
HAL Id: hal-00023818
https://hal.science/hal-00023818

Submitted on 4 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Character decomposition of Potts model partition
functions. I. Cyclic geometry

Jean-Francois Richard, Jesper Lykke Jacobsen

To cite this version:
Jean-Francois Richard, Jesper Lykke Jacobsen. Character decomposition of Potts model
partition functions. I. Cyclic geometry. Nuclear Physics B, 2006, 750, pp.250-264.
�10.1016/j.nuclphysb.2006.05.028�. �hal-00023818�

https://hal.science/hal-00023818
https://hal.archives-ouvertes.fr


cc
sd

-0
00

23
81

8,
 v

er
si

on
 1

 -
 4

 M
ay

 2
00

6

Character decomposition of Potts model partition functions.

I. Cyclic geometry

Jean-François Richard1,2 and Jesper Lykke Jacobsen1,3
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Université Paris VI, Bôıte 126, Tour 24, 5ème étage

4 place Jussieu, 75252 Paris cedex 05, France

3Service de Physique Théorique
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Abstract

We study the Potts model (defined geometrically in the cluster picture) on finite

two-dimensional lattices of size L×N , with boundary conditions that are free in the

L-direction and periodic in the N -direction. The decomposition of the partition

function in terms of the characters K1+2l (with l = 0, 1, . . . , L) has previously

been studied using various approaches (quantum groups, combinatorics, transfer

matrices). We first show that the K1+2l thus defined actually coincide, and can

be written as traces of suitable transfer matrices in the cluster picture. We then

proceed to similarly decompose constrained partition functions in which exactly j

clusters are non-contractible with respect to the periodic lattice direction, and a

partition function with fixed transverse boundary conditions.



1 Introduction

The Q-state Potts model on a graph G = (V, E) is defined initially for Q integer by the

partition function

Z =
∑

{σ}

exp



J
∑

(i,j)∈E

δ(σi, σj)



 , (1)

where the spins σi = 1, 2, . . . , Q live on the vertices V , and the interaction of strength

J is along the edges E. This definition can be extended to arbitrary real values of Q

through the high-temperature expansion of Z, yielding [1]

Z =
∑

E′⊆E

Qn(E′)(eJ − 1)b(E′) , (2)

where n(E ′) and b(E ′) = |E ′| are respectively the number of connected components

(clusters) and the cardinality (number of links) of the edge subsets E ′.

It is standard to introduce the temperature parameters v = eJ − 1 and x = Q−1/2v,

and to parametrize the interval Q ∈ [0, 4) by Q1/2 = 2 cos(π/p) = q + q−1 with p ≥ 2 and

q = exp(iπ/p).

In two dimensions, much knowledge about the continuum-limit behaviour of the Potts

model has accumulated over the years, thanks mainly to the progress made in conformal

field theory and the theory of integrable systems. This is particularly true at the fer-

romagnetic critical point, whereas much work remains to be done in the more difficult

antiferromagnetic regime.

In this paper, we shall take a different point of view, and consider a number of

combinatorial results which hold exactly true on arbitrary regular lattices of any finite

size L × N , and at any temperature x. The choice of boundary conditions is clearly

important. In the following we shall consider the cyclic case (free boundary conditions

in the L-direction and periodic in the N -direction), and relegate the more complicated

toroidal case (periodic boundary conditions in both directions) to a companion paper [2].

For simplicity we denote henceforth V the number of vertices, E the total number of

edges, and F the number of faces, including the exterior one. Also, we often consider the

lattice as being built up by a transfer matrix T propagating in the N -direction, which

we represent as horizontal.

2



The case of cyclic boundary conditions has already been considered by Pasquier and

Saleur [3], where it was shown how to decompose Z as a linear combination of characters

K1,2l+1 (with l = 0, 1, . . . , L) of representations of the quantum group Uq(sl(2)). Further

developments were made independently in [4, 5]. Chang and Shrock [4] recovered the

same decomposition, but with K1,2l+1 defined as a partial trace of the transfer matrix

Tspin in the spin representation. Jacobsen and Salas [5] used a similar decomposition, but

with K1,2l+1 defined as a matrix element of a transfer matrix in the cluster representation

involving two time-slices. We show here that all three points of view are in fact equivalent,

and that the characters K1,2l+1 obtained are identical.

Apart from that, the main part of our discussion is in the cluster picture, following

[5]. We recall the relevant definitions in section 2.

