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VORTICES AND MAGNETIZATION IN KAC’S MODEL

H.EL BOUANANI and M.ROULEUX

Centre de Physique Théorique and Université du Sud Toulon Var

CPT, Campus de Luminy, Case 907 13288 Marseille cedex 9, France

Abstract. We consider a 2-dimensional planar rotator on a large, but finite lattice with

a ferromagnetic Kac potential Jγ(i) = γ2J(γi), J with compact support. The system is

subject to boundary conditions with vorticity. Using a Glauber like dynamics, we compute

minimizers of the free energy functional at low temperature, i.e. in the regime of phase

transition. We have the numerical evidence of a vortex structure for minimizers, which

present many common features with those of the Ginzburg-Landau functional.

0. Introduction.

Vector spin model with an internal continuous symmetry group, such classical O+(q)

models (XY or “planar rotator” for q = 2, and Heisenberg model for q = 3, ) play an

important rôle in Statistical Physics. In one or two dimensions, if the range of the interaction

decays at infinity fast enough, there is no breaking of the internal symmetry, and for the

planar rotator with short range interactions, uniqueness of the Gibbs state holds in 1 or 2

space dimensions. Despite of this, a particular form for phase transition exists, which can be

characterized by the change of behavior in the correlation functions. In the low temperature

phase they have power law decay, showing that the system is in a long range order state

(exhibiting in particular the so-called “spin waves”,) but they decay exponentially fast at

high temperatures, breaking the long range order, even though thermodynamic quantities

remain smooth across the transition. For the XY system, these transitions were described by

Kosterlitz and Thouless in term of topological excitations called vortices : while these vortices

are organized into dipoles at low temperature, a disordered state emerges at the transition,

and correlation functions give information about dipole unbinding. But the observation of the

spatial distribution of defects shows that it is not uniform ; rather, defects tend to cluster at

temperatures slightly larger than the transition temperature, and there are still large ordered

domains where the spins are almost parallel (see e.g. [LeVeRu], and references therein)

Here we consider a Kac version of the classical XY model on a “large” lattice Λ ⊂ Z2.

The hamiltonian (except for the interaction with the boundary) is of the form

Hγ(σΛ) = −
1

2

∑

i,j∈Λ

γ2J(γ(i− j))〈σΛ(i), σΛ(j)〉

where γ is a small coupling constant and J denotes a cutoff function. Kac models are finite

but long range, so that they share some features with the mean field model, and still exhibit
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better mechanisms of phase transitions, which depend in particular on the dimension, as for

the short range case. For the mean field model with O+(q) symmetry, we know that there

is no phase transition for inverse temperature β ≤ 2 (Gibbs measure is supported at the

absolute minimum of the free energy functional, ) while there is a phase transition for β > 2,

with internal symmetry group O+(q).

When the model possesses internal symmetry and common features with the mean field,

it is hard to expect vortices at low temperature, unless the symmetry is somehow broken,

for instance if the system is subject to boundary conditions. This situation is met in other

domains of condensed matter Physics, as in supraconductivity, where vorticity is created by

an exterior magnetic flux, or for superfluid. In that case, phase transitions of matter are well

described by critical points of free energy (Ginzburg-Landau) functionals ([BeBrHe], [OvSi],

etc. . . )

The free energy (or excess free energy) functional Fβ,γ(mΛ∗) at inverse temperature

β in case of Kac models with internal symmetry, can be simply derived from a suitable

renormalization of Hγ making use of the entropy for the free field (see Sect.1) In particular,

we have replaced the spins σΛ by the magnetizationmΛ∗ on another “coarser” or “mesoscopic”

lattice Λ∗. To understand the significance of Fβ,γ , one should think also of the formal

“stationary phase” argument, as Λ → ∞, which suggests that an important role in the

averaging with respect to Gibbs measure, is played by configurations close to those which

produce the local critical points of Fβ,γ . This occurs in computing correlations functions (see

e.g. [Z]. ) These critical points consist in ground states, or metastable states.

