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ABSTRACT

The quadruple young system GG Tauri is an example of a multiple T Tauri system. Its consists of two binaries, the brighter one (GG Tau A)
being surrounded by a ring-shape circumbinary disk. In a recent paper, we performed a dynamical study of circumbinary and showed that
there is an apparent discrepancy between the orbital fit of GG Tau A and the observed inner edge of the disk. In this paper, we now investigate
the dynamics of the whole quadruple system together with the disk. We show that it is possible to design an orbital configuration between the
two binaries in such a way that the outer profile of the circumbinary ring may be explained by tidal interaction with repeated periastron passages
of the outer binary GG Tau B. We show that the observed characteristics of the disk are not compatible with some orbital configurations, such
as those giving rise to the Kozai resonance. Surprisingly, the outer binary GG Tau B appears only marginally stable against tidal disruption by
GG Tau A. GG Tau B appears stable only if its internal orbit is retrograde with respect to the motion of its center of mass around GG Tau A.
We also find that the CB disk should be almost coplanar with the inner binary.

Key words. stars: circumstellar matter – stars individual: GG Tau – methods: numerical – celestial mechanics –
stars: planetary systems: protoplanetary disks

1. Introduction

GG Tauri is a quadruple T Tauri systems consisting of two bi-
naries. The first pair (GG Tau A) is brighter and closer (0.25′′).
The second pair (GG Tau B) is wider (1.48′′) and located 10.1′′
to the south (Guilloteau et al. 1999, hereafter GDS99; White
et al. 1999). GG Tau A is well known to be surrounded by a cir-
cumbinary dusty and gaseous disk that was spatially resolved in
both millimeter and near infrared wavelength domains (Dutrey
et al. 1994; GDS99). This disk is the prototype example of a
circumbinary disk in a young stellar system.

This disk has been the subject of many investigations the
past. The disk is ring-like (GDS99) with well defined edges.
The continuum dust data reveal that almost 70% of the ma-
terial is located between 180 and 260 AU around GG Tau A,
while the 13CO(2–1) line emission shows that the rest of the
material extends up to 800 AU or more. The total mass of the
circumbinary material (H2 + dust) is ∼0.12 M� (GDS99).

The Keplerian motion of this disk around the GG Tau A pair
has been unambiguously identified. The first indication of a ve-
locity gradient in the disk was given by Kawabe et al. (1993),

� Appendix A is only available in electronic form at
http://www.edpsciences.org

furthermore GDS99 made a careful analysis of the velocity
map of the disk in 12CO(2–1) and 13CO(2–1) emissions and
conclude that the motion of the disk was essentially Keplerian
around a central mass of 1.28 ± 0.07 M�. Mass determi-
nations for all four components of the system are given by
White et al. (1999), derived from stellar evolution models.
They give masses of 0.78 ± 0.1 M� and 0.68 ± 0.03 M� for
GG Tau Aa and Ab, and 0.12 ± 0.02 M� and 0.044 ± 0.006 M�
for GG Tau Ba and Bb. Note that the total mass inferred for
GG Tau A remains compatible with the dynamical determi-
nation of GDS99 within the error bars, and that GG Tau B is
much less massive than GG Tau A. GG Tau Bb seems even to
be a substellar object. For our simulations, we adopt these mass
determinations.

The relative motion of the components of GG Tau A has
been now monitored for more than 10 years (see Table 1 from
Beust & Dutrey 2005, hereafter BD05), providing additional
kinematic constraints. Combined with the assumption that the
circumbinary disk is coplanar with GG Tau A, this allows one
to derive a full orbital solution for GG Tau A. This was done
by Roddier et al. (1996); McCabe et al. (2002); Tamazian et al.
(2002). In a recent paper (BD05), we reinvestigate this issue
using the most recent astrometric data, and derive in this way
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an orbit characterized by a semi-major axis a = 32.4 AU and
an eccentricity e = 0.34. This is in agreement with other recent
work (McCabe et al. 2002; Tamazian et al. 2002). In BD05, we
also perform dynamical simulations of the circumbinary disk
on the basis of this orbital solution, and show that this orbit is
not compatible with the location of the inner edge of the cir-
cumbinary disk observed at 180 AU, if we suppose that the
truncation results from the sole interaction with the binary; it
should be expected to be closer to the star by a factor of 2. The
observational data about this inner edge location are robust up
to ∼10% and come from independent measurements obtained
at several wavelengths (NIR, millimeter) (Dutrey et al. 1994;
GDS99; Roddier et al. 1996). We can however solve this dis-
crepancy if we assume that the error from bars on the astromet-
ric data have been severely underestimated.

The aim of paper is to further investigate the dynamics of
this system, but considering now the whole quadruple system.
We adopt a didactic approach, where we describe the physics
related to the dynamics of multiple systems in general. These
papers are a first attempt to provide a link between various
observations of a given astrophysical object at several wave-
lengths, and dynamics. This is why we first describe 3-body
dynamics where GG Tau B is considered as a single object, be-
fore reintroducing its binary nature.

We first discuss the general shape of the disk. While it is
reasonable to think that the inner edge of the disk is due to tidal
interaction with the inner binary GG Tau A (despite the above
noted discrepancy), the outer profile needs some other expla-
nation. As noted by GDS99, there is no way to fit the outer
profile with a single power law. It rather looks like a sharp
ring ending at 260 ± 5 AU superimposed onto a more tenu-
ous tail following a power law of index s = −2.75. It is thus
tempting to attribute this sculpting of the outer edge to an in-
teraction with the outer binary GG Tau B. We investigate this
issue in the present paper. Our second goal is to investigate the
secular evolution of the quadruple system, as past secular evo-
lution could help to solve the discrepancy between the orbit of
GG Tau A and the inner edge of the disk. In Sect. 2, we perform
three-body simulations, treating GG Tau B as a single body. We
show that it is possible to explain the general shape of the cir-
cumbinary disk by tidal interaction with GG Tau B, provided
the wide orbit of GG Tau B around GG Tau A has some char-
acteristics we list. Then in Sect. 3, we reintroduce the binary
nature of GG Tau B. We show that this has only little effect on
the sculpting of the disk, but we also show that the GG Tau B
pair is only marginally stable against tidal disrupting due to
GG Tau A. GG Tau B appears stable only if the relative mo-
tion between its components is retrograde with respect to the
wide orbit between the two pairs. In Sect. 4, we discuss the
relevance of our calculations, and show that the discrepancy
between the inner edge of the disk and the orbital solution for
GG Tau A remains unsolved. We give possible clues for solv-
ing this problem, and we conclude in Sect. 5. by deriving orbital
solutions (Roddier et al. 1996; McCabe et al. 2002; Tamazian
et al. 2002).

The dynamical simulations presented in this paper, as well
as those of BD05, are performed with the HJS symplectic in-
tegrator (Beust 2003). HJS (Hierarchical Jacobi Symplectic;

Beust 2003) is a variant of the popular symplectic integra-
tion method WHM (Wisdom-Holman Mapping; Wisdom &
Holman 1991; Levison & Duncan 1994; Duncan et al. 1998),
but designed for the dynamics of hierarchical stellar N-body
systems, while the original method accounts for planetary sys-
tem dynamics. Symplectic integration allows us to integrate
very fast (with a large time-step) N-body systems for which
a dominant Keplerian part may be identified. This is the case in
planetary system dynamics but also for hierarchical systems.
Moreover, symplectic integrations schemes ensure that the en-
ergy error is bound (Chambers 1999).

2. The three-body numerical study

2.1. General features

In this section, we investigate the dynamics of the GG Tau A+B
system with the HJS software, but merging the two components
of GG Tau B into a single one (assuming its total mass is the
sum of the mass of each component, see White et al. 1999),
thus reducing the system to triple. Our aim is here to investigate
the perturbing action of GG Tau B on the circumbinary disk of
GG Tau A, which is mainly due to the total mass of GG Tau B
rather than its internal structure. The binary nature of GG Tau B
will be reintroduced later.

Performing a run under this assumption means choosing
two initial orbital configurations for the system: the mutual or-
bit of the two components of GG Tau A and the wider orbit of
the outer body GG Tau B around the center of mass of the cen-
tral pair. In the following, we refer to these orbits as “AA” and
“BA” respectively. Due to mutual gravitational perturbations,
these orbits are supposed to secularly evolve along any run we
perform. This evolution will be computed by the HJS integra-
tor. Hence the orbits we give below, which are designed to be
compatible with the present orbital configuration of GG Tau,
will be given as initial conditions to the runs. As the present
age of GG Tau is 1–2 Myr, it could appear more appropriate
to try to fit these conditions at that age after the beginning of
each run. We nevertheless think that this refinement is unnec-
essary, for several reasons. First it is very difficult to guess the
past dynamical evolution of GG Tau, as it is well known that
very young multiple systems are subject to violent dynamical
relaxation such as component ejection. Giving the present con-
figuration as the initial condition is not worse than integrating
backwards 1 or 2 Myr in the past to derive hypothetical ini-
tial conditions. Second, it is well known (unless when mean-
motion resonances are present, which is not the case here) that
phase angles like mean anomalies have a negligible role in the
secular evolution. Starting with the present values is equivalent
to starting with any other set of values. Third, even when Kozai
resonance is present (see below), the secular evolution of the
stellar system is moderate over a time span of 1 or 2 Myr. As
we are interested in mid-term stability criteria for the disk, the
result is expected to be roughly the same irrespective of the
starting point on the secular evolution.

The initial circumbinary disk itself will be simulated with a
set of non-interacting massless test particles, initially randomly
chosen, orbiting GG Tau A. The orbital eccentricities of the
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particles are chosen between 0 and 0.1, and their inclinations
with respect to their midplane between 0 and 3◦. Depending on
the runs, the initial disk holds 50 000 or 60 000 particles. Note
that we choose to neglect the self gravity of the disk since the
mass ratio between the disk and the total mass of the GG Tau A
binary is ∼0.1. Pierens et al. (2005), taking into account the self
gravity of the GG Tau disk, reveal that its contribution is a sec-
ond order effect mostly related to the mass inflow towards the
central binary and likely does not affect the general dynamics
of the system.

