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Abstract. We present an experimental and theoretical investigation of the Generalized Einstein Relation
(GER), a particular form of a fluctuation-dissipation relation, in an out-of-equilibrium complex fluid. Mi-
crometer beads, used as thermometers, are immersed in an aging colloidal glass to provide both fluctuation
and dissipation measurements. The deviations from the Generalized Einstein Relation – GER ratio and
effective temperature – are derived as a function of frequency and aging time. We interpret the observed
deviations from GER as directly related to the evolution of relaxation times of the glass with aging time.
In accordance with our previous results, deviations are only observed in the regime where the observation
time scale is of the order of a characteristic relaxation time of the glass. Our scenario is confirmed by
measurements of the GER ratio in a wide range of frequencies, at long aging times.

PACS. 64.70.Pf Glass transitions – 05.40.-a Fluctuation phenomena, random processes, noise, and Brow-
nian motion – 05.70.-a Thermodynamics

1 Motivation

During the past years, slow relaxation systems have re-
ceived considerable attention in the sense that they con-
stitute a challenge for new developments in nonequilib-
rium statistical mechanics theories. Such systems, which
are rather common in nature, include structural glasses,
polymers, colloids and granular matter. They share some
characteristics called glassy behavior, in particular a dras-
tic slowing down of relaxation processes when some con-
trol parameters are varied. As the characteristic relaxation
times becomes longer than, or comparable to, the obser-
vation timescale, the system is said to age. The physical
properties of the material depend on the waiting time,
which is the time elapsed since preparation in the nonequi-
librium state.

Recently, there have been serious attempts to approach
and understand aging phenomena on a theoretical level.
Many efforts have been devoted to apply statistical physics
description – in particular, fluctuation-dissipation rela-
tions (FDR) – to out-of-equilibrium systems. At thermo-
dynamic equilibrium, fluctuation-dissipation relations re-
late the response functions of the system to its autocor-
relation functions, involving a single thermodynamic pa-
rameter, the equilibrium temperature. However, FDR are
not expected to hold in out-of-equilibrium systems. The
idea that a timescale dependent nonequilibrium or effec-
tive temperature could describe the slow relaxation modes
has received a lot of attention. This effective temperature,

defined from an extension of FDR, is different from the
bath temperature and has been shown to display many of
the properties of a thermodynamic temperature [1,2]. De-
viations from FDR have been observed in many numerical
simulations [3,4,5,6,7,8,9,10]. To date, there are still few
experiments where FDR are studied in aging materials,
such as structural glasses [11], colloidal glasses [12,13,14,
15,16], spin glasses [17], polymer glasses [18] and granu-
lar media [19,20]. They show deviations from FDR as a
function of waiting time and frequency. Unfortunately, no
global understanding and synthesis can yet be extracted
from these experimental findings.

In the present paper, we present an experimental and
theoretical investigation of the Generalized Einstein Rela-
tion (GER), a particular form of a fluctuation-dissipation
relation, in an out-of-equilibrium complex fluid. We mea-
sure the evolution with waiting time tw and frequency ω
of a GER ratio Θ̂ – to be defined below – leading to an
effective temperature Teff, in a colloidal glass of Laponite.
This is achieved by simultaneously measuring the response
function to an external force – using an optical tweezer –
and the position fluctuations of micrometric beads embed-
ded in the glass.

The paper is organized as follows. Sec. 2 is devoted to
the theoretical investigation of the Generalized Einstein
Relation in an out-of-equilibrium system, leading to the
definition of a GER ratio and an effective temperature.
Sec. 3 presents the experimental procedures used to test
such a GER in an aging colloidal glass: Brownian mo-
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tion measurements, response to an oscillatory force and
response to a step force – using optical tweezers. In Sec.
4, the GER ratio and effective temperature are derived
as a function of aging time and frequency. In Sec. 5, we
propose a microscopic interpretation of our findings that
is confirmed at long aging times. We conclude the paper
with comparisons with other tests of FDR in the same
glass and with open questions.

2 Fluctuation-dissipation relation in an

out-of-equilibrium environment

2.1 Equilibrium medium case

Let us first consider a diffusing particle of mass m evolving
in a stationary medium. Its motion can be described by
a generalized Langevin equation, in which v(t) = dx/dt is
the particle velocity, F (t) the random force acting on the
particle, and γ(t) a delayed friction kernel that takes into
account the viscoelastic properties of the medium :

m
dv

dt
+ m

∫
∞

−∞

γ(t − t′)v(t′) dt′ = F (t) (1)

Note for further purpose that, in the usual experimental
frequency range, the inertial term in Eq.(1) is quite negli-
gible. The frequency-dependent particle mobility thus re-
duces to µ̃(ω) = [mγ̃(ω)]−1, where γ̃(ω) =

∫
∞

−∞
γ(t)eiωt dt

is the Fourier transform of the delayed kernel γ(t).

2.1.1 The Generalized Einstein Relation

If the surrounding stationary medium is in thermal equi-
librium at temperature T , one can write a Kubo formula
expressing the frequency-dependent particle mobility µ̃(ω)
in terms of the velocity correlation function [21] :

µ̃(ω) =
1

kT

∫
∞

0

〈v(t)v(t = 0)〉eiωtdt (2)

(the symbol 〈. . .〉 denotes the average over an ensemble
of realizations). Formula (2) defines µ̃(ω) as an analytic
function for ω in the upper complex half plane.

