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KUREPA-TREES AND NAMBA FORCING

BERNHARD KÖNIG AND YASUO YOSHINOBU

Abstract. We show that compact cardinals and MM are sensi-
tive to λ-closed forcings for arbitrarily large λ. This is done by
adding ‘regressive’ λ-Kurepa-trees in either case. We argue that
the destruction of regressive Kurepa-trees with MM requires the
use of Namba forcing.

1. Introduction

Say that a tree T of height λ is γ-regressive if for all limit ordinals
α < λ with cf(α) < γ there is a function fα : Tα −→ T<α which is
regressive, i.e. fα(x) <T x for all x ∈ Tα and if x, y ∈ Tα are distinct
then fα(x) or fα(y) is strictly above the meet of x and y. We give a
summary of the main results of this paper:

5 Theorem. For all uncountable regular λ there is a λ-closed forcing
Kλ

reg that adds a λ-regressive λ-Kurepa-tree.

This is contrasted in Section 4:

7 Theorem. Assume that κ is a compact cardinal and λ ≥ κ is regular.
Then there are no κ-regressive λ-Kurepa-trees.

Theorems 5 and 7 establish that compact cardinals are sensitive to
λ-closed forcings for arbitrarily large λ. This should be compared with
the well-known result that a supercompact cardinal κ can be made
indestructible by κ-directed-closed forcings [10]. These results drive
a major wedge between the notions of λ-closed and λ-directed-closed.
Another contrasting known result is that a strong cardinal κ can be
made indestructible by κ+-closed forcings [3]. In Section 7 we prove

13 Theorem. Under MM, there are no ω1-regressive λ-Kurepa-trees
for any uncountable regular λ.

This shows that MM is sensitive to λ-closed forcings for arbitrarily
large λ, thus answering a question from both [7] and [8]. Note that
MM is indestructible by ω2-directed-closed forcings [8], so again we
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2 BERNHARD KÖNIG AND YASUO YOSHINOBU

find a remarkable gap between the notions of ω2-closed and ω2-directed-
closed. Interestingly enough though, ω2-closed forcings can only violate
a very small fragment of MM. To see this, let us denote by Γcov the class
of posets that preserve stationary subsets of ω1 and have the covering
property, i.e. every countable set of ordinals in the extension can be
covered by a countable set in the ground model. Then we have the
following result from [7, p.302]:

1 Theorem. The axioms PFA, MA(Γcov) and MA+(Γcov) are all in-
destructible by ω2-closed forcings respectively.1

So Theorem 5 gives

2 Corollary. If λ ≥ ω2 is regular, then MA+(Γcov) is consistent with
the existence of a λ-regressive λ-Kurepa-tree.

Again, compare this with Theorem 13. It is interesting to add that
MA+(Γcov) in particular implies the axioms PFA+ and SRP. The typi-
cal example of a forcing that preserves stationary subsets of ω1 but does
not have the covering property is Namba forcing and the proofs confirm
that Namba forcing plays a crucial role in this context. It has already
been established in [9] and [11] that MA(Γcov) can be preserved in an
(ω1,∞)-distributive forcing extension in which the Namba-fragment of
MM fails. In our case though, the failure of MM is obtained with a
considerably milder forcing, i.e. λ-closed for arbitrarily large λ.

The authors would like to thank Yoshihiro Abe, Tadatoshi Miyamoto
and Justin Moore for their helpful comments.

The reader requires a strong background in set-theoretic forcing, a
good prerequisite would be [4]. We give some definitions that might
not be in this last reference or because we defined them in a slightly
different fashion. If Γ is a class of posets then MA(Γ) denotes the
statement that whenever P ∈ Γ and Dξ (ξ < ω1) is a collection of dense
subsets of P then there exists a filter G on P such that Dξ ∩G 6= ∅ for
all ξ < ω1. The stronger MA+(Γ) denotes the statement that whenever
P ∈ Γ, Dξ (ξ < ω1) are dense subsets of P, and Ṡ is a P-name such
that


P Ṡ is stationary in ω1

then there exists a filter G on P such that Dξ ∩ G 6= ∅ for all ξ < ω1,
and

Ṡ[G] = {γ < ω1 : ∃q ∈ G(q 
P γ̌ ∈ Ṡ)}

is stationary in ω1. In particular, PFA is MA(proper) and MM is
MA(preserving stationary subsets of ω1). The interested reader is re-
ferred to [1] and [2] for the history of these forcing axioms.

