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On Quasi-Interpretations, Blind Abstractions

and Implicit Complexity⋆

Patrick Baillot1, Ugo Dal Lago1,2, and Jean-Yves Moyen1

1 LIPN, Université Paris 13
2 Università di Verona

Abstract. Quasi-interpretations are a technique to guarantee complex-
ity bounds on first-order functional programs: with termination order-
ings they give in particular a sufficient condition for a program to be
executable in polynomial time ([MM00]), called here the P-criterion. We
study properties of the programs satisfying the P-criterion, in order to
better understand its intensional expressive power.
Given a program on binary lists, its blind abstraction is the non-deter-
ministic program obtained by replacing lists by their lengths (natural
numbers). A program is blindly polynomial if its blind abstraction ter-
minates in polynomial time. We show that all programs satisfying a
variant of the P-criterion are in fact blindly polynomial. Then we give
two extensions of the P-criterion: one by relaxing the termination order-
ing condition, and the other one (the bounded value property) giving a
necessary and sufficient condition for a program to be polynomial time
executable, with memoisation.

1 Introduction

Implicit computational complexity (ICC) explores machine-free character-
izations of complexity classes, without referring to explicit resource bounds but
instead by seeing these bounds as consequences of restrictions on program struc-
tures. It has been mainly developed in the functional programming paradigm, by
taking advantage of ideas from primitice recursion ([Lei94,BC92]), proof-theory
and linear logic ([Gir98]), rewriting systems ([BMM]), type systems ([Hof99]). . .

Usually ICC results include a soundness and a completeness statement: the
first one says that all programs of a given language (or those satisfying a crite-
rion) admit a certain complexity property, and the latter one that all functions
of the corresponding functional complexity class can be programmed in this
language. For instance in the case of polynomial time complexity the first state-
ment refers to a polynomial time evaluation of programs, whereas the second,
which is of an extensional nature, refers to the class FP of functions computable
in polynomial time. Theorems of this kind have been given for many systems,
like for instance ramified recursion [BC92], variants of linear logic, fragments of
functional languages. . .

⋆ Work partially supported by projects CRISS (ACI), NO-CoST (ANR)



Expressivity. This line of work is motivating from a programming lan-
guage perspective, because it suggests ways to control complexity properties of
programs, which is a difficult issue because of its infinitistic nature. However,
extensional correspondence with complexity classes is usually not enough: a pro-
gramming language (or a static analysis methodology for it) offering guarantees
in terms of program safety is plausible only if it captures enough interesting and
natural algorithms.

This issue has been pointed out by several authors ([MM00,Hof99]) and ad-
vances have been made in the direction of more liberal ICC systems: some ex-
amples are type systems for non-size-increasing computation and quasi-inter-
pretations. However it is not always easy to measure the improvement a new
ICC system brings up. Until now this has been usually illustrated by providing
examples.

We think that to compare in a more appropriate way the algorithmic as-
pects of ICC systems and in particular to understand their limitations, specific
methods should be developed. Indeed, what we need are sharp results on the
intensional expressive power of existing systems and on the intrinsic limits of
implicit complexity as a way to isolate large (but decidable) classes of programs
with bounded complexity. For that we aim to establish properties (like necessary
conditions) of the programs captured by an ICC system.

Quasi-interpretations (QI) can be considered as a static analysis method-
ology to infer asymptotic resource bounds for first-order functional programs.
Used with termination orderings they allow to define various criteria to guaran-
tee either space or time complexity bounds ([BMM,BMM05,Ama05,BMP06]).
They present several advantages: the language for which they can be used is
simple to use, and more importantly the class of programs captured by this
approach is large compared to that caught by other ICC systems. Indeed, all
primitive recursive programs from Bellantoni and Cook’s function algebra can
be easily proved to have a QI ([Moy03]). One particularly interesting criterion,
that we will call here the P-criterion, says that programs with certain QIs and
recursive path orderings can be evaluated in polynomial time.

In this paper, we focus our attention on QIs, proving a strong necessary con-
dition for first-order functional programs on lists having a QI. More precisely,
a program transformation called blind abstraction is presented. It consists in
collapsing the constructors for lists to just one, modifying rewriting rules ac-
cordingly. This produces in general non-confluent programs, the efficiency of
which can be evaluated by considering all possible evaluations of the program.

In general, the blind abstraction of a polytime first-order functional program
on binary lists is not itself polytime: blinding introduces many paths that are not
available in the original program. However, we show that under certain assump-
tions, blinding a program satisfying the P-criterion with a (uniform) QI always
produces a program which is polytime, independently from non-confluence.

Outline. We first describe the syntax and operational semantics of pro-
grams (Section 2), before termination orderings and QIs (Section 3). Then blind
abstractions are introduced (Section 4) and we give the main property of the



P-criterion w.r.t. blinding in section 5, with application to safe recursion. They
lead us to study properties of particular classes of QIs in Section 6. Finally we
define a generalization of the previous termination ordering and of QIs (bounded
values property) which also guarantees the P-criterion (Section 7).

2 Programs as Term Rewriting Systems

2.1 Syntax and Semantics of Programs

We consider first-order term rewriting systems (TRS) with disjoint sets X , F , C
resp. of variables, function symbols and constructor symbols.

Definition 1 (Syntax). The sets of terms and the equations are defined by:

(Constructor terms) T (C) ∋ v ::=c | c(v1, · · · , vn)
(terms) T (C,F ,X ) ∋ t ::=c | x | c(t1, · · · , tn) | f(t1, · · · , tn)
(patterns) P ∋ p ::=c | x | c(p1, · · · , pn)
(equations) D ∋ d ::=f(p1, · · · , pn) → t

where x ∈ X , f ∈ F , and c ∈ C. We shall use a type writer font for function
symbols and a bold face font for constructors.

Definition 2 (Programs). A program is a tuple f = 〈X , C,F , E〉 where E is
a set of D-equations. Each variable in the right hand side (rhs) of an equation
also appears in the lhs of the same equation. The program has a main function
symbol in F , which we shall also call f.

The domain of the computed functions is the constructor algebra T (C). A
substitution σ is a mapping from variables to terms. We note S the set of
constructor substitutions, i.e. substitutions σ with range T (C).

Our programs are not necessarily deterministic, that is the TRS is not nec-
essarily confluent. Non-confluent programs correspond to relations rather than
functions. Notice that we could define a function by, e.g. , choosing the great-
est possible result among all the executions [DP02]. Since we only consider the
complexity (that is the length of all executions), this is not important here.

Firstly, we consider a call by value semantics which is displayed in Fig-
ure 1. The meaning of t ↓ v is that t evaluates to the constructor term v. A
derivation will be called a reduction proof. The program f computes a relation
JfK : T (C)n → T (C) defined by: for all ui ∈ T (C), v ∈ JfK(u1, · · · , un) iff there is
a derivation for f(u1, · · · , un) ↓ v.