From Eq. (2), one can derive a formula linking the drift
and diffusion properties of the particle. The mean-square
displacement of the diffusing particle, as defined by :

〈∆̂x2(t)〉 = 〈[x(t) − x(t = 0)]2〉, t > 0 (3)

can be deduced from the velocity correlation function via
a double integration over time:

〈∆̂x2(t)〉 = 2

∫ t

0

dt1

∫ t1

0

dt2〈v(t1)v(t2)〉 (4)

Introducing the Laplace transformed quantities v̂(s) =∫
∞

0 v(t)e−stdt and 〈∆̂x2(s)〉 =
∫
∞

0 〈∆̂x2(t)〉e−stdt, one gets,
by Laplace transforming Eq. (3):

s2〈∆̂x2(s)〉 = 2 〈v̂(s)v(t = 0)〉 (5)

The quantity 〈v̂(s)v(t = 0)〉 can be obtained by setting
ω = is in the Kubo formula (2) (which is allowed for
positive s, since the function µ̃(ω) is analytic in the upper
complex half plane). One gets :

〈v̂(s)v(t = 0)〉 = kT µ̂(s) (6)

with µ̂(s) = µ̃(ω = is). Eq. (5) then takes the form of
a relation linking the Laplace transforms of the particle
mean-square displacement and mobility :

s2〈∆̂x2(s)〉 = 2kT µ̂(s) (7)

Eq. (7) is known as the Generalized Einstein Relation
(GER).

2.1.2 The fluctuation-dissipation relation

It follows from Eq. (2) that the velocity spectral den-
sity is related to the dissipative part of the mobility by
a fluctuation-dissipation relation (namely, the celebrated
Einstein relation):

Cvv(ω) =

∫
∞

−∞

〈v(t)v(t = 0)〉eiωt dt = 2kTℜeµ̃(ω) (8)

The validity of Eq. (8) is restricted to ω real.

2.1.3 Discussion

The Einstein relation (8) contains the same information
as the GER (7), since µ̃(ω) can be deduced from ℜµ̃(ω)
with the help of the usual Kramers-Kronig relations valid
for real ω. Thus, Eqs. (7) and (8) constitute fully equiva-
lent formulas, which both involve the thermodynamic bath
temperature T .

2.2 Out-of-equilibrium environment

The general situation of a particle diffusing in an out-
of-equilibrium environment is much more difficult to de-
scribe. As well-known, in an aging medium, no well defined
thermodynamical temperature does exist, so that Eqs. (7)
and (8) are no longer expected to be valid.

We address the question whether the study of the dif-
fusion and drift of the probe particle is likely to provide
information about the out-of-equilibrium properties of its
surrounding medium.

2.2.1 Modified Generalized Einstein Relation

Out of equilibrium, one can write a modified Kubo formula
as :

µ̃(ω) =
1

kΘ̃(ω)

∫
∞

0

〈v(t)v(t = 0)〉eiωt dt (9)
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Formula (9) defines the quantity µ̃(ω)Θ̃(ω) as an analytic
function of ω in the upper complex half plane. Since this
analyticity property holds for µ̃(ω), it also holds for Θ̃(ω).

Accordingly, Eq. (6) has to be replaced by :

〈v̂(s)v(t = 0)〉 = kΘ̂(s)µ̂(s) (10)

Thus, the relation linking the Laplace transforms of the
particle mean-square displacement and mobility writes :

s2〈∆̂x2(s)〉 = 2kΘ̂(s)µ̂(s) (11)

Eq. (11) states an out-of-equilibrium GER. It involves a

s-dependent GER ratio Θ̂(s), parametrized by the age of
the system tw.

Experimentally, it is always possible to measure inde-

pendently both quantities – 〈∆̂x2(s)〉 and µ̂(s) – during
aging. For a particle evolving in a bath at equilibrium,
Θ̂(s) = T would be independent on s, as shown by Eq. (7).

In an out-of-equilibrium environment where Θ̂(s) 6= T , the
mobility of the probe particle cannot be deduced from the
mean-squared displacement measurement, and vice-versa.
As a consequence, the visco-elastic properties of the out-
of-equilibrium medium cannot be deduced from the single
measurement of the probe thermal fluctuations and pas-
sive microrheology cannot be achieved [21].

2.2.2 Modified fluctuation-dissipation relation

Since, in an out-of-equilibrium environment, even station-
ary, the Einstein relation (8) is not satisfied, it has been
proposed [1,2] to rewrite it in a modified way with the
help of a frequency-dependent effective temperature. Such
a quantity, denoted as Teff(ω) and parametrized by the age
of the system tw, has been defined, for real ω, via an ex-
tension of the Einstein relation (8). One writes a modified
Einstein relation as [23,24] :

Cvv(ω) = 2kTeff(ω)ℜeµ̃(ω) (12)

It has been argued in [1,2] that the effective tempera-
ture Teff(ω) defined in such a way would have a possible
thermodynamic meaning, in the sense that it plays the
same role as the thermodynamic temperature in systems
at equilibrium (namely, it controls the direction of heat
flow and acts as a criterion for thermalisation).

2.2.3 Discussion

In the case of an out-of-equilibrium medium, one has at
hand the modified GER (11) and the modified FDR (12).
The question thus arises of the link between these two de-
scriptions, namely of the relation between the GER ratio
Θ̂(s) and the effective temperature Teff(ω).

The modified Kubo formula (9) defines a complex fre-

quency-dependent function Θ̃(ω), in terms of which the
velocity spectral density writes:

Cvv(ω) = 2kℜe
[
Θ̃(ω)µ̃(ω)

]
(13)

Comparing Eqs. (12) and (13), one gets the following re-

lationship between Θ̃(ω) and Teff(ω) :

Teff(ω)ℜeµ̃(ω) = ℜe
[
µ̃(ω)Θ̃(ω)

]
(14)

Eq. (14) displays the fact that the effective temperature
Teff(ω) involved in the modified Einstein relation (12) can
be deduced from the GER ratio introduced in the modified
GER (11) (and vice-versa). This point has been developed
in details in [24].

