€)| < 1.

\/1 — (1 — Az2V + ytan 724)2 + pAg
These modes are damped, even without overlap.

Theorem 8.7 Let V be a real constant. Let Ullf be the iterates of algorithm (7.16,7.17,7.18). For positive
p, nAt sufficiently small but non-zero, and Ax sufficiently small, we have

k k—
NUY = Ullom.ar S (1 — tnAz?/2) max U0y n,at-
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8.4 The non-overlapping Robin Schwarz relaxation algorithm

We consider now the case where ¢ = 0. In this case, the convergence factor associated to the classical
Schwarz algorithm is equal to 1. This algorithm is not convergent. For the Robin Schwarz relaxation
algorithm, the convergence factor is a(z,v,p). For n > 0 and p > 0, we have proved that |a(z,v,p)| < 1.
This shows the convergence of the non-overlapping Robin Schwarz relaxation algorithm when V' is a real
constant.

However, our numerical computations are implemented with non constant potentials. Thus, we intro-
duce a proof of convergence based on energy estimates. It is the discrete analog to the proof of Theorem
6.5. The errors are solution for £ > 1 of the equations

iDFWE(j,n) + DF D W (G,n+ 3) + V)WI(Gn+3) =0 for —00<j<0,0<n<N, (818)
iDS W (j,n) + DF D WE(j,n+ 3+ V()Wa(G,n+1)=0 for0<j< +oo, 0<n <N, (8.19)
with vanishing initial values. The transmission conditions are for k > 2:
B.WF(0,n) = B.Wr1(0,n), BWF(0,n) = BoWF1(0,n) for 0 <n < N, (8.20)
where the discrete transmission operators B;j and B; are summarized in (7.19). The algorithm is initialized
on the boundary by

Az ~ Az ~
B,W(0,n) = TZ Gr(n), BWL(n) = TZ Go(n) for 0 <n < N, (8.21)
with &2 Gr(n) = 22 Gr(n) — (B.U(0,n) + AzF(0,n + 1)) and &2 Go(n) = A2 Go(n) — (BU(0,n) —
AzF(0,n+ 3)). We start with the study of the discrete problem in €.

Lemma 8.8 Let W be the solution of
iDFW (j,n) + DFD;W(in+ )+ V(EHW(En+1)=0 for —co<j<0,0<n<N, (8.22)

A
B, W (0,n) = 795 G(n), (8.23)
with vanishing initial data. Then we have

! NT 9o _ 1, 9 2
Az [W(Gp)I> +pAt Y [W(0,n+ ) g%m At Y |G(n)P, (8.24)

7<0 0<n<p 0<n<p

/!
with the usual notation Z w; = wo/2+ Z wj.
Jj<0 J<—1

Proof We write energy estimates, using a discrete analogous to the proof of Lemma 2.1. We multiply
(8.22) by W (j,n + %), take the imaginary part, and sum for j < —1. The third term vanishes due to the
fact that V is real valued. The first term becomes
1 ) .
o S (W0 + D~ WG, n)) (5.25)
j

i<—1

As for the second term, we ignore the time for a moment, and use the fact that D} Dy w; = (Dywjy1 —
D, wj)/Az to perform a discrete integration by parts:

_ _ 1 o _
> WD Dyw; = N > Wi (Dy w1 — Dyw;),

i<—1 vi<—1
1 _ o
= E(ijlew wj = > WD wy),
© <o Jj<—1
1
= — Z |D;w3|2 + —’U.)_()D;'(U().
<0 Az
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Thus we can write
1

T S (WG n+ 1) = W n) )+AiImW(0 n+ HD;W(0,n+ 1) =0, (8.26)

j<—-1

which we rewrite as

1

37 X (W + D = W) P) + =T (W00 F D07 W0n+ ) - 55 Dfwo,m)| 0.

, Az
<0

(8.27)
We now multiply by 2AtAz, and introduce the boundary operator B,.:

Az Y (WG n+ 1) = W) )+ 28¢Tm [W(0,n+ H(BW(O,n) +ipW (0,n+ 5)| =0. (3.28)
<0

Using the boundary condition, summing in time, and using the discrete Cauchy Schwarz inequality yields
(8.24). |

