Kurepa-trees and Namba-forcing Bernhard Koenig, Yasuo Yoshinobu ## ▶ To cite this version: Bernhard Koenig, Yasuo Yoshinobu. Kurepa-trees and Namba-forcing. 2006. hal-00023751 HAL Id: hal-00023751 https://hal.science/hal-00023751 Preprint submitted on 4 May 2006 **HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. #### KUREPA-TREES AND NAMBA FORCING #### BERNHARD KÖNIG AND YASUO YOSHINOBU ABSTRACT. We show that compact cardinals and MM are sensitive to λ -closed forcings for arbitrarily large λ . This is done by adding 'regressive' λ -Kurepa-trees in either case. We argue that the destruction of regressive Kurepa-trees with MM requires the use of Namba forcing. #### 1. Introduction Say that a tree T of height λ is γ -regressive if for all limit ordinals $\alpha < \lambda$ with $\mathrm{cf}(\alpha) < \gamma$ there is a function $f_{\alpha} : T_{\alpha} \longrightarrow T_{<\alpha}$ which is regressive, i.e. $f_{\alpha}(x) <_T x$ for all $x \in T_{\alpha}$ and if $x, y \in T_{\alpha}$ are distinct then $f_{\alpha}(x)$ or $f_{\alpha}(y)$ is strictly above the meet of x and y. We give a summary of the main results of this paper: **5 Theorem.** For all uncountable regular λ there is a λ -closed forcing $\mathcal{K}^{\lambda}_{reg}$ that adds a λ -regressive λ -Kurepa-tree. This is contrasted in Section 4: **7 Theorem.** Assume that κ is a compact cardinal and $\lambda \geq \kappa$ is regular. Then there are no κ -regressive λ -Kurepa-trees. Theorems 5 and 7 establish that compact cardinals are sensitive to λ -closed forcings for arbitrarily large λ . This should be compared with the well-known result that a supercompact cardinal κ can be made indestructible by κ -directed-closed forcings [10]. These results drive a major wedge between the notions of λ -closed and λ -directed-closed. Another contrasting known result is that a strong cardinal κ can be made indestructible by κ ⁺-closed forcings [3]. In Section 7 we prove **13 Theorem.** Under MM, there are no ω_1 -regressive λ -Kurepa-trees for any uncountable regular λ . This shows that MM is sensitive to λ -closed forcings for arbitrarily large λ , thus answering a question from both [7] and [8]. Note that MM is indestructible by ω_2 -directed-closed forcings [8], so again we $^{2000\} Mathematics\ Subject\ Classification.\ 03E40,\ 03E55.$ $Key\ words\ and\ phrases.$ Kurepa trees, compact cardinals, Martin's Maximum. find a remarkable gap between the notions of ω_2 -closed and ω_2 -directed-closed. Interestingly enough though, ω_2 -closed forcings can only violate a very small fragment of MM. To see this, let us denote by Γ_{cov} the class of posets that preserve stationary subsets of ω_1 and have the *covering* property, i.e. every countable set of ordinals in the extension can be covered by a countable set in the ground model. Then we have the following result from [7, p.302]: **1 Theorem.** The axioms PFA, $MA(\Gamma_{cov})$ and $MA^+(\Gamma_{cov})$ are all indestructible by ω_2 -closed forcings respectively.¹ So Theorem 5 gives **2 Corollary.