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Any state of matter is classified according to its order, and the 
kind of order a physical system can posses is profoundly 
affected by its dimensionality. Conventional long-range order, 
like in a ferromagnet or a crystal, is common in three-
dimensional (3D) systems at low temperature. However, in 
two-dimensional (2D) systems with a continuous symmetry, 
true long-range order is destroyed by thermal fluctuations at 
any finite temperature1,2. Consequently, in contrast to the 3D 
case, a uniform 2D fluid of identical bosons cannot undergo 
Bose-Einstein condensation. Nevertheless, it can form a 
“quasi-condensate” and become superfluid below a finite 
critical temperature. The Berezinskii-Kosterlitz-Thouless 
(BKT) theory3,4 associates this phase transition with the 
emergence of a topological order, resulting from the pairing of 
vortices with opposite circulations.  Above the critical 
temperature, proliferation of unbound vortices is expected. 
Here we report the observation of a BKT-type crossover in a 
trapped quantum degenerate gas of rubidium atoms. Using a 
matter wave heterodyning technique, we observe both the 
long-wavelength fluctuations of the quasi-condensate phase 
and the free vortices. At low temperatures, the gas is quasi-
coherent on the length scale set by the system size. As the 
temperature is increased, the loss of long-range coherence 
coincides with the onset of proliferation of free vortices. Our 
results provide direct experimental evidence for the 
microscopic mechanism underlying the BKT theory, and raise 
new questions regarding coherence and superfluidity in 
mesoscopic systems. 

The BKT mechanism is very different from the usual 
finite-temperature phase transitions. It does not involve any 
spontaneous symmetry breaking and emergence of a spatially 
uniform order parameter. Instead, the low temperature phase is 
associated with a quasi-long-range order, with the correlations of 
the order parameter (e.g. the macroscopic wave function of a Bose 
fluid) decaying algebraically in space. Above the critical 
temperature this quasi-long-range order is no longer maintained 
and the correlations decay exponentially. This picture is applicable 
to a wide variety of 2D phenomena including the superfluidity in 
liquid helium films5, the superconducting transition in arrays of 
Josephson junctions6, and the collision physics of 2D atomic 
hydrogen7. These experiments have provided evidence for the 
BKT phase transition by looking at the macroscopic properties of 
the system, but could not reveal its microscopic origin, i.e. binding 
and unbinding of vortex-antivortex pairs3,4.  

Harmonically trapped atomic gases generally provide an 
excellent testing ground for the theories of many-body physics. In 
particular, they are well suited for the preparation of low 
dimensional systems and the detection of individual vortices. 
Quasi-2D quantum degenerate Bose gases have been produced in 
single “pancake” traps or at the nodes of one-dimensional (1D) 
optical lattice potentials8,9,10,11,12,13,14,15. Recently, matter wave 
interference between small disc-shaped quasi-condensates has 
revealed occasional presence of free vortices16, but a systematic 
temperature study was not possible. Theoretically, since the 

density of states in a 2D harmonic trap allows for finite 
temperature Bose-Einstein condensation in an ideal gas17, the 
nature of the superfluid transition in an interacting gas has been a 
topic of some debate18,19,20,21,22,23,24. Our results indicate that the 
BKT picture is applicable to these systems even though in our 
finite-size system the transition occurs as a finite-width crossover 
rather than a sharp phase transition25. 

 

 
Figure 1 | Probing the coherence of 2D atomic gases using matter wave 
heterodyning. a, An optical lattice potential of period d =3 μm along the 
vertical direction z is formed by two laser beams with a wavelength of 532 
nm intersecting at a small angle. It is used to split a quantum degenerate 
3D gas into two independent planar systems. The transparent ellipsoid 
indicates the shape of the gas before the lattice is ramped up.  b, After 
abrupt switching off of the confining potential, the two atomic clouds 
expand, overlap and interfere. The interference pattern is recorded onto a 
CCD camera using the absorption of a resonant probe laser. The waviness 
of the interference fringes contains information about the phase patterns in 
the two planar systems. c and d, Examples of interference patterns 
obtained at a low and a high temperature, respectively.   