The cluster configurations contributing to K1,2l+1 turn out to be those in which j ≥ l

clusters are non-contractible with respect to the periodic lattice direction. We henceforth

refer to such clusters as non-trivial clusters, or NTC for brevity. In section 3 we give the

character decomposition of constrained partition functions Z2j+1 in which the number of

NTC is precisely j. This gives as a by-product the character decomposition of the full

partition function Z, in agreement with [3, 4].

Finally, we obtain in section 4 the character decomposition of a partition function

with fixed (rather than free) transverse boundary conditions. The physical implications

of our results are discussed in section 5.

2 Cluster representation of the Potts model

2.1 Transfer matrix in the cluster representation

The cluster representation of the Potts model is defined by Eq. (2). Since the clusters

are non-local objects, it is not a priori obvious how to build the partition function us-

ing a transfer matrix. The key to tackle the problem of non-locality is to introduce a

basis of states that takes into account connectivity information [6]. However, the peri-

odic boundary conditions in the longitudinal direction introduces a further complication,

whose resolution necessitates to introduce a transfer matrix that acts between two time
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Figure 1: Example of a cluster configuration on a part of the square lattice with width

L = 6 (left part) and the corresponding connectivity state involving two time slices

(middle part). The points in the right (resp. left) time slice are represented as white

(resp. black) circles and are labelled 1, 2, . . . , L (resp. 1′, 2′, . . . , L′). The corresponding

partition is |vP 〉 = (1′12)(2′)(3′4′6′6)(5′)(35)(4). There are two bridges, i.e., independent

connections between the left and right time slices. With the number of bridges given, the

transfer matrix elements are independent of the connectivity information on the left time

slice. This fact can be expressed graphically by assigning to each bridge an unlabelled

black point and depicting the right time slice only (right part of the figure).

slices [5].

We therefore begin by reviewing how to write the transfer matrix T in the cluster

representation when the boundary conditions are cyclic [5]. The relevant geometry is

shown in the left part of Fig. 1.1 Unlike the case of free boundary conditions in the

longitudinal direction, one must take care not only of the connectivities inside the right

time slice (at time t = t0), i.e., between the points labelled {1, 2, . . . , L}, but also of the

connectivities of the left time slice (at time t = 0), i.e., between the points {1′, 2′, . . . , L′},

and of the connectivities linking the two time slices. The transfer matrix propagates the

right time slice from time t0 to time t0 + 1. Therefore, the space on which the transfer

matrix acts is the space of connectivity patterns |vP 〉 associated to partitions of the set

{1′, . . . , L′, L, . . . , 1}. Because of the planarity of the lattice only non-crossing partitions

are allowed. An example of an allowed partition and its graphical representation is shown

1Here, and in all subsequent figures, the explicit examples of configurations are for the geometry of

the square lattice. We however stress that our reasoning is quite general and applies to an arbitrary

lattice which is weakly regular, in the sense that the number of points in each time slice is equal to L.
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in the middle part of Fig. 1.

A formal expression of the transfer matrix is given in [5]. Here we just give the

practical rules to calculate its elements. As in the case of free longitudinal boundary

conditions, there is a weight v per coloured link and a weight Q per cluster [see Eq. (2)],

except for the clusters containing a black circle which have a weight equal to 1. Of

particular interest are the components of a partition that contain both white and black

circles. Such components are called bridges; we denote by l the total number of bridges

in the partition (in Fig. 1, l = 2). When at a time t, i.e., after applying t times the

transfer matrix, one obtains a state with l bridges, it means that there are l clusters

which begin at t = 0 and end at a time ≥ t. Note that the initial connectivity (at t = 0)

is the unique state with L bridges, meaning that the left and right time slices coincide.

Denoting this state |vL〉, the partition function Z is given by

Z = 〈u|TN |vL〉 , (3)

where 〈u| takes into account the periodic longitudinal boundary conditions, by re-identifying

the left and right time slices at time t = N and assigning a weight Q to each of the re-

sulting clusters [5].

Two important observations must be made:

1. T propagates the right time slice, and so, cannot modify the connectivity inside

the left time slice.

2. Under the action of T, the number of bridges l can only decrease or stay constant.

These two properties imply that the transfer matrix has a lower-triangular block form:

T =





















TL,L 0 . . . 0

TL−1,L TL−1,L−1 . . . 0
...

...
...

T0,L T0,L−1 . . . T0,0





















(4)

Furthermore, they also imply that each block Tl,l on the diagonal of T has itself a diagonal
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block form:

Tl,l =





















T
(1)
l,l 0 . . . 0

0 T
(2)
l,l . . . 0

...
...

...

0 0 . . . T
(Nl)
l,l





















(5)

Each sub-block T
(j)
l,l is characterized by a certain left slice connectivity and a position of

the l bridges. Its dimension is given by the number of compatible right slice connectivities.