** If $\lambda \geq \omega_2$ is regular, then $MA^+(\Gamma_{cov})$ is consistent with the existence of a λ -regressive λ -Kurepa-tree. Again, compare this with Theorem 13. It is interesting to add that $MA^+(\Gamma_{cov})$ in particular implies the axioms PFA⁺ and SRP. The typical example of a forcing that preserves stationary subsets of ω_1 but does not have the covering property is Namba forcing and the proofs confirm that Namba forcing plays a crucial role in this context. It has already been established in [9] and [11] that $MA(\Gamma_{cov})$ can be preserved in an (ω_1, ∞) -distributive forcing extension in which the Namba-fragment of MM fails. In our case though, the failure of MM is obtained with a considerably milder forcing, i.e. λ -closed for arbitrarily large λ . The authors would like to thank Yoshihiro Abe, Tadatoshi Miyamoto and Justin Moore for their helpful comments. The reader requires a strong background in set-theoretic forcing, a good prerequisite would be [4]. We give some definitions that might not be in this last reference or because we defined them in a slightly different fashion. If Γ is a class of posets then $\mathrm{MA}(\Gamma)$ denotes the statement that whenever $\mathcal{P} \in \Gamma$ and D_{ξ} ($\xi < \omega_1$) is a collection of dense subsets of \mathcal{P} then there exists a filter G on \mathcal{P} such that $D_{\xi} \cap G \neq \emptyset$ for all $\xi < \omega_1$. The stronger $\mathrm{MA}^+(\Gamma)$ denotes the statement that whenever $\mathcal{P} \in \Gamma$, D_{ξ} ($\xi < \omega_1$) are dense subsets of \mathcal{P} , and \dot{S} is a \mathcal{P} -name such that $$\Vdash_{\mathcal{P}} \dot{S}$$ is stationary in ω_1 then there exists a filter G on \mathcal{P} such that $D_{\xi} \cap G \neq \emptyset$ for all $\xi < \omega_1$, and $$\dot{S}[G] = \{ \gamma < \omega_1 : \exists q \in G(q \Vdash_{\mathcal{P}} \check{\gamma} \in \dot{S}) \}$$ is stationary in ω_1 . In particular, PFA is MA(proper) and MM is MA(preserving stationary subsets of ω_1). The interested reader is referred to [1] and [2] for the history of these *forcing axioms*. ¹See below for a definition of the axioms $MA(\Gamma)$ and $MA^+(\Gamma)$. A partial order is λ -closed if it is closed under descending chains of length less than λ . It is λ -directed-closed if it is closed under directed subsets of size less than λ . [7] proves that PFA is preserved by ω_2 -closed forcings and [8] that MM is preserved by ω_2 -directed-closed forcings. Namba forcing is denoted by Nm: conditions are trees $t \subseteq \omega_2^{<\omega}$ with a trunk tr(t) such that t is linear below tr(t) and has splitting \aleph_2 everywhere above the trunk. Smaller trees contain more information. It is known that Namba forcing preserves stationary subsets of ω_1 . If $t \in \text{Nm}$ and $x \in t$ then the last element of x is also called the tag of x, denoted as tag(x), and we define $Suc_t(x)$ to be the set of tags of all immediate successors of x in t. So $Suc_t(x)$ is an unbounded subset of ω_2 . In an abuse of notation, a sequence is sometimes confused with its tag. We write [t] for the set of infinite branches through t. #### 2. Stationary limits For a tree T and an ordinal α , let T_{α} denote the αth level of T and $T_{<\alpha} = \bigcup_{\xi < \alpha} T_{\xi}$. If X is a set of ordinals, we write $T \upharpoonright X$ for the subtree $\bigcup_{\xi \in X} T_{\xi}$. The expression $\operatorname{ht}(T)$ denotes the height of T. We only consider trees of functions. If T is a tree and \mathcal{B} a collection of cofinal branches through T then we call \mathcal{B} non-stationary over T if there is a function $f: \mathcal{B} \longrightarrow T$ which is regressive, i.e. $f(b) \in b$ for all $b \in \mathcal{B}$ and if $b, b' \in \mathcal{B}$ are distinct then f(b) or f(b') is strictly above $b \cap b'$. Otherwise we call \mathcal{B} stationary over T. A tree T of height κ is called γ -regressive if T_{α} is non-stationary over $T_{<\alpha}$ for every limit ordinal $\alpha < \kappa$ of cofinality less than γ . The following is easy to check: **3 Remark.