2.1.1. Orbit AA

Orbit AA is well constrained by the astrometric data. If we as-
sume that the circumbinary disk of GG Tau A lies in the same
plane as its orbit, then an astrometric fit of the projected mo-
tion of its two components is enough to fully characterize the
orbit. In BD05, we derive in this way an orbit characterized by a
semi-major axis a = 32.4 AU and an eccentricity e = 0.34. This
is in agreement with other recent work (McCabe et al. 2002;
Tamazian et al. 2002). However, we show in BD05 that this
orbit is not compatible with the location of the inner edge of
the circumbinary disk observed at 180 AU, if we suppose that
the truncation results from the sole interaction with the binary;
with a = 32.4 AU and e = 0.34 it should be expected two times
closer to the star. This orbit will be referred as “Orbit AA1” in
the following.

Conversely, if we let the errors bars on the astrometric data
be larger than previously estimated, another orbit characterized
by (a = 62 AU, e = 0.35) can be found, fully compatible with
the observed location of the outer edge of the disk, while still
within the enlarged error box deduced from the astrometric fit.
This will constitute our “Orbit AA2”.

With Orbit AA2, the agreement between the shape of the
disk and the astrometric data is still marginal. This is why in
BD05, we drop the assumption that the circumbinary disk is
coplanar with GG Tau A. It is then possible to constrain the
orbital plane of GG Tau A in such a way that it is fully com-
patible with the astrometric data and with the inner edge of the
disk at ∼180 AU. 4 orbital solutions are found, hereafter re-
ferred to as “Orbits AA3–6”, two of them with a circumbinary
disk inclined by ∼20◦ with respect to Orbit AA, and nearly per-
pendicular to it for the two other solutions. The different orbits
that we will consider for GG Tau A are summarized in Table 1.

2.1.2. Orbit BA

The relative orbit between the two binaries (BA) needs also to
be specified. This orbit is much less well known than Orbit AA.
All we know are the projected distances and position angles.
The measured projected distance between the centers of mass
of the two binaries is 10.4′′ (i.e. 1440 AU with a distance of
GG Tau of 140 pc) towards the south from GG Tau A (PA =
180◦). We have no kinematic data. Most of the parameters of
that orbit will be free parameters in our study. If we take into ac-
count the observational constraints, only 4 free parameters are
needed to fully characterize the orbit. These parameters will be

Table 1. The various initial configurations taken for the orbit of the
GG Tau A binary (Orbit AA). The inclinations are given relative to
the midplane of the circumbinary disk, and the mean anomaly corre-
sponds to the present observed configuration of the binary.

Orbit Semi-major Eccentricity Inclination Current mean

designation axis a e i anomaly M

AA1 32.4 AU 0.34 0◦ 179.9◦

AA2 62.0 AU 0.35 0◦ −20.8◦

AA3 62.0 AU 0.35 90.3◦ −56.0◦

AA4 62.0 AU 0.35 21.4◦ −56.0◦

AA5 62.0 AU 0.35 23.7◦ 61.0◦

AA6 62.0 AU 0.35 89.4◦ 61.0◦

Fig. 1. The radial profile of the initial disk common to all our sim-
ulation runs using Orbit A2 for GG Tau A: the surface density as a
function of the distance R to the center of the disk.

its periastron distance q′, its initial inclination i′ with respect
to the midplane of the circumbinary disk, and two parameters
relative to the present location of GG Tau B on its orbit: the
mean anomaly M′ and the current altitude z′ above the plane of
the disk along the line of sight (in the following, primed quan-
tities will refer to Orbit BA). Alternatively, we may replace
one of these parameters by the initial relative inclination ir be-
tween the two orbits, but the distinction holds only for situa-
tions where the disk and the central binary are not coplanar,
otherwise i′ and ir coincide. Of course, not all combinations of
these variables are possible.

As we will see below q′ and i′ (alternatively ir) are by far
the most important parameters controlling the overall dynamics
of the system.

For runs using Orbit AA1 for GG Tau A, the disk initially
holds 60 000 particles, with semi-major axes ranging from 70
to 1200 AU, chosen in such a way that it yields a surface den-
sity ∝r−1. For the other runs, the disk holds 50 000 particles,
with semi-major axes between 150 and 1200 AU, with the same
surface density power index. The radial profile of that initial
disk is shown in Fig. 1. Note that in both cases, the radial ex-
tension of the initial disk is significantly larger than for the real
observed disk in both directions.
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Starting from various initial orbital situations, we integrate
the dynamics of the whole system with the HJS method over
15 Myr, assuming a time-step of 20 yrs (∼1/20 of the smaller
orbital period). In Beust (2003), it was shown that in general
triple systems, assuming such a time-step in the HJS integra-
tor, ensures stability of the energy of the whole system up to
a few 10−5 in relative value. This is enough for our purpose. In
the 4-body study (see below) we will need to reduce the time-
step because some orbits are close to instability.

Note that the integration time is significantly larger than the
estimated age of the GG Tau system. But our goal is to inves-
tigate the dynamical stability of the circumbinary disk and of
the stellar system, so that integrating over a longer time-span is
necessary.

For each run, we compare the characteristics of the ob-
served disk to the ones we derive after gravitational sculpting
by interaction with the stellar system. The most obvious crite-
rion is the radial confinement. We must obtain a ring-like struc-
ture confined between ∼180 AU and ∼260 AU with a some-
what less sharp outer edge, and possibly an outer, more tenuous
tail extending up to ∼800 AU (GDS99). We may draw radial
profiles for our simulated disks in order to compare them to
the data. Note that in deriving these radial profiles, in order to
achieve better resolution, we average all the remaining particles
over their respective orbits: for each particle with its osculating
orbit, we take into account 200 fictitious particles spread over
the orbit following Kepler’s second law. This applies to Fig. 1
and to all the profiles presented below. In each case we checked
that if we built the profile only with the initial particles, we get
the same, but more noisy profile. We use the information we
have concerning not only the position of the particles, but also
their orbits that are natural outputs of HJS computations.

Another output to be compared to the data is the vertical
profile of the simulated disk. GDS99 give the scale height law
of the disk:

H(r) = H300

( r
300 AU

)h

, (1)

with H300 = 55 ± 5 AU and h = 1.05 ± 0.05. Following again
the rule that we want to use the information about the orbits of
the particles, we adopt the following strategy: for each output,
we compute the midplane of the disk of particles (by comput-
ing its mean angular momentum) and then we derive the mean
orbital inclination id of the particles with respect to that plane.
At each distance we expect to have

H(r) � r tan id. (2)

As in Eq. (1), the index h is close to 1, we expect id to be almost
not dependent on r. With the quoted value of H300, we expect
id � 10◦.

2.2. Coplanarity of the disk with GG Tau A

In this section, we investigate the orbital configurations with
a circumbinary disk initially coplanar with the central binary,
i.e., runs with Orbits AA1 and AA2 from Table 1. We then test
various orbital configurations for Orbit BA. Their list is given
in Table 2.

Table 2. From BD05, the various initial configurations taken for
Orbit BA in runs associated with a circumbinary disk coplanar with
Orbit AA (Orbits AA1 and AA2) The initial inclinations are given rel-
ative to the midplane of the circumbinary disk, which in all these cases
coincide with the relative inclination ir with respect to Orbit AA.

Orbit Periastron Eccentricity Inclination Altitude Current mean

designation q′ e′ i′ z′ anomaly M′

BA1 800 AU 0.5152 20◦ 2000 AU 150◦

BA2 600 AU 0.4464 30◦ 600 AU −150◦

BA3 700 AU 0.3825 20◦ 600 AU −150◦

BA4 800 AU 0.3237 80◦ 600 AU 150◦

BA5 1100 AU 0.1725 20◦ 600 AU 150◦

BA6 800 AU 0.5152 160◦ 2000 AU 150◦

BA7 600 AU 0.4464 160◦ 600 AU −150◦

Table 3. List of three-body runs with initial coplanar disk described in
this paper. For each run, we list the initial orbital combination taken
from Tables 1 and 2, the approximate resulting boundaries of the main
surviving circumbinary ring, the tilt angle between the midplane of
the disk and the orbital plane of the central binary and the mean in-
clination id of the particles with respect to that midplane. We add a
comment to make a first classification of the runs.

Run Orbit Ring boundaries (AU) Tilt id Comment

# combination ︷������������������������︸︸������������������������︷ angle

t = 2 Myr t = 15 Myr

3b1 AA2+BA1 180–370 180–340 <∼1◦ 6◦ Reference

3b2 AA2+BA2 180–260 200–240 <∼5◦ 20◦ Reference

3b3 AA2+BA3 180–300 185–300 <∼2◦ 7◦ Reference

3b4 AA1+BA1 90–400 90–340 ∼1◦ 8◦ Reference

3b5 AA2+BA4 190–360 205–360 ∼1◦ 20◦ Kozai

3b6 AA1+BA4 95–300 110–300 ∼5◦ 20◦ Kozai

3b7 AA2+BA5 180–550 180–530 ∼3◦ 10◦ Large q′

3b8 AA2+BA6 180–500 180–500 ∼3◦ 20◦ Retrograde

3b9 AA2+BA7 180–350 180–350 <∼2◦ 20◦ Retrograde

As suggested above the most important parameters are q′
and i′. We performed many runs that helped us to classify them.
In this section, we only present a representative subset. The
main characteristics and basic results of these runs are sum-
marized in Table 3. All these runs lead to sculpting a ring-
like circumbinary disk that more or less matches the observed
one, and that remains stable for the time-span of the simula-
tion (and probably indefinitely in most cases). This can be seen
in the radial boundaries of the ring-like structures, shown at
t = 2 Myr (the age of the system) after the beginning of the
run, at t = 15 Myr (the end of the simulation). We also note
that in all cases, the tilt angle between the disk and Orbit AA
is very small, so that the disk remains coplanar with the cen-
tral binary. The inclination dispersion id must be compared to
the expected ∼10◦ deduced from the scale height of the disk.
Obviously some runs fulfill this constraint while some others
do not.

We associate each run with a comment such as
“Reference”, “Kozai”. . . (Table 3). Runs with the same
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Fig. 2. Evolution of some orbital elements as a function of time for run 3b1 from Table 3: the eccentricity of the inner binary (e, left), and the
mutual inclination between the two orbits (i′, right).

comment share a similar behavior, so that this constitutes a first
classification of the runs.