1See below for a definition of the axioms MA(Γ) and MA+(Γ).
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A partial order is λ-closed if it is closed under descending chains of
length less than λ. It is λ-directed-closed if it is closed under directed
subsets of size less than λ. [7] proves that PFA is preserved by ω2-closed
forcings and [8] that MM is preserved by ω2-directed-closed forcings.

Namba forcing is denoted by Nm: conditions are trees t ⊆ ω<ω
2

with a trunk tr(t) such that t is linear below tr(t) and has splitting ℵ2

everywhere above the trunk. Smaller trees contain more information.
It is known that Namba forcing preserves stationary subsets of ω1. If
t ∈ Nm and x ∈ t then the last element of x is also called the tag of
x, denoted as tag(x), and we define Suct(x) to be the set of tags of all
immediate successors of x in t. So Suct(x) is an unbounded subset of
ω2. In an abuse of notation, a sequence is sometimes confused with its
tag. We write [t] for the set of infinite branches through t.

2. Stationary limits

For a tree T and an ordinal α, let Tα denote the αth level of T and
T<α =

⋃
ξ<α Tξ. If X is a set of ordinals, we write T ↾ X for the

subtree
⋃

ξ∈X Tξ. The expression ht(T ) denotes the height of T . We
only consider trees of functions. If T is a tree and B a collection of
cofinal branches through T then we call B non-stationary over T if
there is a function f : B −→ T which is regressive, i.e. f(b) ∈ b for all
b ∈ B and if b, b′ ∈ B are distinct then f(b) or f(b′) is strictly above
b ∩ b′. Otherwise we call B stationary over T . A tree T of height κ
is called γ-regressive if Tα is non-stationary over T<α for every limit
ordinal α < κ of cofinality less than γ. The following is easy to check:

3 Remark. Assume that A ⊆ α is cofinal in α. Then Tα is stationary
over T<α iff Tα is stationary over T ↾ A.

The ω-cofinal limits will figure prominently when dealing with ω1-
regressive trees, so we prove a useful Lemma about these. For simplicity
we only consider trees of height ω. The reader will notice that the
following observations are applicable in Section 6. If T is of height ω
and B a collection of infinite branches then for any subset S ⊆ T we
let

S = {b ∈ B : b ∩ S is infinite}.

If S is countable and S uncountable then we call S a Cantor-subtree
of T . The class N (T,B) ⊆ [Hθ]

ℵ0 (for some large enough regular θ) is
defined by letting N ∈ N (T,B) if and only if there is b ∈ B such that
b ⊆ N but b /∈ N . We have the following

4 Lemma. Assume that T has height ω and size ℵ1 and that B is a
collection of infinite branches. Then the following are equivalent:
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(1) B is stationary over T .
(2) (a) Either there is a Cantor-subtree S ⊆ T or

(b) if we identify T with ω1 by any enumeration then

EB = {α < ω1 : sup(b) = α for some b ∈ B}

is stationary in ω1.
(3) N (T,B) is stationary in [Hθ]

ℵ0.

Proof. The equivalence of (1) and (3) can be found in [6, p.112] and
the implication (2) =⇒ (1) is easy.

For (3) =⇒ (2), assume ¬(2) and show ¬(3): pick an enumeration
e : ω1 → T such that EB is nonstationary if we identify nodes with
countable ordinals via the enumeration e. Pick a structure N ≺ Hθ

such that e, T,B ∈ N and set γ = N ∩ ω1, so we have γ /∈ EB. Let
b ∈ B be such that b ⊆ N . Then sup(b) < γ holds. Now define

A = {c ∈ B : sup(c) = sup(b)}.