** Assume that $A \subseteq \alpha$ is cofinal in α . Then T_{α} is stationary over $T_{<\alpha}$ iff T_{α} is stationary over $T \upharpoonright A$. The ω -cofinal limits will figure prominently when dealing with ω_1 regressive trees, so we prove a useful Lemma about these. For simplicity we only consider trees of height ω . The reader will notice that the following observations are applicable in Section 6. If T is of height ω and \mathcal{B} a collection of infinite branches then for any subset $S \subseteq T$ we let $$\overline{S} = \{ b \in \mathcal{B} : b \cap S \text{ is infinite} \}.$$ If S is countable and \overline{S} uncountable then we call S a Cantor-subtree of T. The class $\mathcal{N}(T,\mathcal{B}) \subseteq [H_{\theta}]^{\aleph_0}$ (for some large enough regular θ) is defined by letting $N \in \mathcal{N}(T,\mathcal{B})$ if and only if there is $b \in \mathcal{B}$ such that $b \subseteq N$ but $b \notin N$. We have the following **4 Lemma.** Assume that T has height ω and size \aleph_1 and that \mathcal{B} is a collection of infinite branches. Then the following are equivalent: - (1) \mathcal{B} is stationary over T. - (2) (a) Either there is a Cantor-subtree $S \subseteq T$ or - (b) if we identify T with ω_1 by any enumeration then $$E_{\mathcal{B}} = \{ \alpha < \omega_1 : \sup(b) = \alpha \text{ for some } b \in \mathcal{B} \}$$ is stationary in ω_1 . (3) $\mathcal{N}(T,\mathcal{B})$ is stationary in $[H_{\theta}]^{\aleph_0}$. *Proof.* The equivalence of (1) and (3) can be found in [6, p.112] and the implication $(2) \Longrightarrow (1)$ is easy. For $(3) \Longrightarrow (2)$, assume $\neg(2)$ and show $\neg(3)$: pick an enumeration $e: \omega_1 \to T$ such that $E_{\mathcal{B}}$ is nonstationary if we identify nodes with countable ordinals via the enumeration e. Pick a structure $N \prec H_{\theta}$ such that $e, T, \mathcal{B} \in N$ and set $\gamma = N \cap \omega_1$, so we have $\gamma \notin E_{\mathcal{B}}$. Let $b \in \mathcal{B}$ be such that $b \subseteq N$. Then $\sup(b) < \gamma$ holds. Now define $$\mathcal{A} = \{ c \in \mathcal{B} : \sup(c) = \sup(b) \}.$$ Note that $A \in N$ and A is countable since we know by $\neg(2)(a)$ that $\overline{\sup(b)}$ is countable. So $A \subseteq N$, therefore $b \in N$. This shows that $N \notin \mathcal{N}(T, \mathcal{B})$ and $\mathcal{N}(T, \mathcal{B})$ is non-stationary. Note that the equivalence of (1) and (3) is to some extent already in [1, p.955] but our result differs slightly from this last reference as we have a stronger notion of non-stationarity. See also [6] for variations of Lemma 4 in uncountable heights. #### 3. Creating regressive Kurepa-trees Let λ be a regular uncountable cardinal throughout this section. We describe the natural forcing $\mathcal{K}^{\lambda}_{\text{reg}}$ to add a λ -regressive λ -Kurepa-tree and show that this forcing is λ -closed. We may assume the cardinal arithmetic $2^{<\lambda} = \lambda$, otherwise a preliminary Cohen-subset of λ could be added. Conditions of $\mathcal{K}^{\lambda}_{\text{reg}}$ are pairs (T, h), where - (1) T is a tree of height $\alpha + 1$ for some $\alpha < \lambda$ and each level has size $< \lambda$. - (2) T is λ -regressive, i.e. if $\xi \leq \alpha$ then T_{ξ} is non-stationary over $T_{<\xi}$. - (3) $h: T_{\alpha} \longrightarrow \lambda^{+}$ is 1-1. The condition (T, h) is stronger than (S, g) if - $S = T \upharpoonright \operatorname{ht}(S)$. - $\operatorname{rng}(g) \subseteq \operatorname{rng}(h)$. - $g^{-1}(\nu) \leq_T h^{-1}(\nu)$ for all $\nu \in \text{rng}(g)$. A generic filter G for $\mathcal{K}_{reg}^{\lambda}$ will produce a λ -regressive λ -tree T_G in the first coordinate and the sets $$b_{\nu} = \{x \in T_G : \text{there is } (T, h) \in G \text{ such that } h(x) = \nu\}$$ for $\nu < \lambda^+$ form a collection of λ^+ -many mutually different λ -branches through the tree T_G . Notice also that the standard arguments for λ^+ -cc go through here as we assumed $2^{<\lambda} = \lambda$. So we are done once we show that $\mathcal{K}_{reg}^{\lambda}$ is λ -closed. To this end, let (T^{ξ}, h^{ξ}) ($\xi < \gamma$) be a descending chain of conditions of length less than λ . We can obviously assume that γ is a limit ordinal. If the height of T^{ξ} is $\alpha^{\xi} + 1$, let $\alpha^{\gamma} = \sup_{\xi < \gamma} \alpha^{\xi}$. We want to extend the tree $$T^* = \bigcup_{\xi < \gamma} T^{\xi},$$ so we have to define the α^{γ} th level: whenever $\nu \in \operatorname{rng}(h^{\xi})$ for some $\xi < \gamma$, then there is exactly one α^{γ} -branch c_{ν} that has color ν on a final segment. Now define $$T_{\alpha^{\gamma}}^{\gamma} = \{c_{\nu} : \nu \in \operatorname{rng}(h^{\xi}) \text{ for some } \xi < \gamma\}$$ and let T^{γ} be the tree T^* with the level $T^{\gamma}_{\alpha^{\gamma}}$ on top. The 1-1 function $h^{\gamma}:T^{\gamma}_{\alpha^{\gamma}}\longrightarrow \lambda^+$ is defined by letting $$h^{\gamma}(c_{\nu}) = \nu.$$ We claim that (T^{γ}, h^{γ}) is a condition: the only thing left to check is that $T_{\alpha\gamma}^{\gamma}$ is non-stationary over T^* . But this is witnessed by the function $f(c_{\nu}) = \text{the } <_{T}\text{-least } x \in c_{\nu} \text{ such that there is } \xi < \gamma \text{ with } h^{\xi}(x) = \nu.$ Notice that f is regressive: if $$f(c_{\nu}) \leq_T f(c_{\mu}) \leq_T c_{\nu} \cap c_{\mu},$$ let ξ witness that $f(c_{\mu}) = x$, i.e. $h^{\xi}(x) = \mu$. Then $h^{\xi}(x)$ must be color ν as well since $f(c_{\nu}) \leq_T x$ has color ν . Thus, $\nu = h^{\xi}(x) = \mu$. But (T^{γ}, h^{γ}) extends the chain (T^{ξ}, h^{ξ}) $(\xi < \gamma)$, so we just showed **5 Theorem.** $\mathcal{K}_{reg}^{\lambda}$ is a λ -closed forcing that adds a λ -regressive λ -Kurepa-tree. We emphasize again that the forcing $\mathcal{K}_{reg}^{\lambda}$ is not ω_2 -directed-closed but the reader can check that the usual forcing to add a plain λ -Kurepatree (see e.g. [4]) actually is λ -directed-closed. # 4. Destroying regressive Kurepa-trees above a compact cardinal If λ is a regular uncountable cardinal then a tree T is called a weak λ -Kurepa-tree if - T has height λ , - each level has size $\leq \lambda$ and - T has λ^+ -many cofinal branches. **6 Lemma.** Suppose that λ is a regular uncountable cardinal and there is an elementary embedding $j: V \longrightarrow M$ such that $\eta = \sup(j''\lambda) < j(\lambda)$ and $\operatorname{cf}^M(\eta) < j(\kappa)$. Then there are no κ -regressive weak λ -Kurepatrees. *Proof.* Suppose that T is a κ -regressive weak λ -Kurepa-tree and j as above. Then there is a regressive function f_{η} defined on the level $(jT)_{\eta}$. If b is a cofinal branch through T, then we find $\alpha_b < \lambda$ such that $$f_{\eta}(jb \upharpoonright \eta) \leq_{jT} jb \upharpoonright j(\alpha_b) = j(b \upharpoonright \alpha_b).