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Fluctuation-dissipation relation in a colloidal glass :
frequency and aging time dependence

Bérengere Abou*, Frangois Gallet, Pascal Monceau & Noélle Pottier
Laboratoire Matiere et Systéemes Complezes (MSC), UMR CNRS 7057
Université Paris 7-Denis Diderot
2, Place Jussieu, 75251 Paris Cedex 05, France
(Dated: May 4, 2006)

We present an experimental and theoretical investigation of the Generalized Einstein Relation,
a particular form of a fluctuation-dissipation relation, in an out-of-equilibrium complex fluid. Mi-
crometer beads, used as thermometers, are immersed in an aging colloidal glass to provide both

fluctuation and dissipation measurements.

The fluctuation-dissipation ratio — also expressed in

terms of an effective temperature — is derived as a function of frequency and aging time. We in-
terpret the observed deviations from the Generalized Einstein Relation as directly related to the
evolution of relaxation times of the glass with aging time. In accordance with our previous results,
deviations are only observed in the regime where the observation time scale 1/w is of the order of a
characteristic relaxation time 7 of the glass, wr ~ 1. Our scenario is confirmed by measurements of
the fluctuation-dissipation ratio in a wide range of frequencies, at long aging times.

PACS numbers: 64.70.Pf, 05.40.-a, 05.70.-a

I. MOTIVATION

During the past years, slow relaxation systems have re-
ceived considerable attention in the sense that they con-
stitute a challenge for new developments in nonequilib-
rium statistical mechanics theories. Such systems, which
are rather common in nature, include structural glasses,
polymers, colloids and granular matter. They share some
characteristics called glassy behavior, in particular a dras-
tic slowing down of relaxation processes when some con-
trol parameters are varied. As the characteristic relax-
ation times becomes longer than, or comparable to, the
observation timescale, the system is said to age. The
physical properties of the material depend on the wait-
ing time, which is the time elapsed since preparation in
the nonequilibrium state.

Recently, there have been serious attempts to ap-
proach and understand aging phenomena on a theoreti-
cal level. Many efforts have been devoted to apply sta-
tistical physics description — in particular, fluctuation-
dissipation relations (FDR) — to out-of-equilibrium sys-
tems. At thermodynamic equilibrium, fluctuation-
dissipation relations relate the response functions of the
system to its autocorrelation functions, involving a single
thermodynamic parameter, the equilibrium temperature.
However, FDR apply only to ergodic systems at equilib-
rium, and are not expected to hold in out-of-equilibrium
systems. The idea that a timescale dependent nonequi-
librium temperature or effective temperature could de-
scribe the slow relaxation modes has received a lot of at-
tention. This nonequilibrium temperature, defined from
an extension of FDR, is different from the bath tempera-

*author to whom should be addressed

abou@Qccr.jussieu.fr

correspondence

ture and has been shown to display many of the proper-
ties of a thermodynamic temperature , . Deviations
from FDR have been observed in many numerical sim-
ulations @, , ﬂ, E, ﬁ, E, E, ] To date, there are still
few experiments where FDR are studied in aging ma-
terials, such _as structural glasses [L1], colloidal glasses
2, L3, , @, E], spin glasses nd granular media
| . They show deviations from FDR as a function
of waiting time and frequency. Unfortunately, no global
understanding and synthesis can yet be extracted from
these experimental findings.

In this paper, we measure the evolution with waiting
time ?,, and frequency w of the fluctuation-dissipation
ratio O, leading to an effective temperature Teg, in a
colloidal glass of Laponite. This is achieved by simulta-
neously measuring the response function to an external
force — using an optical tweezer — and the position fluc-
tuations of micrometric beads embedded in the glass.

The paper is organized as follows. Sec. @ is devoted to
the theoretical investigation of the Generalized Einstein
Relation (GER) in an out-of-equilibrium system, leading
to the definition of an effective temperature. Sec. [II
presents the experimental procedures used to test such a
GER in an aging colloidal glass: Brownian motion mea-
surements, response to an oscillatory force and response
to a step force — using optical tweezers. In Sec. @,
the fluctuation-dissipation ratio and effective tempera-
ture are derived as a function of aging time and frequency.
In Sec. , we propose a microscopic interpretation of our
findings that is confirmed at long aging times. We close
the paper with comparisons with other tests of FDR in
the same glass and open questions.



II. FLUCTUATION-DISSIPATION RELATION
IN AN OUT-OF-EQUILIBRIUM ENVIRONMENT

A. Frequency-dependent
fluctuation-dissipation ratio ©(s)

Let us first consider a diffusing particle of mass m
evolving in a stationary medium. Its motion can be
described by a generalized Langevin equation, in which
v(t) = dx/dt is the particle velocity, F(t) the random
force acting on the particle and v(¢) a delayed friction
kernel that takes into account the viscoelastic properties
of the medium :

dv OO
m—+m ~y(t —

7 Yot ) dt' = F(t) (1)

— 00

If the surrounding stationary medium is in thermal equi-
librium at temperature 7', a Generalized Einstein Rela-
tion — which is a specific form of a FDR with mechanical
observables — can be derived :

2 (Aa2(s)) = 2kT (s) (2)

In Eq. (f), (Az2(s)) is the Laplace transform of the
mean-square displacement averaged over an ensemble of
realizations, fi(s) = 1/m4(s) the mobility Laplace trans-
form, if inertia is neglected, and s is the Laplace variable.