Note that A ∈ N and A is countable since we know by ¬(2)(a) that

sup(b) is countable. So A ⊆ N , therefore b ∈ N . This shows that
N /∈ N (T,B) and N (T,B) is non-stationary. �

Note that the equivalence of (1) and (3) is to some extent already in
[1, p.955] but our result differs slightly from this last reference as we
have a stronger notion of non-stationarity. See also [6] for variations of
Lemma 4 in uncountable heights.

3. Creating regressive Kurepa-trees

Let λ be a regular uncountable cardinal throughout this section. We
describe the natural forcing Kλ

reg to add a λ-regressive λ-Kurepa-tree
and show that this forcing is λ-closed. We may assume the cardinal
arithmetic 2<λ = λ, otherwise a preliminary Cohen-subset of λ could
be added. Conditions of Kλ

reg are pairs (T, h), where

(1) T is a tree of height α + 1 for some α < λ and each level has
size < λ.

(2) T is λ-regressive, i.e. if ξ ≤ α then Tξ is non-stationary over
T<ξ.

(3) h : Tα −→ λ+ is 1-1.

The condition (T, h) is stronger than (S, g) if

• S = T ↾ ht(S).
• rng(g) ⊆ rng(h).
• g−1(ν) ≤T h−1(ν) for all ν ∈ rng(g).
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A generic filter G for Kλ
reg will produce a λ-regressive λ-tree TG in

the first coordinate and the sets

bν = {x ∈ TG : there is (T, h) ∈ G such that h(x) = ν}

for ν < λ+ form a collection of λ+-many mutually different λ-branches
through the tree TG. Notice also that the standard arguments for λ+-cc
go through here as we assumed 2<λ = λ.

So we are done once we show that Kλ
reg is λ-closed. To this end, let

(T ξ, hξ) (ξ < γ) be a descending chain of conditions of length less than
λ. We can obviously assume that γ is a limit ordinal. If the height of
T ξ is αξ + 1, let αγ = supξ<γ αξ. We want to extend the tree

T ∗ =
⋃

ξ<γ

T ξ,

so we have to define the αγth level: whenever ν ∈ rng(hξ) for some
ξ < γ, then there is exactly one αγ-branch cν that has color ν on a
final segment. Now define

T γ
αγ = {cν : ν ∈ rng(hξ) for some ξ < γ}

and let T γ be the tree T ∗ with the level T γ
αγ on top. The 1-1 function

hγ : T γ
αγ −→ λ+ is defined by letting

hγ(cν) = ν.

We claim that (T γ, hγ) is a condition: the only thing left to check is that
T γ

αγ is non-stationary over T ∗. But this is witnessed by the function

f(cν) = the <T -least x ∈ cν such that there is ξ < γ with hξ(x) = ν.

Notice that f is regressive: if

f(cν) ≤T f(cµ) ≤T cν ∩ cµ,

let ξ witness that f(cµ) = x, i.e. hξ(x) = µ. Then hξ(x) must be color
ν as well since f(cν) ≤T x has color ν. Thus, ν = hξ(x) = µ.

But (T γ, hγ) extends the chain (T ξ, hξ) (ξ < γ), so we just showed

5 Theorem. Kλ
reg is a λ-closed forcing that adds a λ-regressive λ-

Kurepa-tree.

We emphasize again that the forcing Kλ
reg is not ω2-directed-closed

but the reader can check that the usual forcing to add a plain λ-Kurepa-
tree (see e.g. [4]) actually is λ-directed-closed.
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4. Destroying regressive Kurepa-trees above a compact

cardinal

If λ is a regular uncountable cardinal then a tree T is called a weak
λ-Kurepa-tree if

• T has height λ,
• each level has size ≤ λ and
• T has λ+-many cofinal branches.

6 Lemma. Suppose that λ is a regular uncountable cardinal and there
is an elementary embedding j : V −→ M such that η = sup(j′′λ) < j(λ)
and cfM(η) < j(κ). Then there are no κ-regressive weak λ-Kurepa-
trees.

Proof. Suppose that T is a κ-regressive weak λ-Kurepa-tree and j as
above. Then there is a regressive function fη defined on the level (jT )η.
If b is a cofinal branch through T , then we find αb < λ such that

fη(jb ↾ η) ≤jT jb ↾ j(αb) = j(b ↾ αb).