2.2.1. Reference runs

What we hereafter refer to as reference runs are characterized
by q′ <∼ 800 AU for Orbit BA, a moderate relative inclina-
tion (i′ <∼ 40◦), and a current location of the GG Tau B bi-
nary more or less close to apoastron with respect to GG Tau A.
These configurations are those which achieve the best fit of the
shape of the out-coming circumbinary and the best secular sta-
bility of the stellar system. We describe a typical reference run,
run 3b1 in Table 3. We first describe the orbital evolution of
the stellar system over the time of the simulation. The system
appears remarkably stable. Figure 2 shows the evolution of e
and i′ (recall that i′ and ir coincide) as being the most critical
parameters. These parameters exhibit a smooth oscillation of
moderate amplitude around a mean value, and this is the most
important variation we report here. The semi-major axes (not
shown here) are extremely stable, but this will be the case for
all the runs. It is well known that in non-resonant configura-
tions (which is the case here), the semi-major axes are secu-
lar invariants. The outer orbit is very stable, with eccentricity
change of less than 0.1%. We also have, as expected, a slow,
regular precession of the periastra and lines of nodes of both
orbits (not shown here), but this does not have much influence
on the axisymmetric disk.

The evolution of the circumbinary disk in this environment
is shown in Figs. 3 and 4. Figure 3 displays the number of re-
maining particles in the disk as a function of time. We see a
rapid erosion of the disk in less than 2 × 105 yr, and a further
stabilization of the remaining number of particles to ∼10% of
its initial number. This was expected and appears common to
all runs. Choosing an initial disk significantly wider than the
observed one, in particular with an outer edge sometimes above
the periastron of the outer orbit, should inevitably lead to a con-
siderable loss of particles. All lost particles appeared to have
escaped from the system.

Fig. 3. Evolution of the number of remaining particles in the circumbi-
nary disk as a function of time for run 3b1 from Table 3: ∼10% of the
particles initially present remain in the disk.

Figure 4 describes the erosion of the initial disk, showing
its radial profile at 4 different epochs. The remaining disk af-
ter erosion assumes a ring-like shape and closely resembles
the observed one. We end up with a very sharp inner edge at
∼180 AU (see also Fig. 6), i.e., exactly the same as what is ob-
served, and a somewhat less sharp outer edge at ∼300–350 AU.
This again is a common feature with the observed disk, ex-
cept that the real outer edge is rather ∼260 AU than 350 AU.
Interestingly, we see at t = 1.5 × 106 yr that beyond the outer
edge at 300 AU, there is still a tenuous tail of particles extend-
ing up to ∼1000 AU. This tail disappeared by the end of the
simulation. The 13CO J = 2–1 data (GDS99) imply the pres-
ence of such a tail and 1.5 × 106 yr could be a typical possible
age for GG Tau. This suggests that the outer tail could be a
transient structure due to the youth of the system.

This study first confirms the results of the two-body study
(BD05). The inner edge of the disk appears where it is ex-
pected, given the inner orbit (Orbit AA2 here). This result is
not affected by the presence of GG Tau B, nor by the resulting
small amplitude libration of the eccentricity e of the inner orbit.
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Fig. 4. Evolution of the radial profile of the circumbinary disk (surface density of particles) as a function of time for run 3b1 from Table 3: the
disk is rapidly eroded from the edges but a residual stable disk, close to the observed one, remains.

Fig. 5. Semi-major axis – eccentricity profile of the circumbinary disk for run 3b1 from Table 3, at t = 1.5 Myr and t = 15 Myr. Each point
corresponds to one particle remaining in the disk. At t = 1.5 Myr, a lot of very eccentric particles are still present beyond the outer edge of the
disk, but they are ejected afterwards.

The discrepancy between the inner edge of the disk and the or-
bital fit of GG Tau A remains unexplained. We discuss some
possibilities for solving this problem. From a phenomenolog-
ical point of view, the inner edge of the disk is obviously
sculpted by the apoastron passages of the inner binary. Due to a
small orbital period (360 yr), this sculpting is achieved quickly
(in less than 104 yr). The erosion of the outer edge is due to
repeated periastron passages of the outer binary. Of course, as
the orbital period is larger (55 775 yr), that sculpting takes a
longer time and even if the outer edge at 300–350 AU appears
after a few 105 yr, its sculpting is not fully achieved before
a few Myr. The present outer profile of the GG Tau disk may
not yet have been achieved.

Finally, the ring-like disk we end up with corresponds to
the largest one that can dynamically survive in such an environ-
ment. The orbital confinement of the disk can be seen in Fig. 5,
which plots all remaining particles in the disk in a (semi-major
axis – eccentricity) plane, at t = 1.5 × 106 yr and at the end
of the simulation. We see that in the semi-major axis, the outer
edge of the disk is almost as sharp as the inner edge. The dif-
ference in the radial profile is due to the higher eccentricities

Fig. 6. Semi-major axis – inclination profile of the circumbinary disk
for run 3b1 from Table 3, at t = 2 Myr.

of the particles towards the outer edge than towards the inner
edge. Thus, the outer edge is dynamically warmer than the in-
ner edge. This fact shows up again in Fig. 6 which is similar to
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Fig. 7. Same as Fig. 4, but for runs 3b2 (left) and 3b3 (right) from Table 3, at t = 1.5 Myr (black) and t = 15 Myr (grey). The remaining disk is
narrower than in Fig. 4 and almost disappears in run 3b2.

Fig. 5, except that it plots now the disk in a (semi-major axis –
inclination) plane, at t = 1.5 × 107 yr. We clearly see the very
sharp edges at 180 AU and 330 AU. Up to ∼240 AU, the incli-
nation distribution appears close to the initial one, but beyond
that distance, the disk is somewhat excited by the outer binary.

The behavior reported here is common to all reference runs,
i.e., there is always a residual disk in the expected semi-major
axis range. The size of this disk depends however on the initial
conditions of the run. Figure 7 shows the radial profile of the
disk at t = 1.5 × 106 yr and at the end of the simulation, but for
runs 3b2 and 3b3 from Table 3. Compared to Fig. 4, the resid-
ual disk appears thinner. This is not surprising, as compared to
run 3b1, runs 3b2 and 3b3 is characterized by a smaller perias-
tron. In both cases, as for run 3b1, the orbital evolution of the
system shows a remarkable stability; but due to a smaller pe-
riastron, the outer binary is deeper in the system, we logically
expect the outer edge of the disk to be more eroded. This is
confirmed by the simulation.

The residual disk obtained at t = 1.5 × 106 yr in run 3b2
is very close to the observed one. The general shape is correct,
and both edges almost exactly match the observations. This run
is the one where we obtain the best fit of the observed disk.
However, this disk is unstable and keeps being eroded a long
time after. At the end of the simulation, it has almost disap-
peared, keeping only 100 particles from the 5000 initial ones
(Fig. 7). Conversely, in run 3b3, characterized by a slightly
larger periastron, the disk is somewhat thicker, but appears to
better stabilize, suggesting a more realistic model.

For every run with “reference” initial conditions, we always
end up with a residual disk comparable to the observed one,
falling in the right semi-major axis range, with edges more or
less close to the observations. The behavior reported here is
thus very generic. Figure 8 shows the evolution of the radial
profile of the disk in the same manner as Figs. 4 and 7, but for
run 3b4 from Table 3. This run differs from run 3b1 only by
the use of Orbit AA1 for GG Tau A instead of Orbit AA2 (see
Table 1). This run is still classified as reference as the secular
evolution of the whole system is qualitatively the same as for
run 3b1, and because the outer profile of the disk is roughly
identical to what is obtained with run 3b1 (compare to Fig. 4).

Fig. 8. Same as Fig. 7, but for run 3b4 from Table 3, at t = 1.5 Myr
and t = 15 Myr. The disk extends down to ∼100 AU.

However, as could be expected, the inner edge of the disk falls
now at ∼90 AU instead of 180 AU. This is obviously due to
the smaller semi-major axis of Orbit AA1, and it is in perfect
agreement with the study we performed in BD05 where only
the GG Tau A binary was taken into account. This shows that
the discrepancy we noted in BD05 between the observed inner
edge of the disk and the best orbit deduced for the astrometric
fit of GG Tau A (i.e., Orbit A1) is still present; this result is not
affected by the perturbing action of the outer binary GG Tau B.

Similarly, if we change the outer orbit (BA), the resulting
outer profile of the disk is affected, and may no longer match
the observations. This occurs in Fig. 9, which is equivalent to
Fig. 8, but for run 3b7 from Table 3. This run is a “large q′” run,
characterized with respect to run 3b7 by a larger periastron (q′)
value for Orbit BA, and consequently a smaller eccentricity in
order to fit the presently observed projected distance between
the two binaries. Since in this case the two binaries have more
distant approaches, the disk is less eroded from the outside. Its
outer edge now falls at ∼500–600 AU, which obviously does
not match the observations. This behavior is common to all
runs of the same kind, so that these orbital conditions must be
rejected.
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Fig. 9. Same as Figs. 7 and 8, but for run 3b4 from Table 3, at t =
1.5 Myr and t = 15 Myr. The disk extends up to ∼600 AU.

2.2.2. The Kozai resonance

The runs described above indicate that the outer edge of the
circumbinary disk is well simulated if we assume a periastron
600 AU <∼ q′ <∼ 800 AU for the outer orbit. The inner edge loca-
tion is compatible with Orbit AA2 for GG Tau A, but not with
Orbit AA1. These conclusions hold if the orbital configuration
of the two orbits does not undergo drastic secular changes. This
was actually the case in the runs described above (see Fig. 2).
All these runs assumed a moderate relative inclination between
the two orbital planes. We now investigate the case of high ini-
tial i′ values, as the resulting outcome may be drastically dif-
ferent from the previous case.

We start with run 3b5 (Tables 2 and 3), which mainly differs
from runs 3b1–4 in the high initial i′ value (80◦). The main
difference in the outcome concerns the orbital evolution of the
system. Figure 10 shows the evolution of e (inner orbit) and of
the mutual inclination ir as a function of time for run 3b5. It can
be compared to Fig. 2 which is the same for run 3b1. Contrary
to that case, we note here drastic changes to these parameters
as a function of time. The eccentricity of the inner orbit now
undergoes large amplitude oscillations over a period of ∼8 ×
106 yr, that bring it from ∼0.35 to ∼0.9. At the same time when
e � 0.9, the mutual inclination ir drops to ∼42◦.