The size |J | of a judgement J = t ↓ v is the size |t| of the lhs term.

Definition 3 (Active rules). Passive semantics rules are Constructor and
Split. The only active rule is Function.

Let π : t ↓ v be a reduction proof. If we have:

e = g(q1, · · · , qn) → r ∈ E σ ∈ S qiσ = ui rσ ↓ u
(Function)

s = g(u1, · · · , un) ↓ u



c ∈ C ti ↓ vi

(Constructor)
c(t1, · · · , tn) ↓ c(v1, · · · , vn)

∃j, tj /∈ T (C) ti ↓ vi f(v1, · · · , vn) ↓ v
(Split)

f(t1, · · · , tn) ↓ v

f(p1, · · · , pn) → r ∈ E σ ∈ S piσ = vi rσ ↓ v
(Function)

f(v1, · · · , vn) ↓ v

Fig. 1. Call by value semantics with respect to a program 〈X , C,F , E〉

then we say that term s (resp. judgment J = s ↓ u) is active. e is the equation
activated by s (resp. J) and rσ (resp. rσ ↓ u) is the activation of s (resp.
J). Other judgements (conclusions of (Split) or (Constructor) rules) are called
passive.

Notice that the set of active terms in a proof π is exactly the set of terms of
the form f(v1, · · · , vn), where vi are constructor terms, appearing in π. Since the
program may be non deterministic, the equation activated by a term s depends
on the reduction and on the occurrence of s in π, and not only on s.

Lemma 4. For each program, there exists a polynomial p : N → N such that for
any reduction proof π, active term t in it and s the activation of t, |s| = p(|t|).
That is, the size of s is polynomially bounded by the size of t.

Proof. Because there is only a finite set of equations in a program, each of them
leading to at most a polynomial increase in size.

A subderivation of a derivation proof is obtained by recursively taking a
judgement and some of its premises. That is, it is a subgraph of the proof tree
that is also a tree (but does not necessarily go down to the leaves of the proof).

Definition 5 (Dependences). Let π be a reduction proof and J = t ↓ v be a
passive judgement appearing in it. A dependence of J is a subderivation of π

whose root is J and which contains only passive judgements. The maximum de-
pendence DJ is the biggest dependence of a judgement, with respect to inclusion.

The following is an example program that we will use throughout the paper:

f(s0six) → append(f(s1x), f(s1x)) for i = {0, 1},
f(s1x) → x, f(nil) → nil
append(six, y) → siappend(x, y) for i ∈ {0, 1}, append(nil, y) → y

Consider the derivation π from Figure 2.

nil ↓ nil

f(s1nil) ↓ nil

nil ↓ nil

f(s1nil) ↓ nil

nil ↓ nil

append(nil,nil) ↓ nil

append(f(s1nil), f(s1nil)) ↓ nil

f(s0s1nil) ↓ nil

Fig. 2. Example of reduction proof.

Active judgements appearing in π are f(s0s1nil) ↓ nil, f(s1nil) ↓ nil and
append(nil,nil) ↓ nil. Let J = append(f(s1nil), f(s1nil)) ↓ nil be a passive
judgement. Its maximum dependence DJ is the subderivation containing J itself.



Lemma 6. Let π be a reduction proof and J = t ↓ v be a judgement in it.

1. The depth of any dependence of J is bounded by the depth of t.
2. For each judgement s ↓ u in a dependence of J , s is a subterm of t.
3. The number of judgements in a dependence of J is bounded by the size of t.

Proof. We can either do a quick induction or look at the rules.

1. Because each passive rule decreases the depth of the term.
2. Because passive rules only produce proper subterms or active terms.
3. It is the number of subterms of t.

Proposition 7. For all programs, there exists a polynomial p : N → N such that
for all derivations π and all active judgement J in it with a passive activation
H, |DH | ≤ p(|J |). That is, the size of DH is polynomially bounded by the size
of J and the polynomial is only dependent on the program.

Proof. Obtained by combining the results of Lemmas 4 and 6.

Proposition 8. For all programs, there exists a polynomial p : N
2 → N such

that for all derivation proof π, if A is the number of active judgements in π and
S is the maximum size of an active judgement then |π| ≤ p(A, S).

So, to bound the time of a derivation, it is sufficient to bound the number
and size of active terms, passive terms playing no real role in it.

Next, we also consider a call by value semantics with memoisation for con-
fluent programs. The idea is to maintain a cache to avoid recomputing the same
things several times. Each time a function call is performed, the semantics looks
in the cache. If the same call has already been computed, then the result can be
given immediately, else, we need to compute the corresponding value and store
the result in the cache (for later reuse). The memoisation semantics is displayed
on Figure 3. The (Update) rule can only be triggered if the (Read) rule cannot,
that is if there is no v such that (f, v1, · · · , vn, v) ∈ C.

Memoisation corresponds to an automation of the algorithmic technique of
dynamic programming.

c ∈ C 〈Ci−1, ti〉 ⇓ 〈Ci, vi〉
(Constructor)

〈C0, c(t1, · · · , tn)〉 ⇓ 〈Cn, c(v1, · · · , vn)〉

∃j, tj /∈ T (C) 〈Ci−1, ti〉 ⇓ 〈Ci, vi〉 〈Cn, f(v1, · · · , vn)〉 ⇓ 〈C, v〉
(Split)

〈C0, f(t1, · · · , tn)〉 ⇓ 〈C, v〉

(f, v1, · · · , vn, v) ∈ C
(Read)

〈C, f(v1, · · · , vn)〉 ⇓ 〈C, v〉

f(p1, · · · , pn) → r ∈ E σ ∈ S piσ = vi 〈C, rσ〉 ⇓ 〈C′, v〉
(Update)

〈C, f(v1, · · · , vn)〉 ⇓ 〈C′ ∪ (f, v1, · · · , vn, v), v〉

Fig. 3. Call-by-value interpreter with Cache of 〈X , C,F , E〉.



The expression 〈C, t〉 ⇓ 〈C′, v〉 means that the computation of t is v, given a
program f and an initial cache C. The final cache C′ contains C and each call
which has been necessary to complete the computation.

Definition 9 (Active rules). Constructor and Split are passive semantic rules.
Update is an active rule. Read is a semi-active rule.

Definition 10 (Active terms). Active terms and judgements, activated equa-
tions, activations and dependences are defined similarly as for the call by value
case. Semi-active terms and judgements are similarly defined for semi-active
rules.

Lemma 6 still holds, but we also need to bound the number of semi-active
judgements to bound the size of a derivation. However, since they only lead to
leaves in the derivation and the arity of the derivation tree is bounded (by k the
maximum arity of a symbol in F

⋃
C), there is at most k times more (Read) rule

than the total number of other rules.