In fact, the Nl sub-blocks T
(j)
l,l , with 1 ≤ j ≤ Nl, are exactly equal, as the rules for

computing their matrix elements coincide. Indeed, the L white circles of the right slice

do not “see” the left slice connectivity and from where the l bridges emanate; only the

number l of bridges matters. In particular, the dimension n(L, l) of the sub-block T
(j)
l,l

is independent of j. Moreover, because of the symmetry between the left and right time

slices, the number of sub-blocks equals their dimension, Nl = n(L, l). It can be proved

that [3, 4]:

n(L, l) =
2l + 1

L + l + 1

(

2L

L − l

)

=

(

2L

L − l

)

−

(

2L

L − l − 1

)

. (6)

Note that n(L, 0) = CL, the L’th Catalan number, which is the dimension of the cluster

transfer matrix with free longitudinal boundary conditions. Indeed, each sub-block T
(j)
0,0

is equal to the usual single time slice cluster transfer matrix [6].2

Because of the block structure of T, its eigenvalues are the union of the eigenvalues

of the sub-blocks T
(j)
l,l . Therefore, the sub-blocks with given l being equal, one can

obtain all the eigenvalues of T by considering only one reference sub-block for each given

number of bridges l [5]. For instance, one can choose as reference sub-block the one

2Note that the last part of these results differ from those given in [5]. Namely, the authors of [5] studied

the chromatic polynomial (v = −1), so the connectivities between neighbouring points were forbidden,

and therefore the dimension of each sub-block was smaller than n(l, L) given by Eq. (6). Furthermore,

in the case of a square lattice, the authors symmetrized T with respect to a top-bottom reflection of

the strip. This not only diminishes the total dimension of the transfer matrix, but also the number of

sub-blocks. At the same time it makes the structure of T slightly more complicated. Indeed, there would

then be two types of sub-blocks, depending on whether the left slice connectivity and the position of the

l bridges are symmetric or non-symmetric with respect to the reflection. The symmetrization couples

either pairs of non-symmetric sub-blocks, or pairs of states inside a symmetric sub-block. Therefore,

the symmetric and non-symmetric sub-blocks have different dimensions, the non-symmetric sub-blocks

having the largest dimension n(L, l).
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with no connection between black circles and with l bridges beginning at {1′, 2′, . . . , l′}.

Alternatively, one may forget the labelling of the left time slice altogether, and simply

mark by a black point each of the components of the right-slice connectivity which form

part of a bridge.3 This latter choice is represented in the right part of Fig. 1. In the

following, we denote the reference sub-block simply Tl.

2.2 Definition of the characters K1,2l+1

It follows from Eq. (3) and the preceding discussion that

Z =
L
∑

l=0

n(L,l)
∑

i=1

c(L, l, i, x) [λl,i(L, x)]N , (7)

where a priori the amplitudes c of the eigenvalues λl,i(L, x) (i labels the distinct eigenval-

ues within the sub-block Tl) depend of the width L, the number of bridges l, the label i,

and the temperature x. In fact, it has been proved in [3, 4], and used in [5], that c depend

only of l (and the value of Q chosen). We therefore denote them c(l) in the following.

Thus,

Z =
L
∑

l=0

c(l)K1,2l+1(L, N, x) , (8)

where the K1,2l+1(L, N, x) are defined as

K1,2l+1(L, N, x) =
n(L,l)
∑

i=1

[λl,i(L, x)]N . (9)

K1,2l+1 is thus simply equal to Tr(Tl)
N .

The notation K1,2l+1 (instead of just Kl) is motivated by the fact that at the fer-

romagnetic critical point (xc = 1 for the square lattice), and in the continuum limit,

these quantities become special cases of a generic character Kr,s of conformal field theory

(CFT) [3]. More precisely, the character Kr,s corresponds to the holomorphic dimension

h1,2l+1 of the CFT with central charge c = 1 − 6
p(p−1)

. For generic (irrational) values of

p this CFT is non-unitary and non-minimal. We shall comment on the case of p integer

later, in section 3.4. We stress that we have here defined K1,2l+1 combinatorially for an

3Note that this choice must respect planarity: only the unnested connectivity components (i.e., those

accessible from the far left) can be marked by a black point.
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L × N system, at any temperature x, with no continuum limit being taken; we shall

nevertheless refer to them as characters.