This behavior is known as the Kozai Resonance. It is char-
acteristic for triple systems with high inclinations, although
it was described by Kozai (1962) for highly inclined comets.
Under the effect of secular planetary perturbations (mainly
from Jupiter), their orbit is subject to an evolution that drives
it periodically to lower inclination but very high eccentricity,
the semi-major axis remaining constant. The combined evolu-
tion of inclination and eccentricity is done in such a way that
the actionΘ =

√
a(1 − e2) cos i is secularly preserved. This pe-

riodic evolution is characterized by librations of the argument
of perihelion ω around 90◦ or −90◦. As pointed out by Bailey
et al. (1992), this mechanism is responsible for the origin of
most sun-grazer comets in our Solar System, in particular those
of the Kreutz group.

It is now well known that this dynamical mechanism is ac-
tive in triple systems (see appendix). Harrington (1968) first

showed that it should be expected in hierarchical three-body
system with high mutual inclination; Söderhjelm (1982) fur-
thermore gave approximate analytical solutions for this prob-
lem, showing that the resonance should be active at ir >∼ 40◦.
It was recently reinvestigated in more details by Krymolowski
& Mazeh (1999) and Ford et al. (2000). In Beust (2003), we
used it as a tool to test the HJS integrator. The presence of
the Kozai resonance is expected to affect the remaining cir-
cumbinary disk. Figure 11 shows the radial profile of the disk at
three epochs, one before the eccentricity peak of the binary that
occurs at t = 2.7 × 106 yr, one after the peak, and at the end
of the run. To a first approximation, the profiles appear close
to the corresponding ones of Fig. 4 where no Kozai resonance
was reported. The disk is not destroyed by the Kozai resonance.
In the Kozai resonance, the outer orbit is only marginally af-
fected by the dynamical evolution, so that we expect only mi-
nor consequences for the outer edge of the disk. Conversely,
when the inner orbit undergoes a large eccentricity increase,
we may expect the inner edge of the disk to be significantly
eroded. Indeed, we note in Fig. 11 a significant erosion of the
inner edge of the disk between t = 1.5 × 106 yr and t = 5 ×
106 yr that is generally not reported in reference runs. This ero-
sion is clearly related to the eccentricity peak of the inner or-
bit at t = 2.7 × 106 yr. The effect is however not very large.
The eccentricity of the inner orbit undergoes large amplitude
variations due to the Kozai resonance, but its semi-major axis
remains unchanged (this is a secular invariant in non-resonant
problems). In BD05, we show that while the inner truncation
of a circumbinary disk is a function of both parameters, it de-
pends much more critically on the semi-major axis than on the
eccentricity of the central binary.

This explains why the effect of the Kozai resonance on the
profile of the circumbinary disk is rather limited. However, we
note that after the eccentricity peak, the inner edge of the disk
is pushed beyond 200 AU, which no longer matches the obser-
vations. This is nevertheless not enough to rule out the present
run, because this additional truncation occurs after a time that
is larger than the present age of the system.

A much more constraining output is the vertical shape of
the disk. Due to the rapid precession of the orbital plane of
GG Tau A, and to the direct perturbation by the highly in-
clined body GG Tau B, the disk achieves a much thicker ver-
tical structure than in reference runs. This shows up in Table 3,
where we note that the inclination dispersion id reaches 20◦
for run 3b5, which overcomes the 10◦ dictated by the observa-
tions. This is more visually illustrated in Fig. 12. In this figure,
the vertical (r, z) integrated shape of the disk is represented for
runs 3b1 and 3b5, compared to the observational scale height
law of Eq. (1). While the global shape for run 3b1 remains
within the observational bounds, the disk for run 3b5 assumes
a much more open and thicker structure, which does obviously
not match the observation. Note that Fig. 12 is taken at t = 2 ×
106 yr for both runs, i.e., before the first eccentricity peak in
run 3b5. For this reason, we think that the Kozai resonance
scenario does probably not match the real situation.

This behavior is not specific to run 3b5; indeed, the
Kozai resonance appears as soon as i′ >∼ 40◦. Figures 13 and 14
describe the evolution of the system in the same manner as
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Fig. 10. Same as Fig. 2, but for run 3b5 from Table 3: the eccentricity of the inner binary (e, left), and the mutual inclination between the
two orbits (ir, right) as a function of time. Contrary to Fig. 2, e and ir exhibit drastic changes.

Fig. 11. The radial profile of the remaining circumbinary disk at t =
1.5 × 106 yr (black), t = 5 × 106 yr (dark grey) and t = 1.5 × 107 yr
(light grey), for run 3b5 from Table 3. We note an inward erosion of
the disk after a few Myr.

Figs. 10 and 11 for run 3b5, but for run 3b6. Run 3b6 differs
from run 3b5 only in the use of Orbit AA1 for GG Tau A in-
stead of Orbit AA2 (Table 3). As for run 3b4, we expect for
run 3b6 the inner edge of the disk to fall at ∼100 AU rather
than 180 AU, which is confirmed by Fig. 14. We also note
in Fig. 13 a secular behavior typical of the Kozai resonance,
except that the period of the Kozai modulation is now signifi-
cantly longer than for run 3b5. We detect in Fig. 14 as in Fig. 11
an erosion of the inner edge of the disk due to the eccentricity
peak.

The Kozai resonance could solve the paradox concerning
the orbit of GG Tau A and the size of the inner gap. If the whole
system was trapped in a Kozai resonance, then the present orbit
of GG Tau A could be moderately eccentric (and correspond to
the fit of the astrometric data, i.e., Orbit AA1), but the secular
evolution could bring it periodically to high eccentricity values,
leading to an inner erosion of the circumbinary disk that could
not be achieved with a fixed orbit. Unfortunately, this does not
work. There are three reasons for this. The first one appears in
Figs. 14 and 11. Even if the inner edge of the disk is eroded

somewhat further, thanks to the Kozai resonance, the erosion
remains moderate. This is due to the secular invariance of the
semi-major axes.

Another reason is related to the vertical shape of the disk.
As seen from Fig. 12, the resulting disk in the presence of the
Kozai resonance is too thick to fulfill the observational con-
straints, and it can be seen from Table 3 that this is also true
for run 3b6. This applies to all situations where the Kozai res-
onance is active.

Finally, we need to compare the age of the GG Tauri sys-
tem with the period of the Kozai secular evolution. The age of
the system does not exceed ∼2 Myr. In Figs. 10 and 13, the
period of the Kozai resonance is at least several Myr. This is
far above the present age of the system. Thus, even if it is actu-
ally trapped in a Kozai resonance, with a present low e value,
the GG Tau system is very unlikely to have undergone a high
eccentricity peak in the last 2 Myr.

Runs 3b5 and 3b6 exhibit significantly different Kozai sec-
ular evolution periods. There is however no hope to find any
other orbital configuration that would lead to a significantly
smaller period (<∼2 Myr). The period of the secular evolution
cannot be expressed in a closed form, but theoretical orders of
magnitude can be derived. A first order estimate of the period
of the Kozai cycle may be expressed as (see appendix)

PKozai =
M

mGG Tau B
× P′2

P
×

(
1 − e′2

)3/2 × f , (3)

where M is the total mass of the system, mGG Tau B is the mass of
the outer body GG Tau B, P and P′ are respectively the orbital
periods of the inner and outer orbits, and f is a numerical factor
of order unity that depends on the amplitude of the cycle.

This result is illustrated by the comparison between
Figs. 10 and 13. When choosing Orbit AA1 for GG Tau A
(run 3b6) instead of Orbit AA2 (run 3b5), we decrease P
and increase PKozai by a factor (62/32.4)3/2 ≈ 2.65, which
is roughly confirmed by Figs. 10 and 13. Once the inner or-
bit is fixed (e.g., Orbit AA1) the only way to reduce PKozai

is to choose the outer orbit in such a way to render the fac-
tor P′2(1 − e′2)3/2 as small as possible, or similarly the term
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Fig. 12. The vertical (r, z) profile of the remaining circumbinary disk at t = 2 × 106 yr for runs 3b1 (left) and 3b5 (right). The thick grey lines
show the observationally deduced scale height law (1) for comparison.

Fig. 13. Same as Fig. 10, but for run 3b6 from Table 3. The behavior is similar but the period of the Kozai modulation is larger.

q′3 ((1 + e′)/(1 − e′))3/2. The outer orbit also needs to be com-
patible with the present projected separation and with the loca-
tion of the outer edge of the disk. This fixes q′ to 700–800 AU.
Then, the smallest PKozai is obtained with the smallest possi-
ble e′, which is achieved saying that the outer orbit lies in the
plane of the sky (z′ = 0) and that it is currently at apoastron
(M′ = 180◦). Even doing this, various tests showed that we
reduce PKozai to 12–13 Myr, which is still far above the age
of GG Tau.

2.2.3. Retrograde runs

Runs 3b8 and 3b9 from Table 3 describe “retrograde” runs, i.e.,
runs with the outer orbit almost retrograde with respect to that
of GG Tau A. For what concerns our orbital parameters, this
corresponds to i′ >∼ 140◦.

We do no display the orbital evolution of the system for
these runs, as it appears very similar to the prograde case
(Fig. 2). Run 3b7 is identical to run 3b1, except that the incli-
nation i′ was set to 160◦, while run 3b9 corresponds similarly
to run 3b2.

Fig. 14. Same as Fig. 11, but for run 3b6 from Table 3.

The resulting disk profiles are shown in Figs. 15 and 16,
which must be compared to Figs. 4 and 7. We see that in both
cases, the disk is much less eroded outwards than in the corre-
sponding prograde run. The residual ring of Fig. 15 (Run 3b8)
is far too large to match the observations, and extends much
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Fig. 15. The radial profile of the circumbinary disk at t = 1.5 Myr and
t = 15 Myr for run 3b8 from Table 3 (retrograde run). The disk is
thicker than in corresponding prograde runs.