Theorem 8.9 The discrete non-overlapping Schwarz waveform relaxation algorithm (7.16,7.17,7.18)
converges for p > 0, in 1°°(0, N;1?(—00,0)) x [°°(0, N;12(0,+00)), to the solution U of (7.2), for any
initial guess (Go,Gr) and any positive p: for anyn, 0 <n < N,

lim Az | S |WE = 0)G0E+ Y (W - UD)Gm)2| =o. (8.20)

k—+o0
Jj<0 j=0

Proof We first write energy estimates in each subdomain.We start with (8.27), and introduce the
operators B;. We obtain

1 ! . .
757 2 (WEG.n+ DE = WEGmP) + D BWH O = D BWOmE.  (530)
Jj<0
We obtain in the same way the estimates on the right
1 ! . .
757 2 (W5 + DF = [WEG.P) + T B WSO = D | BVEO P, (31)
j=0

We now add (8.30) to (8.31), use the transmission conditions (8.20) for k& > 2, and obtain

1 / . . 1 / . .
IAL Z (IWEG,n+ 1) — WG n)?) + IAL Z (WG, n+ 1P = (W3 (5,n)]?)
7<0 >0
—(|B,WE(0,n)> + | BWF (0, L B, WE1(0,n) + | B,WE1(0.0)[2). (8.32
+4A(| F(0,n)]? + [BWFE(0,n)[?) = 4pm(|el (0,n)|" + [B, Wy~ (0,n)[7).  (8.32)

We now sum up in time, for 0 <n <p-—1:

p
(X WGP + 3 W Go)P) Z|BZW10n|2+|BW2(On)|)
3<0 >0 ot
1 &, o~ N
= iz S (BWE O+ B0 m)P). (833)
n=1

We finally sum up in k, for 1 < k < K, multiply by 2AtAx, and use the boundary values for the initial
guess:

P
ZAJSZW‘G JP|2+Z|W2 J:p)| ZIBﬁWl (0, )] + B, W5*(0,n)[?)
7<0 _]>O n=1
At

=3 (|— Gr(n )+2ipW11(0,n)|2+|% Go(n) — 2ipW3(0,n)[?).  (8.34)
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Thanks to Lemma 8.8, the right-hand side is bounded, and

lim As(Y WGP+ Y WEG PP =0, (8.35)

k—-+o00
J<0 Jj=0

9 Numerical results

Our algorithms are implemented the Gauss-Seidel way, i.e. we compute u; with g7, then deduce go by
uy and give it to the right domain for the computation of us. We compute successively ui,u3, u3, u3,. ...
Thus iteration #k here corresponds to the computation of u%k_l, u3k.

The physical domain is (a,b) = (=5, +5).

9.1 The free Schrodinger equation

In presence of an overlap, we first study the properties of the classical Schwarz algorithm, then those
of the Robin algorithm, and then compare their performances. We also present the performances of the
latter without overlap.

Remark 9.1 In the case of the free Schridinger equation, the quasi-optimal algorithm coincides with the
optimal one and converges in two iterations as expected by the theory (see Theorem 4.1).
9.1.1 The classical Schwarz algorithm

The mesh Ax and At are fixed, equal to Az = 0.1 and At = 0.01. The overlap is equal to 8 gridpoints,
i.e to 0.8. We compute a soliton

e A—i (9.1)

with k = 6, using the Crank-Nicolson scheme on (a, b) with the exacts values as Dirichlet and initial data.
We study the convergence according to the finite time 7', which takes values 0.5, 1, 2. Figure 1 shows the
variation of the discrete L? error on the boundary of s as a function of the iteration number.

. L . L L . L L L . L L L
0 5 10 15 20 25 0 5 10 15 20 25 30 35 40 45 50
iteration iteration

Figure 1: Convergence history of the classical Schwarz algorithm for various values of the final time.

The number of iterations needed to reach a precision equal to 107'2 is given in Table 1.
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final time

0.5

1

2

number of iterations

9

5

14 23 51

Table 1: Number of iterations to achieve a 10712 accuracy as a function of the final time for the classical
Schwarz algorithm with an overlap of 8 gridpoints.

Furthermore we note that the number of iterations is not sensitive to the initial guess, as long as the
compatibility condition is fulfilled. If not, then the algorithm keeps the same properties, at least for short
times.