The amplitudes c(l) appearing in Eq. (8) are q-deformed numbers [3, 4]

c(l) = (2l + 1)q =
sin(π(2l + 1)/p)

sin(π/p)
=

l
∑

j=0

(−1)l−j

(

l + j

l − j

)

Qj . (10)

Note that c(l) is a polynomial of degree l in Q. In the next section, we obtain a new proof

of Eq. (10), as a by-product of a more general result in which we give a combinatorial

sense to each term in the polynomial separately.

In the remainder of the article, we shall decompose various partition functions as

linear combinations of the characters K1,2l+1. Indeed, the K1,2l+1 are simply related to

the eigenvalues of the transfer matrix and can be considered as the basis building blocks

of various restricted partition functions.

2.3 Equivalence with Chang and Shrock

We now show that the K1,2l+1, that we have defined above following [5], coincide with

the partial traces defined in [4].

In [4], Chang and Shrock considered the Potts model partition function in the spin

representation: writing Z = Tr(Tspin)
N they decomposed the spin space as a direct sum

of what they called level l subspaces. By definition, the level l subspace corresponds

to the space generated by applying Tspin to the sum of spin states with l spins fixed

to l given values. The restriction of Tspin to the level l subspace is exactly equal to

our matrix Tl (with l connectivity components marked by black points), as they have

the same calculation rules (marking a cluster with a black point corresponds to fixing

its spin state, i.e., to giving it a weight 1 instead of Q) and a very similar graphical

representation of the states (resembling the right part of Fig. 1). The character K1,2l+1

appears therefore in [5] as the restriction of the trace to the level l subspace.

We remark that the physical interpretation of the amplitudes c(l) made in [4] is some-

what different from ours. Indeed, at level l Chang and Shrock considered all the inde-

pendent possibilities of attributing values to l fixed spins, taking into account that some

of those possibilities were already present at lower levels. Accordingly, they interpreted
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c(l) as the number of level l states independent among themselves, and independent of

states at lower levels, and computed c(l) diagramatically.

Proving the equivalence of our K1,2l+1 with those of Pasquier and Saleur requires some

further background material, and is deferred to section 3.3.

3 Partition function with a fixed number of non-

trivial clusters

In this section we study the character decomposition of constrained partition functions

Z2j+1 in which the number of non-trivial clusters (NTC) is fixed to j, for j = 0, 1, . . . , L.

It is important to notice that this is different from the characters K1,2l+1, which are

related to blocks of the transfer matrix with l bridges.4 When imposing the periodic

longitudinal boundary conditions, each bridge becomes essentially a marked NTC. Since

K1,2l+1 may contain further NTC which are not marked, we expect K1,2l+1 to be a linear

combination of several Z2j+1 with j ≥ l. Conversely, since upon acting with the transfer

matrix the number of bridges can only decrease or stay constant, we also expect Z2j+1

to be a linear combination of several K1,2l+1 with l ≥ j.

The primary goal of this section is to obtain the character decomposition of Z2j+1. In

the following two subsections we therefore first express the K1,2l+1 in terms of the Z2j+1,

and then invert the resulting relations.

3.1 K1,2l+1 in terms of Z2j+1

Recalling that K1,2l+1 = Tr (Tl)
N , we can write

K1,2l+1 =
n(L,l)
∑

i=1

〈vl,i|T
N |vl,i〉 , (11)

where the |vl,i〉 are the n(L, l) possible connectivity states with l bridges, i.e., states such

as those shown in the right part of Fig. 1 with l black points.

4To avoid confusion, j will from now on always denote the number of NTC in Z2j+1, and l will denote

the number of bridges in K1,2l+1.
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Figure 2: A cluster configuration on a portion of the square lattice (shown inside a dashed

box for clarity) and the three compatible connectivity states (shown on the left of each

copy of the cluster configuration). In each of the three cases, the final connectivity (i.e.,

the way in which the L points on the rightmost column of the lattice are interconnected

and marked by black points through the cluster configuration and the connectivity state

on the left) is equal to the initial connectivity state.

We first show that a given cluster configuration with j NTC is contained n(j, l) times

in K1,2l+1. To this end, we define that a connectivity state |vl,i〉 is compatible with a given

cluster configuration if the action of the cluster configuration on |vl,i〉 (in the sense of a

transfer matrix acting towards the right) yields the same connectivity |vl,i〉. An example

is shown in Fig. 2. It is useful to “forget” for a moment that the longitudial boundary

conditions are cyclic, i.e., to consider the leftmost and rightmost columns of the lattice

as distinct. Indeed, the periodic boundary conditions are already encoded in the fact

that the final and initial states in Eq. (11) must coincide. The goal is then to show

that any cluster configuration with j NTC is compatible with precisely n(j, l) different

connectivity states.