They will be determined as the attractors of a certain dynamics, similar to this given

by the “heat operator”, but known in that context as the Glauber dynamics [DeMOrPrTr],

[DeM], [Pr] . . . . Thus, we expect convergence of this dynamics toward a Gibbsian equilibrium,

though this will not be formally established here.

Our main observation is the existence of vortices below the temperature of transition of

phase for the free field model, induced by the vorticity at the boundary of the lattice Λ,

together with large ordered domains where the magnetizations mΛ∗ become parallel.

We also have some numerical evidence that, as in the case of Ginzburg-Landau functional,

Kirchhoff-Onsager hamiltonian for the system of vortices gives a fairly good approximation

of the minimizing free energy, despite of the non-local interactions.

Acknowledgements: We are very grateful to P. Picco who introduced us to the subject,

and A. Messager for many interesting discussions.

1. Description of Kac’s Hamiltonian.

Consider the lattice Z2, consisting in a bounded, connected domain Λ (the interior
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region), and its complement (the exterior region) Λc. In practice, we think of Λ as a large

rectangle with sides parallel to the axis of Z2, of length of the form L = 2n, n ∈ N. Physical

objects make sense in the thermodynamical limit Λ → Z2, but in this paper we work in large,

but finite domains.

To each site i ∈ Z2 is attached a classical spin variable σi ∈ Sq−1, q = 2, 3. The

configuration space X (Z2) = (Sq−1)Z
2

is the set of all such classical states of spin ; it has the

natural internal symmetry group O+(q) acting on Sq−1. The state σ ∈ X (Z2) will denote the

map σ : Z2 → Sq−1, i 7→ σ(i). Given the partition Z2 = Λ ∪ Λc, we define by restriction the

interior and exterior configuration spaces X (Λ) and X (Λc), and the restricted configurations

by σΛ and σΛc . The Hamiltonian in Z2 describes the interaction between different sites

through Kac’s potential defined as follows.

Let 0 ≤ J ≤ 1 be a function on R2 with compact support and normalized by
∫
R2 J = 1.

We can think of J also as a function on the lattice. There is a lot of freedom concerning

the choice of J , but for numerical purposes, we take J as 1/2 the indicator function J̃ of the

unit rhombus with center at the origin, in other words J(x) = J(|x|1) where | · |1 is the ℓ1

norm in R2. Thus the support of J̃ is thought of as a chip of unit area, and considered as

a function on the lattice, J̃ takes the value 1 at the center, and 1/4 at each vertex, so that∑

i∈Λ

J(i) = 1. For γ of the form 2−m, we set Jγ(x) = γ2J(γx), and extend the definition

above in the discrete case so that Jγ enjoys good scaling properties, namely the stratum of

full dimension (i.e. the set of points interior to the chip) has weight 1, the strata of dimension

1 (the points on the sides on the chip) have weight 1/2, and those of dimension 0 (the vertices

of the chip) have weight 1/4. Thus, again
∑

i∈Z2

Jγ(i) = 1. The discrete convolution on Λ is

defined as usual. For instance, (Jγ ∗σ)(i) =
∑

j∈Z2

Jγ(i−j)σ(j) represents, with conventions as

above, the mean value of σ over the chip of size γ−1 and center i, with a weight that depends

on the stratum containing j.

Note that we could replace the lattice Z2 by the torus (Z/LZ)2 or the cylinder (Z/LZ)×

Z, which amounts to specify periodic boundary conditions in one or both directions. Ther-

modynamic limit is obtained as L→ ∞.