The general situation of a particle diffusing in an out-
of-equilibrium environment is much more difficult to de-
scribe. As well-known, in an aging medium, no well de-
fined thermodynamical temperature does exist and the
fluctuation-dissipation relations — in particular Eq. (H) -
are no longer expected to be valid. We address the ques-
tion whether the study of the diffusion and drift of the
probe particle is likely to provide information about the
out-of-equilibrium properties of the medium.

Experimentally, it is always /p\ossible to measure inde-
pendently both quantities — (Az2(s)) and fi(s) — during
aging. One can then introduce a priori a fluctuation-
dissipation ratio ©(s), parametrized by the age of the
system t,,, and defined by :

s2(Ax?(s)) = 2kO(s) fi(s) (3)

Eq(E) states an out-of-equilibrium GER. This parame-
ter é(s), parametrized by the aging time t,, — analogous
to the bath temperature 7" in a medium at equilibrium —
now depends on the Laplace variable s. Note that, in an
out-of-equilibrium environment where ©(s) # Thatn, the
mobility of the probe particle cannot be deduced from
the mean-squared displacement measurement, and wvice-
versa. As a consequence, the visco-elastic properties of
the medium cannot be deduced from the single measure-
ment of the probe thermal fluctuations and passive mi-
crorheology cannot be achieved [@]

B. Definition of the effective temperature T (w)

Since, in an out-of-equilibrium environment, even sta-
tionary, the FDR are not satisfied, one can try to rewrite
them in a modified way, and thus to extend the linear re-
sponse theory, with the help of a frequency-dependent ef-
fective temperature. Such a quantity, denoted as Tog(w)
and parametrized by the age of the system t,,, has been
defined, for real w, via an extension of the so-called
Einstein relation, that relates the dissipative part of
the mobility Re fi(w) and the velocity spectral density

Cou(w) = [ _(v(t)v(0)) coswt dt, by [, pI):
Cop(w) = kTog(w) 2Re fi(w) (4)

il ﬂ] that the effective tempera-
ture Tog(w) defined in such a way would have a possible
thermodynamic meaning, in the sense that it plays the
same role as the thermodynamic temperature in systems
at equilibrium (namely, it controls the direction of heat
flow and acts as a criterion for thermalisation).

It has been argued in [l

C. The out-of-equilibrium Generalized Einstein
Relation

Here, we show how the Generalized Einstein Relation
(E) is modified in an out-of-equilibrium system, making
an explicit use of the fluctuation-dissipation ratio é(s)
This point has been developed in details in [@

The mean-square displacement of the diffusing parti-
cle, is defined as usual by :

(Az?(t)) = ([a(t) — z(t = 0)]*),

It can be deduced from the velocity correlation function
via a double integration over time :

t>0

(A2 (1)) =2 /O it /0 "ty (o(tr)o(t))

By Laplace transforming the above expression of
(Az?%(t)), one gets :

2 (Ax?(s)) = 2 (d(s)o(t = 0))

The quantity (d(s)v(t = 0)) can be obtained by Laplace
transforming the expression of (v(¢t)v(0))) as a cosine
Fourier transform of C,(w):

(5(s)(0)) = / TS W)

oo 2 82 w2 T
Introducing the expression ({) of C,,(w) in the above
equation, one gets :

2 (A2(s)) = 2 / Tdw g KTu() 2Re ().

2
oo T ST



Using standard contour integration, this takes the form

52 (Aa?(s)) = 2k0(s) ji(s) (5)

with the following relationship between ©(w) and Ty (w):

Ton(w) Refi(w) = Re[(w)O (w)] (6)

where i(s) = fi(w = is) and O(s) = O(w = is).
Equations () and () are the extension to an out-
of—equilibrigg medium of the Generalized Einstein Re-
lation s? (Ax2(s)) = 2kT j(s), valid for a medium in
equilibrium. As can be seen in Eq. (f]), independent
measurements of the particle mean-square displacement
and frequency—depegd\ent mobility in an aging medium
give access, once (Ax2(s)) and fi(s) = f(w = is) are
determined, to the fluctuation-dissipation ratio ©(s).
Eq. (ﬂ) then allows to derive an effective tempera-
ture Tog(w) from the experimentally measurable function

O(w) =0O(s = —iw).