$$ Note that if b and b' are two distinct branches through T then jb and jb' must disagree below η . Moreover, $j(b \upharpoonright \alpha_b) \neq j(b' \upharpoonright \alpha_{b'})$ holds because f_{η} is regressive. Then the assignment $b \longmapsto b \upharpoonright \alpha_b$ must be 1-1, which is a contradiction to the fact that T has λ^+ -many branches. \square Recall that a cardinal κ is λ -compact if there is a fine ultrafilter on $\mathcal{P}_{\kappa}\lambda$. If λ is regular, the elementary embedding $j:V\longrightarrow M$ with respect to such a fine ultrafilter has the following properties: - the critical point of j is κ , - there is a discontinuity at λ , i.e. $\eta = \sup(j''\lambda) < j(\lambda)$ and - $\operatorname{cf}^M(\eta) < j(\kappa)$. (see [5, §22] for more details). A cardinal κ is said to be *compact* if it is λ -compact for all λ , so it follows from Lemma 6 and the above definition: **7 Theorem.** Assume that κ is a compact cardinal and $\lambda \geq \kappa$ is regular. Then there are no κ -regressive weak λ -Kurepa-trees. Using Theorem 5, we have **8 Corollary.** Compact cardinals are sensitive to λ -closed forcings for arbitrarily large λ . It was known before that adding a slim² κ -Kurepa-tree destroys the ineffability of κ and that slim κ -Kurepa-trees can be added with κ -closed forcing. But note that our notion of regressive is more universal: slim Kurepa-trees can exist above compact or even supercompact cardinals. ### 5. Oscillating branches Now assume that T is an ω_2 -tree: we enumerate each level by letting (5.1) $$T_{\alpha} = \{ \tau(\alpha, \xi) : \xi < \omega_1 \} \text{ for all } \alpha < \omega_2.$$ In this situation we identify branches with functions from ω_2 to ω_1 that are induced by the enumerations of the levels. If $A \subseteq \omega_2$ is unbounded and $b: \omega_2 \longrightarrow \omega_1$ is an ω_2 -branch through T then we say that b oscillates on A if for all $\alpha < \omega_2$ and all $\zeta < \omega_1$ there is $\beta > \alpha$ in A and $\xi > \zeta$ such that $b(\beta) = \xi$. **9 Lemma.** Assume that T is an ω_2 -Kurepa-tree with an enumeration $\tau(\alpha, \xi)$ ($\alpha < \omega_2, \xi < \omega_1$) as in (5.1) and A_{ι} ($\iota < \omega_2$) are \aleph_2 -many unbounded subsets of ω_2 . Then there is an ω_2 -branch b through T that oscillates on every A_{ι} ($\iota < \omega_2$). *Proof.* Assume not, then for every ω_2 -branch b there is $\iota_b < \omega_2$ and there are $\alpha_b < \omega_2$, $\zeta_b < \omega_1$ such that $$b \upharpoonright (A_{\iota_b} \setminus \alpha_b) \subseteq \{ \tau(\alpha, \xi) : \alpha \in A_{\iota_b} \setminus \alpha_b, \, \xi < \zeta_b \}.$$ By a cardinality argument we can find \aleph_3 -many branches b such that $\iota_0 = \iota_b$, $\alpha_0 = \alpha_b$ and $\zeta_0 = \zeta_b$. But then each of these branches is a different branch through the tree $$T_0 = \{ \tau(\alpha, \xi) : \alpha \in A_{\iota_0} \setminus \alpha_0, \, \xi < \zeta_0 \}.$$ T_0 has countable levels but \aleph_3 -many branches, a contradiction. #### 6. Destroying regressive Kurepa-trees with MM We introduce a simplified notation for the following arguments: if $f: t \longrightarrow \omega_1$ for some $t \in \text{Nm}$ and $\pi \in [t]$ then we let $$\sup^{(f)}(\pi) = \sup_{n < \omega} f(\pi \upharpoonright n).$$ If $b: \omega_2 \longrightarrow \omega_1$ is an ω_2 -branch and $x \in \omega_2^{<\omega}$ then b(x) really denotes the countable ordinal $b(\operatorname{tag}(x))$. ²A κ -Kurepa-tree T is called *slim* if $|T_{\alpha}| \leq |\alpha|$ for all $\alpha < \kappa$. **10 Lemma.