The coupling between spin at site i and spin at site j is given by Jγ(i− j) ; this is known

as Kac’s potential. From Statistical Physics point of view, Kac’s potential, for small γ, shares

locally the main properties of the mean field, i.e. long range ≈ γ−1, large connectivity ≈ γ−2

of each site, small coupling constant ≈ γ2 of the bonds, and total strength of each site equal

to 1.
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Given the exterior configuration σΛc ∈ X (Λc), we define the Hamiltonian on Z2 as

(1.1) Hγ(σΛ|σΛc) = −
1

2

∑

i,j∈Λ

Jγ(i− j)〈σ(i), σ(j)〉 −
∑

(i,j)∈Λ×Λc

Jγ(i− j)〈σ(i), σ(j)〉

where σ(i), for simplicity, stands for σΛ(i) or σΛc(i), and 〈·, ·〉 is the standard scalar product

in Rq. We note that as J ≥ 0, the interaction is ferromagnetic, i.e. energy decreases as spins

align.

We give here some heuristic derivation of the model we will consider, starting from

principles of Statistical Physics. A thermodynamical system at equilibrium is described by

Gibbs measure at inverse temperature β. We assume an a priori probability distribution ν

for the states of spin, and because of the internal continuous symmetry of X (Λ), we take ν

as the normalized surface measure on Sq−1, i.e. ν(dσi) = ω−1
q δ(|σi| − 1)dσi, where ωq is the

volume of Sq−1. Then Gibbs measure on X (Λ) with prescribed boundary condition σΛc is

given by

µβ,γ(dσΛ|σΛc) =
1

ZΛ
β,γ(σΛc)

exp
[
−βHγ(σΛ|σΛc)

] ∏

i∈Λ

ν
(
dσΛ(i)

)

where ZΛ
β,γ(σΛext

), the partition function, is a normalization factor which makes of µβ,γ a

probability measure on X (Λ), conditioned by σΛc ∈ X (Λc). It is obtained by integration of

µβ,γ(dσΛ|σΛc) over Sq−1.

Since we are working on Z2, there exists, for any β > 0, γ > 0, an infinite volume Gibbs

state µβ,γ , i.e. a (unique) probability distribution µβ,γ on the space X of all configurations ob-

tained by taking the thermodynamic limit Λ → Z2. This measure satisfies suitable coherence

conditions, i.e. DRL equations.

Nevertheless, we are faced with various difficulties, indicating that the microcanonical

ensemble is not a suitable frame in this context ; it is known that to understand thermody-

namical properties for Kac’s model, one should instead average spins over mesoscopic regions

and consider the image of Gibbs measure through this transformation, the so called “block-

spin transformation”. Since the model shares some features with the mean field, the basic

idea is to approximate the local entropy density of the system i.e., the entropy in some inter-

mediate boxes Λ̃(x) ⊂ Λ or, roughly, the log of the number of configurations σΛint
∈ X (Λint)

contributing to the same energy of Hamiltonian Hγ restricted to Λ̃(x), by this that would be

given by the mean field theory.

Here Λ̃(x) will be typically a square “centered” at a variable x ∈ Z2, with sides of length
δ
γ , δ of the form 2−p, p ∈ N, δ

γ typically much smaller than the diameter of Λ, but still

containing many sites.
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More generally we introduce the empirical magnetization in the finite box ∆ ⊂ Z2

(1.2) m∆(σ) =
1

|∆|

∑

i∈∆

σ(i)

and for any m ∈ Rq, |m| ≤ 1, we define the canonical partition function

(1.3) Z∆,σ∆c

β,γ (m) =

∫

Sq−1

exp
[
−βHγ(σ∆|σ∆c)

] ∏

i∈∆

ν
(
dσ(i)

)
δ
(
m∆(σ) −m

)

Then it is shown, taking the thermodynamical limit ∆ → Z2, that the quantity

(1.4) Fγ(β,m) = lim∆→Z2 −
1

β|∆|
logZ∆,σ∆c

β,γ (m)

is well defined, and doesn’t depend on the boundary condition on ∆c ; it will be interpreted

as the Gibbs free energy of the mesoscopic system. So far, parameter γ was kept small but

constant ; the limit γ → 0 is called Lebowitz-Penrose limit. Lebowitz-Penrose theorem (in

this simplified context) states that

(1.5) limγ→0 Fγ(β,m) = CE
(
fβ(m)

)

where fβ(m) = −1
2 |m|2 + 1

β I(m) is the free energy for the mean field, (I(m) denotes the

entropy) and will be discussed below. See [BuPi] for the case of a 1-d lattice, the proof can

be carried over to Z2. CE denotes the convex envelope, to account for Maxwell correction

law.