Proposition 11. Consider the memoisation semantics of Figure 3. For all pro-
grams, there exists a polynomial P such that for all derivation proof π, if A is
the number of active judgements in π and S is the maximum size of an active
judgement then |π| ≤ P (A, S).

Proof. Proposition 7 still allows to bound the size of dependences, hence the
number of passive judgements. Since semi-active judgements form a subset of
the set of leaves in π and since the number of premises of a rule is statically
bounded (by k, the maximum arity of a symbol), the number of semi-active
judgements is polynomially bounded by the number of non-leaves judgements in
π, hence by the number of active and passive judgements.

Lemma 12. Let J1 = 〈C1, t〉 ⇓ 〈C1, v〉 be a semi-active judgement in a proof
π : 〈∅, t〉 ⇓ 〈C, v〉, then there exists an active judgement J2 = 〈C2, t〉 ⇓ 〈C′

2, v〉 in
π.

Proof. Because the couple can only be in the cache if an active judgement put
it there.

The naive model where each rules takes unary time to be executed is not very
realistic with the memoisation semantics. Indeed, each (Read) and (Update) rule
needs to perform a lookup in the cache and this would take time proportional
to the size of the cache (and the size of elements in it). However, the size of the
final cache is exactly the number of (Update) rules in the proof (because only
(Update) modify the cache) and the size of terms in the cache is bounded by the
size of active terms (only active terms are stored in the cache). So Proposition 11
yields to a polynomial bound on the execution time.

Memoisation cannot be used with non-confluent programs. Indeed, the same
function call can lead to several different results. Several ideas could be used to
define a memoisation semantics for non-confluent programs, but they all have



their problems, hence we won’t use any of them here and only use memoisation
when the program is confluent. For sufficient conditions to decide if a program
is confluent or not, refer, typically, to Huet’s work [Hue80]. Here are, never-
theless, several different hints on how to design a memoisation semantics for
non-confluent programs.
• (No lookup): The cache is never used and everything is recomputed every

time. This is clearly not satisfactory since this is exactly the same thing as
the cbv semantics.

• (Cache first): If a function call is in the cache, use it. This is clearly not
satisfactory because two identical calls will lead to the same result even if
there was some non confluence involved.

• (Random lookup): When performing a call, randomly choose between using
a result in the cache and doing the computation. This is not satisfactory
because we can choose to always recompute things, hence exactly mimicking
the cbv semantics and the worst case will be the same (no time is gained).

• (Random lookup with penalties): Same as random lookup, but after (re)com-
puting a function call, check if is was already in the cache. If so, abort (be-
cause one should have looked for the result in the cache rather than recom-
puting it). This seems rather satisfactory but brings in lots of problems for
analysis. In particular, calls following different paths but leading to the same
result will be identified even if they shouldn’t.

2.2 Call trees, call dags

Following [BMM], we present now call-trees which are a tool that we shall use
all along. Let f = 〈X , C,F , E〉 be a program. A call-tree gives a static view of
an execution and captures all function calls. Hence, we can study dependencies
between function calls without taking care of the extra details provided by the
underlying rewriting relation.

Definition 13 (States). A state is a tuple 〈f, v1, · · · , vn〉 where f is a func-
tion symbol of arity n and v1, · · · , vn are constructor terms. Assume that η1 =
〈f, v1, · · · , vn〉 and η2 = 〈g, u1, · · · , um〉 are two states. A transition is a triplet

η1
e
 η2 such that:

1. e is an equation f(p1, · · · , pn) → t of E,
2. there is a substitution σ such that piσ = vi for all 1 ≤ i ≤ n,
3. there is a subterm g(s1, · · · , sm) of t such that siσ ↓ ui for all 1 ≤ i ≤ m.
∗
 is the reflexive transitive closure of ∪e∈E

e
 .

Definition 14 (Call trees). Let π : t ↓ v be a reduction proof. Its call trees is
the set of tree Θπ obtained by only keeping active terms in π.

That is, if t is passive:

b ∈ F
⋃

C πi : ti ↓ vi
(C) or (S)

b(t1, · · · , tn) ↓ b(v1, · · · , vn)



Then Θπ =
⋃

Θπi
.

If t is active:

f(p1, · · · , pn) → r ∈ E σ ∈ S piσ = vi ρ : rσ ↓ v
(F)

f(v1, · · · , vn) ↓ v

Then Θπ only contains the tree whose root is 〈f, v1, · · · , vn〉 and children are
Θρ.

When using the semantics with memoisation, the call-dag of a state is defined
similarly to the call-tree, but using a direct acyclic graph instead of a tree,
that is by adding links from (Read)-judgements to the corresponding (Update)-
judgement. Notice that (Read)-judgement are always leaves of the proof so we
do not loose any part of the proof by doing so.

Definition 15 (Call dags). Let π : 〈C, t〉 ⇓ 〈C′, v〉 be a reduction proof. Its
call trees is the set of trees obtained by keeping only active terms and its call
dag Θπ is obtained by keeping only active terms and replacing each semi-active
term by a link to the corresponding (via Lemma 12) active term.

Fact 1 (call tree arity) Let f be a program. There exists a fixed integer k,
such that given a derivation π of a term of the program, and a tree T of Θπ, all
nodes in T have at most k sons.

Proof. For each r.h.s. term r of an equation of f consider the number of maximal
subterms of r with a function as head symbol; let then k be the maximum of
these integers over the (finite) set of equations of f .

Lemma 16. Let π be a proof, T be a call-tree (call-dag) in Θπ and consider two
states η = 〈f, v1, · · · , vn〉 and η′ = 〈g, u1, · · · , um〉 such that η′ is a child of η. Let
t = f(v1, · · · , vn) be the active term corresponding to η and s = g(u1, · · · , um)
be the active term corresponding to η′. Let e be the equation activated by t in π.
Then, η

e
 η′.

Conversely, if η
e
 η′ and e is activated by t then η′ is a child of η in T .

Proof. Condition 1 and 2 correspond to the application of the active rule. Con-
dition 3 correspond to the application of several passive rules to get ride of the
context and evaluate the parameters of g.

This means that our definition of call trees is equivalent to the one in [BMM].
However, we need an alternate definition in order to deal with non determinism.

Call trees and call dags are a tool to easily count the number of active
judgements in a derivation. So, now, in order to apply Propositions 8 or 11 we
need to (i) bound the size (number of nodes) in the call tree or call dag and (ii)
bound the size of the states appearing in the call tree (dag).



3 Ordering, Quasi-Interpretations

3.1 Termination Orderings

Definition 17 (Precedence). Let f = 〈X , C,F , E〉 be a program. A precedence
�F is a partial ordering over F

⋃
C. We note ≈F the associated equivalence

relation. A precedence is compatible with f if for each equation f(p1, · · · , pn) → r

and each symbol b appearing in r, b �F f. It is separating if for each c ∈ C, f ∈
F , c ≺F f (that is constructors are the smallest elements of ≺F while functions
are the biggest). It is fair is for each constructors c, c′ with the same arity,
c ≈F c′ and it is strict if for each constructors c, c′, c and c′ are incomparable.