Fig. 16. Same as Fig. 15, but for run 3b9 from Table 3.

further out than the disk in Fig. 4 (Run 3b1). Conversely, thanks
to a smaller periastron value (q′ = 600 AU), the residual disk
in Fig. 16 (Run 3b9) appears closer to the observations. We
nevertheless note that this disk is larger than the corresponding
one of Fig. 7 (Run 3b2), showing that retrograde outer orbits
actually less efficiently erode the disk than prograde orbits.

Another difference between prograde and retrograde runs
appears in Table 3: retrograde runs are characterized by a larger
inclination dispersion id (20◦), not compatible with the obser-
vational 10◦ limit. We illustrate this in Fig. 17 which shows
the vertical profile of the disk as in Fig. 12, but for run 3b9.
Obviously the disk is too thick to match the observations.

It thus seems that the outer edge of the disk is more sta-
ble but vertically thicker in the case of a retrograde orbit.
Dynamically speaking, the problem of a test particle orbiting
GG Tau A in the outer part of the disk can be viewed as close
to a restricted, three-body problem, where GG Tau A is con-
sidered as a point mass. There is computational evidence that
in the latter problem, situations where the particle orbits one
of the two primaries in a retrograde manner are more stable
than similar prograde configurations (Hénon 1970; Toomre &
Toomre 1972; Wiegert & Holman 1997). The same kind of

Fig. 17. The vertical (r, z) profile of the disk like in Fig. 12, but for
run 3b9 from Table 3. The disk is significantly thicker than observed.

stability was also found in hierarchical triple systems
(Donnison & Mikulskis 1994).

The factor that tends to stabilize retrograde orbits and desta-
bilize prograde ones in the restricted three-body problem is that
the largest orbital disturbance takes place at conjunction with
the perturbing body, i.e., when the particle passes between the
two primaries. Consider now the motion of the particle in a ro-
tating frame where the primaries have fixed positions. If the
orbit is retrograde, then the relative velocity of the particle in
that frame, with respect to the primaries, is higher. Hence the
encounter time is much longer in prograde orbits than in ret-
rograde ones. Moreover, when the orbit of the perturbing body
(GG Tau B here) is eccentric, its instantaneous angular veloc-
ity with respect to the primary may match that of disk particles
orbiting closer to the primary but on circular orbits. Thus we
have a temporary, but highly destructive resonance, as noted
by Toomre & Toomre (1972). This situation obviously does
not concern retrograde particles which are consequently more
stable.

Of course, this description holds only for situations close
to instability, when the particle orbits close to its limiting
Hill sphere. This concerns in our case the particles orbiting in
the outer part of the circumbinary disk.

2.3. Non coplanar disks

As mentioned in BD05 and above, if we drop the assumption of
coplanarity between the GG Tau A binary and the circumbinary
disk, it is possible to find orbits for GG Tau A that are compat-
ible with the astrometric data and with the inner edge location
of the disk. The four solutions are listed in Table 1. We now
explore the three-body dynamics with these solutions.

We tested many initial orbital configurations that we list
in Table 4. For each run, we mention the orbital solution of
Orbit AA (out of Table 1) that we use. Each run corresponds
to a specific choice for Orbit BA, compatible with the present
location of GG Tau B. For all these runs, we take q′ = 700 AU
and M = 150◦. Then Orbit BA is fully specified giving its incli-
nations i′ and ir with respect to the plane of the circumbinary
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Table 4. List of three-body runs with an initial non-coplanar disk de-
scribed in this paper. For each run, we list the initial Orbit AA taken
from Table 1, and the initial inclinations of Orbit AA i′ with respect
to the disk and ir with respect to Orbit AA. Then we give as in Table 3
the approximate resulting boundaries of the main surviving ring, the
approximate tilt angle between the midplane of the disk and the or-
bital plane of the central binary, the mean inclination id of the particles
with respect to that midplane, and a key letter to indicate specific be-
haviors: “K” stands for Kozai (Kozai resonance), “R” for Retrograde
(retrograde disk), “U” for Unstable disk (No disk left at the end of
the run).

Run Orbit i′ ir Ring boundaries (AU) Tilt id Remark
# AA ︷���������������������������︸︸���������������������������︷ angle

t = 2 Myr t = 15 Myr

3b10 AA4 0◦ 21.4◦ 180–320 190–280 <∼10◦ 30◦

3b11 AA4 20◦ 20◦ 180–330 190–280 13◦ 30◦

3b12 AA4 80◦ 80◦ 180–350 200–300 ∼5◦ 40◦ K
3b13 AA4 160◦ 160◦ 180–750 180–600 ∼3◦ 32◦ R
3b14 AA4 20◦ 20◦ 180–330 190–290 12◦ 33◦

3b15 AA4 80◦ 80◦ 180–450 170–400 3◦ 35◦

3b16 AA4 160◦ 160◦ 180–650 180–600 ∼2◦ 31◦ R
3b17 AA3 0◦ 90.3◦ 170–350 180–250 ∼90◦ 80◦ K+U
3b18 AA3 20◦ 100◦ 170–400 180–300 ∼90◦ 80◦ K+U
3b19 AA3 20◦ 100◦ 170–400 180–290 ∼90◦ 80◦ K+U
3b20 AA3 80◦ 20◦ 160–280 170–240 ∼90◦ 80◦

3b21 AA3 80◦ 20◦ 160–260 170–240 ∼90◦ 85◦

3b22 AA3 80◦ 80◦ 170–500 170–340 ∼60◦ 85◦ K
3b23 AA3 80◦ 80◦ 160–320 170–260 ∼90◦ 85◦ K+U
3b24 AA3 80◦ 160◦ 170–380 170–270 ∼80◦ 90◦

3b25 AA3 160◦ 80◦ 170–600 170–270 ∼100◦ 90◦ K+R+U
3b26 AA3 160◦ 80◦ 160–600 170–300 ∼80◦ 80◦ K+R+U
3b27 AA5 0◦ 23.7◦ 180–340 190–290 ∼12◦ 35◦

3b28 AA5 20◦ 20◦ 180–360 180–280 ∼15◦ 40◦

3b29 AA5 20◦ 20◦ 180–350 190–300 ∼15◦ 35◦

3b30 AA5 160◦ 160◦ 180–650 180–600 ∼5◦ 35◦ R
3b31 AA5 160◦ 160◦ 180–700 180–550 ∼2◦ 35◦ R
3b32 AA5 80◦ 80◦ 180–450 200–340 ∼20◦ 80◦ K
3b33 AA5 80◦ 80◦ 190–400 200–300 ∼20◦ 70◦ K

disk and to Orbit AA respectively. For each run, we list the
corresponding choice for i′ and ir in Table 4.

Of course not all combinations of i′ and ir are possible.
Consider for instance run 3b10, which assumes Orbit AA4 and
i′ = 0, i.e., an outer orbit coplanar with the disk. Then the only
possible choice for ir is the inclination between the disk and
Orbit AA that is specific to Orbit AA4, i.e. 21.4◦. Similarly
consider runs 3b17 to 3b26, which make use of Orbit AA3.
That orbit is characterized by an inclination of 90.3◦ between
the disk and Orbit AA. It is then not possible for example to find
a solution for Orbit BA with i′ = 20◦ and ir = 20◦. The runs
listed in Table 4 describe all typical possible configurations.

For any compatible choice of i′ and ir, generally two orbital
solutions for Orbit BA are found. In some cases the two solu-
tions are very close, so that we test only one of them. But often
the two solutions have very different semi-major axes and ec-
centricities, so that test both. This is why some lines in Table 4
share the same list of parameters.

For each run, we list in Table 4 (like in Table 3) the bound-
aries of the resulting rings of particles at t = 2 × 106 yr and
t = 1.5 × 107 yr, the outcoming tilt angle between the ring
and Orbit AA, and the inclination dispersion id of the particle
disk with respect to its midplane. We finally give some key let-
ters indicating the rough behavior: runs quoted with “K” are
characterized by a pronounced Kozai resonance between the
two orbits, leading in particular to a high amplitude modu-
lation of the eccentricity e of Orbit AA; “R” means a retro-
grade behavior, i.e., a less eroded disk thanks to a retrograde
orbit of the GG Tau B perturber with respect to the disk; “U”
stands for “Unstable disk”, i.e., a situation where virtually all
particles in the disk are ejected from the system. The crite-
rion is the following: a run is given the key letter “U” when
less than 100 particles (among 50 000 initially) are left at the
end of the simulation. Note that contrary to the coplanar case,
here some runs may present more than one of these charac-
teristics. Consider for instance runs 3b25 and 3b26. In these
two cases, Orbit BA is initially almost coplanar with the disk,
but retrograde (i′ = 160◦). We thus expect a retrograde-like
behavior which is confirmed by the outer edge at 600 AU at
t = 2 × 106 yr. But as with Orbit AA3, the initial disk is al-
most perpendicular to the orbital plane of GG Tau A; the two
orbits turn out to be necessarily almost perpendicular. Here we
choose ir = 80◦. Consequently, we expect a strong Kozai reso-
nance, which is confirmed by the simulation. The combination
of these two characteristics leads to an instability of the disk af-
ter the first Kozai cycle. We note the same outcome if Orbit BA
is initially prograde relative to the disk (Runs 3b17–3b19).

Finally, we find Kozai-like and Retrograde-like behaviors
where we would expect them. It is more interesting to look at
the evolution of the tilt angle between the ring and Orbit AA
and the inclination dispersion id. Recall that with Orbits AA4
and AA5 (Table 1) the disk is initially inclined by ∼20◦ with
respect to the orbital plane of GG Tau A, while in Orbits AA3
and AA6 it is nearly perpendicular to it. We note that for almost
all runs involving Orbits AA4 and AA5, the resulting disk tends
to realign with Orbit AA, but in the same time the inclination
dispersion of the disk reaches fairly high values around ∼30◦.
This may be explained as follows: all particles orbit initially the
GG Tau A binary with inclinations around 20◦. Under secular
perturbations, the inclination is subject to fluctuations around
this value, which may cause it to reach ∼30◦ or more for some
particles. Meanwhile, the line of nodes of all particle orbits is
subject to precession, but the precession rate will depend on the
orbit (basically its semi-major axis) of each particle. Therefore,
if all particles share initially the same line of nodes (as they are
part of an inclined disk), after some time their lines of nodes are
randomly distributed, due to different precession rates. The net
result is that the planar structure of the initial inclined disk is
lost. The resulting disk assumes an open-cone shape coplanar
with Orbit AA, but with a high opening angle (∼30◦). Finally
this situation cannot match the observations, as the inclined
disk appears not to keep its inclinations. Moreover, the 30◦ in-
clination dispersion is much higher than required.