Thus, as it can be seen from Eq. (11), independent
measurements of the particle mean-square displacement

and mobility in an aging medium give access, once 〈∆̂x2(s)〉
and µ̂(s) = µ̃(ω = is) are determined, to the GER ratio

Θ̂(s). Eq. (14) then allows to derive an effective temper-
ature Teff(ω) from the experimentally measurable GER

ratio Θ̃(ω) = Θ̂(s = −iω).
In the out-of-equilibrium case, the modified GER (11)

and the modified FDR (12) constitute fully equivalent for-

mulas. However, Eq. (11) involves a GER ratio Θ̂(s), nat-
urally expressed in terms of the Laplace variable s, while
Eq. (12) involves an effective temperature Teff(ω), natu-
rally expressed in terms of the real frequency ω.

3 Experimental procedures

3.1 Samples preparation

The experiments were performed on Laponite RD, a syn-
thetic clay manufactured by Laporte Industry. The parti-
cles of Laponite are colloidal disks of 25 nm diameter and
1 nm thickness, with a negative surface charge on both
faces [25]. The clay powder was mixed in ultra-pure wa-
ter, and the pH value of the suspensions fixed to pH = 10
by addition of NaOH, providing chemically stable parti-
cles [26]. The suspension was stirred vigorously during 15
minutes and then filtered through a Millipore Millex - AA
0.8 µm filter unit. This procedure allows us to prepare a
reproducible initial liquid state. The aging time tw = 0 of
the suspension is defined as the moment it passes through
the filter.

These aqueous suspensions form glasses for low volume
fraction in particles [27]. Starting from a viscous “liquid”
state right after preparation, the suspension becomes more
and more viscoelastic with time. Since the physical prop-
erties of the suspension depend on the time tw elapsed
since preparation, the sample is said to age. Aging can be
seen through the evolution of both the viscoelastic prop-
erties and of the colloidal disks diffusion [28,29]. Laponite
suspensions age on timescales that depend on the parti-
cles concentration. We are thus able to monitor the aging
timescales of the glass by adjusting this concentration.
With a volume fraction of 2.3% wt, the glass evolves over
several hours, slowly enough to allow quasi-simultaneous
measurements of the fluctuation and dissipation proper-
ties, within a few minutes, without significative aging of
the sample. These two successive measurements are thus
considered to be performed at the same waiting time tw.
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The experiments were carried out in a square chamber
– 20×20 mm2 – made of a microscope plate and a coverslip
separated by a thin spacer (0.1 mm thickness). The beads
are suspended in the glass right after its preparation. The
chamber is then filled with the suspension, sealed with
vacuum grease and mounted on a piezoelectric stage on
the plate of an optical microscope. The probes are latex
and silica beads, in very low concentration (respectively
10−4% and 4.10−4% in volume). Latex beads (1.0±0.1µm
in diameter, Polysciences, Inc.), were preferentially used
for fluctuation measurements : since they do not deposit
during the experiment, their random motion is not pertur-
bated by the chamber walls. Silica beads (2.1 ± 0.1µm in
diameter, Bangs Lab Inc.) were used for dissipation mea-
surements, because they are more efficiently trapped by
the optical tweezers. The diameters of the two kinds of
probes are close to each other, thus the comparison be-
tween the results of the fluctuation and dissipation mea-
surements, once rescaled to the same diameter, is mean-
ingful.

3.2 Thermal fluctuations of the beads

At a given aging time tw, we record the fluctuating motion
of 1 µm latex beads during 8 s, with a fast CCD camera
sampling at 250 Hz (Fastcam-PHOTRON LTD). A digi-
tal image analysis allows to track the bead positions x(t)
and y(t) close to the focus plane of the microscope objec-
tive. For each bead, we calculate the time-averaged mean-
square displacement 〈∆r2(t)〉t′ = 〈[x(t′ + t) − x(t′)]2 +
[y(t′ + t) − y(t′)]2〉t′ = 2〈∆x2(t)〉t′ . To preserve a good
statistics, we keep the data of 〈∆r2(t)〉t′ in the range
0.004 < t < 1 s. The resolution on the bead position, de-
termined by sub-pixel accuracy in the image analysis de-
tection, is 10 nm. The glass remains in a quasi-stationary
state during the recording, which takes a short time com-
pared to the aging timescale. The quantity 〈∆r2(t)〉t′ , av-
eraged over several beads and realizations, can thus be
identified to the ensemble-averaged mean-square displace-
ment.

3.3 Dissipative response to an oscillatory force

We describe now the measurement of the mobility µ̃(ω),
at a given frequency ω, for various aging times tw. This
measurement is performed immediately after the Brown-
ian motion recording, at the same aging time tw. Since the
aging Laponite suspension is a viscoelastic fluid, the bead
mobility µ̃(ω) = |µ̃(ω)|eiϕ(ω) is a complex number. We
thus need to measure the phase and modulus of the tracer
mobility. We use an optical tweezer to trap a 2.1 µm silica
bead immersed in the glass. Trapping is achieved by fo-
cusing a powerful infrared laser beam (Nd YAG, Spectra-
Physics, Pmax = 600 mW) through a microscope objective
of large numerical aperture [30]. The trapping force F on
a small dielectric object like a silica bead is proportional
to the intensity gradient in the focusing region. It depends
on the distance x of the center of the trapped object from

the center of the trap, according to F (x) = −kx(1+ ǫ|x|).
The corrective factor ǫ is introduced to take into account
the non-harmonicity of the trapping potential. The trap
stiffness k and the factor ǫ are determined from an in-
dependent calibration. The calibration procedure was de-
scribed in details in previous publications using optical
tweezers set-up [31]. Once the bead is trapped, we make
the experimental chamber oscillate by monitoring the dis-
placement xp exp(−iωt) of a piezoelectric stage. Neglect-
ing in a first step the viscoelastic fluid inertia, the fluid
displacement xf in the bead vicinity is taken equal to the
piezolectric stage displacement xp. The validity of this as-
sumption is discussed in the Appendix. Due to the rela-
tive bead/fluid motion, the viscoelastic fluid exerts a sinu-
soidal force F ′ exp(−iωt) on the bead. We record with the
fast camera the bead movement, and measure by conven-
tional image analysis its displacement x exp (−iωt) from
the trap center. Notice that x is a complex number which
includes a phase shift due to the fluid viscoelasticity. At a
given frequency ω, the force amplitude F ′(ω) is given by