Any strict precedence can be canonically extended into a fair precedence.

Definition 18 (Product extension). Let ≺ be an ordering over a set S. Its
product extension is an ordering ≺p over tuples of elements of S such that
(m1, · · · , mk) ≺p (n1, · · · , nk) if and only if (i) ∀i, mi � ni and (ii) ∃j such that
mj ≺ nj.

Definition 19 (PPO). Given a separating precedence �F , the recursive path
ordering ≺rpo is defined in Figure 4.

If ≺F is strict (resp. fair) and separating, then the ordering is the Product
Path Ordering PPO (resp. the extended Product Path Ordering EPPO).

Of course, it is possible to consider other extensions of orderings. Usual
choices are the lexicographic extension, thus leading to Lexicographic Path Or-
dering or Multiset extension, leading to Multiset path Ordering. It is also possi-
ble to add a notion of status to function [KL80] indicating with which extension
the parameters must be compared. This leads to the more general Recursive
Path Ordering (RPO). However, here we only use the (extended) Product Path
Ordering so we don’t describe others.

s = ti or s ≺rpo ti

f ∈ F
S

C
s ≺rpo f(. . . , ti, . . .)

∀i si ≺rpo f(t1, · · · , tn) g ≺F f
f, g ∈ F

S

C
g(s1, · · · , sm) ≺rpo f(t1, · · · , tn)

(s1, · · · , sn) ≺p
rpo (t1, · · · , tn) f ≈F g ∀i si ≺rpo f(t1, · · · , tn)

f, g ∈ F
S

C
g(s1, · · · , sn) ≺rpo f(t1, · · · , tn)

Fig. 4. Definition of ≺rpo

An equation l → r is decreasing if we have r ≺rpo l. A program is ordered
by ≺rpo if there is a separating precedence on F such that each equation is
decreasing. Recall that ≺rpo guarantees termination ( [Der82]).

Notice that in our case, since patterns cannot contain function symbols, if
there is a precedence such that the program is ordered by the corresponding
≺rpo, then there is also a compatible one with the same condition.



Lemma 20. Let f be a program and ≺F be a separating precedence compatible
with it. Let η = 〈f, v1, · · · , vn〉 be a state in a call tree (resp. dag) T and η′ =
〈g, u1, · · · , um〉 be a descendant of η in T . Then g �F f

Proof. Because the precedence is compatible with f.

Proposition 21 (Computing by rank). Let f be a program and ≺F be a
separating precedence compatible with it. Let T be a call tree (resp. dag) and
η = 〈f, v1, · · · , vn〉 be a node in it. Let A be the maximum number of descendants
of a node with the same arity:

A = max
η=〈f,v1,··· ,vn〉∈T

#{η′ = 〈g, u1, · · · , um〉, η is an ancestor of η′ and g ≈F f}

The size of T is polynomially bounded by A.

Proof. Let f be a function symbol. Its rank is rk(f) = maxg≺Ff rk(g) + 1.
Let d be the maximum number of function symbols in a rhs of f and k be

the maximum rank. We will prove by induction that there are at most Bi =
∑

i≤j≤k dk−j × Ak−j+1 nodes in T at rank i.

The root has rank k. Hence, there are at most A = dk−kAk−k+1 = Bk nodes
at rank k.

Suppose that the hypothesis is true for all ranks j > i. Each node has at most
d children. Hence, there are at most d

∑

j>i Bj nodes at rank i whose parent has
rank 6= i. Each of these nodes has at most A descendants at rank i, hence there
are at most d × A ×

∑

j>i Bj < Bi nodes at rank i.

Since Bi < (k − i + 1)× dkAk+1,
∑

Bi is polynomially bounded in A and so
is the size of the call tree (dag).

Thus to bound the number of active rules in a derivation (hence bound the
derivation’s size by Prop. 8 or 11) it suffices to establish the bound rank by rank.

Proposition 22. Let f be a program terminating by PPO, T be a call dag and
η = 〈f, v1, · · · , vn〉 be a node in T . The number of descendants of η in T with
the same rank as η is polynomially bounded by |η|.

Proof. Because of the termination ordering, if η′ = 〈g, u1, · · · , um〉 is a descen-
dant of η with f ≈F g, then ui is a subterm of vi. There are at most |vi| such
subterms and thus cΠ(|vi|+1) possible nodes (where c is the number of functions
with the same precedence as f).

This is point (2) in the proof of Lemma 51 in [BMM]. Notice that it only
works on a call dag, because identical nodes are identified, and not on a call tree.

3.2 Quasi-interpretations

We restrict ourselves to additive QIs as defined in [BMM].



Definition 23 (Assignment). An assignment of a symbol b ∈ F
⋃
C whose

arity is n is a function LbM : (R)n → R such that:

(Subterm) LbM(X1, · · · , Xn) ≥ Xi for all 1 ≤ i ≤ n.
(Weak Monotonicity) LbM is increasing (not strictly) wrt each variable.
(Additivity) LcM(X1, · · · , Xn) ≥

∑n
i=1 Xi + a if c ∈ C (where a ≥ 1).

(Polynomial) LbM is bounded by a polynomial.

We extend assignments L.M to terms canonically. Given a term t with n vari-
ables, the assignment LtM is a function (R)n → R defined by the rules:

Lb(t1, · · · , tn)M = LbM(Lt1M, · · · , LtnM)

LxM = X

Given two functions f : (R)n → R and g : (R)m → R such that n ≥ m, we say
that f ≥ g iff ∀X1, . . . , Xn : f(X1, . . . , Xn) ≥ g(X1, . . . , Xm).

There are some well-known and useful consequences of such definitions. We
have LsM ≥ LtM if t is a subterm of s. Then, for every substitution σ, LsM ≥ LtM
implies that LsσM ≥ LtσM.

Definition 24 (Quasi-interpretation). A program assignment L.M is an as-
signment of each program symbol. An assignment L.M of a program is a quasi-
interpretation (QI) if for each equation l → r,

LlM ≥ LrM.

In the following, unless explicitly specified, L.M will always denote a QI and not
an assignment.

Lemma 25. Let v be a constructor term, |v| ≤ LvM ≤ a|v| for a constant a.

Proof. By induction. the constant a depends on the constants in the QI of con-
structors.

Lemma 26. Assume f has a QI. Let η = 〈f, v1, · · · , vn〉 and η′ = 〈g, u1, · · · , um〉

be two states such that η
∗
 η′. Then, Lg(u1, · · · , um)M ≤ Lf(v1, · · · , vn)M.

Proof. Because g(u1, · · · , um) is a subterm of a term obtained by reduction from
f(v1, · · · , vn).