Consider then a given cluster configuration with j NTC, with the k’th NTC (k =

1, 2, . . . , j) connecting onto the points {yk} of the rightmost column. For example, in

Fig. 2 we have {y1} = {1, 2} and {y2} = {6}. The connectivity states |vl,i〉 compatible

with the cluster configuration can be constructed as follows:

1. The connectivities of the points y /∈ ∪j
k=1{yk} must be connected in the same way

in |vl,i〉 as in the cluster configuration. For instance, in Fig. 2 the points y = 3, 5

must be connected.

2. The points {yk} within the same bridge (for example, y = 1, 2 in Fig. 2) must be

10



connected in |vl,i〉.

3. One can independently choose to associate or not a black point to each of the sets

{yk}. One is free to connect or not two distinct sets {yk} and {yk′}.

Clearly, the rules 1 and 2 leave no choice. The rule 3 implies in particular that j ≥ l,

or else there is no compatible state |vl,i〉. The choices mentioned in rule 3 then leave us

n(j, l) possibilities for constructing a compatible |vl,i〉.

We have therefore shown that a given cluster configuration with j NTC is contained

n(j, l) times in K1,2l+1. As K1,2l+1 is simply a trace, each of its NTC carries a weight of

1, whereas the j NTC in Z2j+1 each have the usual cluster weight of Q. We therefore

arrive at the result

K1,2l+1 =
L
∑

j=l

n(j, l)
Z2j+1

Qj
(12)

where we recall that n(j, l) has been defined in Eq. (6).

3.2 Z2j+1 in terms of K1,2l+1

Inverting the relations (12) yields

Z2j+1 =
L
∑

l=j

c
(l)
j K1,2l+1 (13)

with the coefficients c
(l)
j given by

c
(l)
j = (−1)l−j

(

l + j

l − j

)

Qj . (14)

An interesting special case, which we will refer to in the following, is obtained for j = 0,

i.e., by disallowing any NTC. From Eqs. (13)–(14), we obtain an alternating sum of the

K1,2l+1:

Z1 =
L
∑

l=0

(−1)lK1,2l+1 (15)

Note also that the total partition function of the Potts model is given by

Z =
L
∑

j=0

Z2j+1 . (16)

11



Comparing Eqs. (14) and (10) we infer that

c(l) =
l
∑

j=0

c
(l)
j (17)

and from Eqs. (13) and (16) we obtain as promised Eq. (8) for the full partition function.

Interestingly, then, the effect of fixing the number of NTC to j is to keep only the

term multiplying Qj in the expression (10) of c(l). As c(l) is polynomial of degree l in Q,

only the K1,2l+1 with l ≥ j contribute to the character decomposition of Z2j+1. This is

in agreement with the physical argument given at the beginning of section 3.

3.3 Equivalence with Pasquier and Saleur

We can now prove that the K1,2l+1 defined in [3] using the six-vertex model are equal to

the K1,2l+1 we defined in Eq. (9) using the cluster transfer matrix. Before attacking the

proof, let us briefly recall where the connection with the six-vertex model comes from.

On a planar lattice, the cluster representation of the Potts model partition function

is equivalent to a loop representation, where the loops are defined on the medial lattice

and surround the clusters [7]. From Eq. (2) and the Euler relation, the weight of a loop

configuration E ′ is Q(V +c(E′))/2xb(E′), where c(E ′) is its number of loops.5 An oriented

loop representation is obtained by independently assigning an orientation to each loop,

with weight q (resp. q−1) for counterclockwise (resp. clockwise) loops (recall that Q1/2 =

q + q−1). In this representation one can define the spin Sz along the transfer direction

(with parallel/antiparallel loops contributing ±1/2) which acts as a conserved quantum

number. Note that Sz = l means that there are at least l non-contractible loops, i.e.,

loops that wind around the periodic (N) direction of the lattice. Indeed, the contractible

loops do not contribute to Sz.

The weights q±1 can be further redistributed locally, as a factor of qα/2π for a coun-

terclockwise turn through an angle α [7]. While this redistribution correctly weighs

contractible loops, the non-contractible loops are given weight 2, but this can be cor-

rected [3] by twisting the model, i.e., by inserting the operator q2Sz into the trace that

5Note that we do not factorize QV/2, in order to recover exactly the same expression for the K1,2l+1

as before.
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defines the partition function. A partial resummation over the oriented-loop splittings

at vertices which are compatible with a given orientation of the edges incident to that

vertex now gives a six-vertex model representation [7]. Each edge of the medial lattice

then carries an arrow, and these arrows are conserved at the vertices: the net arrow flux

defines Sz as before. The six-vertex model again needs twisting by the operator qSz to

ensure the correct weighting. Considering each arrow as a spin 1/2, the transfer matrix

in the six-vertex representation, T6V, acts on a quantum chain of 2L spins 1/2. T6V can

be expressed in terms of generators of a Temperley-Lieb algebra, and therefore commutes

with the generators of the quantum group Uq(sl(2)) [3]. In addition to Sz one can then

define the total spin S (corresponding to the Casimir).