F̃ ′(ω) = ṽ(ω)/µ̃(ω), where ṽ(ω) = iω(xf −x) = iω(xp−x)
is the relative chamber wall / bead velocity, and µ̃(ω) the
Fourier transform of the bead mobility. In our range of
experimental frequencies (0.5 ≤ f ≤ 10 Hz), the bead in-
ertia is negligible, so that we can simply use the relation
F + F ′ = 0 to calculate |µ̃(ω)| and ϕ(ω). Notice that the
motion of the piezoelectric stage is numerically controlled
by a sequence of successive sinusoidal signals at five dif-
ferent frequencies {0.5, 1, 2, 5, 10} Hz. The same program
synchronously generates a sequence of pulses to trigger
the image acquisition, so that the phase shift between the
force and the bead movement can be accurately measured.

3.4 Dissipative response to a step force

Another method that we used to measure the bead mobil-
ity µ̂(s) consists in submitting the bead to a step of force
and recording its position x(t) during its relaxation in the
trap. This is achieved by instantaneously displacing the
piezoelectric stage at t = 0 by an amount x0p of the order
of one micrometer. Neglecting the fluid inertia (see the ap-
pendix for the validity domain), the motions x0f and x0p

of the fluid and the stage respectively are identical, and
the step force amplitude at t = 0 is F (x0p). During the
relaxation, we record with the fast camera the bead posi-
tion x(t), from which we calculate the instantaneous force
F [x(t)] exterted on the bead. Taking the Laplace trans-
form of Eq. (1) with the external force F (x), and with
negligible bead inertia, the bead mobility can be derived
from :

µ̂(s) =
sx̂(s) − x0p

F̂ (s)
(15)

This method presents the advantage to give the value
of µ̂(s) in a continuous frequency range, which is in princi-
ple determined by the camera sampling frequency and the
recording time. This range is typically 0.2 < s < 250 s−1.
However, we show in next subsection that this frequency
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range must be narrowed, in order to remain in the validity
domain of Eq. (15).

Also, this procedure cannot be used at the early stage
of aging time tw, when the typical relaxation time of the
bead is too small to be resolved by the fast camera. The
minimum viscosity modulus of the glass, at which the re-
sponse to a step force may be recorded, is then about 10−1

Pa.s.
We recorded the bead response to a step force im-

mediately after measuring the response to an oscillatory
force, and after the mean square displacement recording.
In these conditions the aging time tw can be taken as the
same for the three experiments.

3.5 Data processing

For both the mean-square displacement experiments and
the active microrheology experiments, we used a conven-
tional image processing software (IMAQ vision builder
from National Instruments) to determine the bead po-
sition from the numerical recording of the bead images.
The accuracy on the bead position was about 10 nm, for
typical motions comparable to the bead radius, in the mi-
crometer range.

We calculated the Laplace transforms by numerical in-
tegration of the discrete sampled data. We used both home
made codes and a routine of the NAG libraries implement-
ing the Gill–Miller method. As a matter of fact, the tests
we performed show that the results are independent of the
chosen method, within the reliability range of the Laplace
transforms. Calling δt the sampling time and N the total
number of points recorded during a given experiment, a
numerical Laplace transform can be reliable only over a
finite frequency range, upper bounded by half the sam-
pling frequency 1/(2δt), and lower bounded by twice the
inverse of the total time of the experiment 2/[(N − 1)δt].
Practically, this reliability range is the largest possible
one, and we were led to restrict it by taking in account
other uncertainties linked to the behavior of the physi-
cal quantities we measured. In the step force experiment,
the too small value of the sampling frequency, added to
the residual noise in the bead position, do not allow to
trust the Laplace transform calculated at the highest fre-
quencies, especially when the relaxation of the bead is too
fast. Thus, we decided to discard the frequencies above
125 s−1, even when the sampling frequency was as high
as 500 s−1. Moreover, the troncature of the integral can
induce systematic errors in the Laplace transform which
must be carefully evaluated. Let us recall that the effect
of the truncature is larger at low frequencies particularly
when the physical quantity is an increasing function of
time (which is the case for 〈∆r2(t)〉). Anyway, in each
case, we evaluated an upper bound of the truncature ef-
fect and included it in our error bars.

The relative statistical uncertainties on µ̂(s) in the step
force experiments were calculated in the following way:
We first evaluated the effect of the mean noise amplitude
affecting F (t) and x(t) on their Laplace transforms; we
added also a term associated with the uncertainty on the

initial position x0p. At last, we included the systematic
errors due to the above mentioned truncature effects.

We also performed two independent checks of our mi-
crorheological techniques. First, we performed a tempera-
ture measurement of a viscous fluid (as glycerol), with the
same procedure (Brownian and mobility measurements)
and measured the room temperature. Second, we tested
the oscillatory and step force methods on Maxwellian flu-
ids (CPyCl/NaSal (100mM/60mM) in water [32]) having
given viscoelastic properties, close to the ones of our col-
loidal glasses at large tw. We verified the agreement be-
tween the measured values of µ̃(ω) by the oscillatory force
method and of µ̂(s) by the step force method.

Another important issue, discussed in the appendix,
is the possible influence of the fluid inertia in active mi-
crorheology measurements. We conclude from the Appendix
that the influence of the fluid inertia is negligible in our
experimental conditions.