Corollary 27. Let f be a program admitting a QI and π : 〈C, t = f(v1, · · · , vn)〉 ⇓
〈C′, v〉 be a derivation. The size of any active term in π is bounded by P (|vi|)
for a given polynomial P .

Proof. The size of an active term s = g(u1, · · · , um) is bounded by m max |ui| ≤
mLsM. By the previous Lemma, LsM ≤ LtM. But by polynomiality of QIs, LtM ≤
Q(LviM). Since vi are constructor terms, LviM ≤ a|vi|



Now, if we combine this bound on the size of active terms together with the
bound on the number of active terms of Proposition 22, we can apply Propo-
sition 11 and conclude that programs terminating by PPO and admitting a QI
are Ptime computable. Actually, the converse is also true:

Theorem 28 (P-criterion, (Bonfante, Marion, Moyen [BMM])). The
set of functions computables by programs that (i) terminates by PPO and (ii)
admits a QI is exactly Ptime.

In order to achieve the polynomial bound, it is necessary to use the cbv
semantics with memoisation.

4 Blind Abstractions of Programs

4.1 Definitions

Our idea is to associate to a given program f an abstract program f obtained
by forgetting each piece of data and replacing it by its size as a unary integer.
In this way, even if f is deterministic, the associated f will in general not be
deterministic.

For that we first define a target language:
• variables: X = X ,
• function symbols: F = {f, f ∈ F},
• constructor symbols: C = {s,0} where s (resp. 0) has arity 1 (resp. 0).

This language defines a set of constructor terms T (C), a set of terms T (C,F ,X )
and a set of patterns P .

The blinding map is the natural map B : T (C,F ,X ) −→ T (C,F ,X ) obtained
by replacing constructors of arity 1 with s, and those of arity 0 by 0. It induces
similar maps on constructor terms and patterns. We will write t (resp. p) for
B(t) (resp. B(p)).

The blinding map extends to equations in the expected way: given a equation
d = p → t of the language (X ,F , C), we set d = B(d) = p → t. Finally, given a
program f = (X , C,F , E), its blind image is f = (X , C,F , E) where the equations
are obtained by: E = {d, d ∈ E}. Observe that even if f is an orthogonal program,
this will not necessarily be the case of f, because some patterns are identified
by B.

The denotational semantics of f can be seen as a relation over the domain of
tally integers.

4.2 Complexity Definitions

Definition 29 (Strongly polynomial). We say a non-deterministic program
f (of arity n) is strongly polynomial if there exists a polynomial p : N → N such
that for every sequence v1, · · · , vn and any π : f(v1, · · · , vn) ↓ u, it holds that
|π| ≤ p(

∑n
i=1 |vi|).



Of course similar definitions would also make sense for other complexity bounds
than polynomial. In the case of a deterministic program, this definition coincides
with that of a polynomial time program (in the model where rewriting steps are
counted as unit step).

Definition 30 (Blindly polynomial). A program f is blindly polynomial if
its blind abstraction f is strongly polynomial.

Observe that:

Fact 2 If a program f is blindly polynomial, then it is polynomial time (with the
call-by-value semantics).

Indeed, it is sufficient to observe that any reduction sequence of f can be mapped
by B to a reduction sequence of f. The converse property is not true. Observe
for that our running example in Figure 5: note that f terminates in polynomial
time but this is not the case for f. Indeed if we denote n = s . . . s

︸ ︷︷ ︸

n

0, we have that

f(n) can be reduced in an exponential number of steps, with a π : f(n) ↓ 2n.

f f

f(s0six) → append(f(s1x),f(s1x))
f(s1x) → x
f(nil) → nil

append(six, y) → siappend(x, y)
append(nil, y) → y

f(ssx) → append(f(sx),f(sx))
f(sx) → x
f(0) → 0

append(sx, y) → s append(x, y)
append(0, y) → y

Fig. 5. Blind abstraction of our running example

Note that the property of being blindly polynomial is indeed a strong con-
dition, because it means in some sense that the program will terminate with a
polynomial bound for reasons which are indifferent to the actual content of the
input but only depend on its size.

Now we want to discuss the behavior of the blinding map with respect to
criteria on TRS based on recursive path orderings (RPO) and QIs ([BMM]).

4.3 Blinding and Recursive Path Orderings

Lemma 31. Let f be a program: if f terminates by PPO then f terminates by
PPO.

Indeed F and F are in one-one correspondence, and it is easy to observe that:
if ≺F is a precedence which gives a PPO ordering for f, then the corresponding
≺F does the same for f.

The converse is not true, see for example Figure 5 where the first equation
does terminate by PPO on the blind side but not on the non-blind side. However,
we have:



Proposition 32. Let f be a program. The three following statements are equiv-
alent: (i) f terminates by EPPO, (ii) f terminates by EPPO, (iii) f terminates
by PPO.

Proof. Just observe that on T (C,F ,X ), PPO and EPPO coincide, and that
t ≺EPPO t′ implies t ≺EPPO t′.

4.4 Blinding and Quasi-interpretations

Assume the program f admits a quasi-interpretation L.M. Then in general this
does not imply that f admits a quasi-interpretation. Indeed one reason why L.M
cannot be simply converted into a quasi-interpretation for f is because a quasi-
interpretation might in general give different assignments to several constructors
of the same arity, for instance when Ls0M(X) = X + 1 and Ls1M(X) = X + 2.
Then when considering f there is no natural choice for LsM.

However, in most examples in practice, a restricted class of quasi-interpreta-
tions is used:

Definition 33 (Uniform assignments). An assignment for f = (X , C,F , E)
is uniform if all constructors of same arity have the same assignment: for each
c, c′ ∈ C, arity(c) = arity(c′) implies LcM = Lc′M. A quasi-interpretation of f is
uniform if it is defined by a uniform assignment.

Now we have:

Proposition 34. The program f admits a uniform quasi-interpretation iff f

admits a quasi-interpretation.

5 Linear Programs and Call-by-Value Evaluation

Now we want to use the blinding transformation to examine properties of pro-
grams satisfying the P-criterion (Theorem 28).

5.1 Definitions and Main Property

Definition 35 (Linearity). Let f be a program terminating by a RPO and g

be a function symbol in f. We say g is linear in f if, in the r.h.s. term of any
equation for g, there is at most one occurrence of a function symbol h with same
precedence as g. The program f is linear if all its function symbols are linear.

Theorem 36. Let f be a (possibly non deterministic) program which i) termi-
nates by PPO, ii) admits a quasi-interpretation, iii) is linear. Then f is strongly
polynomial.

Note that the differences with the P-criterion Theorem from [BMM] (The-
orem 28) are that: the program here needs not be deterministic, but linearity
is assumed for all function symbols. As a result the bound holds not only for
the memoisation semantics, but for the plain call-by-value semantics (and for all
execution sequences).