III. EXPERIMENTAL PROCEDURES
A. Samples preparation

The experiments were performed on Laponite RD, a
synthetic clay manufactured by Laporte Industry. The
particles of Laponite are colloidal disks of 25 nm diam-
eter and 1 nm thickness, with a negative surface charge
on both faces [@] The clay powder was mixed in ultra-
pure water, and the pH value of the suspensions fixed to
pH = 10 by addition of NaOH, providing chemically sta-
ble particles [@] The suspension was stirred vigorously
during 15 minutes and then filtered through a Millipore
Millex - AA 0.8 pm filter unit. This procedure allows us
to prepare a reproducible initial liquid state. The aging
time t,, = 0 of the suspension is defined as the moment
it passes through the filter.

These aqueous suspensions form glasses for low vol-
ume fraction in particles [R§]. Starting from a viscous
“liquid” state right after preparation, the suspension be-
comes more and more viscoelastic with time. Since the
physical properties of the suspension depend on the time
tw elapsed since preparation, the sample is said to age.
Aging can be seen through the evolution of both the vis-
coelastic properties and of the colloidal disks diffusion
[@, @] Laponite suspensions age on timescales that de-
pend on the particles concentration. We are thus able
to monitor the aging timescales of the glass by adjusting
this concentration. With a volume fraction of 2.3% wt,
the glass evolves over several hours, slowly enough to al-
low quasi-simultaneous measurements of the fluctuation
and dissipation properties, within a few minutes, with-
out significative aging of the sample. These two succes-
sive measurements are thus considered to be performed
at the same waiting time t,,.

The experiments were carried out in a square chamber
— 20 x 20 mm? — made of a microscope plate and a cover-
slip separated by a thin spacer (0.1 mm thickness). The
beads are suspended in the glass right after its prepa-
ration. The chamber is then filled with the suspension,
sealed with vacuum grease and mounted on a piezoelec-
tric stage on the plate of an optical microscope. The
probes are latex and silica beads, in very low concentra-
tion (respectively 107%% and 4.10~*% in volume). Latex
beads (1.0 £0.1pm in diameter, Polysciences, Inc.), were
preferentially used for fluctuation measurements : since
they do not deposit during the experiment, their ran-
dom motion is not perturbated by the chamber walls.
Silica beads (2.1 £ 0.1um in diameter, Bangs Lab Inc.)
were used for dissipation measurements, because they are
more efficiently trapped by the optical tweezers. The di-
ameters of the two kinds of probes are close to each other,
thus the comparison between the results of the fluctua-
tion and dissipation measurements, once rescaled to the
same diameter, is meaningful.

B. Thermal fluctuations of the beads

At a given aging time t,,, we record the fluctuating
motion of 1 pm latex beads during 8 s, with a fast
CCD camera sampling at 250 Hz (Fastcam-PHOTRON
LTD). A digital image analysis allows to track the bead
positions z(t) and y(t) close to the focus plane of the
microscope objective. For each bead, we calculate the
time-averaged mean-square displacement (Ar?(t))y =
([t +8) =) +y(t +1) —y(t)]*)e = 2(Az?(t))y. To
preserve a good statistics, we keep the data of (Ar2(t))y
in the range 0.004 < ¢t < 1 s. The glass remains in a
quasi-stationary state during the recording, which takes
a short time compared to the aging timescale. The quan-
tity (Ar?(t))y, averaged over several beads and realiza-
tions, can thus be identified to the ensemble-averaged
mean-square displacement.

C. Dissipative response to an oscillatory force

We describe now the measurement of the mobility
i(w), at a given frequency w, for various aging times
tw. This measurement is performed immediately after
the Brownian motion recording, at the same aging time
t,. Since the aging Laponite suspension is a viscoelastic
fluid, the bead mobility ji(w) = |fi(w)]e**“) is a complex
number. We thus need to measure the phase and modu-
lus of the tracer mobility. We use an optical tweezer to
trap a 2.1 pum silica bead immersed in the glass. Trapping
is achieved by focusing a powerful infrared laser beam
(Nd YAG, Spectra-Physics, Ppq: = 600 mW) through
a microscope objective of large numerical aperture [é
The trapping force F' on a small dielectric object like
a silica bead is proportional to the intensity gradient
in the focusing region. It depends on the distance z



of the center of the trapped object from the center of
the trap, according to F(x) = —kxz(1 + €|z|). The cor-
rective factor e is introduced to take into account the
non-harmonicity of the trapping potential. The trap
stiffness k and the factor € are determined from an in-
dependent calibration. Omnce the bead is trapped, we
make the experimental chamber oscillate by monitoring
the displacement ), exp(iwt) of a piezoelectric stage. Ne-
glecting in a first step the viscoelastic fluid inertia, the
fluid displacement x¢ in the bead vicinity is taken equal
to the piezolectric stage displacement z,. The valid-
ity of this assumption is discussed in subsection .
Due to the relative bead/fluid motion, the viscoelastic
fluid exerts a sinusoidal force F’exp(iwt) on the bead.
We record with the fast camera the bead movement,
and measure by conventional image analysis its displace-
ment zexp (iwt) from the trap center. Notice that x is
a complex number which includes a phase shift due to
the fluid viscoelasticity. At a given frequency w, the
force amplitude F'(w) is given by F'(w) = 9(w)/f(w),
where ¥(w) = iw(zy — x) = iw(z, — x) is the relative
glass/bead velocity, and fi(w) the Fourier transform of
the bead mobility. In our range of experimental frequen-
cies (0.5 < f < 10 Hz), the bead inertia is negligible, so
that we can simply use the relation F' + F’ = 0 to calcu-
late |fi(w)| and ¢(w). Notice that the motion of the piezo-
electric stage is numerically controlled by a sequence of
successive sinusoidal signals at five different frequencies
{0.5,1,2,5,10} Hz. The same program synchronously
generates a sequence of pulses to trigger the image ac-
quisition, so that the phase shift between the force and
the bead movement can be accurately measured.