From this we sketch the renormalization procedure that leads to Lebowitz-Penrose the-

orem, as stated e.g. in [Pr,Thm. 3.2.1] (actually, this is the “pressure” version of Lebowitz-

Penrose theorem, but the argument can easily be adapted to free energy. ) We set ∆ = Λ̃(x),

and mσ(x) = m
Λ̃(x)

(σ). The set of all such magnetizations mσ ∈ Rq is the image of X (Z2)

by the block-spin transformation (1.2), and will be denoted by X̃ (Z2). It has again the con-

tinuous symmetry group O+(q), and this is a subset of the convex set M of all functions

m : Z2 → Rq such that |m(x)| ≤ 1 for all x. When considering microcanonical interior and

exterior regions as above, the partition Z2 = Λ∪Λc induces of course restricted configuration

spaces X̃ (Λ∗) and X̃ (Λ∗c), where Λ∗ = {x ∈ Z2 : Λ̃(x) ⊂ Λ} and Λ∗c = {x ∈ Z2 : Λ̃(x) ⊂ Λc}.

So let m ∈ M. Formula (1.3) extends in this context to define the partition function

(1.6) Zβ,γ

(
{mσ = m}; σΛc

)
=

∫

Sq−1

exp
[
−βHγ(σΛ|σΛc)

] ∏

i∈Λ̃(·)

ν
(
dσ(i)

)
δ
(
mσ −m

)
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constrained to the configurations σΛ whose block spin are equal to m. Assuming that the

diameter of all block spins equals γ−1/2, one can show that Zβ,γ

(
{mσ = m}; σΛc

)
is well

approximated by a continuous free energy functional of the form

(1.7) Fβ,γ(mΛ∗ |mΛ∗c) =

∫

Λ∗

[
−

1

β
I((mΛ∗(r)) + Uγ(mΛ∗ |mΛ∗c)

]
dr

with the entropy function I as in (1.5) and Uγ(mΛ∗ |mΛ∗c) is a suitable energy term. This is

essentially the content of [Pr,Thm. 3.2.3], and one of the main ingredients for the proof of

[Pr,Thm. 3.2.1], the other one being the computation of the limit of Uγ , as γ → 0.

Having this construction in mind, we shall proceed the other way around, and make a

simple renormalization of Hγ (see Proposition 1.1 below). Actually our sole purpose is to

give a discrete analogue for the excess free energy functional as in (1.7), most adapted to

numerical experiments on the lattice.

2. Mean field approximation and renormalized hamiltonian.

The free energy for the mean field given in (1.5) is given by

(1.9) fβ(m) = −
1

2
|m|2 +

1

β
I(m)

where I(m) is the entropy function of the a priori measure ν, which can be computed following

[BuPi]. We introduce the moment generating function

φ(h) =

∫

Sq−1

e〈h,σ〉dν(σ)

and define I(m) as Legendre transformation

(1.10) I(m) = Î(|m|) = suph∈Rq

(
〈h,m〉 − log φ(h)

)

For q = 2, we have φ(h) = φ̂(|h|) = J0(i|h|) (Bessel function of order 0.) Function ρ 7→ Î(ρ)

is convex, strictly increasing on [0, 1], Î(ρ) ∼ ρ2 as ρ → 0, Î(ρ) ∼ −1
2 log(1 − ρ), as ρ → 1,

and these relations can be differentiated. We have also Î ′ =
(
(log φ̂)′

)−1
and (log φ̂)′(t) =

−iJ1(it)/J0(it), this is of course a real valued function. The phase transition of mean field

type is given by the critical point of the free energy fβ , i.e. the positive root of equation

βmβ = Î ′(mβ), which exists iff β > Î ′′(0) = 2. So the critical manifold has again O+(2)

invariance.