4 Results

4.1 Scaling of the aging dynamics

Figure 1(a) shows the evolution of the viscosity modulus
with waiting time for a set of six different realizations. The
complex mobility of a Laponite suspension at 2.3% wt was
measured by applying an oscillatory force on a silica bead
in the linear regime. The complex viscosity modulus |η̃(ω)|
was estimated from the complex mobility modulus |µ̃(ω)|
assuming that the Stokes relation µ̃(ω) = 1

6πRη̃(ω) remains

valid in the complex fluid. Starting from a value close to
the water viscosity 10−3 Pa.s, the viscosity modulus of the
glass is shown to increase by 3 orders of magnitude over
about 200 − 400 minutes. In such suspensions, the aging
dynamics is known to drastically depend on the particle
concentration. In a suspension at 2.5% wt, a three orders
of magnitude increase of the complex viscosity modulus is
reached after 100 minutes, while in a 3.5% wt suspension,
the same increase is reached after 10 minutes [29]. Besides,
slight variations in ionic concentration in the suspension
induce important changes in particles interactions. These
variations may undercome either from pH differences or
ions salting-out from the chamber walls. We therefore as-
sume that the differences in the aging dynamics shown
in Fig. 1(a) can be compensated by a linear stretching
in time. In Fig. 1(b), the different curves are rescaled in
time by considering that the same glass formation process
is reached after an increase of 3 orders of magnitude in the
viscosity. The aging time is linearly stretched to make the
viscosities roughly coincide for all experiments, choosing a
particular realization as a reference. With this scaling, we
are now able to average over different realizations. From
now on, the aging times of the different realizations are
rescaled by using this scaling.

4.2 Brownian motion of beads in the glass

Figure 2 shows the mean-square displacement of latex
beads immersed in the colloidal glass, as a function of
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Fig. 1. (a): Viscosity modulus of the glass as a function of ag-
ing time, for six different realizations. The viscosity modulus
was measured by applying an oscillatory force at a frequency
f = 1 Hz on a silica bead in the linear regime; (b): Scaling
of the complex viscosity modulus. The aging time is linearly
stretched tw → t′w = αtw to make the viscosities roughly coin-
cide for all experiments, choosing a particular realization as a
reference.

time t, for various aging times tw. At tw = 0, we observe a
nearly diffusive behavior of the tracer beads, characterized
by a linear dependency of the mean-square displacement
with time. Upon increasing on tw, the tracer motion be-
comes sub-diffusive.

4.3 Mobility from oscillatory force

Figure 3 shows the frequency and aging time dependence
of the complex mobility modulus |µ̃(ω)| and phase ϕ(ω)
measured when applying an oscillatory external force at
successive frequencies {0.5, 1, 2, 5, 10} Hz. The mobility
modulus |µ̃(ω)| of the bead was found to decrease with
aging time tw as shown in Fig. 3(a). This corresponds to
the increase in the visco-elastic modulus of the glass. Fig.
3(b) represents the evolution of the phase shift ϕ(ω) as a
function of tw. The phase ϕ decreases with tw and in a
first-order approximation, remains independent of the fre-
quency. Figure 3(c) shows the same |µ̃(ω)| data, plotted
as a function of the frequency ω, for different aging times
tw. The mobility modulus |µ̃(ω)| is well fitted by a power
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Fig. 2. Mean-square displacement of 1 µm latex beads im-
mersed in the glass, as a function of time. The curves corre-
spond to different aging times tw = 15, 64, 100, 148, 169 and
186 minutes from top to bottom, measured for one realization.
The fluctuating motion is purely diffusive at short tw, and be-
comes sub-diffusive as the glass ages.

law |µ̃(ω)| = µ0(ω/ω0)
β in the experimental frequency

range corresponding to one and half decade. Here, ω0 is
an arbitrary reference frequency set to ω0 = 1 rad.s−1 for
convenience. Starting from about zero at low aging times,
the exponent β increases with tw. Since |µ̃(ω)| exhibits
a power-law behavior, the dependence of ϕ(tw) must be
related to β by ϕ(tw) = −β(tw)π/2. This ensures that
µ̂(s) is a real number. In Fig. 3(b), we plot the quantity
−β(tw)π/2 (full circles), which is in good agreement with
the experimental data ϕ(tw).

4.4 Effective Temperature derived from oscillatory
measurements

The GER ratio Θ̂(s) is now derived from the oscillatory
and Brownian motion measurements. The selected range
s ∈ [3; 60] s−1 corresponds to the experimental frequencies
range f ∈ [0.5; 10] Hz.

From the oscillatory measurements, the variations of
µ̃(ω) are well represented by the analytical form µ̃(ω) =
µ0(ω/ω0)

β exp (−iβπ/2). The Laplace transform µ̂(s) =
µ̃(ω = is) = µ0(s/s0)

β is then derived by analytical con-
tinuation. Again, s0 is an arbitrary reference frequency set
to s0 = 1 s−1.

As can be seen in Fig. 2, 〈∆r2(t)〉 can be adjusted
by a power-law in the range t ∈ [0.015; 0.3] s. As a con-
sequence, in the corresponding range s ∈ [3; 60] s−1, the
Laplace transform of the mean-square displacement is well

described by a power-law 〈∆̂r2(s)〉 = a(s/s0)
−b. Fig. 4

shows the evolution of the parameters a, b, µ0 and β with
aging time tw, averaged over a set of six different realiza-
tions using the time rescaling described in section 4.1.