 
We start our experiments with a quantum degenerate 3D 

cloud of 87Rb atoms, produced by radio-frequency evaporation in 
a cylindrically symmetric magnetic trap. Next, a 1D optical lattice 
with a period of d = 3 μm along the vertical direction z is used to 
split the 3D gas into two independent clouds and to compress 
them into the 2D regime (Figure 1a). To minimize heating and 
ensure thermal equilibrium, the lattice potential is ramped up 
slowly over 500 ms, and the clouds are allowed to equilibrate for 
another 200 ms. At full laser power, the height of the lattice 
potential is V0 / h = 50 kHz, where h is Planck’s constant. At this 
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lattice height, the tunnelling between the two planes is negligible 
on the time-scale of the experiment, and the motion along the tight 
confining direction z is “frozen out” 14,16. The two clouds form 
parallel, elongated 2D strips, characterized by the harmonic 
trapping frequencies of 11 Hz, 130 Hz, and 3.6 kHz along the x, y, 
and z directions, respectively. The number of condensed atoms per 
plane is a function of temperature and varies between 0 and 5×104, 
whereas the total atom number per plane is ~105. For the largest 
(quasi-)condensates, the Thomas-Fermi (TF) approximation yields 
120 μm and 10 μm for the x and y lengths of the strips, 
respectively. The corresponding chemical potential and healing 
length are µ / h = 1.7 kHz and ξ= 0.2 μm.  

After the trapped 2D gases have equilibrated, all confining 
potentials are suddenly turned off. The two clouds expand 
predominantly perpendicular to the xy plane and, as they overlap, a 
3D matter wave interference pattern forms26. After t = 20 ms of 
“time-of-flight” (TOF) expansion, the projection of the 3D 
interference pattern onto the xz plane is recorded on a CCD camera, 
using a resonant probe laser directed along y (Figure 1b). At any 
fixed position x, the interference pattern along z is characterized by 
its contrast c(x) and phase ϕ(x). To extract these two parameters we 
fit the density distribution with a function: 

 
( )( , ) ( , ) 1 ( ) cos 2 / ( )F x z G x z c x z D xπ ϕ= + +⎡ ⎤⎣ ⎦  

 
where G(x,z) is a gaussian envelope, D = ht / md is the period of 
the interference fringes, and m is the atomic mass. Intuitively, c(x) 
is a measure of the local coherence in the 2D clouds (with some 
coarse grain averaging due to the integration along the imaging 
axis y) while the variation of ϕ(x) with x is a measure of the long-
range coherence. With increasing temperature, the presence of 
phase fluctuations in the two planes increases the waviness of the 
interference fringes, i.e. the fluctuations in ϕ(x) (c.f. Figure 1c and 
1d). 

In order to explore different temperature regimes for the 
2D gas, we vary the final radio-frequency νrf used in the 
evaporative cooling of the initial 3D gas. The temperature T3D is 
proportional to Δν = νrf - νrf

(min), where νrf
(min) is the final radio-

frequency which completely empties the trap. We explore the 
range between the onset of condensation in the 3D gas (T3D=150 
nK) and a quasi-pure 3D BEC. As the lattice is ramped up, the 
temperature of the compressed gas can increase significantly (2-3 
times), but precise direct thermometry in the lattice is difficult. 
Instead, in order to quantify the degeneracy of the 2D system, we 
measure the local contrast in the center of the interference 
pattern, 0 (0)c c= , where ...  denotes an average over many 
images recorded under the same experimental conditions 
(temperature and atom number).  

The dependence of c0 on the initial T3D (i.e. Δν), is shown 
in Figure 2. The interference fringes are visible for Δν < 35 kHz  
which closely corresponds to the range of condensation in the 
initial 3D gas. As Δν  is lowered, c0 grows smoothly. For Δν  below 
~12 kHz, the initial 3D BEC is essentially pure and c0 saturates at 
about 30%. In an ideal experiment, the expected contrast at zero 
temperature is c0=1. The finite resolution of our imaging system 
limits the maximal observable contrast to about 60%. We attribute 
the difference between expected and measured maximal contrasts 
to the residual heating of the gas in the optical lattice, caused in 
particular by the 3-body recombination processes. This hypothesis 
is supported by the fact that the atoms experience the lattice 
potential during 700 ms, which is not negligible compared to the 
measured lifetime of 2.5 s for the atom cloud in the lattice. In the 

following we use c0 rather than T3D as a direct measure of the 
degeneracy of the 2D gas. 