Note that if b and b′ are two distinct branches through T then jb and jb′

must disagree below η. Moreover, j(b ↾ αb) 6= j(b′ ↾ αb′) holds because
fη is regressive. Then the assignment b 7−→ b ↾ αb must be 1-1, which
is a contradiction to the fact that T has λ+-many branches. �

Recall that a cardinal κ is λ-compact if there is a fine ultrafilter on
Pκλ. If λ is regular, the elementary embedding j : V −→ M with
respect to such a fine ultrafilter has the following properties:

• the critical point of j is κ,
• there is a discontinuity at λ, i.e. η = sup(j′′λ) < j(λ) and
• cfM(η) < j(κ).

(see [5, §22] for more details). A cardinal κ is said to be compact if
it is λ-compact for all λ, so it follows from Lemma 6 and the above
definition:

7 Theorem. Assume that κ is a compact cardinal and λ ≥ κ is regular.
Then there are no κ-regressive weak λ-Kurepa-trees.

Using Theorem 5, we have

8 Corollary. Compact cardinals are sensitive to λ-closed forcings for
arbitrarily large λ.
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It was known before that adding a slim2 κ-Kurepa-tree destroys the
ineffability of κ and that slim κ-Kurepa-trees can be added with κ-
closed forcing. But note that our notion of regressive is more univer-
sal: slim Kurepa-trees can exist above compact or even supercompact
cardinals.

5. Oscillating branches

Now assume that T is an ω2-tree: we enumerate each level by letting

(5.1) Tα = {τ(α, ξ) : ξ < ω1} for all α < ω2.

In this situation we identify branches with functions from ω2 to ω1 that
are induced by the enumerations of the levels. If A ⊆ ω2 is unbounded
and b : ω2 −→ ω1 is an ω2-branch through T then we say that b
oscillates on A if for all α < ω2 and all ζ < ω1 there is β > α in A and
ξ > ζ such that b(β) = ξ.

9 Lemma. Assume that T is an ω2-Kurepa-tree with an enumeration
τ(α, ξ) (α < ω2, ξ < ω1) as in (5.1) and Aι (ι < ω2) are ℵ2-many
unbounded subsets of ω2. Then there is an ω2-branch b through T that
oscillates on every Aι (ι < ω2).

Proof. Assume not, then for every ω2-branch b there is ιb < ω2 and
there are αb < ω2, ζb < ω1 such that

b ↾ (Aιb \ αb) ⊆ {τ(α, ξ) : α ∈ Aιb \ αb, ξ < ζb}.

By a cardinality argument we can find ℵ3-many branches b such that
ι0 = ιb, α0 = αb and ζ0 = ζb. But then each of these branches is a
different branch through the tree

T0 = {τ(α, ξ) : α ∈ Aι0 \ α0, ξ < ζ0}.

T0 has countable levels but ℵ3-many branches, a contradiction. �

6. Destroying regressive Kurepa-trees with MM

We introduce a simplified notation for the following arguments: if
f : t −→ ω1 for some t ∈ Nm and π ∈ [t] then we let

sup(f)(π) = sup
n<ω

f(π ↾ n).

If b : ω2 −→ ω1 is an ω2-branch and x ∈ ω<ω
2 then b(x) really denotes

the countable ordinal b(tag(x)).

2A κ-Kurepa-tree T is called slim if |Tα| ≤ |α| for all α < κ.
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10 Lemma. Assume that T is an ω2-Kurepa-tree and B is the set of
branches. Let τ(α, ξ) (α < ω2, ξ < ω1) be an enumeration as in (5.1).
Then in the Namba extension V Nm there is a sequence

∆G = 〈δG
n : n < ω〉

cofinal in ωV
2 such that

ĖB = {sup(b)(∆G) : b ∈ B}

is stationary relative to every stationary S ⊆ ω1 in V , i.e. ĖB ∩ S is
stationary for all stationary S ⊆ ω1 in the ground model.