Now we specify the choice of mesoscopic boxes Λ̃(x) and construct the excess free en-

ergy functional by the procedure sketched above. When q = 2, it is convenient to use the

underlying complex structure of X (Z2), so we shall write (1.1), with obvious notations, as

(1.20) Hγ(σΛ|σΛc ) = −
1

2

∑

i,j∈Λ

Jγ(i− j)σ(i)σ(j)− Re
∑

(i,j)∈Λ×Λc

Jγ(i− j)σ(i)σ(j)

6



We introduce in detail the mesoscopic ensemble averages, or coarse graining approximation

to renormalize Hγ . Let δ > 0 be small, but still much larger than γ, we take again δ = 2−m,

for some m ∈ N. We take for Λ̃(x), x ∈ Z2, a square “centered” at x, of diameter δ
γ ,

and of the form Λ̃δ(x) = {i = (i1, i2) ∈ Z2 : ik ∈ δ
γ [xk, xk + 1[} where we define as in

(1.2), mδ(x) =
(

γ
δ

)2
∑

i∈Λ̃(x)

σ(i). Thus we magnify by a factor δ/γ the “coarse graining”

(or mesoscopic ensemble) labelled by x ∈ Z2, to the “smooth graining” (or microcanonical

ensemble) labelled by i ∈ Z2. We have :

Proposition 1.1: There is 0 < α < 1
4 such that

(1.22)
(γ
δ

)2
Hγ(σΛ|σΛc)+Uext(mδ)+Uint(mδ)−|Λ|fβ(mβ) = F(mδ)+W (mδ)+ |Λ|O

(
δ2α

)

where

(1.23)

F(mδ) =
1

4

∑

x,y∈Λ∗

Jδ(x− y)|mδ(x) −mδ(y)|
2 +

∑

x∈Λ∗

fβ(mδ(x)) − fβ(mβ)

W (mδ) =
1

2

∑

(x,y)∈Λ∗×Λ∗c

Jδ(x− y)|mδ(x) −mδ(y)|
2

Uext(mδ) =
1

2

∑

(x,y)∈Λ∗×Λ∗c

Jδ(x− y)|mδ(y)|
2

Uint(mδ) =
1

β

∑

x∈Λ∗

I(mδ(x))

Proof: To start with, consider the first term in (1.1)

(1.25)

(γ
δ

)2 ∑

i,j∈Λ

Jγ(i− j)σ(i)σ(j) =
∑

x,y∈Λ∗

Jδ(x− y)mδ(x)mδ(y)

+ γ2
∑

x,y∈Λ∗

∑

(i,j)∈Λ̃δ(x)×Λ̃δ(y)

(
J(γ(i− j)) − J(δ(x− y))

)
σ(i)σ(j)

and denote by R(Λ∗) the second sum in the RHS of (1.25). Let C0 = B1(0,
1
δ ) be the

rhombus (or ℓ1-ball in R2) of center 0 and radius 1
δ
, corresponding to the shape of the

interaction J , and for x′ ∈ Z2, its translate Cx′ = 1
δx

′ + C0, we denote also by C∗
x′ ⊂ Λ∗ the

corresponding lattice obtained from Cx′ by deleting 2 of its sides, so that Λ∗ =
⋃

x′∈Z2 C∗
x′

(disjoint union), and Λ∗ is covered by those C∗
x′ with x′ = (x′1, x

′
2), x

′
j ∈ {±1, · · · ,±γL}. Let

also E(x, y) = {(i, j) ∈ Λ̃δ(x) × Λ̃δ(y) : J(γ(i − j)) − J(δ(x − y)) 6= 0}. We can consider