The exponent b decreases from about 1.9 ± 0.05 to
1±0.05 while the exponent β increases from about zero at
low aging times to 0.82±0.1 at the end of experiment. This
is consistent with the evolution of the glass from viscous to
elastic behavior. The error bars on β take into account the
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Fig. 3. Modulus (a) and phase (b) of the complex mobility
µ̃(ω) = |µ̃(ω)|eiϕ(ω) of the bead as a function of tw, for various
frequencies of the applied force; (c) mobility modulus versus ω
for various tw; from top to bottom, tw varies from 8 to 191 min,
for this realization. At low tw, |µ̃(ω)| is nearly independent of ω.
Upon increasing tw, the modulus is well fitted by a power-law
|µ̃(ω)| = µ0(ω/ω0)

β with ω0 = 1 rad.s−1 and β only depending
on tw. The full circles in (b) correspond to ϕ(tw) = −β(tw)π/2.

departure between the measured and extrapolated values,
which are not systematic (see another realization in [14]).

Bringing together our data for 〈∆̂r2(s)〉 and µ̂(s), and
using the modified Generalized Einstein Relation (11), the

GER ratio Θ̂(s), parametrized by tw, is adjusted by :

Θ̂(s) =
a

4kµ0
(s/s0)

2−b−β
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Fig. 4. Top: Evolution of the Brownian motion parameters a

and b as a function of aging time, where 〈∆̂r2(s)〉 = a(s/s0)
−b,

with s0 = 1 s−1; Bottom : Evolution of the mobility param-
eters µ0 and β as a function of aging time, where µ̃(ω) =
µ0(ω/ω0)

β exp (−iβπ/2), with ω0 = 1 rad.s−1. The results have
been averaged over six realizations rescaled in aging time.

in the range s ∈ [3, 60] s−1.

After analytical continuation of Θ̃(ω) = Θ̂(s = −iω),
we derive the effective temperature Teff(ω), at a given tw,
from :

Teff(ω) =
a

4kµ0

cos[(b − 2)π/2]

cos(βπ/2)
(ω/ω0)

2−b−β (16)

in the range ω ∈ [3; 60] rad.s−1.
The dependence of the effective temperature Teff with

aging time tw, at different frequencies, is shown in Fig.
5. The results have been averaged over six realizations.
At the earliest tw, the effective temperature is close to
the bath temperature T = 300 K. Upon increase on tw,
Teff increases up to 2-3 times the bath temperature and
then decreases back upon further increase on tw. Such a
behavior – an increase of Teff followed by a decrease – was
observed for the first time in a colloidal glassy system in
[14], where a scenario for this non-monotonic behavior was
proposed. In the range ω ∈ [3; 60] rad. s−1, Teff increases
with frequency for all aging times as seen in Fig. 5.

In a system at equilibrium, we should have a
4kµ0

= T

and 2−b−β = 0, which leads to Θ̂(s) = T and Teff(ω) = T .
This is not the case here for the aging colloidal glass.

4.5 GER ratio derived from step force measurements

The GER ratio Θ̂(s) is derived from step force measure-
ments of the mobility and Brownian motion measurements.
The experimental procedure for the step force measure-
ments – described in section 3.4 – cannot be used at the
earliest aging times tw, when the typical relaxation time
of the bead after a step force is smaller than the sampling
rate of the fast camera. Besides, at large tw, it allows us
to extend to lower frequencies the range s of the mobility
measurements µ̂(s).
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Fig. 5. Effective temperature Teff of the colloidal glass as a
function of aging time tw, measured at different frequencies.
The results have been averaged over six realizations. Upon in-
crease on tw, Teff increases up to about 2-3 times the bath
temperature and then decreases back. The results have been
averaged over six realizations rescaled in aging time.

Figure 6 shows the results for the bead mobility µ̂(s),
at long aging times tw. The step procedure leads to a dif-
ferent kind of information than the oscillatory force pro-
cedure. As the oscillatory force leads to a precise determi-
nation of µ̃(ω) for a limited set of discrete frequencies, the
response µ̂(s) determined by the step procedure is proba-
bly less precise for each single frequency, but covers a wide
and continuous range of frequencies. As can be seen by
comparing Figure 3-c and Figure 6, the two independent
experiments are consistent with each other, which demon-
strates that both are reliable. Moreover, Figure 6 shows
that µ̂(s) deviates from a power-law only for the highest
values of s. This indicates that the power-law description
of sec. 4.4 is valid only in a limited range of s.

From 〈∆̂r2(s)〉, numerically calculated from 〈∆̂r2(t)〉,

and µ̂(s), we derive the GER ratio Θ̂(s) in the range
s ∈ [0.2; 125] s−1, as shown in Fig. 7. The frequency depen-
dence at lowest s is consistent with the power-law analysis
of section 4.4. The GER ratio Θ̂(s) exhibits a maximum
value at s = smax,tw

. In Fig. 7, smax,tw
is shown to de-

crease as tw increases.

5 Discussion and conclusion

The key results of this paper are the dependence of the
GER ratio Θ̂(s) and effective temperature Teff(ω) on aging
time and frequency (Fig. 5 and 7).

As previously reported in [14], the unusual dependence
of Teff on tw can be explained through the evolution of the
relaxation times of the glass with aging time. In colloidal
glasses, dynamic light scattering and diffusive wave spec-
troscopy experiments provide the opportunity to probe
the relaxation times associated to the colloidal particles
diffusion [28,33,34]. The resulting distribution function of

Fig. 6. The mobility µ̂(s) obtained from step force, at different
aging times tw = 175, 183, 187, 191, 195 and 201 minutes (top
to bottom), for one realization rescaled in aging time.
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Fig. 7. Fluctuation-dissipation ratio Θ̂(s) for different long
aging times tw = 182, 190, 195 and 201 minutes, from bottom
to top, for one realization rescaled in aging time.

relaxation times P (τ), centered around two characteris-
tic relaxation times τfast and τslow, is schemed in Fig. 8.
Upon increasing tw, part of the modes distribution func-
tion, centered around τslow, shifts to larger times, while
the mode at τfast ∼ 0.1 ms remains unchanged.