** Assume that T is an ω_2 -Kurepa-tree and \mathcal{B} is the set of branches. Let $\tau(\alpha, \xi)$ ($\alpha < \omega_2, \xi < \omega_1$) be an enumeration as in (5.1). Then in the Namba extension V^{Nm} there is a sequence $$\Delta_G = \langle \delta_n^G : n < \omega \rangle$$ cofinal in ω_2^V such that $$\dot{E}_{\mathcal{B}} = \{ \sup^{(b)} (\Delta_G) : b \in \mathcal{B} \}$$ is stationary relative to every stationary $S \subseteq \omega_1$ in V, i.e. $\dot{E}_{\mathcal{B}} \cap S$ is stationary for all stationary $S \subseteq \omega_1$ in the ground model. *Proof.* Assume that \dot{C} is an Nm-name for a club in ω_1 , $S \subseteq \omega_1$ is a stationary set in V and t_0 a condition in Nm. Our goal is to find a condition $t_3 \leq t_0$ and an ordinal $\xi_0 \in S$ such that $t_3 \Vdash \xi_0 \in \dot{C} \cap \dot{E}_{\mathcal{B}}$. By a fusion argument similar to the ones in [11, p.188], we construct a condition $t_1 \leq t_0$ and a coloring $f: t_1 \longrightarrow \omega_1$ such that - (1) f increases on chains, i.e. if $v \subsetneq x$ are elements of t_1 then f(v) < f(x). - (2) if the height of x in t_1 is odd and x is above the trunk then there is $\zeta < \omega_1$ such that $$|\{x \hat{\beta} \in t_1 \mid f(x \hat{\beta}) = \xi\}| = \aleph_2 \text{ for all } \xi > \zeta,$$ i.e. each ordinal in a final segment of ω_1 has \aleph_2 -many preimages in the set $\operatorname{Suc}_{t_1}(x)$. (3) if $G \subseteq \text{Nm}$ is generic with $t_1 \in G$ and $\pi : \omega \longrightarrow \omega_2^V$ is the corresponding Namba-sequence then $\sup^{(f)}(\pi) \in \dot{C}[G]$. Given the condition t_1 , we apply Lemma 9 to find a branch b that oscillates on all sets $\operatorname{Suc}_{t_1}(x)$ $(x \in t_1)$. Using (1) and (2), we thin out again to get a condition $t_2 \leq t_1$ with the following property: (4) if $v \subsetneq x \subsetneq y$ is a chain in t_2 above the trunk and the height of x is odd then f(v) < b(x) < f(y). Note that in particular (2) can be preserved by passing to the condition t_2 , so we may assume that t_2 has properties (1)-(4). Let us also assume for notational simplicity that the height of $\operatorname{tr}(t_2)$ is even. The next step is to find $t_3 \leq t_2$ and $\xi_0 \in S$ such that (5) $\sup^{(f)}(\pi) = \xi_0$ for all branches π in $[t_3]$. To find t_3 and ξ_0 , we define a game $\mathbb{G}(\gamma)$ for every limit $\gamma < \omega_1$. Fix a ladder sequence $l(\gamma) = (\gamma_n : n < \omega)$ for each such γ . The game $\mathbb{G}(\gamma)$ is played as follows: where for all $n < \omega$ - $\alpha_n < \beta_n < \omega_2$, - $s_n = \operatorname{tr}(t_2) \cap (\beta_i : i \leq n) \in t_2$ and - $f(s_n) \in (\gamma_n, \gamma)$ whenever n is even. II wins if he can make legal moves at each step, so the game is determined. **10.1 Claim.** II wins $\mathbb{G}(\gamma)$ for club many $\gamma's$. *Proof.* Assume not, then there is a stationary $U \subseteq \omega_1$ such that player I wins $\mathbb{G}(\gamma)$ for each $\gamma \in U$ via the strategy σ_{γ} . Now pick a countable elementary N such that $\xi = N \cap \omega_1 \in U$ and $t_2, f, l, U \in N$. A ladder sequence $l(\xi) = (\xi_n : n < \omega)$ converging to ξ is given and we define a sequence $(\beta_n : n < \omega)$ inductively as follows: let β_n be the least $$\beta > \sup_{\gamma \in U} \sigma_{\gamma}(\beta_i : i < n)$$ such that - $s = \operatorname{tr}(t_2) \cap (\beta_i : i < n) \cap \beta \in t_2 \text{ and }$ - $f(s) \in (\xi_n, \xi)$ whenever n is even. Such a β exists in N by (2) and elementarity. Note that $(\beta_n : n < \omega)$ is a possible record of moves for player II if player I goes along with the strategy σ_{ξ} . But