In this subsection we now follow [3] and define K1,2l+1 as the trace of (T6V)N in

the space of highest weights of spin S = Sz = l.6 With this definition, our goal is to

decompose K1,2l+1 in terms of the Z2j+1, obtaining again Eq. (12), from which we shall

conclude that the two definitions of K1,2l+1 are equivalent.

To this end, we first remark that

K1,2l+1 = F2l+1 − F2(l+1)+1 , (18)

where F2l+1 is the trace of (T6V)N on the space of all states of spin Sz = l. Indeed, the

number of highest weight states of spin S = Sz = l equals the number of states of spin

Sz = l minus the number of states of spin Sz = l+1. Therefore, we first decompose F2l+1.

The advantage of working with F2l+1 is that only Sz is specified, not S. Indeed, only

Sz has a simple interpretation in the oriented loop representation: a basis of the space

corresponding to Sz = l is given simply by all states with a net arrow flux of l to the

right, whereas the states with S = Sz = l would be more complicated linear combinations

of given spin configurations.

We now consider a configuration of oriented loops contributing to Z2j+1, i.e., with

2j non-contractible loops. As the contractible loops do not contribute to Sz, there are

no constraints on their orientations. Among the 2j non-contractible loops, j + l (resp.

j − l) must be oriented to the right (resp. left) in order to obtain Sz = l (recall that

6Note that in this context, Eq. (10) follows by noting that each irreducible representation contains

2l + 1 states, which is replaced by the q-deformed number (2l + 1)q on account of the twist.
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Figure 3: Loop configuration corresponding to the cluster configuration in Fig. 2. The

contractible loops can have any orientation (not shown), whereas those of the non-

contractible loops are constrained by the chosen value of Sz. With 2j = 4 non-contractible

loops we show one of the four possible orientations leading to Sz = 1.

l ≤ j). This is illustrated in Fig. 3. There are therefore
(

2j
j−l

)

possible orientations of the

non-contractible loops compatible with the chosen value of Sz. Correcting for the factors

of Q as before, we conclude that the character decomposition of F2l+1 is

F2l+1 =
L
∑

j=l

(

2j

j − l

)

Z2j+1

Qj
. (19)

Using now Eq. (18), and keeping in mind the identity in Eq. (6), we finally obtain Eq. (12).

This proves that our definition of K1,2l+1 coincides with the one used in [3].

3.4 Case of p integer

When p is integer, Uq(sl(2)) mixes representations with l′ = p−1− l+np and l′ = l+np,

with n integer. Of particular interest are the type II representations, and it can be shown

that the traces on highest weight states of type II are given by [3]

χ1,2l+1(L, N, x) =
∑

n≥0

(

K1,2(np+l)+1(L, N, x) − K1,2((n+1)p−1−l)+1(L, N, x)
)

. (20)

For convenience in writing Eq. (20) we have defined K1,2l+1(L, N, x) ≡ 0 for l > L.

At the ferromagnetic critical point, and in the continuum limit, the quantities χ1,2l+1
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become characters corresponding to primary fields of the unitary, minimal model Mp,p−1

with central charge c = 1 − 6
p(p−1)

. The many cancellations in Eq. (20) are linked to

the existence of null vectors in the corresponding irreducible Verma modules. In fact,

Eq. (20) is then nothing else than the Rocha-Caridi equation [8].

As in the case of the generic characters K1,2l+1, the definition (20) of the minimal

characters χ1,2l+1 is at finite size, and for any temperature x, but by analogy we shall

still refer to χ1,2l+1(L, N, x) as a minimal character.

It does not appear to be possible to compute the χ1,2l+1 directly in the cluster rep-

resentation, i.e., otherwise than by first computing the corresponding K1,2l′+1 and then

applying Eq. (20). They can however be computed directly in an Ap−1 type RSOS model

[9] with specific boundary conditions [10].