D. Dissipative response to a step force

Another method that we used to measure the bead
mobility [i(s) consists in submitting the bead to a step
of force and recording its position z(t) during its relax-
ation in the trap. This is achieved by instantaneously
displacing the piezoelectric stage at ¢ = 0 by an amount
xop of the order of one micrometer. Neglecting the fluid
inertia (see subsection for the validity domain), the
motions zor and xg, of the fluid and the stage respec-
tively are identical, and the step force amplitude at ¢t = 0
is F(zgp). During the relaxation, we record with the
fast camera the bead position z(t), from which we calcu-
late the instantaneous force F'[x(t)] exterted on the bead.
Taking the Laplace transform of Eq. ([ll) with the exter-
nal force F'(x), and with negligible bead inertia, the bead
mobility can be derived from :

sZ(s) — xop

i(s) = 2 7
(s) ) (7)

This method presents the advantage to give the value
of i(s) in a continuous frequency range, which is in prin-

ciple determined by the camera sampling frequency and

the recording time. This range is typically 0.2 < s < 250
s~!. However, we show in next subsection that this fre-
quency range must be narrowed, in order to remain in
the validity domain of Eq. (f).

Also, this procedure cannot be used at the early stage
of aging time t,,, when the typical relaxation time of the
bead is too small to be resolved by the fast camera. The
minimum viscosity modulus of the glass, at which the
response to a step force may be recorded, is then about
107! Pa.s.

We recorded the bead response to a step force immedi-
ately after measuring the response to an oscillatory force,
and after the mean square displacement recording. In
these conditions the aging time ¢,, can be taken as the
same for the three experiments.

E. Data processing

For both the mean-square displacement experiments
and the active microrheology experiments, we used a
conventional image processing software (IMAQ vision
builder from National Instruments) to determine the
bead position from the numerical recording of the bead
images. The accuracy on the bead position was about 10
nm, for typical motions comparable to the bead radius,
in the micrometer range.

We calculated the Laplace transforms by numerical in-
tegration of the discrete sampled data. We used both
home made codes and a routine of the NAG libraries im-
plementing the Gill-Miller method. As a matter of fact,
the tests we performed show that the results are indepen-
dent of the chosen method, within the reliability range
of the Laplace transforms. Calling ¢ the sampling time
and N the total number of points recorded during a given
experiment, a numerical Laplace transform can be reli-
able only over a finite frequency range, upper bounded by
half the sampling frequency 1/(24t), and lower bounded
by twice the inverse of the total time of the experiment
2/[(N — 1)6t]. Practically, this reliability range is the
largest possible one, and we were led to restrict it by
taking in account other uncertainties linked to the be-
havior of the physical quantities we measured. In the
step force experiment, the too small value of the sam-
pling frequency, added to the residual noise in the bead
position, do not allow to trust the Laplace transform cal-
culated at the highest frequencies, especially when the
relaxation of the bead is too fast. Thus, we decided to
discard the frequencies above 125 s~!, even when the
sampling frequency was as high as 500 s~!. Moreover,
the troncature of the integral can induce systematic er-
rors in the Laplace transform which must be carefully
evaluated. Let us recall that the effect of the truncature
is larger at low frequencies particularly when the physical
quantity is an increasing function of time (which is the
case for (Ar?(t))). Anyway, in each case, we evaluated
an upper bound of the truncature effect and included it
in our error bars.



The relative statistical uncertainties on fi(s) in the step
force experiments were calculated in the following way:
We first evaluated the effect of the mean noise amplitude
affecting F'(t) and x(t) on their Laplace transforms; we
added also a term associated with the uncertainty on the
initial position xg,. At last, we included the systematic
errors due to the above mentioned truncature effects.

Another important issue is the possible influence of the
fluid inertia in active microrheology measurements. In-
deed, when the experimental chamber is shaked by the
piezoelectric stage, the motion x; of the viscoelastic fluid
filling the chamber may not exactly follow the plate mo-
tion x,, especially at high frequency. The relevant di-
mensionless parameter of the problem is the relative dif-
ference £ = @ , which we estimated as & = sfi(s)M,
where M = 37/2pRd?, d ~ 100 pum is the thickness of
the experimental chamber, and R = 1.05 um is the bead
radius. This value M is of the order of the mass of the
fraction of fluid in relative motion with the bead. In our
geometry, an upper bound for M is 5.107!! kg. Con-
sequently, the fluid inertia can be neglected as soon as
sii(s) < 2.10* pm.s~L.pN~L. This gives an upper limit of
confidence for the values of [i(s) retrieved by this method.

