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Abstract. We present a distributed spiking neuron network (SNN) for
handling low-level visual perception in order to extract salient locations
in robot camera images. We describe a new method which reduce the
computional load of the whole system, stemming from our choices of ar-
chitecture. We also describe a modeling of post-synaptic potential, which
allows to quickly compute the contribution of a sum of incoming spikes to
a neuron’s membrane potential. The interests of this saliency extraction
method, which differs from classical image processing, are also exposed.

1 Introduction and framework

The bio-inspired paradigm aims at adapting for computer systems what we un-
derstand from the evolution-selected solutions. Such transfers have already been
made successfully, e.g. the Brook’s robots [1] and his subsumption architecture,
Floreano’s work [2] or the research reviewed by Steels [3].

We propose a distributed SNN1 for handling low-level visual perception (sec-
tion 2). It is known that the visual system has limited capacities and that
organisms have developed attentional mechanisms, which select stimuli in com-
plex visual scenes. Psychologists make a useful distinction between attention
and pre-attention processing : the former is a top-down process, e.g. involving
task-dependent or context-dependent influences. The latter is a bottom-up (BU)
process, i.e. data-driven, on which we will focus in this work. Many models of
selective visual attention with BU process have been proposed [4, 5, 6], a detailed
review can be found in [7]. Yet, previous work rely on classical image processing
for extracting saliencies whereas we try to exploit the possibilities provided by
SNN models (section 2.1). SNN are a recent kind of neural model, detailed in
[8, 9], which take into account temporal dynamics. Although the expected ca-
pacities of SNN model are still debated [10, 11], they provide a temporal coding
which begins to be broadly used (i.e. [12, 13]). The SNN we consider is a dis-
tributed system, described in Section 2.2 and the results are shown in Section 3.
They are based on images acquired by the camera of a robot in real environment.

1SNN: Spiking Neuron Network



2 Distributed Spiking Neuron Network

Fig. 1: Organization of architecture, a set of feedforward connected SNN 2D
maps (colored squares), which extract saliencies from an input image. Con-
nection masks are illustrated by oval: Gauss, DOG and GAB are explained in
Section 2.3. Direct means connections between pairs of neurons with the same
coordinates and delay means fixed delayed synapses.

The architecture is designed to extract the saliencies of a complex visual
scene and can be considered as a step towards a complete robot neural controller
system. It is composed of a set of feedforward connected maps (2D layer spiking
neuron networks) and can handle at the same time different neural models. The
architecture is divided into two main pathways for handling processing on high
(resp. low) spatial frequencies, bottom (resp. top) boxes on Fig. 1. We use low
frequencies analysis for selecting conspicuous areas, which are gathered on a pre-
activation map (Fig. 1: PreAc). A salient location is detected (Fig. 1: saliency
map) when there is a conspicuous point, extracted from high spatial frequency
maps, in a conspicuous area. This is a simplified adaptation of a multi-scale
processing (see [7] for examples).

This two way separation is inspired from the parvo and magno-cellular chan-
nels in the primate central nervous system. One way quickly processes a rough
signal in low frequencies and a much slower way processes fine-grained details.
The fact that spiking neurons are good coincidence detectors makes them effi-
cient to detect conjunctions of high and low spatial frequency information. Thus
the proposed architecture extract saliencies only if the conjunction of high and
low frequency information is met. A pixel is considered to be salient if a neu-
ron of the saliency map emits a spike and it occurs only if the neuron receive
concomitant spikes from both channels.



2.1 Neural maps

The base units (the “basic bricks”) of this architecture are neural maps. They
are structured in 2D layer of NxM neurons (N

2 xM
2 for the low spatial frequency

neural maps), where NxM is the input image size in pixels. The neural map
topology can be viewed as a sort of “retinotopic” organization, because the
topological properties of the input image are preserved on neural maps.

The first map (Input on Fig. 1) creates an input current proportional to each
pixel luminance of the input image for each neuron. This map converts pixel
luminance into a discharge rate code: highly luminous pixels are translated into
high input currents, so spikes are triggered quickly, forming fixed frequency spike
trains. This activity is spread towards other maps and initiates a stable dynamic
in the whole network.

The spiking neuron model used in neural maps is a linear leaky integrate-
and-fire (see eq. 1), which is simpler than Gerstner’s SRM [9] but still close
to biological neurons. The membrane potential is gouverned by the following
differential equation:{

τ V̇ = gL(V − EL) + PSP (t) , if V ≥ ϑ
spike otherwise

(1)

Where PSP (t) represents the influence of incoming spikes on the membrane
potential (called post-synaptic potentials or PSPs) and τ , gL, ϑ and EL are
parameters of the leaky integrate-and-fire neural model. The evolution of a
PSP is commonly described by an α-function, like t

τ e
−t
τ . However, there is no

fast method for computing the influence of a sum of α-functions. So we use a
gaussian difference model for describing the time course of a PSP, see eq. 2.{

q̇0(t) = −k0q0(t)
q̇1(t) = k0q0(t) − k1q1(t)

(2)

A gaussian difference PSP model can have a time course very similar to an α-
function PSP model and it has been shown that α-function model is a particular
case of the gaussian difference model [9]. Assuming that contributions of PSPs
are additive, we can easily compute the contribution of a sum of PSPs on the
membrane potential (the whole demonstration is not detailled here for space
constraints). With an α-function model, one must compute the influence of each
PSP to the membrane potential whereas with the gaussian difference model, the
membrane potential can be computed in one step.