We propose the following scenario to explain the de-
pendence of the effective temperature on the aging time.
When probing the colloidal glass at a typical frequency
f = 1 Hz, three situations successively occur upon in-
creasing tw. At the earliest tw, the relaxation times of the
glass are small compared to the observation time scale
τfast,slow ≪ 1/f and do not play any role on this obser-
vation time. The glass is “at equilibrium”. In this experi-
ment, the bead is small enough to be sensitive to molecular
fluctuations. This ensures that it can thermalize with the
bath when the relaxation times of the glass do not play any
role on the observation time scale. In this case, the reading
of the bead thermometer reduces to the bath temperature
T . Upon increase on tw, relaxation modes of the order of
the observation time scale τslow ∼ 1/f appear in the glass
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Fig. 8. Scheme of the distribution function of relaxation times
P (τ ) in the glass of Laponite (typically 2.5% wt) at different
aging times tw. Upon increasing tw, part of the modes distribu-
tion, centered around τslow, shifts towards larger times, while
the mode at τfast ∼ 0.1 ms remains unchanged. The arrow
represents the measurements timescale 1/f .

as seen in Fig. 8 b. On this observation timescale 1/f , the
system is out of equilibrium : the measured temperature
becomes different from the bath temperature. Deviations
from the Generalized Einstein Relation are thus observed.
Finally, for very long tw, the first situation is recovered.
The slow and fast relaxation processes of the glass do not
play any role at the experimental observation timescale
because τslow ≫ 1/f and τfast ≪ 1/f . The bead ther-
mometer, only sensitive to the fast relaxation processes at
the molecular scale, again thermalizes with the bath. The
measured temperature is then expected to reduce back to
the bath temperature T . Finally, in this scenario, devia-
tions are only observed in the regime where the observa-
tion time scale is of the order of a characteristic relaxation
time of the glass, ωτ ∼ 1 [14].

These different situations are clearly identified in Fig.
5. However the experimental set-up does not allow to mea-
sure Teff at longer tw. Indeed, beyond tw = 200 min-
utes, the mobility modulus becomes smaller than 10−2 m
s−1pN−1. In this range, the optical tweezer is not powerful
enough to induce a detectable motion of the bead.

In our scenario, the aging time at which the GER ra-
tio Θ̂(s0, tw) exhibits a maximum value is expected to de-
crease with the probing frequency s0. In an equivalent
point of view, the value of s at which the GER ratio
Θ̂(s, tw0) exhibits a maximum value is expected to de-
crease with aging time tw0. This behavior is identified at
long aging times in Fig. 7. The maximum value of Θ̂(s)
is shown to decrease as the aging time increases. Our sce-
nario is thus confirmed in the long aging time limit. In
Fig. 5, one can detect a very slight shift of the maximum
value of Teff(tw) towards low aging times upon increase of
the frequency, which again is consistent with our interpre-
tation.

As described in [2,35], the temperature of an object is
measured by coupling it to a thermometer during a suffi-
ciently long time interval such that all heat exchanges be-
tween thermometer and system take place and the whole
system equilibrates. In [2], the authors consider an os-
cillator of characteristic frequency ω0 as a thermometer,
weakly coupled to a glassy system in which a regime with
small energy flows exist. The glass exhibits two time corre-
lation scales, a fast one and a slow one, such that: RST (t−
tw) = 1

kT
∂tw

CST (t − tw) is satisfied at short times t −

tw ≪ tw and RAG(tw/t) = 1
kT∗

∂tw
CAG(tw/t) is satisfied if

tw/t = O(1). RST and CST (or RAG and CAG) are respec-
tively the stationary or aging parts of the response and
correlation functions. T is the bath temperature and T ∗

is the temperature associated to FDR when tw/t = O(1).

If ω0 is high enough so that the thermometer evaluates
the fast relaxation and quasiequilibrium is achieved on the
time scale 1/ω0, its asymptotic internal energy density
reads ETHERM = kT . The reading of the thermometer is
the bath temperature T . If ω0 is very low, the thermometer
examines the system in its long time scales behavior and
one finds ETHERM = kT ∗, where T ∗ is identified as the
temperature of the system on this observation time. Any
small but macroscopic thermometer, weakly coupled to
the system, is shown to play the same role as the above
considered oscillator. The role of ω0 is then played by the
inverse of the typical response time of the thermometer.

In our experiments, the bead plays the role of a ther-
mometer which characteristic frequency ω0 is set to the
probing frequency ω. Indeed, the bead inertia is negligi-
ble below ωinertia = 108 rad.s−1 for the highest value of
the fluid viscosity (≃ 10 Pa.s). Experimentally, the ob-
servation time scale 1/ω is much higher than the typical
response time of the bead thermometer 1/ωinertia. As a
result, the response time of the bead is set to the obser-
vation time scale 1/ω. It follows that by changing this
observation time scale, the thermometer can explore or
be sensitive to, different relaxation time scales of the glass
(see Fig. 8).

In models and simulations – where the characteristic
relaxation time of the system is set to the waiting time
– deviations are observed when the characteristic obser-
vation time 1/ω is of the same order or greater than the
aging time tw. Experimentally, deviations are observed in
the other regime when 1/ω ≪ tw. In our sense, this dis-
crepancy arises because the aging time tw is not the only
relevant parameter to describe aging, and that microscopic
processes, characterized by the distribution of relaxation
times in the system, must be considered. In our experi-
ments, deviations are observed when ωτ ∼ 1. This sug-
gests that, besides the waiting time tw, the distribution
of relaxation times must be included in models to get an
accurate description of aging.