We also performed an independent check of our mi-
crorheological techniques : we tested the oscillatory and
step force methods on Maxwellian fluids (CPyCl/NaSal
(100mM/60mM) in water [29]) having given viscoelastic
properties, close to the ones of our colloidal glasses at
large t,,. We verified the agreement between the mea-
sured values of fi(w) by the oscillatory force method and
of fi(s) by the step force method.

IV. RESULTS
A. Brownian motion of beads in the glass

Figure [] shows the mean-square displacement of latex
beads immersed in the colloidal glass, as a function of
time t, for various aging times t,,. At t,, = 0, we observe
a nearly diffusive behavior of the tracer beads, charac-
terized by a linear dependency of the mean-square dis-
placement with time. Upon increasing on t,,, the tracer
motion becomes sub-diffusive.

B. Mobility from oscillatory force

Figure E shows the frequency and aging time depen-
dence of the complex mobility modulus |fi(w)| and phase
¢(w) measured when applying an oscillatory external
force at successive frequencies {0.5,1,2,5,10} Hz. The
mobility modulus |fi(w)| of the bead was found to de-
crease with aging time t,, as shown in Fig. Bl(a). This
corresponds to the increase in the visco-elastic modulus of
the glass. Fig. E(b) represents the evolution of the phase
shift p(w) as a function of t,,. The phase ¢ decreases

o
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FIG. 1: Mean-square displacement of 1 um latex beads im-
mersed in the glass, as a function of time. The curves corre-
spond to different aging times ¢, = 35, 150, 235, 350, 400 and
440 minutes from top to bottom, measured for one realiza-
tion. The fluctuating motion is purely diffusive at short ¢,
and becomes sub-diffusive as the glass ages.

with ¢, and in a first-order approximation, remains in-
dependent of the frequency. Figure E(c) shows the same
|i(w)| data, plotted as a function of the frequency w, for
different aging times t,,. The mobility modulus |f(w)]
is well fitted by a power law |fi(w)] = po(w/wo)? in
the experimental frequency range corresponding to one
and half decade. Here, wg is an arbitrary reference fre-
quency set to wp = 1 rad.s™! for convenience. Starting
from about zero at low aging times, the exponent [ in-
creases with t,,. Since |i(w)| exhibits a power-law be-
havior, the dependence of ¢(t,,) must be related to
by ¢(ty) = —B(tw)n/2. This is a consequence of the
Kramers-Kronig relations, and ensures that (i(s) is a real
number. In Fig. f(b), we plot the quantity —3(t,)m/2
(full circles), which is in good agreement with the exper-
imental data ¢(ty).

C. Scaling of the aging dynamics

Fig. B(a) shows the evolution of the viscosity modu-
lus with waiting time for a set of six different realiza-
tions. The complex mobility of a Laponite suspension at
2.3% wt was measured by applying an oscillatory force
on a silica bead in the linear regime. The complex vis-
cosity modulus |(w)| was estimated from the complex
mobility modulus |i(w)| assuming that the Stokes rela-

tion f(w) = GrRA() remains valid in the complex fluid.

Starting from a value close to the water viscosity 1073
Pa.s, the viscosity modulus of the glass is shown to in-
crease by 3 orders of magnitude over about 200—400 min-
utes. In such suspensions, the aging dynamics is known
to drastically depend on the particle concentration. In
a suspension at 2.5% wt, a three orders of magnitude
increase of the complex viscosity modulus is reached af-
ter 50 minutes, while in a 3.5% wt suspension, the same
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FIG. 2: Modulus (a) and phase (b) of the complex mobility
fi(w) = |u(w)|e*“) of the bead as a function of t,,, for various
frequencies of the applied force; (c) mobility modulus versus
w for various t,; from top to bottom, t,, varies from 20 to
450 min, for this realization. At low t., |fi(w)| is nearly inde-
pendent of w. Upon increasing t.,, the modulus is well fitted
by a power-law |fi(w)| = po(w/wo)? with wy = 1 rad.s™! and
(3 only depending on t,,. The full circles in (b) correspond to
P(tw) = =B(tw)m/2.

increase is reached after 10 minutes [@] We therefore
assume that the differences in the aging dynamics shown
in Fig. P(a) are due to slight concentration differences
in Laponite particles from one experiment to the other.
In Fig. B(b), the different curves are rescaled in time
by considering that the same glass formation process is
reached after an increase of 3 orders of magnitude in the
viscosity. The aging time is then linearly stretched to
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FIG. 3: (a): Viscosity modulus of the glass as a function of ag-
ing time, for six different realizations. The viscosity modulus
was measured by applying an oscillatory force at a frequency
f =1 Hz on a silica bead in the linear regime; (b): Scaling
of the complex viscosity modulus. The aging time is linearly
stretched t,, — t., = at, to make the viscosities roughly co-
incide for all experiments, choosing a particular realization as
a reference.

make the viscosities roughly coincide for all experiments,
choosing a particular realization as a reference. With this
scaling, we are now able to average over different realiza-
tions. From now on, when possible, the aging times of the
different realizations are rescaled by using this scaling.