In Figure 2, we choose T' = 1, and vary the size of the overlap from 2 to 20 gridpoints:
5

10 T T T
— 3=2AX
-== 8=4Ax
- 0=8A X
10° e~ 8=20Ax 4
NSrm-eTTT
. ‘,‘/ ‘\
Y A}
[} '
i ‘ A}
£10° ! '
g ] .
' \\
i 1y
i \
i \
_10 i '
10 - 1 b
i %
1] 1
| |
[
¥
10_15 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35

iteration

Figure 2: Convergence history of the classical Schwarz algorithm for various values of the overlap 4.

The number of iterations needed to reach a precision equal to 10712 is given in Table 2.

overlap
number of iterations

2Ax

4Ax
26

8Ax

10Az

51 14 6

Table 2: number of iterations to achieve a 10~2 accuracy as a function of size of the overlap for classical
the Schwarz algorithm with 7' = 1.

We now choose again T' = 1, the overlap has a fixed size 0.2 (1% of the size of the domain), and we
refine in space and time, starting with Az = 0.1, At = 0.01, and dividing both by two three times.
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A x=0.01
= =. Ax=0.005
— A x =0.0025

0 10 20 30 40 50 60 70 80 90
iteration

Figure 3: Convergence history of the classical Schwarz algorithm for various values of the mesh sizes.
The overlap is equal to 1%.

The stagnation in the beginning of the process illustrates the theoretical result which asserts the
convergence of e‘tuf.

9.1.2 The optimized Robin algorithm with overlap

From now on, we consider the convergence to zero, with a random initial datum on the interface. The
final time is T" = 1, the mesh sizes are equal to Ax = 0.1, At = 0.01, and thereafter divided by two,

1/4
the overlap is equal to 4Az. The optimal p given by the theory is pr = (T”—Zt) / . We draw on Figure
4 the L? error in ©; at step 10 as a function of p. The star corresponds to pr. This drawing shows
that the performance of the Robin algorithm depends drastically on the parameter p, that the theoretical
estimate is quite relevant in this case, and that it is better to overestimate p than underestimate. We
show on Table 3 the values of the theoretical optimum p7 and numerical optimum py, together with the
corresponding errors (L? in time and space in €2;).

error at iteration 10
—
o
&
T

—_
o

0 2 4 6 8 10 12 14 16 18 20

Figure 4: Variation of the quadratic error in time and space as a function of p

. The overlap is equal to
1%. The star corresponds to the theoretical optimal value pr.
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[Az| 01 | 005 | 002 [ 0.0125 |
At [ 001 ] 0005 [ 00025 [ 0.00125 ]
pr 5.6 6.7 7.9 9.4
er | 0.3110712]0.3110°7 [ 0.5010=° [ 0.4810~3
PN 5.5 6.7 7.9 12.7
en 10.2010"210.3110=7 [ 0.5010~° | 0.0637 102

Table 3: Optimal theoretical and numerical values of p after 10 iterations for various values of the mesh
sizes, together with the L? norm of the error.

If the mesh size is not too small, then the theoretical optimal values of p is relevant. We now address
the question of complex values of p. The final time is 7' =1, Az = 0.1 and At = 0.01. The overlap is
equal to 4 gridpoints, i.e to 0.4. Figure 4 shows the equivalues of quadratic error in time and space, for
a range of values of Rep and Zm p.

10 T T

=g=
oF

Rep
1
Il

—4

-3 -3

Imp

Figure 5: Variation of the quadratic error in time and space as a function of p. The overlap is equal to
4%. The star corresponds to the theoretical optimal value pr.

It seems that adding an imaginary part to p does not improve the performance of the algorithm.

9.1.3 Comparison

We now compare the performances of the classical and optimized Robin algorithm. Since the classical
algorithm converges better when the overlap is large, we consider an overlap of 8%, with the same data
as in Figure 5. The error is the L? norm of the error on the boundary of .
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T T
== Classical Schwarz
= RODIN

error

iteration

Figure 6: Convergence history: comparison of the Dirichlet and optimized Robin Schwarz algorithm. The
overlap is equal to 8%.

We clearly see the improvement.