 
Figure 2 | Local coherence as a thermometer. The average central 
contrast c0 of the interference patterns is plotted as a function of the 
parameter Δν  controlling the temperature of the 3D gas before loading the 
optical lattice. The solid line is a fit to the data using the empirical function 

( )0 max 01 /c c γν ν⎡ ⎤= − Δ Δ
⎣ ⎦ , with cmax = 0.29 (±0.2), Δν0 = 35 (±1) kHz 

and γ = 2.3 (±0.4). The total number of images used for the plot is 1200, 
corresponding to 41 measurements of c0. Different measurements of c0 
taken at equal Δν have been averaged. The displayed error bar indicates 
the largest standard deviation. 

 
We now turn to a quantitative analysis of long-range 

correlations as a function of temperature. The coherence in the 
system is encoded in the first order correlation function: 

 
 
 
where ( )rψ r is the fluctuating bosonic field at position rr . From 
interference signals recorded at different positions along the x 
axis, one can extract information about g1, as well as higher order 
correlation functions27. Here we adopt a particularly elegant 
analysis method proposed by Polkovnikov, Altman and Demler28. 
The idea is to partially integrate the 3D interference pattern over 
lengths Lx and Ly, along the x and y directions respectively, and 
study how the resulting contrast C decays with the integration 
lengths. Specifically, in a uniform system and for x yL L� , the 
average value of C2 should behave as: 
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The long-range physics is then captured in a single parameter, the 
exponent α which describes the decay of 2C  with Lx. It is 

straightforward to understand the expected values of α in two 
simple limits. In a system with true long-range order, g1 would be 
constant and the interference fringes would be perfectly straight.  
In this case α = 0, corresponding to no decay of the contrast upon 
integration. In the opposite limit, if g1 decays exponentially on a 
length scale much shorter than Lx, the integral in (1) is 
independent of Lx. In this case α = 0.5, corresponding to adding up 
local interference fringes with random phases14. One of the central 
predictions of the BKT theory is that at the transition, the 
superfluid density should suddenly jump to a finite value which is 
a universal function of the transition temperature29. When adapted 
to the interference measurements with uniform 2D Bose gases28, 
this “universal jump in superfluid density” corresponds to a 
sudden drop in α from 0.5 to 0.25. 

( ) ( ) ( )*
1 , ' 'g r r r rψ ψ=
r r r r
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In our experiments, integration along y is automatically 
performed in absorption imaging, with Ly ~ 10 μm fixed by the 
size of the quasi-condensates. Our system is also not uniform 
along x and the average local contrast ( )xc c x=  decreases 
smoothly towards the edges of the quasi-condensate due to the 
increasing effects of thermal excitations. For comparison with 
theory, we consider the integrated contrast: 

 
/ 2
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/ 2
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C L c x e dx
L

ϕ

−
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This would exactly coincide with C in a uniform system. We 
extract the exponent α using only the quasi-uniform region where 
cx > 0.5 c0. Figure 3a shows examples of the measured 2C%  as a 

function of Lx at a low and a high temperature, along with the fits 
by a power-law decaying function.  
 

 
 

Figure 3 | Emergence of quasi-long-range order in a 2D gas. a, 
Examples of average integrated interference contrasts 2( )xC L%  are 

shown for a low (blue circles, c0=0.24) and a high temperature (red 
squares, c0=0.13). The lines are fits to the data by the power law function 

2(1/ )xL α and give α = 0.29 ± 0.01 (low temperature) and α = 0.46 ± 0.01 
(high temperature) . The fitting range, indicated by the solid part of the 
line, is constrained by the conditions x yL L>> on the left and 

0 / 2xc c> on the right. b, Decay exponent α as a function of c0. Dashed 
lines indicate the theoretically expected values of α  above and below the 
BKT transition in a uniform system. Error bars indicate the standard 
deviation of the results from different experimental runs. 

 
Figure 3b summarizes the fitted values of the exponent α 

in different temperature regimes and constitutes the first main 
result of this paper. Starting at high temperatures, for values of c0 
up to about 13%,  α is approximately constant and close to 0.5. 

When the temperature is reduced further, α rapidly drops to about 
0.25, and for even lower temperatures (larger c0) it levels off. We 
thus clearly observe a transition between two qualitatively 
different regimes at high and low temperatures. The values of α 
above and below the transition are in agreement with the 
theoretically expected jump in the superfluid density at the BKT 
transition in a uniform system.  However, this quantitative 
agreement might be partly fortuitous. Even though we 
concentrated on the quasi-uniform part of the images, the 
geometry effects in our elongated samples could still be important. 
Ultimately at extremely low temperature, α should slowly tend to 
zero and the gas should become a pure, fully coherent BEC. We 
could not reach this regime in present experiments due to the 
residual heating discussed above. 