Many, but not all, character decompositions of partition functions in terms of K1,2l+1

turn into character decompositions in terms of χ1,2l+1 for p integer. This is the case for

the total partition function, due to the symmetries

c(l) = −c(p−1+np−l) = c(np+l) . (21)

Therefore, using Eq. (8), one obtains [10]

Z =
⌊(p−2)/2⌋
∑

l=0

c(l)χ1,2l+1 . (22)

Note that the sum contains less terms than before; in fact it is over those minimal

characters that would be inside the Kac table at the ferromagnetic critical point [11].

On the other hand, the formula for the Z2j+1, when the number of NTC is fixed to

j, cannot in general be expressed in terms of the χ1,2l+1 for p integer. One interesting

exception is for j = 0 (no NTC allowed) and p even. Using Eq. (15) one obtains

Z1 =
⌊(p−2)/2⌋
∑

l=0

(−1)lχ1,2l+1 (p even) . (23)

This effect of parity in p is present in many other properties of the RSOS models [12].

4 Fixed transverse boundary conditions

Another constrained partition function whose character decomposition would be of inter-

est is that of the Potts model on a cyclic lattice strip with fixed boundary conditions on
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the upper and lower horizontal row of Potts spins. It turns out to be easier to obtain the

decomposition of a slightly modified object, namely the corresponding partition function

on the dual lattice, with fixed boundary conditions on the two dual spins each of which

lives on an exterior infinite face.

4.1 A modified model on the dual lattice

We consider therefore Z̃Q0
(x̃), the partition function of the Potts model, defined on the

lattice dual to the L × N cyclic strip considered in the preceding sections, evaluated

at the dual temperature x̃ = 1/x. For the sake of generality, any dual cluster which

contains one (or both) exterior dual vertices has a weight of Q0 instead of Q. Note that

Q0 = 1 corresponds to fixed boundary conditions on the two exterior dual spins. The

case Q0 = Q is equivalent (under duality) to the free transverse boundary conditions

considered above; we denote the corresponding dual partition function Z̃(x̃).

We search the character decomposition of Q2−F vE

Q0

Z̃Q0
(x̃), where the prefactor is chosen

so as to make the final result simpler. To achieve this goal, one needs first to convert the

weights of the dual clusters into weights of direct clusters. Indeed, by duality a direct

cluster configuration is in one-to-one correspondence with a dual cluster configuration

[7], as shown in Fig. 4. To simplify the notation, we adopt the following convention: a

dual cluster is called a non-trivial cluster (NTC) if it is non-contractible with respect to

the periodic lattice direction, or if it contains one (or both) of the exterior dual spins.

With this convention, a dual configuration with j + 1 dual NTC corresponds always to a

direct configuration with j direct NTC. Note that there is always at least one dual NTC.

Given a cluster configuration, we denote by t the number of direct trivial (contractible)

clusters, by t̃ the number of dual trivial clusters, by b the number of direct edges, and

by b̃ the number of dual edges. Consider now the weight of a configuration with j + 1

dual NTC in Q2−F vE

Q0

Z̃Q0
(x̃). For j ≥ 1 (resp. j = 0) this is Q2−F vE

Q0

Q2
0Q

j−1Qt̃ṽb̃ (resp.

Q2−F vE

Q0

Q0Q
t̃ṽb̃), since the two exterior dual vertices are contained in two different (resp.

the same) dual NTC. We have here denoted the dual parameter ṽ = Q/v.

To express these weights in terms of the direct quantities, we recall the fundamental

duality relation [7] Q1−F vEZ̃(x̃) = Z(x), valid because the lattice is planar. Translated
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Figure 4: Direct and dual clusters corresponding to the configuration in Fig. 3. Direct

(resp. dual) vertices are shown as black circles (resp. red squares). There are two direct

NTC and three dual NTC (see text).

into a relation on the weights of a single cluster configuration this reads

Q1−F vEQj+1Qt̃ṽb̃ = QjQtvb . (24)

Therefore, the weight of a cluster configuration with j direct NTC reads Q0Q
j−1Qtvb if

j ≥ 1, and Qtvb if j = 0. We thus deduce the following result: the weight of a direct

cluster configuration in Q2−F vE

Q0

Z̃Q0
(x̃) is the same as in Z(x), except that for j ≥ 1 direct

NTC, one of the NTC has a weight Q0 instead of Q.

4.2 Z̃Q0
(x̃) in terms of K1,2l+1

Let us recall that when inserting the development (10) of c(l) into Eq. (8) for Z, we have

a geometrical interpretation for each term separately: from Eq. (13) the term in Qj gives

precisely Z2j+1. Due to the result given after Eq. (24), we must now simply replace Qj

by Q0Q
j−1 for j ≥ 1 and keep unchanged the term corresponding to j = 0. Therefore

Q2−F vE

Q0
Z̃Q0

(x̃) =
L
∑

l=0

b(l)K1,2l+1(x) (25)
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with the amplitudes

b(l) =
Q0

Q
c(l) + (−1)l

(

1 −
Q0

Q

)

= (−1)l +
l
∑

j=1

(−1)l−j

(

l + j

l − j

)

Q0Q
j−1 . (26)

Note that when Q0 = Q, we recover b(l) = c(l) as we should.