Proof. The quasi-interpretation provides a bound on the size of active judge-
ments via Corollary 27. Linearity of the program ensures that the set of descen-
dants of η = 〈f, v1, · · · , vn〉 in a call tree with the same precedence as f is a
branch, that is has size bounded by its depth. Termination by PPO ensure that
if η′ = 〈g, u1, · · · , um〉 is the child of η with f ≈F g then |ui| ≤ |vi| and there
is at least one j such that |uj | < |vj |. So, the number of descendants of η with
the same precedence is bounded by

∑
|vi|. This bounds the number of active

judgements by rank.
So we can now use Propositions 21 and 8 and conclude that the size (number

of rules) of any derivation π : t ↓ v is polynomially bounded by |t|.

Proposition 37. Let f be a (possibly non deterministic) program which i) ter-
minates by PPO, ii) admits a uniform quasi-interpretation, iii) is linear. Then
f is blindly polynomial.

Proof. Note that:
• f terminates by PPO, so f also, by Lemma 31;
• the quasi-interpretation for f is uniform, so f admits a quasi-interpretation,

by Prop. 34;
• f is linear, so f is also linear.

So by Theorem 36 we deduce that f is strongly polynomial. Therefore f is blindly
polynomial.

5.2 Bellantoni-Cook Programs

Let BC the class of Bellantoni-Cook programs, as defined in [BC92] written in
a Term Rewriting System framework as in [Moy03]. Function arguments are
separated into either safe or normal arguments, recurrences can only occur over
normal arguments and their result can only be used in a safe position. We use
here a semi-colon to distinguish between normal (on the left) and safe (on the
right) parameters.

Definition 38 (Bellantoni-Cook programs). The class BC is the smallest
class of programs containing:
• (Constant) 0
• (Successors) si(x), i ∈ {0, 1}

initial functions:
• (Projection) π

n,m
j (x1, · · · , xn; xn+1, · · · , xn+m) → xj

• (Predecessor) p(;0) → 0 p(; si(x)) → x

• (Conditional) C(;0, x, y) → x C(; s0, x, y) → x C(; s1, x, y) → y

and is closed by:
• (Safe recursion)

f(0, x1, · · · , xn; y1, · · · , ym) →g(x1, · · · , xn; y1, · · · , ym)

f(si(z), x1, · · · , xn; y1, · · · , ym) →hi(z, x1, · · · , xn; y1, · · · , ym,

f(z, x1, · · · , xn; y1, · · · , ym)), i ∈ {0, 1}

with g, hi ∈ BC (previously defined) ;



• (Safe composition)

f(x1, · · · , xn; y1, · · · , ym) → g(h1(x1, · · · , xn), . . . , hp(x1, · · · , xn);

l1(x1, · · · , xn; y1, · · · , ym), . . . , lq(x1, · · · , xn; y1, · · · , ym))

with g, hi, lj ∈ BC ;

It is easy to see that any BC program terminates by PPO and is linear.

Definition 39 (Quasi-interpretations for BC-programs). A BC-program
admits the following quasi-interpretation:
• L0M = 1 ;
• LsiM(X) = X + 1 ;
• LπM(X1, · · · , Xn+m) = max(X1, · · · , Xn+m) ;
• LpM(X) = X ;
• LCM(X, Y, Z) = max(X, Y, Z) ;

For functions defined by safe recursion of composition, LfM(X1, · · · , Xn; Y1, · · · , Ym) =
qf(X1, · · · , Xn) + max(Y1, · · · , Ym) with qf defined as follows:
• qf(A, X1, · · · , Xn) = A(qh0(A, X1, · · · , Xn)+qh1(A, X1, · · · , Xn))+qg(X1, · · · , Xn)

if f is defined by safe recursion ;
• qf(X1, · · · , Xn) = qg(qh1(X1, · · · , Xn), . . . , qhp

(X1, · · · , Xn))+
∑

i qli
(X1, · · · , Xn)

if f is defined by safe composition.

Theorem 40. If f is a program of BC, then f is blindly polynomial.

Proof. It is sufficient to observe that if f is a BC program, then it is linear
and terminates by PPO, and the quasi-interpretation given above is uniform.
Therefore by Proposition 37, f is blindly polynomial.

6 Semi-lattices of Quasi-Interpretations

The study of necessary conditions on programs satisfying the P-criterion has
drawn our attention to uniform quasi-interpretations. This suggests to consider
quasi-interpretations with fixed assignments for constructors and to examine
their properties as a class.

Definition 41 (Compatible assignments). Let f be a program and L.M1, L.M2
be two assignments for f. We say that they are compatible if for any constructor
symbol c we have:

LcM1 = LcM2.

. A family of assignments for f is compatible if its elements are pairwise com-
patible. We use these same definitions for quasi-interpretations.

Each choice of assignments for constructors thus defines a maximal compatible
family of quasi-interpretations for a program f: all quasi-interpretations for f

which take these values on C.



We consider on assignments the extensional order ≤:

L.M1 ≤ L.M2 iff ∀f ∈ C ∪ F , ∀x ∈ (R+)k, LfM1(x) ≤ LfM2(x).

Given two compatible assignments L.M1, L.M2 we denote by L.M1 ∧ L.M2 the
assignment L.M0 defined by:

∀c ∈ C.LcM0 = LcM1 = LcM2

∀f ∈ F .LfM0 = LfM1 ∧ LfM2

where α ∧ β denotes the greatest lower bound of {α, β} in the pointwise order.
Then we have:

Proposition 42. Let f be a program and L.M1, L.M2 be two quasi-interpretations
for it, then L.M1 ∧ L.M2 is also a quasi-interpretation for f.

To establish this Proposition we need intermediary Lemmas. We continue to
denote L.M0 = L.M1 ∧ L.M2:

Lemma 43. For any f of F we have that LfM0 is monotone and satisfies the
subterm property.

Proof. To prove monotonicity, assume x ≤ y, for the product ordering. Then, for
i = 1 or 2: LfM0(x) = LfM1(x)∧ LfM2(x) ≤ LfMi(x) ≤ LfMi(y), using monotonicity
of LfMi. As this is true for i = 1 and 2 we thus have: LfM0(x) ≤ LfM1(y)∧LfM2(y) =
LfM0(y). It is also easy to check that LfM0 satisfies the subterm property.

Lemma 44. Let t be a term. We have: LtM0 ≤ LtMi, for i = 1, 2.

Proof. By induction on t, using the definition of LfM0 and LcM0, and the mono-
tonicity property of Lemma 43.

Lemma 45. Let g(p1, · · · , pn) → t be an equation of the program f . We have:

LgM0 ◦ (Lp1M0, . . . , LpnM0) ≥ LtM0.