E(x, y) as a symmetric relation E : Λ∗ → Λ∗, E(x) = {y ∈ Λ∗ : E(x, y) 6= ∅}. By translation

invariance of J , for any x′ ∈ Z2, we have |E(x, y)| = |E(x− 1
δx

′, y − 1
δx

′)|, so that

(1.26)
∑

x,y∈Λ∗

|E(x, y)| ≤ 4
(γL
δ

)2
∑

x,y∈C∗

0

|E(x, y)|
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With the choice of ℓ1 norm, we have E(x, y) 6= ∅ for all x, y ∈ C∗
0 , and maxx∈C∗

0
|E(x)| =(

1 + 1
2δ

)2
, while minx∈C∗

0
|E(x)| is of order unity. In any case, |E(x)| depends on x and δ,

but not on γ, and it is easy to see that for some 0 < α < 1
4 ,

∑

x∈C∗

0

|E(x)| = O(δ−2(1−α)),

δ → 0. [Actually, this kind of estimate is well-known, see e.g. [BlLe] and references therein

for related results, and applies whenever the support of J is a convex set. ]

On the other hand, we have the rough estimate |E(x, y)| ≤ |Λ̃δ(x)× Λ̃δ(y)| =
(

δ
γ

)4
, and

since |σ(i)| = 1,

|
∑

x,y∈C∗

0

∑

(i,j)∈Λ̃δ(x)×Λ̃δ(y)

(
J(γ(i− j)) − J(δ(x− y))

)
σ(i)σ(j)|

≤
( δ
γ

)4
∑

x∈C∗

0

|E(x)| =
( δ
γ

)4
O(δ−2(1−α))

This, together with (1.26), shows that R(Λ∗) ≤ Const. δ2αL2. A similar argument gives an

estimate on the remainder R(Λ∗|Λ∗c) for the second term in (1.1). Once we have replaced(
γ
δ

)2
∑

i,j

Jγ(i−j)σ(i)σ(j) by
∑

x,y

Jδ(x−y)mδ(x)mδ(y) modulo R(Λ∗
int) and R(Λ∗|Λ∗c), which

verify the estimate given in (1.22), we use the identity

−2 Remδ(x)mδ(y) = |mδ(x) −mδ(y)|
2 − |mδ(x)|

2 − |mδ(y)|
2

and express the “density” term 1
2
|m|2 in term of the mean field free energy fβ(m) as in (1.9).

Summing over (x, y) and making use of the fact that Jδ is normalized in ℓ1(Z2) eventually

gives the Proposition. ♣

Remarks: 1) In homogenization problems, one usually associates the discrete configuration

σ ∈ X (Λ) with the function σγ on R2 taking the constant value σ(i) on the square “centered”

at γi, i = (i1, i2), i.e. on [γi1, γ(i1+1)[×[γi2, γ(i2+1)[. Furthermore the size of the domain Λ

is normalized, so that taking the thermodynamic limit Λ → ∞ is a problem of convergence for

piecewise constant functions (or discrete measures) in some suitable functional space. In Kac’s

model it is then convenient to take a smooth interaction J . Thus a version of Proposition 1.1

was obtained in [BuPi] by replacing the discrete average mδ(x) around x ∈ Λ by an integral,

or in [DeMOrPrTr], [DeM], [Pr], . . .by averaging Jγ over boxes of type Cx′ as above. (For

short we refer henceforth to the review article [Pr]). Since our ultimate purpose here consists

in numerical simulations on a lattice, we chose instead to give a discrete renormalization for

Hγ .

2) Our renormalized Hamiltonian is now given by F(mδ) + W (mδ), the quantities we

have substracted are −Uext(mδ), attached to the configuration space X (Λext), and −Uint(mδ)
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that can be interpreted as β−1 times the entropy of the system in Λint. Note we have also

included self-energy terms i = j in the original Hamiltonian. Of course, relevance of this free

energy to Gibbs measure (or rather its image through the block-spin transformation) after

taking the thermodynamic limit, is a rather subtle question which will not be discussed here,

since we content to finite lattices.