If we consider now the runs with Orbits AA3 and AA6,
we note that here the disk of particles remains perpendicular
to the orbital plane of GG Tau A. In some cases, the disk is
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Fig. 18. Views of the whole system (stars + particles) at t = 4.5 × 106 yr for run 3b23 from Table 4. In the left plot, the orbit of GG Tau A is
seen edge-on and the disk of particles is viewed face-on. In the right plot, the orbit of GG Tau A is viewed from the top and the disk is seen
edge-on. The grey curve is the projection of Orbit BA.

destroyed by tidal interactions (runs labelled “U”), but in other
cases it survives. Hence a disk perpendicular to the orbital
plane of GG Tau A could be stable. However, in all runs, the
disk achieves a very high inclination dispersion (always ≥80◦).
In fact, with such a high id value, can we still speak of a disk or
just of a spherical shell of particles? In some cases we hardly
recognize a disk, but in general, a ring-like structure is still vis-
ible. This is seen in Fig. 18, which shows two views of the
spatial particle and body distribution for run 3b23 at t = 4.5 ×
106 yr. In one view the disk is seen face-on and in the other
it is seen edge-on. We clearly identify a ring-like structure, al-
though it can be seen in the edge-on view that is is a very thick
one. Thus, could this picture apply to the present status of the
GG Tau system? Obviously no, because the disk, even if still
detectable, is far too thick to be in agreement with the observa-
tional constraints.

Finally, all configurations involving disks that are not
coplanar with the orbit of the GG Tau A binary must be re-
jected, because in all cases, whenever a disk survives, it turns
out to be much too thick compared to the observed one. For the
same reason, it seems that retrograde and Kozai situations need
to be rejected. Therefore, it turns out that the most probable ac-
tual situation for the GG Tau A corresponds to our “reference”
runs (runs 3b1–3b4 from Table 3), i.e., a disk coplanar with
Orbit AA with a moderately inclined, prograde outer orbit. The
periastron of Orbit BA must fall in the range 600–800 AU. The
agreement between the astrometric measurements of Orbit AA
and the location of the inner edge of the disk is still an open
question.

3. The four body numerical study

3.1. Stability analysis

We now consider GG Tau B as a binary, by reintroducing
the two bodies constituting it. We will assume the indi-
vidual masses given by White et al. (1999), i.e., 0.12 and
0.044 M� for GG Tau Ba and Bb respectively. As noted by

White et al. (1999), GG Tau Bb is a sub-stellar object.
Considering GG Tau B as a binary means adding a third orbit
to the system, i.e., the the relative orbits between the two com-
ponents of GG Tau B. For here on, we shall refer to this new
orbit as Orbit BB, with doubly primed quantities (a′′, e′′. . . ).

As for Orbit BA, we here again have only a projected dis-
tance (1.5 ± 0.08′′, i.e., 210 AU with d = 140 pc), and a po-
sition angle of 132 ± 2.2◦ (White & Ghez 2001). Four free
parameters are needed to fully characterize that orbit. These
will be its current mean anomaly M′′, its eccentricity e′′, an
unknown altitude z′′ of GG Tau Bb with respect to GG Tau Ba
along the line of sight, and its inclination i′′ with respect to the
plane of the wide orbit BA between the two binaries.

We expect that the results of the three-body study, i.e.,
where GG Tau B was taken as a single body, should not be
strongly affected by the four body study. Actually the most
critical point concerning the four body study turns out to be
the stability of the newly introduced orbit. GG Tau B is a
much wider pair than GG Tau A. Its projected separation is
∼200 AU. This means that its orbital semi-major axis a′′ is at
least 100–200 AU. The three-body study showed that the pe-
riastron q′ of Orbit BA should fall in the range 600–800 AU
in order to allow a correct sculpting of the outer edge of the
circumbinary disk. Thus the ratio q′/a′′ is less than 10.

The ratio q′/a′′ is expected to be the critical parameter con-
trolling the stability of the system. For the stability of GG Tau B
itself, the quadruple system may be dynamically viewed as a
triple system constituting a single massive body (GG Tau A)
orbiting a “central”, less massive binary (GG Tau B). There
have been many studies about the stability of hierarchical triple
systems. Harrington (1975) was the first to claim that the crit-
ical parameter was qout/ain, the ratio of the periastron of the
outer orbit to the semi-major axis of the inner orbit. (i.e., ex-
actly q′/a′′ in the present case). He gave an empirical ana-
lytical stability criterion, qout/ain required to be above a crit-
ical value to ensure stability. This question was reinvestigated
by Donnison & Mikulskis (1994, 1995), and more recently by
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Fig. 19. Summary of the stability study of the four-body GG Tau system: the lifetime of the GG Tau B pair is plotted as a function of the
initial inclination i′′ assumed, for various orbital configurations. Each of the four frames corresponds to the use for Orbits AA and BA of one
of the 4 “reference” 3-body configurations listed in Table 3. The different curves on each plot correspond to different combinations of initial
eccentricity e′′ (0.2 or 0.7), and solution (1 or 2). The grey bar across the plots indicates the error bar for the age of the GG Tau system. Note
that in some cases and for i′′ values close to 0◦ or 180◦, no lifetime values are given because there is no orbital solution compatible with the
present position of GG Tau B.

Brasser (2002), on the basis of refined numerical studies, show-
ing the limitations of the Harrington (1975) criterion, in par-
ticular in highly eccentric systems. All these studies fix the
critical qout/ain ratio between ∼3 and ∼10, depending on the
relative masses of the individual components, and on the initial
eccentricities and inclinations of the orbits. This shows that the
GG Tau B pair should be close to instability.

We carried out a preliminary study where only the stability
of the four-body system is investigated. We keep the four mas-
sive bodies but we consider no test particles. The circumbinary
disk will be reintroduced afterwards. This allows to perform a
large number of integrations very quickly with the HJS soft-
ware. As we know that the system is close to instability, we
reduce the time-step to 2 yr, i.e., 10 times less than in the
three body study. In some of the following examples, we tested
whenever instability was found that it was not a numerical arte-
fact by i) again reducing the time step; and ii) performing a
similar (but longer) integration using a conventional Burlish &
Stoer (Press et al. 1992) integration of the same configuration.
In all cases the instability was found at the same point of the
simulation, showing that it is real (this appears not to be the

case if we keep the 20 yr time-step). We perform each integra-
tion as long as the GG Tau B pair remains bound (e′′ < 1) and
note the lifetime of the pair.

According to the q′/a′′ criterion, the best stability should be
achieved for any fixed q′ with the smallest a′′ value possible.
Small a′′ values are obtained assuming that the orbit lies in the
plane of the sky (z′′ = 0), and that GG Tau B is currently close
to apoastron (M′′ = 180◦). Moreover, high e′′ values will sub-
sequently lead to smaller a′′ values. We thus decided to fix the
initial values M′′ = 180◦ and z′′ = 0 for all our tests. Indeed, for
any integration, changing the initial M′′ and z′′ values should
lead to less stability. For e′′ we decided to systematically test
for each possible combination a high (e′′ = 0.7) and a low
(e′′ = 0.2) value.

The result of this study is summarized in Fig. 19. Each test
is characterized by an initial choice for the three orbits. Each
plot in Fig. 19 corresponds to a fixed use of a given solution for
Orbits AA and BA, taken from the “reference” configurations
listed in Table 3 (3b1–3b4). For each of these cases, various ini-
tial conditions are tested, depending on the choice of Orbit BB.
The lifetime of that Orbit is plotted as a function of the initial
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inclination i′′. For each i′′ value, we perform 4 different runs
testing all the following combinations: e′′ may be 0.2 or 0.7,
and for each of these choices, there are still two possible orbital
solutions, 1 and 2, for the GG Tau B orbit that are compatible
with the present projected position. In each case, solution 1 is
always the one leading to the larger inclination value with re-
spect to the plane of the circumbinary disk.

The first conclusion is that the dynamical lifetime of the
system is subject to considerable changes, by almost four or-
ders of magnitude, depending on the initial conditions. In fact,
some of the configurations tested may be indefinitely stable,
but all integrations were stopped after 150 Myr. Conversely,
some other configurations lead to an almost immediate insta-
bility. We consider that any configuration with a lifetime less
than or comparable to the age of GG Tau is unrealistic.

The plots in Fig. 19 are very noisy. We performed integra-
tions starting with all possible integer values for i′′ in degrees
between 0 and 180◦. Between two adjacent runs with initial
i′′ values separated by only 1◦, the outcoming lifetime may
be very different. This reveals the highly chaotic nature of the
evolution of Orbit BB. However, despite this intrinsic chaos,
some general trends appear. First, the configurations with ini-
tial e′′ = 0.7 (thick lines) appear in general more stable than
those with e′′ = 0.2. This is in agreement with our preliminary
analysis of the q′/a′′ criterion.

The same criterion also explains why some orbital configu-
rations of Orbits AA and BA lead to better stability, irrespective
of the choice of Orbit BB. Obviously, the choice of the 3b2 con-
figuration almost never leads to stability (Fig. 19). Indeed, this
configuration assumes the smallest periastron (q′ = 600 AU)
of our sample. The 3b3 configuration (q′ = 700 AU) leads to
better stability and the 3b1 and 3b4 ones (q′ = 800 AU) to even
better stability.

Finally, the stability of the system appears to be highly de-
pendent on the initial inclination i′′ choice. Clearly, retrograde
orbits (i′′ >∼ 100◦) are generally more stable than prograde or-
bits corresponding to the same configuration. This relies to the
same phenomenon as we noted in the previous section: in the
same way as the orbits of the particles in the circumbinary disk
were more stable when they were retrograde with respect to
Orbit BA, here Orbit BB is more stable when it is retrograde
with respect to that Orbit too. We have some more or less iso-
lated configurations that are stable compared to the age of the
GG Tau system despite a prograde Orbit BB (i′′ < 90◦). But
most of the stable configurations fall in the retrograde regime.