Proof. As patterns only contain constructor and variable symbols, and by def-
inition of L.M0, if p is a pattern we have: LpM0 = LpM1 = LpM2. Let i = 1 or 2; we
have:

LgMi(Lp1Mi(x), . . . , LpnMi(x)) ≥ LtMi(x) because L.Mi is a quasi-interpretation,

≥ LtM0(x) with Lemma 44.

So:
LgMi(Lp1M0(x), . . . , LpnM0(x)) ≥ LtM0(x), as LpjMi = LpjM0.

Write y = (Lp1M0(x), . . . , LpnM0(x)). As LgM1(y) ≥ LtM0(x) and LgM2(y) ≥ LtM0(x),
by definition of LgM0 we get LgM0(y) ≥ LtM0(x), which ends the proof.

Now we can proceed with the proof of Prop. 42:



Proof ( Proof of Prop. 42). Observe that Lemma 43 ensures that L.M0 satisfies
the monotonicity and the subterm conditions, and Lemma 45 that it satisfies the
condition w.r.t. the equations of the program. The conditions for the constructors
are also satisfied by definition. Therefore L.M0 is a quasi-interpretation.

Proposition 46. Let f be a program and Q be a family of compatible quasi-
interpretations for f, then ∧L.M∈QL.M is a quasi-interpretation for f. Therefore
maximal compatible families of quasi-interpretations for f have an inferior semi-
lattice structure for ≤.

Proof. It is sufficient to generalize Lemmas 43 and 45 to the case of an arbitrary
family Q and to apply the same argument as for the proof of Prop. 42.

7 Extending the P-criterion

Blind abstraction suggest to consider not only the PPO ordering from the P-
criterion, but also an extension which is invariant by the blinding map, the
EPPO ordering (see Subsection 4.3). It is thus natural to ask whether EPPO
enjoys the same property as PPO. We prove in this section that with EPPO we
can still bound the size of the call-dag and thus generalize the P-criterion. Then,
we will also consider the bounded value property which is an extension of the
notion of QI. Here, we bound the number of nodes in the call-dag with a given
precedence. Then, Prop. 21 bounds the total number of nodes in the call-dag.

Fact 3 Since we’re working over words (unary constructors), patterns are either
constructors terms (that is, words), or have the form p = s1(s2 . . . sn(x) . . .). In
the second case, we will write p = Ω(x) with Ω = s1s2 . . . sn.

The length of a pattern is the length of the corresponding word: |p| = |Ω|

Proposition 47. In a program terminating by PPO or EPPO, the only calls at
the same precedence that can occur are of the form

f(p1, · · · , pn) → C[g1(q
1
1 , · · · , q1

m), . . . , gp(q
p
1 , · · · , q

p
l )]

where C[.] is some context, f ≈F gk and pi, q
k
j are patterns. Moreover, each

variable appearing in a qk
i appears in pi.

Proof. This is a direct consequence of the termination ordering.

Since we will only consider individual calls, we will put in the context all but
one of the gk: f(p1, · · · , pn) → C[g(q1, · · · , qm)]

Definition 48 (Production size). Let f be a program terminating by EPPO.
Let f(p1, · · · , pn) → C[g(q1, · · · , qm)] be a call in it where f ≈F g. The pro-
duction size of this call is maxi{|qi|}. The production size of an equation is the
greatest production size of any call (at the same precedence) in it. That is if
we have an equation e = f(p1, · · · , pn) → C[g1(q

1
1 , · · · , q1

m), . . . , gp(q
p
1 , · · · , q

p
l )]

where f ≈F gk then its production size is Ke = max |qk
j | The production size

of a function symbol is the maximum production size of any equation defining a
function with the same precedence: Kh = maxg≈Fh maxe=g(...)→r Ke



Definition 49 (Normality). Let f be a program. A function symbol h in it is
normal if the patterns in the definitions of functions with the same precedence
are bigger than its production size:

∀g ≈F h, ∀g(q1, · · · , qm) → r ∈ E , |qi| ≥ Kh

Let f be a program. It is normal if all function symbols in it are normal.

This means that during recursive calls, every constructor produced at a given
moment will be consumed by the following pattern matching.

Lemma 50. A EPPO-program can be normalised with an exponential growth
in the size of the program.

The exponential is in the difference between the size of the biggest production
and the size of the smallest pattern (with respect to each precedence).

Proof (Sketch). The idea is to extend the small pattern matchings so that their
length reaches the length of the biggest production. This is illustrated by the
following example:

f(s1(s1(s1(x)))) → f(s0(s0(x)))

f(s0(x)) → f(x)

In this case, the biggest production has size 2 but the shortest pattern matching
has only size 1. We can normalise the program as follows:

f(s1(s1(s1(x)))) → f(s0(s0(x)))

f(s0(s0(x))) → f(s0(x))

f(s0(s1(x))) → f(s1(x))

Even if the process does extend productions as well as patterns, it does termi-
nate because only the smallest patterns, hence the smallest productions (due to
termination ordering) are extended this way.

Notice that the exponential growth is indeed in the initial size of the program
and does not depend on the size of any input. Since the size of the call-dag is
bounded by the size of the inputs, this does not hamper the polynomial bound.
The normalization process preserves termination by PPO and EPPO, semantics
and does not decrease time complexity. Hence, bounding the time complexity of
the normalized program is sufficient to bound the time complexity of the initial
program. In the following, we only consider normal programs.

Let f be a program and g be a function, we will enumerate all the symbol of
same precedence as g in the rhs of f and label them g1, . . . , gn. This is simply
an enumeration, not a renaming of the symbols and if a given symbol appears
several times (in several equations or in the same one), it will be given several
labels (one for each occurrence) with this enumeration. Now, a path in the call-
dag staying only at the same precedence as g is canonically identified by a word

over {g1, . . . , gn}. We write η
ω
 η′ to denote that η is an ancestor of η′ and ω

is the path between them.



Lemma 51. Let η1 = 〈f, v1, · · · , vn〉 and η2 = 〈g, u1, · · · , um〉 be two states

such that η1
e
 η2 and both function symbols have the same precedence. Then

|vi| ≥ |ui| for all i and there exists j such that |vj | > |uj |.

Proof. This is a consequence of the termination proof by EPPO.

Corollary 52. Let η = 〈f, v1, · · · , vn〉 be a state. Any branch in the call-dag
starting from η has at most n× (max |vi|) nodes with the same precedence as f.

Lemma 53. Suppose that we have labels α, β and γ and nodes such that η
α
 

η1
β
 η′

1

γ
 η′′

1 and η
β
 η2

α
 η′

2

γ
 η′′

2 . Then η′′
1 = η′′

2 .

Proof. Since labels are unique, the function symbols in η′′
1 and η′′

2 are the same.
It is sufficient to show that the ith components are the same and apply the same
argument for the other parameters.