In the past, FDR have been experimentally investi-
gated in the same colloidal glass with electrical and rheo-
logical measurements [13]. In the dielectric measurements,
the effective temperature is found to decrease with tw and
ω, and reaches the bath temperature at high frequency
and aging times. In the rheological measurements, no de-
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viation from FDR could be detected. More recently, FDR,
in the form of a Generalized Stokes-Einstein relation, has
been investigated by combining dynamic light scattering
and rheological measurements [15]. The authors assume
that the bulk stress relaxation probed by a rheometer is
the same as the local stress relaxation affecting the probe
particles. The effective temperature is shown to increase
with frequency and aging time in the range tw ∈ [82; 135]
min and ω ∈ [20; 100] rad. s−1 for a 3% wt suspension.
The authors propose the existence of two regimes: ωτ ≪ 1
leading to the bath temperature T and ωτ ≫ 1 leading
to Teff , which is not consistent with our interpretation de-
spite the authors claim. Another group has investigated
the deviations from FDR, by performing a test of the
Stokes-Einstein relation, using optical tweezers [16]. Sur-
prisingly, they found that no deviation could be detected
in the aging colloidal glass over a wide range of frequencies
f ∈ [1.2; 12000] Hz. Although the reason of these discrep-
ancies have to be elucidated, our experimental findings are
fully supported by our interpretation based on microscopic
processes probed in light scattering experiments (see Fig.
8).

In conclusion, this work provides an experimental and
theoretical investigation of the Generalized Einstein Rela-
tion in an aging colloidal glass. We interpret the observed
deviations from GER as directly related to the evolution of
the relaxation times of the glass. Deviations are observed
in the regime ωτ ∼ 1, in agreement with the evolution of
relaxation times of the glass during aging. This interpre-
tation is confirmed at long aging times.

At this stage, whether these experimental investiga-
tions with the same observables, in the same colloidal
glass, are in contradiction still remains an open question
[14,15,16]. Furthermore, the definition of an effective tem-
perature, with a thermodynamic meaning, implies that
this quantity is independent of the chosen observable, which
is not verified in [13] where rheological and dielectric mea-
surements do not lead to the same effective temperature. Is
the effective temperature defined through a generalisation
of FDR a relevant concept ? Does it depend on the chosen
observable, as shown in the glass phase of Bouchaud’s trap
model [10], or not, as in simulations on a binary Lennard-
Jones mixture [36] ? More experimental investigations are
needed to understand these contradictory findings (see [37]
for a brief review).

Dynamical heterogeneities are recognized as a general
feature of slow dynamics encountered in supercooled liq-
uids and glasses [38,39,40]. In supercooled liquids, devi-
ations from the Einstein relation were explained by such
dynamical heterogeneities [38]. Up to now, in models and
simulations, deviations from FDR have been found in ho-
mogeneous glassy systems and interpreted in terms of an
effective temperature. Moreover, the effective temperature
is defined as an ensemble-averaged quantity in experi-
ments, models and simulations. Understanding how the
concept of effective temperature interplays with such het-
erogeneities is an open question.

6 Appendix

Since we have chosen to make the experimental chamber
oscillate with the piezoelectric stage, and to keep the op-
tical trap at fixed position, we must take into account the
effective mass M of the fluid which has to be dragged by
the motion of the chamber walls. Here we evaluate the as-
sociated effective mass M of fluid, and the corrective term
which enters in the derivation of µ̂(s) (15).

Let x, xf and x0 be respectively the displacement of
the bead, of the surrounding fluid, and of the piezoelectric
stage, and v, vf and v0 the associated velocities : a conse-
quence of fluid inertia lies in the fact that xf differs from
x0. The Langevin equation (1) for the bead becomes, once
the bead inertial term has been neglected :

m

∫
∞

−∞

γ(t − t′)[v(t′) − vf (t′)] dt′ = F (t) (17)

Since the fluid is confined between two horizontal plates
separated by d, we assume that its motion is unidimen-
sional, and described by a function xf (z). One can write
also a Langevin equation for the viscoelastic fluid :

ρ
dvf

dt
+ m

∫
∞

−∞

Γ (t− t′)[vf (t′)− v0(t
′)] dt′ =

dσ

dz
(t) (18)

Here ρ is the fluid density, σ the component of the stress
tensor parallel to the x direction, and Γ a friction coef-
ficient for the bulk fluid, which has now to be related to
the bead friction coefficient γ.

Let us first consider the case of a purely viscous fluid
of viscosity η, confined between the same two horizontal
plates. Its equation of motion may be written :

ρ
dvf

dt
= η

d2vf

dz2

At low Reynolds number, the velocity profile is parabolic
in the z direction and:

d2vf

dz2
= (v0 − vm)

8

d2

where vm represents the minimum fluid velocity in the
plane equidistant from the two plates. Similarly, for an
elastic medium of shear modulus ν in the same geometry,
one has :

ρ
dvf

dt
= ν

d2xf

dz2
= ν(x0 − xm)

8

d2

Making the parallel with the case of a spherical bead of
radius R immersed in a viscous or elastic medium, one
derives the relation between γ and Γ :

Γ =
4

3π

m

ρRd2
γ =

m

M
γ (19)

Here M = 3π
4 ρRd2 represents an effective mass of vis-

coelastic fluid dragged by the plate motion.
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By taking the Laplace transform of (17) and (18), and
replacing, as a first approximation, v̂f (s) by v̂m(s), one
can eliminate the fluid velocity and derive the expression
of µ̂(s) which generalizes equation (15):

µ̂(s) =
sx̂(s) − x0p/(1 + sMµ̂(s))

F̂ (s)
(20)

As a consequence, the relevant dimensionless parameter
associated to the fluid inertia appears to be ξ = sMµ̂(s),
where M is approximately equal to 3π

4 ρRd2. In our case,
the thickness of the experimental chamber is d = 100 µm,
the bead radius is R = 1.05 µm, and consequently the
fluid inertia can be neglected as soon as sµ̂(s) ≪ 4.104

µm.s−1.pN−1. In our experimental configuration, this con-
dition is always satisfied (see Figure 6 and Figure 3-c). We
conclude that no correction related to the fluid inertia has
to be applied.
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