Proof. Assume that Ċ is an Nm-name for a club in ω1, S ⊆ ω1 is a
stationary set in V and t0 a condition in Nm. Our goal is to find a
condition t3 ≤ t0 and an ordinal ξ0 ∈ S such that t3 
 ξ0 ∈ Ċ ∩ ĖB.
By a fusion argument similar to the ones in [11, p.188], we construct a
condition t1 ≤ t0 and a coloring f : t1 −→ ω1 such that

(1) f increases on chains, i.e. if v ( x are elements of t1 then
f(v) < f(x).

(2) if the height of x in t1 is odd and x is above the trunk then
there is ζ < ω1 such that

|{xaβ ∈ t1 | f(xaβ) = ξ}| = ℵ2 for all ξ > ζ,

i.e. each ordinal in a final segment of ω1 has ℵ2-many preimages
in the set Suct1(x).

(3) if G ⊆ Nm is generic with t1 ∈ G and π : ω −→ ωV
2 is the

corresponding Namba-sequence then sup(f)(π) ∈ Ċ[G].

Given the condition t1, we apply Lemma 9 to find a branch b that
oscillates on all sets Suct1(x) (x ∈ t1). Using (1) and (2), we thin out
again to get a condition t2 ≤ t1 with the following property:

(4) if v ( x ( y is a chain in t2 above the trunk and the height of
x is odd then f(v) < b(x) < f(y).

Note that in particular (2) can be preserved by passing to the condition
t2, so we may assume that t2 has properties (1)-(4). Let us also assume
for notational simplicity that the height of tr(t2) is even. The next step
is to find t3 ≤ t2 and ξ0 ∈ S such that

(5) sup(f)(π) = ξ0 for all branches π in [t3].

To find t3 and ξ0, we define a game G(γ) for every limit γ < ω1. Fix a
ladder sequence l(γ) = (γn : n < ω) for each such γ. The game G(γ)
is played as follows:

I α0 α1 α2 α3 . . .
II β0 β1 β2 β3 . . .
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where for all n < ω

• αn < βn < ω2,
• sn = tr(t2)

a(βi : i ≤ n) ∈ t2 and
• f(sn) ∈ (γn, γ) whenever n is even.

II wins if he can make legal moves at each step, so the game is deter-
mined.

10.1 Claim. II wins G(γ) for club many γ′s.

Proof. Assume not, then there is a stationary U ⊆ ω1 such that player
I wins G(γ) for each γ ∈ U via the strategy σγ . Now pick a countable
elementary N such that ξ = N ∩ ω1 ∈ U and t2, f, l, U ∈ N .

A ladder sequence l(ξ) = (ξn : n < ω) converging to ξ is given and
we define a sequence (βn : n < ω) inductively as follows: let βn be the
least

β > sup
γ∈U

σγ(βi : i < n)

such that

• s = tr(t2)
a(βi : i < n)aβ ∈ t2 and

• f(s) ∈ (ξn, ξ) whenever n is even.

Such a β exists in N by (2) and elementarity. Note that (βn : n < ω)
is a possible record of moves for player II if player I goes along with
the strategy σξ. But II obviously wins the game G(ξ) if the sequence
(βn : n < ω) is played, a contradiction. This proves the claim. �

Given the claim, pick ξ0 ∈ S above all b(x) (x ⊆ tr(t2)) such that II
wins the game G(ξ0). Now we can easily find a condition t3 ≤ t2 with
property (5).

If we fix a generic G ⊆ Nm with t3 ∈ G and let πG : ω −→ ωV
2 be the

corresponding Namba-sequence, we can define δG
n = πG(2n + 1) and

∆G = 〈δG
n : n < ω〉. Then we have

(6) sup(f)(∆G) ∈ Ċ[G] by (3),
(7) sup(f)(∆G) = ξ0 by (5) and
(8) sup(f)(∆G) = supn<ω b(δG

n ) = sup(b)(∆G) by (4).

But this finishes the proof since

ξ0 ∈ Ċ[G] ∩ ĖB[G] ∩ S.

�

11 Corollary. Assume that T is an ω2-Kurepa-tree and B the set of
ground model branches through T . Then B is stationary over T in the
Namba extension.
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Finally we get the main result for ω2. We will prove a more general
version of this in Theorem 13.