Just like in the case of free transverse boundary conditions, each power of Q in Eq. (25)

can be interpreted separately as a partition function with a fixed number of NTC.

Let us consider a couple of limiting cases of Eq. (25). For Q0 → 0, b(l) = (−1)l and

therefore

limQ0→0

(

Q2−F vE

Q0
Z̃Q0

(x̃)

)

=
L
∑

l=0

(−1)lK1,2l+1(x) = Z1(x) , (27)

where we have used Eq. (15). We thus recover exactly the partition function with no

direct NTC.

On the other hand, for Q0 → ∞, there is no K1,1 in the expansion of Q2−F vE

Q0

Z̃Q0
(x̃),

i.e., l = 0 is forbidden. This is indeed expected, since in that limit there can be no dual

cluster connecting the two exterior vertices, and therefore there is at least one direct

NTC. Thus j = 0 is forbidden, and since l ≥ j, we deduce that l = 0 is forbidden as well.

We now consider the case of p integer. Using Eqs. (26) and (21), we obtain that for

p even

b(l) = −b(p−1+np−l) = b(np+l) , (28)

and we can write

Q2−F vE

Q0
Z̃Q0

(x̃) =
⌊(p−2)/2⌋
∑

l=0

b(l)χ1,2l+1(x) (p even) . (29)

Note finally that b(1) = Q0−1. This means that with fixed cyclic boundary conditions

(Q0 = 1) the term l = 1 drops out from the character decomposition. This fact has been

exploited in a recent study of partition function zeroes of the RSOS models [13].

4.3 Square lattice model with Q0 = 1

The case of Q0 = 1 can be interpreted in the spin representation as having the same fixed

value of the dual spins on the two exterior dual vertices. Alternatively, in the cluster
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picture, a dual cluster containing one or both exterior vertices has the weight 1 instead

of Q.

Suppose now for simplicity that the direct lattice is a square lattice. The dual lattice

is then a square lattice too, except for the two exterior vertices, each of which is equivalent

to an extra line of spins all fixed in the same state. To make the equivalence perfect we

should include an extra global factor of exp(2NJ), because of the interactions between

spins inside each of the two extra lines (see Fig. 4). The dual lattice is thus equivalent

to a square lattice of width L + 1 and of length N , with periodic boundary conditions

along N and all the spins at the boundaries fixed to the same value. We denote the

corresponding partition function Zff(L + 1, N, x). Eq. (25) then reads explicitly

Zff(L, N, x) =
exp(2NJ)

Q2−F vE

L
∑

l=0

b(l)K1,2l+1(L − 1, N, x̃) . (30)

Let us write out the explicit results for integer Q. For the Ising model (Q = 2 or

p = 4) we have

Zff(L, N, x) =
exp(2NJ)

22−F vE
χ1,1(L − 1, N, x̃) , (31)

while for the three-state Potts model (Q = 3 or p = 6) we find

Zff(L, N, x) =
exp(2NJ)

32−F vE
(χ1,1(L − 1, N, x̃) + χ1,5(L − 1, N, x̃)) (32)

In the latter case, it is interesting to note that at the ferromagnetic critical point χ1,1+χ1,5

is nothing but the character of the identity operator with respect to the extended W3

algebra [14].

5 Conclusion

We have explained in this paper how to decompose various constrained partition functions

of the Potts model with cyclic boundary conditions in terms of the characters K1,2l+1.

These decompositions, whose origin is purely combinatorial, hold true in finite size, for

any weakly regular lattice, and at any temperature x.

In particular we can decompose the ratios Z2j+1/Z, which are the probabilities of

having exactly j non-trivial clusters. While these probabilities are well-understood in
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the continuum limit, at the ferromagnetic critical point at least, our results shed more

light on their fine structure, in particular regarding corrections to scaling.

Finally, we have seen that fixed transverse boundary conditions lead to the disap-

pearance of the term with l = 1. Physically, one would expect the breaking of the SQ

permutation symmetry of the spin states induced by the fixed boundary conditions to

simplify the structure of the complex-temperature phase diagram in the low-temperature

phase. This expectation is indeed brought out in a recent numerical study [13].
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