D. Effective Temperature derived from oscillatory
measurements

The fluctuation-dissipation ratio ©(s) is now derived
from the oscillatory and Brownian motion measurements.
The selected range s € [3;60] s™! corresponds to the
experimental frequencies range f € [0.5;10] Hz.

From the oscillatory measurements, the variations of
fi(w) are well represented by the analytical form fi(w) =
po(w/wo)? exp (—ifBn/2). The Laplace transform fi(s) =
fi(w = is) = po(s/s0)” is then derived by analytical con-
tinuation. Again, sg is an arbitrary reference frequency
set to sop = 1871,
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FIG. 4: Top: Evolution of the Brownian motion parame-
ters a and b as a function of aging time, where <X\7’2 (s)) =
a(s/s0)7?, with so = 1 s™'; Bottom : Evolution of the mo-
bility parameters po and 3 as a function of aging time, where
f(w) = po(w/wo)? exp (—ifn/2), with wo = 1 rad.s™'. The
results have been averaged over six realizations rescaled in
aging time.

As can be seen in Fig. , A7r?(t) can be adjusted by
a power-law in the range ¢ € [0.015;0.3] s. As a conse-
quence, in the corresponding range s € [3;60] s~!, the
Laplace transform of the mean-square displacement is
well described by a power-law (A72(s)) = a(s/so) . Fig.
shows the evolution of the parameters a, b, ug and 3
with aging time t¢,,, averaged over a set of six different
realizations using the time rescaling described in section
[V d.

The exponent b decreases from about 1.9+£0.05 to 1+
0.05 while the exponent 3 increases from about zero at
low aging times to 0.82 4+ 0.1 at the end of experiment.
This is consistent with the evolution of the glass from
viscous to elastic behavior. .

Bringing together our data for (Ar2(s)) and fi(s), and
using the modified Generalized Einstein Relation (é), the
function (:)(s)7 parametrized by t,,, is adjusted by :

9(s) = g (5/50)7" 77

O(s) = T

in the range s € [3,60] s~

After analytical continuation of O(w) = O(s = —iw),
we derive the effective temperature Teg(w), at a given ty,,
from :

To(w) = 4ka cos[(b — 2)m /2] (w/
1o cos(3m/2)
in the range w € [3;60] rad.s~.

The dependence of the effective temperature Teg with
aging time t,,, at different frequencies, is shown in Fig. E
The results have been averaged over six realizations. At
the earliest t,,, the effective temperature is close to the
bath temperature Ty, = 300 K. Upon increase on t,,,
Tem increases up to 2-3 times the bath temperature and

wo)®>7P (8)
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FIG. 5: Effective temperature T,g of the colloidal glass as a
function of aging time t,,, measured at different frequencies.
The results have been averaged over six realizations. Upon
increase on t.,, 1o increases up to about 2-3 times the bath
temperature and then decreases back.

then decreases back upon further increase on t,,. Such a
behavior — an increase of Teg followed by a decrease — was
observed for the first time in a colloidal glassy system in
[@], where a realistic explanation of this non-monotonic
behavior was proposed. In the range w € [3;60] rad. s~1,
Teg increases with frequency for all aging times as seen
in Fig. .

Note that in a system at equilibrium, (:)(s) would be
independent on the frequency s. We should have ﬁ =

Thatn and 2 —b— = 0, which leads to ©(s) = Tha and
To(w) = Thatn- This is not the case here for the aging
colloidal glass.

E. Fluctuation-dissipation ratio derived from step
force measurements

The fluctuation-dissipation ratio ©(s) is derived from
step force measurements of the mobility and Brownian
motion measurements. Figure E shows the results for
the bead mobility ji(s), at long aging times ¢,,. The ex-
perimental procedure for the step force measurements —
described in section [III D — cannot be used at the earliest
aging times t,,, when the typical relaxation time of the
bead after a step force is smaller than the sampling rate
of the fast camera. Nevertheless, it allows us to extend
to lower frequencies the range s of the mobility measure-
ments [i(s).

We compared first the mobilities /i(s) independently
obtained from step and oscillatory measurements. As
shown in Fig. E, the agreement between the experimen-
tal values of mobilities is good in the common range.
Nevertheless, for the highest values of s, the step mea-
surements of fi(s) show systematic deviations from the
power-law analysis of section .

Besides, (Ar2(s)) is numerically calculated from
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FIG. 6: Comparison between fi(s) obtained from oscilla-
tory external force (black symbols) and fi(s) obtained from
step force (open symbols), at different aging times t., =
175,183,187 and 191 minutes (top to bottom), for one re-
alization rescaled in aging time. The agreement between the
two sets of values is excellent at lowest s.
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FIG. 7: Fluctuation-dissipation ratio ©(s) for different long
aging times t,, = 182,190, 195 and 201 minutes, from bottom
to top, for one realization rescaled in aging time.