12 Theorem. There are no ω1-regressive ω2-Kurepa-trees under MM.

Proof. Assume that T is an ω1-regressive ω2-Kurepa-tree and that

τ(α, ξ) (α < ω2, ξ < ω1)

is an enumeration as in (5.1). Look at the iteration P = Nm ∗CS(ĖB),
where CS(ĖB) shoots a club through the set ĖB from the statement
of Lemma 10. The poset P preserves stationary subsets of ω1 by the
fact that ĖB is stationary relative to every stationary set in V . But
we have that ĖB is club in V P, so we can use MM to get a sequence
∆ = 〈δn : n < ω〉 converging to δ < ω2 such that

{sup(b)(∆) : b is a δ-sequence in Tδ}

is club in ω1. Using Lemma 4, we see that Tδ is definitely stationary
over T ↾ ∆. So Tδ is stationary over T<δ by Remark 3. Since cf(δ) = ω,
this contradicts the fact that T is ω1-regressive. �

7. Larger heights

Starting from Theorem 12, we generalize the result to weak Kurepa-
trees in all uncountable regular heights.

13 Theorem. Under MM, there are no ω1-regressive weak λ-Kurepa-
trees for any uncountable regular λ.

Proof. Since PFA destroys weak ω1-Kurepa-trees (see [1]), we may as-
sume that λ is at least ω2. Now assume that T is an ω1-regressive weak
λ-Kurepa-tree and let P = Col(ω2, λ) be the usual ω2-directed collapse.
Note that P has the λ+-cc, because λω1 = λ holds under MM (see [2]).
So the tree T has a cofinal subtree T ∗ in V P that is an ω1-regressive
weak ω2-Kurepa-tree. By throwing away some nodes if necessary, we
may assume that T ∗ has the property that

(7.1) T ∗
x = {y ∈ T ∗ : x ≤T y} has ℵ3-many branches for all x ∈ T ∗.

Now we define an ω2-directed forcing Q in V P that shoots an actual
ω2-Kurepa-subtree through the tree T ∗: conditions of Q are pairs of
the form (S, B), where

(1) S is a downward-closed subtree of T ∗ of height α + 1 for some
ordinal α < ω2,

(2) |S| ≤ ω1,
(3) B is a nonempty set of branches cofinal in T ∗ and |B| ≤ ℵ1,
(4) b ↾ (α + 1) ⊆ S for all b ∈ B.



KUREPA-TREES AND NAMBA FORCING 11

We let (S0, B0) ≥Q (S1, B1) if S0 = S1 ↾ ht(S0) and B0 ⊆ B1.
If X ⊆ Q is a set of mutually compatible conditions of size ≤ ℵ1

then we let SX and BX be the unions over the first respectively second
coordinates of X. Now SX can be end-extended to a tree S̄X of succes-
sor height by extending at least the cofinal branches in the non-empty
set BX . But then (S̄X , BX) is a condition stronger than every condi-
tion in X, hence Q is ω2-directed-closed. An easy cardinality argument
shows that Q has the ℵ3-cc because 2ℵ1 = ℵ2 holds in V P . It is now
straightforward that a generic filter H ⊆ Q will produce an ω2-tree in
the first coordinate which is ω1-regressive since it is a subtree of the
original tree T and notice that P and Q both preserve uncountable
cofinalities. On the other hand, a density argument using (7.1) shows
that the set

B =
⋃

{B : there is S such that (S, B) ∈ H}

has cardinality ℵ3, so H induces an ω1-regressive ω2-Kurepa-tree. The
composition of two ω2-directed-closed forcings is again ω2-directed-
closed and it was mentioned in the introduction that ω2-directed-closed
forcings preserve MM, so we have the situation:

• V P∗Q |= MM
• V P∗Q |=“there is an ω1-regressive ω2-Kurepa-tree.”

But this contradicts Theorem 12. �

Using Theorem 5, we have

14 Corollary. MM is sensitive to λ-closed forcing algebras for arbi-
trarily large λ.
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