We note that the results with the 3b1 and 3b4 configurations
are very close. These configurations differ only the solution as-
sumed for Orbit AA (AA1 or AA2). This illustrates the fact
that, as seen from GG Tau B, GG Tau A mainly acts as a single
perturbing body.

3.2. Full study

From this study we see that the dynamical stability of the outer
pair GG Tau B is in itself a very constraining parameter for
the whole system. For instance, we may from now reject the
3b2 configuration characterized by q′ = 600 AU, because there

Table 5. The initial configurations taken for Orbit BB in the full
four-body runs described in Table 6. The inclination i′′ is given rel-
ative to the wide orbit BA.

Orbit Semi-major Eccentricity Inclination Altitude Current mean

designation axis a′′ e′′ i′′ z′′ anomaly M′′

BB1 122 AU 0.7 151◦ 0 180◦

BB2 173 AU 0.2 168◦ 0 180◦

BB3 173 AU 0.2 149◦ 0 180◦

Table 6. List of four-body runs performed with a particle disk. The
parameters listed for each run are identical to those listed for the
three-body runs listed in Table 3. Each run corresponds to the use
of one of the reference configurations listed in Table 3 to which a ret-
rograde stable Orbit BB is added. The comparison three-body run is
given in the last column of the table.

Run Orbit Ring boundaries (AU) Tilt id Comp.

# combination ︷������������������������︸︸������������������������︷ angle 3-body

t = 2 Myr t = 15 Myr run

4b1 AA2+BA1+BB1 180–400 180–330 <∼1◦ 8◦ 3b1

4b2 AA2+BA3+BB2 180–340 190–280 <∼5◦ 17◦ 3b3

4b3 AA1+BA1+BB3 90–400 90–350 <∼1◦ 12◦ 3b4

is no corresponding stable solution for Orbit BB. We must have
now q′ ≥ 700 AU to ensure stability for Orbit BB. Moreover,
from Fig. 19 Orbit BB is very likely to be retrograde with re-
spect to Orbit BA. Therefore, the most probable orbital config-
uration for the whole GG Tau system should be the following:
Reference conditions for Orbit BA, i.e, a moderate i′ inclina-
tion and 700 AU <∼ q′ <∼ 800 AU; an Orbit BB retrograde with
respect to Orbit BA, with a high e′′ eccentricity, and currently
at apoastron. We now present a full study (with disk) of this
configuration.

We performed three typical four-body simulations, each
one corresponding to the use of one of the reference three-body
configurations listed in Table 3, to which we add a retrograde
choice for Orbit BB that exhibits stability in the preliminary
study over much more than the 15 Myr time-span of the full
simulations. These orbits are listed in Table 5 and the result
of the runs is summarized in Table 6, which may be directly
compared to Table 3.

Details about these runs are shown in Figs. 20–23.
Figure 20 shows the secular evolution of Orbit BB. The evo-
lution concerning run 4b3 is not shown as it is identical to that
of run 4b2. The large eccentricity variations reveal the chaotic
nature of the dynamics. Even the semi-major axis exhibits some
chaotic behavior. However it remains close to its initial value,
showing that the orbit is nevertheless stable, though chaotic.

Figures 21 and 22 show the evolution of the radial profile
of the disk for the three runs of Table 6, in the same man-
ner as Figs. 4, 7 and 8 which show the same for the corre-
sponding three-body runs. In all cases, the radial profile of the
disk is close to that obtained in the corresponding three-body
run. This is confirmed by the data of Table 6, which shows in
comparison to Fig. 3 that the inclination and inclination disper-
sion parameters of the disk are very similar. More specifically,
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Fig. 20. Orbital evolution (semi-major axis and eccentricity) of Orbit BB in runs 4b1 and 4b2 from Table 6. The evolution is significantly
chaotic though stable.

Fig. 21. The radial profile of the circumbinary disk at t = 1.5 Myr
(black) and t = 15 Myr (grey), for run 4b1.

the outer edge of the disk is in general slightly more eroded
in the four-body runs than in the corresponding three-body
run. This is particularly true for run 4b2 (Fig. 22) compared
to run 3b3 (Fig. 23). At t = 15 Myr, the disk in run 4b2 is much
less crowded (though having a similar radial extension) than in
run 3b3. This effect is much less pronounced for the other runs,
and this reveals the origin of the phenomenon. The additional

Fig. 22. Same as Fig. 21, but for run 4b2.

erosion of the disk is due to the successive inwards excursions
of the components of GG Tau B towards the outer edge of the
disk, their center of mass still following the given Orbit BA
common to the corresponding three-body and four-body runs.
The effect is more important for run 4b2 because this run as-
sumes a periastron q′ = 700 AU for Orbit BA compared to
q′ = 800 AU for the other runs.
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Fig. 23. Same as Fig. 21, but for run 4b3.

In our runs, we derive disks with profiles that are fairly
close to the observed one. This concerns the disk at t = 1.5 Myr
for run 4b1 (Fig. 21) and the disk at t = 15 Myr for run 4b2
(Fig. 22). The inclination parameters of these disks (Table 6)
are also compatible with the observations: the disks are copla-
nar with Orbit AA and the inclination dispersion id remains
acceptable (though somewhat larger than the required 10◦ for
run 3b2). The orbital configuration quoted here, common to the
three runs described, is able to sculpt a circumbinary disk with
characteristics that match the observations. Of course, the disk
obtained with run 4b3 is not compatible with the data, but this
is due to the use of Orbit AA1 (Table 1) and concerns only the
inner edge of the disk. This was already true in the three-body
runs and illustrates the discrepancy between the observed in-
ner edge of the disk and the astrometric measurements of the
GG Tau A pair. Comparing runs 4b1 and 4b3 shows that chang-
ing the orbit of GG Tau A (Orbit AA) has virtually no influence
on the outer profile of the disk. Only the inner edge is affected.
There is therefore no hope to derive additional constraints on
Orbit AA via the general dynamical behavior of the whole sys-
tem. As noted above, the same conclusion is derived from the
stability analysis of Orbit BB (Fig. 19).

There is also another interesting byproduct of this work:
why is there a circumbinary disk around GG Tau A and not
around GG Tau B? In order to investigate this issue, we tried
to add a second disk of particles orbiting GG Tau B, starting
with the same conditions as run 4b1. We do not display the
corresponding results as they are identical to those of run 4b1.
The additional disk of particles appears to be fully destroyed
within less than 105 yr. A circumbinary disk orbiting GG Tau B
is thus not stable. This is not surprising, as GG Tau B itself is
only marginally stable. Note that the fact that no circumbinary
disk is to be expected around GG Tau B does not exclude that
circumstellar material could be present orbiting the individ-
ual components of GG Tau B. White et al. (1999) note spec-
troscopic indications for accretion onto both components of
GG Tau B. This is another issue that could be investigated in
future work.

4. Discussion

The most important outcome of the preceding numerical study
is that taking into account the constraints arising from the cir-
cumbinary disk and from the stability analysis of GG Tau B, it
is possible to derive a likely configuration for the whole system
that is able to sculpt a disk matching the observations:

1. The circumbinary disk is coplanar with GG Tau A
(Orbit AA).

2. The periastron q′ of the wide Orbit BA must fall in the
range 700–800 AU.

3. The Orbit BA is more or less coplanar with GG Tau A and
the disk, the relative inclination ir being in any case <40◦
in order to avoid the Kozai resonance.

4. The orbit of the GG Tau B pair (Orbit BB) is fairly chaotic
and very probably retrograde with respect to the two other
orbits; it is also likely not to be significantly inclined with
respect to the plane of the sky, in order to ensure better
stability.

Nearly all simulations presented in this paper show that the
sculpting process of the disk is not completed at the suspected
age of the system (1–2 Myr), as the disk appears significantly
further eroded at the end of the simulations at t = 15 Myr. This
suggests that the circumbinary disk presently observed around
GG Tau A could be a transient feature that could undergo a sig-
nificant further erosion in the few next Myr. However, viscous
processes in the disk, not taken into account in our pure N-body
simulations, could help stabilize a residual disk against fur-
ther erosion, as they would tend to reduce the velocity disper-
sion within the disk. Obviously a further study, possibly SPH
(Smoothed Particle Hydrodynamics) is needed to take into ac-
count viscosity. The global shape of the stable disks we derive
with our N-body calculations should not be drastically affected
by gas drag.

As shown in Beust (2003), symplectic integration (done
with HJS) and SPH simulation performed by Artymowicz &
Lubow (1994) of the sculpting process of standard circumbi-
nary disks yield similar results. This shows that the sculpting
is basically gravitationally driven; gas dissipation acts only as
a minor correction. Even if the dynamical picture we describe
here is more complex, this basic result should hold. The mo-
tivation for using a symplectic integrator for GG Tauri in the
present study is that the whole system is characterized by sev-
eral very different dynamical time-scales. The sculpting pro-
cess of the inner edge of the disk is much more rapid than that
of the outer part. Hence if we want to resolve both we need
to adopt a time-step dictated by the smaller time-scale, and in-
tegrate over a time span dictated by the longer. This is easily
achieved with symplectic integration but still hardly reachable
with SPH.

The dynamical stability of the whole four-body system
is not ensured over a long time-span. The chaotic nature of
Orbit BB shows that the GG Tau B pair could be tidally dis-
rupted within a few Myr. At least one of the components of
GG Tau B would then escape the system. A good way to con-
strain this problem, and to confirm the retrograde motion of
Orbit BB, would be to gather some astrometric measurements
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of GG Tau B. This is however much more difficult than for
GG Tau A. Given the above quoted orbital characteristics
(Table 5) the period of Orbit BB should fall in the range
3000–6000 yr. Assuming that this orbit lies close to the plane
of the sky, the rate of change of the relative position angle of
the components of GG Tau B should not exceed ∼0.1◦/yr. It
could easily be one order of magnitude less if the orbit is ec-
centric and currently at apoastron. Given the error bar on the
measurement of that position angle (132 ± 2.2◦ White & Ghez
2001), we would have to wait several decades before detecting
any change. This is nevertheless not unreachable, especially if
the accuracy of the astrometric measurement is improved in
the near future. Therefore initiating an astrometric monitoring
of the GG Tau B pair, as already done for several years for
GG Tau A, could be appropriate. We could obtain valuable in-
formation about the whole system, including the disk orbiting
GG Tau A, by gathering measurements on both pairs, not only
GG Tau A.