<Z\r2(t)> in the whole accessible range of s € [0.2;125]
—1
st

From (Ar2(s)) and fi(s) in the reliable range s €
[0.2;125] s~ we derive the fluctuation-dissipation ratio
(:)(s), as shown in Fig. ﬂ The frequency dependence at
lowest s is consistent with the power-law analysis of sec-
tion [V D) - The fluctuation-dissipation ratio @( ) exhibits
a maximum value at s = Sz, In Fig.
shown to decrease as t,, increases.
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V. DISCUSSION AND CONCLUSION

The key results of this paper are the dependence of the
fluctuation-dissipation ratio and effective temperature on
aging time and frequency (Fig. E and ﬂ) As previously
reported in [I4], the unusual dependence of Teg on t,,
can be explained through the evolution of the relaxation
times of the glass with aging time. In colloidal glasses,
dynamic light scattering and diffusive wave spectroscopy
experiments provide the opportunity to probe the relax-
ation times associated to the colloidal particles diffusion
[@, @, @] The resulting distribution function of re-
laxation times P(7), centered around two characteristic
relaxation times Tt and Tgow, iS schemed in Fig. E
Upon increasing t,,, part of the modes distribution func-
tion, centered around Ty, shifts to larger times, while
the mode at 7fast ~ 0.1 ms remains unchanged.

@ P(t) f=1Hz
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FIG. 8 Scheme of the distribution function of relaxation
times P(7) in the glass of Laponite (typically 2.5% wt) at
different aging times t,,. Upon increasing t.,, part of the
modes distribution, centered around Tgow, shifts towards
larger times, while the mode at Tgast ~ 0.1 ms remains un-
changed. The arrow represents the measurements timescale

1/f.

We propose the following scenario to explain the de-
pendence of the effective temperature on the aging time.
When probing the colloidal glass at a typical frequency
f = 1 Hz, three situations successively occur upon in-
creasing t,,. At the earliest t,,, the relaxation times of
the glass are small compared to the observation time
scale Trast slow < 1/f and do not play any role on this
observation time. The glass is “at equilibrium”. In this
experiment, the bead is small enough to be sensitive to
molecular fluctuations. This ensures that it can ther-
malize with the bath when the relaxation times of the
glass do not play any role on the observation time scale.
In this case, the reading of the bead thermometer re-
duces to Tpatn. Upon increase on t,,, relaxation modes
of the order of the observation time scale Tgow ~ 1/f



appear in the glass as seen in Fig. E b. On this observa-
tion timescale 1/ f, the system is out-of-equilibrium : the
measured temperature becomes different from the bath
temperature. Deviations from the Generalized Einstein
Relation are thus observed. Finally, for very long ¢,
the first situation is recovered. The slow and fast relax-
ation processes of the glass do not play any role at the
experimental observation timescale because Tyow > 1/ f
and Tt < 1/f. The bead thermometer, only sensitive
to the fast relaxation processes at the molecular scale,
again thermalizes with the bath. The measured temper-
ature is then expected to reduce back to Tya¢n. Finally, in
this scenario, deviations are only observed in the regime
where the observation time scale is of the order of a char-
acteristic relaxation time of the glass, wr ~ 1 [@]

These different situations are clearly identified in Fig.
However the experimental set-up does not allow to
measure Teg at longer t,,. Indeed, beyond t,, = 200 min-
utes, the mobility modulus becomes smaller than 1072 m
s™!pN~!. In this range, the optical tweezer is not pow-
erful enough to induce a detectable motion of the bead.

As described in [E, , the temperature of an object is

measured by coupling it to a thermometer during a suffi-
ciently long time interval such that all heat exchanges be-
tween thermometer and system take place and the whole
system equilibrates. In [ﬂ], the authors consider an os-
cillator of characteristic frequency wg as a thermometer,
weakly coupled to a glassy system in which a regime with
small flows of energy exists. The glass exhibits two time
correlation scales, a fast one and a slow one, such that:
Rsr(t — tw) = 770k, Csr(t — ty) is satisfied at short
times t — t,, < ty and Rag(tw/t) = 70k, Cac(tw/t)
is satisfied if t,,/t = O(1). Rsr and Cgr (or Rac and
Cac) are respectively the stationary or aging parts of the
response and correlation functions. 7' is the bath tem-
perature and T is the temperature associated to FDR
when t,,/t = O(1).
If wp is high enough so that the thermometer evaluates
the fast relaxation and quasiequilibrium is achieved on
the time scale 1/wyg, its asymptotic internal energy den-
sity reads ErggrM = kT'. The reading of the thermome-
ter is the bath temperature T. If wg is very low, the
thermometer examines the system in its long time scales
behavior and one finds Erggry = kT, where T is iden-
tified as the temperature of the system on this obser-
vation time. Any small but macroscopic thermometer,
weakly coupled to the system, is shown to play the same
role as the above considered oscillator. The role of wyq is
then played by the inverse of the typical response time
of the thermometer.