9.1.4 The optimized Robin algorithm without overlap

For the same data as before, Figure 7 shows the quadratic error in time and space in 2; as a function
of p for Az = 0.1,0.05,0.025,0.0125 and At = Az/10 as before. The error is much larger than in the
nonoverlapping case, and does not vary so much with p.
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error at iteration 10
o
&
T

10
- 101 points in space

L
error at iteration 10
o

]
&
T

-~ 201 points in space

error at iteration 10
o
]
&

10~
- 401 points in space

L
error at iteration 10
o
]
&

- 801 points in space

Figure 7: Error at iteration 10 as a function of p for various values of (Az, At). The overlap is equal to

4Azx.

We draw in Figure 8 the errors of the sequences of iterates in the case Az = 0.1, the error is the L2
norm of the error on the boundary of 5. The error decreases very fast in the beginning (reaching 10~%
in 5 iterations), and continues to decrease, but much slower, in the next iterations.

10°

error

[— Optimized Robin |

10

15

20

L
25
iteration

30

35

40

45

50

Figure 8: Convergence history for the optimized Robin Schwarz algorithm in the non overlapping case.

As in the overlapping case, adding an imaginary part to p does not improve the convergence.
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9.2 The potential barrier

We consider from now on the interval (—5,5), with a final time T = 1, discretized with Az = 0.05 and
At = 0.005. The size of the overlap is 4Ax. The potential is 20 times the characteristic function of the
interval (—1,1). Since the potential is not a constant over the whole interval, the optimization process of
Section 6.4 is irrelevant. A constant potential V' equal to 20 in the formula gives a theoretical parameter
p equal to 5.22. We draw in Figure 9 the error at iteration 10 as a function of p. The star corresponds
to the theoretical optimal value pr for the constant potential equal to 20. We see that the theoretical
optimal value of p is the same order of magnitude as the numerical optimal value, but is not very close.
However the error for the theoretical value is already small.

error at iteration 10

Figure 9: Error at iteration 10 as a function of p

We draw now the convergence history for Dirichlet and Robin algorithms:

10° . .

T ;
== Classical Schwarz

0 - - Qptimized Robin
107 .7 S d

1 O 1 L 1 L 1 L
0 10 20 30 40 50 60 70
iteration

Figure 10: Convergence history: comparison of the Dirichlet and optimized Robin Schwarz algorithm for
a positive potential barrier. The overlap is equal to 4%.

In this case again, the Robin condition behaves much better than the Dirichlet condition.
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Note that we tried various values of the potential, like parabolic profiles and the results are the same
Robin algorithm behaves much better than Schwarz, and the optimal Robin is obtained for a value of
the parameter of the same order of magnitude as the theoretical one.

9.3 The quasi-optimal algorithm

The quasi optimal algorithm is by far the most efficient. In all cases, even when the potential is not
constant, the precision 10712 is reached in at most five iterations with or without overlap. As an example,
we show in Figure 11 the convergence history with an overlap of 8 gridpoints, for a linear potential equal
to 10x.

10 T T T T T
—e— Discrete TBC

error

1 L

1
0 0.5 1 1.5 2 25 3 3.5
iteration

PNy

4.5 5

Figure 11: Convergence history for the quasi-optimal Schwarz algorithm in presence of a linear potential

In Figure 12, we show the first few iterations, at the end of the time interval, of the quasi optimal
algorithm with a parabolic potential.

~ imaginary part _imaginary part

“ ‘ i
m&\/\,\/’\ f\ﬁ j’m’/\& T j \ ;{\fa@f\&

!

E I l

5 -4 -3 -2 -1 o 1 2 3 4 5 5 -4 -3 -2 -1 o 1 2 3 4 5 %5 - -3 -2 - 0 1 2 3 4 5

Figure 12: From left to right, the iterates u¥(z, T') and u5™ (z, T') (dashed) at the end of the time interval
t="T for k=1,3,5, together with the exact solution (solid).

10 Conclusion

We have presented here a general approach to design optimized and quasi-optimal domain decomposition
algorithms for the linear Schrédinger equation with a potential in one dimension. It allows the use of
any discretization, any time and space steps in the subdomains. These algorithms greatly improve the
performances of the classical Schwarz relaxation algorithm. We intend to extend our analysis to the
two-dimensional case in a close future.
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