Let q, v, v′, v′′, u, u′, u′′ be the ith parameters of η, η1, η
′
1, η

′′
1 , η2, η

′
2, η

′′
2 respec-

tively. Since we’re working on words, an equation e has, with respect to the ith
parameter, the form:

f(. . . , Ωe(x), . . .) → C[g(. . . , Ω′
e(x), . . .)]

and normalization implies that |Ω′
e| ≤ |Ωe| (previous lemma).

So, in our case, we have:

q = Ωα(x) → Ω′
α(x) = v = Ωβ(x′) → Ω′

β(x′)

= v′ = Ωγ(x′′) → Ω′
γ(x′′) = v′′

q = Ωβ(y) → Ω′
β(y) = u = Ωα(y′) → Ω′

α(y′)

= u′ = Ωγ(y′′) → Ω′
γ(y′′) = u′′

Because of normalization, |Ωβ | ≥ |Ω′
α|. Hence x′ is a suffix of x, itself a suffix

of q. Similarly, x′′ and y′′ are suffixes of q.
Since they’re both suffixes of the same word, it is sufficient to show that they

have the same length in order to show that they are identical.

|x| = |q| − |Ωα|

|x′| = |v| − |Ωβ | = |q| − |Ωα| + |Ω′
α| − |Ωβ |

|x′′| = |q| − |Ωα| + |Ω′
α| − |Ωβ | + |Ω′

β | − |Ωγ |

|y′′| = |q| − |Ωβ | + |Ω′
β | − |Ωα| + |Ω′

α| − |Ωγ |

So x′′ = y′′ and thus v′′ = u′′.

Corollary 54. Let ω1, ω2 be words and α be a label such that: η
ω1

 η1
α
 η′

1 and

η
ω2

 η2
α
 η′

2. If ω1 and ω2 have the same commutative image, then η′
1 = η′

2.

Proof. This is a generalization of the previous proof, not an induction on it. If
ω1 = α1 . . . αn then the size in the last node is:

|x′| = |q| −
∑

|Ωαi
| +

∑

|Ω′
αi
| − |Ωα|

which is only dependent on the commutative image of ω1.



So, when using the semantics with memoisation, the number of nodes (at a
given precedence) in the call-dag is roughly equal to the number of paths modulo
commutativity. So any path can be associated with the vector whose components
are the number of occurrences of the corresponding label in it.

Proposition 55. Let T be a call-dag and η = 〈f, v1, · · · , vn〉 be a node in it. Let
I = n × (max |vj |) and M be the number of functions with the same precedence
as f. The number of descendants of η in T with the same precedence as f is
bounded by (I + 1)M , that is a polynomial in |η|.

Proof. Any descendant of η with the same precedence can be identified with a
word over {f1, . . . , fM}. By Corollary 52 we know that these words have length
at most I and by Corollary 54 we know that it is sufficient to consider these
words modulo commutativity.

Modulo commutativity, words can be identified to vectors with as many com-
ponents as the number of letters in the alphabet and whose sum of components
is equal to the length of the word.

Let Dn
i be the number of elements from N

n whose sum is i. This is the
number of words of length i over a n-ary alphabet modulo commutativity.

Clearly, Dn
i−1 ≤ Dn

i (take all the n-uple whose sum is i−1, add 1 to the first
component, you obtain Dn

i−1 different n-uple whose sum of components is i).
Now, to count Dn

i , proceed as follows: Choose a value j for the first compo-
nent, then you have to find n−1 components whose sum is i− j, there are Dn−1

i−j

such elements.

Dn
i =

∑

0≤j≤i

Dn−1
i−j =

∑

0≤j≤i

Dn−1
j ≤ (i + 1) × Dn−1

i ≤ (i + 1)n−1 × D1
i ≤ (i + 1)n

Definition 56 (Bounded Values). A program f = (X , C,F , E) has polyno-
mially bounded values iff for every function symbol g ∈ F , there is a poly-
nomial pg : N → N such that for every state η′ appearing in a call tree for
η = (g, v1, . . . , vn), |η′| ≤ pg(|η|).

Theorem 57. The set of functions computed by programs who terminate by
EPPO and have bounded value property is exactly Ptime.

Proof. Proposition 55 bounds the size of the call dag by rank. Bounded value
property bounds the size of nodes in the call dag. So we can apply Proposition 11
to bound the size of any derivation. The converse is obtained from the P-criterion.

Theorem 58. Let f be a deterministic program terminating by EPPO. Then
the following two conditions are equivalent:
1. f has polynomially bounded values;
2. f is polytime in the call-by-value semantics with memoisation.

Proof. The implication 1 ⇒ 2 is proved as follows: Termination by EPPO pro-
vides a polynomial bound on the size of the call-dag (by rank) via Proposition 55



and the bounded values property provides a polynomial bound on the size of
nodes in the call dag. Hence we can apply Proposition 11 and bound the size of
any derivation π : 〈∅, t〉 ⇓ 〈C, v〉 by P (|t|) for some polynomial P .

For the converse, it is sufficient to see that a state appearing in the call dag
also appear in the final cache. Since the size of any term in the cache is bounded
by the size of the proof (because we need to perform as many (Constructor)
rules as needed to construct the term), it is polynomially bounded because the
program is polytime.

8 Conclusions

In this paper, blind abstractions of first-order functional programs have been
introduced and exploited in understanding the intensional expressive power of
quasi-interpretations. In particular, being blindly polytime has been proved to
be a necessary condition in presence of linear programs, product path-orderings
and uniform quasi-interpretations. This study has lead us to some other interest-
ing results about the lattice-structure of uniform quasi-interpretations and the
possibility of extending product path-orderings preserving polytime soundness.

Further work includes investigations on conditions characterizing the class of
programs (or proofs) captured by quasi-interpretation. In particular, it is still
open whether being blindly polytime is a necessary and sufficient conditions for
a program to have a quasi-interpretation (provided some sort of path-ordering
for it exists).
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interpretations. Technical report, LORIA, 2006. Preprint.

[Der82] Nachum Dershowitz. Orderings for term-rewriting systems. Theoretical Com-
puter Science, 17(3):279–301, 1982.

[DP02] N. Danner and C. Pollett. Minimization and NP multifunctions. Theoretical
Computer Science, 2002. To appear.

[Gir98] J.-Y. Girard. Light linear logic. Information and Computation, 143:175–204,
1998.



[Hof99] Martin Hofmann. Linear types and Non-Size Increasing polynomial time
computation. In Proceedings of the Fourteenth IEEE Symposium on Logic in
Computer Science (LICS’99), pages 464–473, 1999.

[Hue80] Gérard Huet. Confluent reductions: Abstract properties and applications to
term rewriting systems. Journal of the ACM, 27(4):797–821, 1980.

[KL80] S. Kamin and J.-J. Lévy. Attempts for generalising the recursive path
orderings. Technical report, Univerité de l’Illinois, Urbana, 1980. un-
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