The major discrepancy between the orbit we fit for
GG Tau A from the astrometric data (Orbit AA1) and the one
needed to account for the location of the inner edge of the disk
(Orbit AA2) remains. Further monitoring of the pair is needed
to specify this fact and in particular to check the accuracy of
error bars on the astrometric data. However, if the present as-
trometric solution (Orbit AA1) is confirmed in the near future,
then the discrepancy will remain unsolved. In BD05, we dis-
cuss some ways to solve the discrepancy. We note first that in-
voking viscosity in the disk does not solve the problem, as it
renders it even more drastic. We suggest that the past secular
evolution of Orbit AA could possibly explain the discrepancy,
e.g. by an inward migration of the orbit. However, such a mi-
gration would also imply a similar migration of the inner edge
of the disk, so that the problem remains unsolved.

Moreover from the present study we see that Orbit AA is
remarkably stable (Fig. 2). Even with the eccentricity modula-
tion induced by the Kozai resonance, there is no way to force
the erosion of the disk up to 180 AU instead of 90 AU starting
from Orbit AA1.

Finally, in BD05, we also suggest that the disk could be
non-coplanar with GG Tau A. The present dynamical study
shows that this possibility must be ruled out, as the resulting
disks do not match the observations.

5. Conclusion

Thanks to the abundance of available data and the flexibility
of our HJS code, we are able to constrain the dynamics of the
whole GG Tauri A and B system which appears to be hierar-
chical. This is the first attempt of such a detailed dynamical
study. Even if some points remain unclear, our study allows us
to derive a more likely scenario that is able to explain the inner
and outer ring shape of the circumbinary disk. Our analysis of
the dynamical stability also reveals that the CB ring is almost
coplanar with the GG Tau A system.

Surprisingly, the study of the outer pair GG Tau B is of
interest due to their marginal stability, as it provides constraints

on the whole system. Its orbit is likely retrograde. Moreover,
the presence of a circumbinary disk around GG Tau B is very
unlikely and gravitational instabilities would destroy it very
quickly.

Finally, the discrepancy between the inner edge of the disk
and the existing astrometric data of GG Tau A remains and
should be investigated when more astrometric data become
available. More astrometric data will also allow us to refine the
determination of the orbit of GG Tau B.
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Appendix A: The Kozai resonance in the stellar
three body system

Our stellar three-body system is fully described by the descrip-
tion of the two orbits (AA and BA). Let us call r and r′ their
radius vectors. Starting from its expression in barycentric co-
ordinates, a straightforward algebra gives the expression of the
Hamiltonian H of the system (Beust et al. 1997):

H = −Gm0m1

2a
− G(m0 + m1)m2

2a′

+Gm0m2

(
1
r′
− 1

r02

)
+Gm1m2

(
1
r′
− 1

r12

)
, (A.1)

where a and a′ are the semi-major axes of the orbits, G is the
gravitational constant, m0 and m1 are the masses of the cen-
tral bodies (GG Tau A) and m2 is the mass of the outer body
(GG Tau B); r02 and r12 are the distances from bodies 0 to 2
and 1 to 2 respectively. This is a peculiar application of the
canonical transformation given in Beust (2003) that helps to ex-
press the Hamiltonian of the general N-body hierarchical prob-
lem into generalized Jacobi coordinates.

In the expression of H, r01 and r02 are implicitly functions
of r and r′. More specifically, we get

r02 = r′
√

1 +
2m1 cos β
m0 + m1

r
r′
+

m2
1

(m0 + m1)2

r2

r′2
; (A.2)

r12 = r′
√

1 − 2m0 cos β
m0 + m1

r
r′
+

m2
0

(m0 + m1)2

r2

r′2
, (A.3)

where β is the angle between r and r′. The first two terms
of H represent the uncorrelated Keplerian orbits while the
other terms constitute the disturbing function. As a func-
tion of r, r′ and cos β, H contains short period terms. The
Kozai Hamiltonian itself is the double time average of the full
Hamiltonian H. It describes accurately the secular dynamics of
the three-body system as long as the two orbits are not locked
in resonance, which is the case here:

H =
1

4π2

∫ 2π

0

∫ 2π

0
H(l, l′) dl dl′, (A.4)

where l and l′ are the mean anomalies. In fact, deriving concep-
tually H is achieved through a canonical transformation called
the von Zeipel transformation, which leads to an Hamiltonian
totally free of short period terms. The orbital elements appear-
ing in H may be seen as time-averaged versions of the oscu-
lating ones. From a technical point of view, H is just obtained
from Eq. (A.4).

Unfortunately, H cannot be expressed analytically. The
classical procedure is to expand the Hamiltonian in ascending
powers of α = a/a′, taking advantage from the fact that α 
 1,
or equivalently r/r′ 
 1. From the above expressions of r02

and r12, we see that 1/r02 and 1/r12 naturally expand in as-
cending powers of r′/r using Legendre Polynomials. The final
result for H is:

H = −Gm0m1

2a
− G(m0 + m1)m2

2a′
− Gm0m1m2

a′

×
⎧⎪⎪⎪⎨⎪⎪⎪⎩
+∞∑
j=2

α j
m j−1

0 −(−m1) j−1

(m0+m1) j

( r
a

) j
(

a′

r′

) j+1

P j(cosβ)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (A.5)

where the P j’s is the jth Legendre polynomial. This expression
of the Hamiltonian is given in Harrington (1968), Krymolowski
& Mazeh (1999) and Ford et al. (2000).

Using α 
 1, the expansion is then truncated up to
some given order and averaged over the mean longitudes.
Theoretically, once it is truncated to some given finite order,
the expansion of H can be averaged analytically. However, the
complexity of the expression of the truncated H increases dra-
matically with the order of the expansion. The expansion lim-
ited to second order only ( j = 2) is usually called quadrupolar
while the expansion up to j = 3 is called octupolar.

In order to perform the integration efficiently, it is better to
describe the orbits relative to the natural referential frame of
the system, where the OZ axis is parallel to the constant, total
angular momentum of the system. It is also convenient to in-
troduce the mutual inclination ir between the two orbits. In this
referential frame, it it well known that the longitude of nodesΩ
and Ω′ of the two orbits verify Ω − Ω′ = π, which yields more
simple expressions. The resulting quadrupolar expansion is

Hquad = − 1
16

Gm0m2m1

m0 + m1

α2

a′
√

1 − e′2

×
[(

2+3e2
) (

3 cos2 ir−1
)
+15e2 sin2 ir cos 2ω

]
. (A.6)

This Hamiltonian is given by Ford et al. (2000) and
Krymolowski & Mazeh (1999). Kinoshita & Nakai (1999) also
derive a similar approximation of the Kozai Hamiltonian for
the asteroid case. Ford et al. (2000) and Krymolowski & Mazeh
(1999) also give full expressions for the octupolar expansion.
Interestingly, Krymolowski & Mazeh (1999) retain additional
terms ∝α7/2 in the octupolar expansion that arise from the
von Zeipel transformation, but according to Ford et al. (2000),
these terms have a negligible role in the dynamics. No such
terms are present at the quadrupolar expansion level.

Interestingly, Hquad does not depend on ω′, which shows
that limited to quadrupolar expansion, the eccentricity e′ of the
outer orbit is a secular invariant. The variations of ω and ir are
coupled with those of e by conservation of the total angular
momentum of the system. Hence ir can be eliminated from the
expression of Hquad, so that Hquad turns out to have only one de-
gree of freedom (it is thus integrable), coupling the secular vari-
ations of e and ω. The dynamics of the system can be deduced
from level curves of Hquad in a (a, e) plane for a given value of
the angular momentum. The Kozai resonance itself is charac-
terized by a libration regime of ω around ±π/2, coupled with
high amplitude oscillations of e.

We wish to only derive an estimate of the period of the
Kozai cycle, so that we will limit ourselves to the quadrupo-
lar expansion. In order to derive the equations of motion, the
Hamiltonian Hquad should be given as a function of the con-
jugate Delaunay elements of both orbits. This is done in Ford
et al. (2000) and Krymolowski & Mazeh (1999). The variation
rate of e reads

de
dt
= −

√
1 − e2

e
√

a(m0 + m1)

∂Hquad

∂ω

= −15
8

m2
√

G√
m0 + m1

a3/2e
√

1 − e2

a′3
(
1 − e′2

)3/2
sin2 ir sin 2ω (A.7)
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= −15π
4

m2

m0+m1+m2

e
√

1−e2(
1−e′2

)3/2

P

P′2
sin2 ir sin 2ω,

where P and P′ are respectively the orbital periods of the inner
and outer orbits. The period of the Kozai modulation reads

PKozai =
8

15π
m0 + m1 + m2

m2

P′2

P

(
1 − e′2

)3/2

×
∣∣∣∣∣∣
∫ emax

emin

de

sin2 ir sin 2ω e
√

1 − e2

∣∣∣∣∣∣ · (A.8)

emin and emax are the minimum and maximum eccentricity val-
ues reached in the Kozai cycle. The integral appearing in that
expression cannot be expressed in closed form; it can neverthe-
less be obtained using the Weierstrass’s zeta function (Kozai
1962). This integral is related to the amplitude of the Kozai

eccentricity modulation and is most cases of order unity. For
a given amplitude (e.g., emin = 0.3 and emax = 0.95), we
should not expect it to vary drastically if we change the ini-
tial orbital configuration. Finally, PKozai turns out to depend
mainly on the factor (P′2/P)(1 − e′2)3/2, confirming the result
of Söderhjelm (1982) who gave P′2/P as a typical time-scale
for that dynamics.

In the quadrupolar approximation, the eccentricity oscil-
lations are strictly periodic, but in the full system, the higher
order terms induce both amplitude and period fluctuations in
the successive cycles (Ford et al. 2000; Krymolowski & Mazeh
1999); the order of magnitude PKozai remains nevertheless the
same. All these high order effects are very accurately repro-
duced with the HJS integrator, as shown in Beust (2003).