2.2 Distributed system

Spiking neuron models are both time-consuming, because they are based on dif-
ferential equations, and handle discrete information, the spikes. So a distributed
simulation is well suited and can greatly improve performance for large networks
[14], e.g. for the real-time control of a mobile robot. The neural maps are the



Fig. 2: A neuron (in green or light grey) of the source neural map emits a spike
and sends PSPs to all red neurons (or dark grey) on the target map. The weight
of each PSP is determined by the weight matrix, represented on the right. The
weight matrix takes its values from image processing filter, here a difference of
gaussians, which is a constrast detector.

smallest units of the distributed system presented here. Each one run indepen-
dently and must be assigned to a separate computing node. The distributed
computation lowers the time needed to extract saliency compared to the non
distributed version of the program. Due to the fact that the distributed system
integrate more than 100,000 neurons, it is still time consuming since it is slower
than classical image processing methods. However, it provides some temporal
information (explained in 3), which is difficult or even impossible to obtain with
classical image processing.

Distributed SNN faces a temporal synchronization problem since it can be
seen as a set of differential equations spread on several computing nodes: the
logical time must be homogeneous across all nodes. At time t, how can we
handle information occuring at time t− 1 ? It is possible to avoid a unique time
controller, as demonstrated in [14], but we choose a simpler system: for each
time step, each neural map sends a message to all neural maps with which it has
outgoing connections and waits for all neural maps with which it has incoming
connections before updating. Thus all nodes keep an homogeneous logical time.
The cost of this method is null if there are always outcoming messages on all
neural maps, e.g. high activity in the network.

SNN can benefit from an event-driven simulation, because neurons can be
seen as some sort of discrete-making devices, which convert continuous inputs
into a sequence of discrete impulses. If a neuron is not integrating a PSP, it
will not be active. Thence a simulation doesn’t need to spend time to check
up inactive neurons, and a neuron is inactive until it is reached by an incoming
PSP. Thus the presented architecture is led by an event-driven implementation
and only active neurons are processed.



2.3 Connection masks

When a neuron on the source neural map emits a spike, it sends PSPs to NxN
neurons on the target neural maps, as shown on Fig. 2. As all neurons of a
single map have the same connection pattern, a generic projective connection,
called mask is defined. Masks are NxN weight matrices with delays, weights
and delays are static, so they can be defined at the beginning of the simulation.
The weight matrices are similar to matrix filters used in image processing. The
filters used here are contrast detectors (differences of gaussians or DOG) and
orientation detectors (gabor wavelets or GAB). In an image processing approach,
the resulting image is obtained by the convolution of a matrix filter and an
image, and each pixel is processed in an order determined by the algorithm.
With connection mask, the pixels are processed in an order determined by the
input, from the more luminous to the darkest ones. This speed up the processing
as only pixels which are luminous enough are processed: the darkest pixels do
not trigger spikes.

Furthermore, connection mask provides an easy way to reduce the number of
messages to transmit between distributed nodes. When a neuron fires, only one
spike is sent to the target map through the communication channel, the PSPs
being generated locally on the target map. This method reduces the size and
the numbers of messages sent in the distributed system.

3 Results and conclusion

Fig. 3: Input image (left), saliencies extracted by classical processing (center),
saliencies extracted by our architecture (right). The numbers on the latter figure
specify the temporal order of occurence.

The results obtained in this study are based on images acquired during a
robot ride in our laboratory. The images were reduced from 320x240 pixels to
76x56 pixels and only on the luminance information was considered. Figure 3
shows a prototypical example of our results, the algorithm used for comparison
is a combination of gabor and DOG multi-scale processing inspired from Itti’s
model [7]. The salient locations appear in black on the center image (classical
image processing) and on the right image (the presented architecture). Although
the salient locations are not exactly the same, the main saliencies are qualita-
tively identical.



The presented architecture made time-dependent classification of the salient
location. The resulting locations presented on Fig. 3 are ordered by decreasing
saliencies (small figures). A black dot symbolize a neuron emitting a spike. The
earlier a spike is triggered, the more salient is the location, so saliencies are clas-
sified using a rank order coding as described in [15]. It is a useful improvement
since in previous image processing work the classification of salient locations is
difficult to obtain: e.g. in Itti’s model, the most salient location is chosen by a
winner-takes-all algorithm then an inhibition-of-return mechanism prevent the
same location to be chosen again during a certain time. The presented architec-
ture classify salient location at no cost because of the temporal processing made
by the SNN.

We have presented here an architecture which allows the extraction of salient
locations, using distributed SNN. The salient locations detected are close to those
detected by classical image processing. The presented system takes advantage
of distributed computing but is still slower than image processing methods. We
propose an improvement for computing the influence of a sum of PSPs and the
described architecture deal with synchronization problem of distributed SNNs,
due to the task constraints.
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