II obviously wins the game $\mathbb{G}(\xi)$ if the sequence $(\beta_n : n < \omega)$ is played, a contradiction. This proves the claim. Given the claim, pick $\xi_0 \in S$ above all b(x) $(x \subseteq \operatorname{tr}(t_2))$ such that II wins the game $\mathbb{G}(\xi_0)$. Now we can easily find a condition $t_3 \leq t_2$ with property (5). If we fix a generic $G \subseteq \text{Nm}$ with $t_3 \in G$ and let $\pi_G : \omega \longrightarrow \omega_2^V$ be the corresponding Namba-sequence, we can define $\delta_n^G = \pi_G(2n+1)$ and $\Delta_G = \langle \delta_n^G : n < \omega \rangle$. Then we have - (6) $\sup_{G} (\Delta_G) \in \dot{C}[G]$ by (3), - (7) $\sup^{(f)}(\Delta_G) = \xi_0$ by (5) and - (8) $\sup^{(f)}(\Delta_G) = \sup_{n < \omega} b(\delta_n^G) = \sup^{(b)}(\Delta_G)$ by (4). But this finishes the proof since $$\xi_0 \in \dot{C}[G] \cap \dot{E}_{\mathcal{B}}[G] \cap S.$$ 11 Corollary. Assume that T is an ω_2 -Kurepa-tree and \mathcal{B} the set of ground model branches through T. Then \mathcal{B} is stationary over T in the Namba extension. Finally we get the main result for ω_2 . We will prove a more general version of this in Theorem 13. 12 Theorem. There are no ω_1 -regressive ω_2 -Kurepa-trees under MM. *Proof.* Assume that T is an ω_1 -regressive ω_2 -Kurepa-tree and that $$\tau(\alpha,\xi) \ (\alpha < \omega_2, \, \xi < \omega_1)$$ is an enumeration as in (5.1). Look at the iteration $\mathbb{P} = \operatorname{Nm} * \operatorname{CS}(\dot{E}_{\mathcal{B}})$, where $\operatorname{CS}(\dot{E}_{\mathcal{B}})$ shoots a club through the set $\dot{E}_{\mathcal{B}}$ from the statement of Lemma 10. The poset \mathbb{P} preserves stationary subsets of ω_1 by the fact that $\dot{E}_{\mathcal{B}}$ is stationary relative to every stationary set in V. But we have that $\dot{E}_{\mathcal{B}}$ is club in $V^{\mathbb{P}}$, so we can use MM to get a sequence $\Delta = \langle \delta_n : n < \omega \rangle$ converging to $\delta < \omega_2$ such that $$\{\sup^{(b)}(\Delta): b \text{ is a } \delta\text{-sequence in } T_{\delta}\}$$ is club in ω_1 . Using Lemma 4, we see that T_{δ} is definitely stationary over $T \upharpoonright \Delta$. So T_{δ} is stationary over $T_{<\delta}$ by Remark 3. Since $\operatorname{cf}(\delta) = \omega$, this contradicts the fact that T is ω_1 -regressive. ## 7. Larger heights Starting from Theorem 12, we generalize the result to weak Kurepatrees in all uncountable regular heights. **13 Theorem.** Under MM, there are no ω_1 -regressive weak λ -Kurepatrees for any uncountable regular λ . Proof. Since PFA destroys weak ω_1 -Kurepa-trees (see [1]), we may assume that λ is at least ω_2 . Now assume that T is an ω_1 -regressive weak λ -Kurepa-tree and let $\mathcal{P} = \operatorname{Col}(\omega_2, \lambda)$ be the usual ω_2 -directed collapse. Note that \mathcal{P} has the λ^+ -cc, because $\lambda^{\omega_1} = \lambda$ holds under MM (see [2]). So the tree T has a cofinal subtree T^* in $V^{\mathcal{P}}$ that is an ω_1 -regressive weak ω_2 -Kurepa-tree. By throwing away some nodes if necessary, we may assume that T^* has the property that (7.1) $T_x^* = \{ y \in T^* : x \leq_T y \}$ has \aleph_3 -many branches for all $x \in T^*$. Now we define an ω_2 -directed forcing \mathcal{Q} in $V^{\mathcal{P}}$ that shoots an actual ω_2 -Kurepa-subtree through the tree T^* : conditions of \mathcal{Q} are pairs of the form (S, B), where - (1) S is a downward-closed subtree of T^* of height $\alpha + 1$ for some ordinal $\alpha < \omega_2$, - (2) $|S| \leq \omega_1$, - (3) B is a nonempty set of branches cofinal in T^* and $|B| \leq \aleph_1$, - (4) $b \upharpoonright (\alpha + 1) \subseteq S$ for all $b \in B$. We let $(S_0, B_0) \ge_{\mathcal{Q}} (S_1, B_1)$ if $S_0 = S_1 \upharpoonright ht(S_0)$ and $B_0 \subseteq B_1$. If $X \subseteq \mathcal{Q}$ is a set of mutually compatible conditions of size $\leq \aleph_1$ then we let S_X and B_X be the unions over the first respectively second coordinates of X. Now S_X can be end-extended to a tree \bar{S}_X of successor height by extending at least the cofinal branches in the non-empty set B_X . But then (\bar{S}_X, B_X) is a condition stronger than every condition in X, hence \mathcal{Q} is ω_2 -directed-closed. An easy cardinality argument shows that \mathcal{Q} has the \aleph_3 -cc because $2^{\aleph_1} = \aleph_2$ holds in $V^{\mathcal{P}}$. It is now straightforward that a generic filter $H \subseteq \mathcal{Q}$ will produce an ω_2 -tree in the first coordinate which is ω_1 -regressive since it is a subtree of the original tree T and notice that \mathcal{P} and \mathcal{Q} both preserve uncountable cofinalities. On the other hand, a density argument using (7.1) shows that the set $$\mathfrak{B} = \bigcup \{B : \text{there is } S \text{ such that } (S, B) \in H\}$$ has cardinality \aleph_3 , so H induces an ω_1 -regressive ω_2 -Kurepa-tree. The composition of two ω_2 -directed-closed forcings is again ω_2 -directed-closed and it was mentioned in the introduction that ω_2 -directed-closed forcings preserve MM, so we have the situation: - $V^{\mathcal{P}*\mathcal{Q}} \models \mathrm{MM}$ - $V^{\mathcal{P}*\mathcal{Q}} \models$ "there is an ω_1 -regressive ω_2 -Kurepa-tree." But this contradicts Theorem 12. Using Theorem 5, we have **14 Corollary.** MM is sensitive to λ -closed forcing algebras for arbitrarily large λ . #### References - [1] James Baumgartner. Applications of the Proper Forcing Axiom. In K. Kunen and J.E. Vaughan, editors, *Handbook of set-theoretic topology*, pages 913–959. North-Holland, 1984. - [2] M. Foreman, M. Magidor, and S. Shelah. Martin's maximum, saturated ideals, and nonregular ultrafilters I. *Annals of Mathematics*, 127:1–47, 1988. - [3] Moti Gitik and Saharon Shelah. On certain indestructibility of strong cardinals and a question of Hajnal. Archive for Mathematical Logic, 28:35–42, 1989. - [4] Thomas Jech. Set Theory. Perspectives in Mathematical Logic. Springer-Verlag, 1997. - [5] Akihiro Kanamori. The Higher Infinite. Perspectives in Mathematical Logic. Springer-Verlag, 1997. - [6] Bernhard König. Local Coherence. Annals of Pure and Applied Logic, 124:107–139, 2003. - [7] Bernhard König and Yasuo Yoshinobu. Fragments of Martin's Maximum in generic extensions. *Mathematical Logic Quarterly*, 50:297–302, 2004. - [8] Paul Larson. Separating stationary reflection principles. *Journal of Symbolic Logic*, 65:247–258, 2000. - [9] Paul Larson. The size of \tilde{T} . Archive for Mathematical Logic, 39:541–568, 2000. - [10] Richard Laver. Making the supercompactness of κ indestructible under κ -directed closed forcing. Israel Journal of Mathematics, 29:385–388, 1978. - [11] W. Hugh Woodin. The Axiom of Determinacy, Forcing Axioms, and the Non-stationary Ideal. Walter de Gruyter & Co., Berlin, 1999. Boise State University Department of Mathematics Boise ID 83725-1555 USA $E ext{-}mail\ address: bkoenig@diamond.boisestate.edu}$ Graduate School of Information Science Nagoya University Furocho, Chikusa-ku, Nagoya 464-8601 Japan E-mail address: yosinobu@math.nagoya-u.ac.jp