In our experiments, the bead plays the role of a ther-
mometer which characteristic frequency wy is set to the
probing frequency w. Indeed, the bead inertia is negli-
gible below Winertia = 1012 rad.s~! for the highest value
of the fluid viscosity (~ 10 Pa.s). Experimentally, the
observation time scale 1/w is much higher than the typ-
ical response time of the bead thermometer 1/wipertia-
As a result, the response time of the bead is set to the

observation time scale 1/w. It follows that by changing
this observation time scale, the thermometer can explore
or be sensitive to, different relaxation time scales of the
glass (see Fig. E)

In our scenario, the aging time at which the
fluctuation-dissipation ratio ©(sg,t,) exhibits a maxi-
mum value is expected to decrease with the probing fre-
quency so. In an equivalent point of view, the value of
s at which the fluctuation-dissipation ratio O(s, tyo) ex-
hibits a maximum value is expected to decrease with ag-
ing time t,0._ This behavior is identified at long aging
times in Fig. . The maximum value of ©(s) is shown to
decrease as the aging time increases. Our scenario is thus
confirmed in the long aging time limit. In Fig. E, one can
detect a very slight shift of the maximum value of Teg(t,,)
towards low aging times upon increase of the frequency,
which again is consistent with our interpretation.

In models and simulations — where the characteristic
relaxation time of the system is set to the waiting time
— deviations are observed when the characteristic obser-
vation time 1/w is of the same order or greater than the
aging time t¢,,. Experimentally, deviations are observed
in the other regime when 1/w < t,,. In our sense, this
discrepancy arises because the aging time t¢,, is not the
only relevant parameter to describe aging, and that mi-
croscopic processes, characterized by the distribution of
relaxation times in the system, must be considered. In
our experiments, deviations are observed when wr ~ 1.
This suggests that, besides the waiting time t,,, the dis-
tribution of relaxation times must be included in models
to get an accurate description of aging. This has been
recently achieved in [@], where the existence of a res-
onant peak for a nonequilibrium temperature has been
evidenced.

In the past, FDR have been experimentally investi-
gated in the same colloidal glass with electrical and rhe-
ological measurements [B] In the dielectric measure-
ments, the effective temperature is found to decrease
with t,, and w, and reaches the bath temperature at
high frequency and aging times. In the rheological mea-
surements, no deviation from FDR could be detected.
More recently, FDR, in the form of a Generalized Stokes-
Einstein relation, has been investigated by combining
dynamic light scattering and rheological measurements
[[§. The authors assume that the bulk stress relaxation
probed by a rheometer is the same as the local stress re-
laxation affecting the probe particles. The effective tem-
perature is shown to increase with frequency and aging
time in the range t,, € [82;135] min and w € [20;100]
rad. s~! for a 3% wt suspension. The authors propose
the existence of two regimes: wr < 1 leading to Tyatn and
wt > 1 leading to Teg, which is not consistent with our
interpretation despite the authors claim. Another group
has investigated the deviations from FDR, by perform-
ing a test of the Stokes-Einstein relation, using optical
tweezers [E] Surprisingly, they found that no deviation
could be detected in the aging colloidal glass over a wide
range of frequencies f € [1.2;12000] Hz. Besides, our



experimental findings are fully supported by microscopic
processes probed in light scattering experiments.

In conclusion, this work provides an experimental and
theoretical investigation of the Generalized Einstein Re-
lation in an aging colloidal glass. We interpret the ob-
served deviations from GER as directly related to the
evolution of the relaxation times of the glass. Deviations
are observed in the regime wr ~ 1, in agreement with
the evolution of relaxation times of the glass during ag-
ing. This interpretation is confirmed at long aging times.

At this stage, whether these experimental investiga-
tions with the same observables, in the same colloidal
glass, are in contradiction still remains an open question
(4, 13, [ld). Furthermore, the definition of an effective
temperature, with a thermodynamic meaning, implies
that this quantity is independent of the chosen observ-
able, which is not even verified in [[L3] where rheological
and dielectric measurements do not lead to the same ef-
fective temperature. Is the effective temperature defined
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through a generalisation of FDR a relevant concept ?
Does it depend on the chosen observable, as shown in
the glass phase of Bouchaud’s trap model [E], or not,
as in simulations on a binary Lennard-Jones mixture [@}
? More experimental investigations are needed to un-
derstand these contradictory findings (see [Bg for a brief
review).

Dynamical heterogeneities are recognized as a general
feature of slow dynamics encountered in supercooled lig-
uids and glasses [@, , E] In supercooled liquids, devi-
ations from the Einstein relation were explained by such
dynamical heterogeneities @] Up to now, in models
and simulations, deviations from FDR have been found
in homogeneous glassy systems and interpreted as an ef-
fective temperature. Moreover, the effective temperature
is defined as an ensemble-averaged quantity in experi-
ments, models and simulations. Understanding how the
concept of effective temperature interplays with such het-
erogeneities is an open question.
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