Even without precise thermometry, we can estimate the 
cloud’s temperature and density at the onset of quasi-long-range 
coherence. For images with c0=0.15, the temperature inferred from 
the wings of the atom distribution after TOF is 290±40 nK, 
corresponding to a thermal wavelength of λ=0.3 μm. From the 
length of the quasi-condensate we deduce the number of condensed 
atoms NC=11000±3000, and the peak condensate density (in the 
trap centre) ρC=(5±1)×109 cm-2. This gives ρCλ2=6±2. BKT theory 
for a uniform system predicts the transition at ρSλ2=4, where ρS is 
the superfluid density. The two values are in fair agreement, but we 
note that the exact relation between ρC and ρS in 2D atomic gases 
will require further experimental and theoretical investigation. For 
example, our observation of α ~ 0.5 for a finite value of c0 suggests 
that the superfluid density ρS might be zero even if the condensate 
density ρC is finite.  

The key role in the microscopic BKT theory is played by 
vortices, localized topological defects in the phase of the 
condensate. In contrast to the smooth variation of the fringe phase 

( )xϕ  created by long-wavelength phonons (fig. 1d), a free vortex 
in one of the condensates should appear as a sharp dislocation in 
the interference pattern16,24, with ( )xϕ changing abruptly across a 
dislocation line parallel to the expansion axis z. We indeed 
occasionally observe such dislocations. Examples of images 
containing one and several dislocations are shown in Figure 4a 
and 4b, respectively. The tightly bound vortex-antivortex pairs are 
not detectable in our experiments because they create only 
infinitesimal phase slips in the interference pattern. Other phase 
configurations which could mimic the appearance of a vortex, 
such as a dark soliton aligned with the imaging direction, can be 
discarded on theoretical grounds24. 

Figure 4c shows the frequency with which we detect sharp 
dislocations at different temperatures. For the count we consider 
only the central, 30 μm wide region of each image, which is 
smaller than the length of our smallest quasi-condensates.  We 
note that we detect only a subset of vortices, i.e. those which are 
well isolated and close to the centre of the cloud. We also note that 
thermally activated phonon modes with a very short wavelength 
along x can in principle contribute to the count. Their contribution 
is expected to be non-negligible only at the highest temperatures. 
There a detailed theoretical analysis would be needed to separate 
their effect from that of the vortices.  

The observed sudden onset of vortex proliferation with 
increasing temperature constitutes the second main result of this 
paper. Further, this onset coincides with the loss of quasi-long-
range coherence (Figure 3b). These two observations together 
provide conclusive evidence for the observation of the BKT 
crossover in this system.  

Our experiments support the notion that the unbinding of 
vortex-antivortex pairs is the microscopic mechanism destroying 
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the quasi-long-range coherence in 2D systems. The related 
question of the superfluidity of the sample remains open. It could 
be addressed in the future by setting the planar gases in rotation 
and studying the ordering of the vortex lattice. Alternatively, a 
study of the damping of the collective eigenmodes of the gas could 
be used to infer its viscosity. Our experiments may also open new 
theoretical questions related to the geometry and the mesoscopic 
nature of the system. 

 

 
 

Figure 4 | Proliferation of free vortices at high temperature. a, 
Example of  an interference pattern showing a sharp dislocation that we 
attribute to the presence of a free vortex in one of the interfering clouds. b, 
Interference pattern showing several dislocations. c, Fraction of images 
showing at least one dislocation in the central, 30 μm wide region, plotted 
as a function of c0. The error bars show the statistical uncertainty, given by 
the square root of the number of images with dislocations. Inset, 
Histogram of the phase jumps Δϕi = |ϕ(xi)-ϕ(xi+1)| between adjacent CCD 
pixel columns, for the set of images in the bin c0=0.08. An image is 
counted as showing a dislocation if at least one of the Δϕi exceeds 2π/3 
(threshold indicated by the dashed line). The distance between adjacent 
columns is 2.7 μm and the count runs over the 10 central columns.  There 
are 97 images contributing to this histogram, hence 970 counts, among 
which 16 counts (corresponding to 13 different images) exceed the 
threshold.  
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