3. Euler-Lagrange equations and non local dynamics.

We are interested in the critical points of F(mδ)+W (mδ). Denote as usual resp. by ∂m

and ∂m the holomorphic and anti-holomorphic derivatives, we have for m = mδ (for short),

and any tangent vector of type (1,0) in the holomorphic sense, δm ∈ T
(1,0)
m X̃ (Z2) :

〈∂mW (m), δm〉 =
1

2

∑

(x,y)∈Λ∗

int
×Λ∗

ext

Jδ(x− y)
(
m(x) −m(y)

)
δm(x)

〈∂mF(m), δm〉 =
1

2

∑

x,y∈Λ∗

int

Jδ(x− y)
(
m(x) −m(y)

)
δm(x)

+
∑

x∈Λ∗

int

(
−

1

2
m(x) +

1

β

∂I(m)

∂m
(x)

)
δm(x)

Using again the normalization of Jδ in ℓ1(Z2), the relation I(m) = Î(|m|), and setting as

before Jδ ∗m(x) =
∑

y∈Z2

Jδ(x− y)m(y), we obtain

(1.28) 〈∂mW (m) + ∂mF(m), δm〉 =
1

2

∑

x∈Λ∗

(
−Jδ ∗m(x) +

1

β

Î ′(|m|)

|m|
m(x)

)
δm(x)

Since F +W is real, this gives Euler-Lagrange equation :

(1.29) −Jδ ∗m(x) +
1

β

Î ′(|m|)

|m|
m(x) = 0

Let f = (Î ′)−1 = φ̂′

φ̂
denote the inverse of the function Î ′. Thus f : [0,+∞[→ [0, 1[ is

strictly concave, f(0) = 0, f ′(0) = 1/2, and f(ρ) → 1 as ρ → +∞. Since the inverse of

m 7→ Î ′(|m|) m
|m|

defined on the unit disk is given by n 7→ f(|n|) n
|n|

, n ∈ C, (1.29) takes the

form

(1.30) −m+ f(β|Jδ ∗m|)
Jδ ∗m

|Jδ ∗m|
= 0

Following [Pr], to find the critical points minimizing the excess free energy functional F +W

we solve the “heat equation”

(1.31)
dm

dt
= −m+ f(β|Jδ ∗m|)

Jδ ∗m

|Jδ ∗m|
in Λ∗

9



with prescribed (time independent) boundary condition on Λ∗c, and initial condition m|Λ∗ =

m0. By Cauchy-Lipschitz theorem, equation (1.31) has a unique solution, defined for all

t > 0, valued in X̃ (Λ∗). Monotonicity of F +W is given in the following :

Proposition 1.2: There exists a Lyapunov function for equation (1.31), i.e. I : X̃ (Λ∗) →

R+, I(m) = 0 iff m solves (1.30), and

d

dt
(F +W )

(
m(·, t)

)
= −I

(
m(·, t)

)

along the integral curves of (1.31).

Proof: We have, using (1.28) and (1.31)

(1.33)

I
(
m(·, t)

)
= −

d

dt
(F +W ) = −〈∂m(F +W ),

∂m

∂t
〉 − 〈∂m(F +W ),

∂m

∂t
〉

=
1

β
Re

∑

x∈Λ∗

(
−βJδ ∗m(x) +

Î ′(|m|)

|m|
m(x)

)(
m(x) − f(β|Jδ ∗m|)

βJδ ∗m

|βJδ ∗m|
(x)

)

Let m = ρeiθ, βJδ ∗m = ρ′eiθ′

, I
(
m(·, t)

)
equals a sum of terms of the form

R =
2

β

(
ρ′f(ρ′) + ρÎ ′(ρ) −

(
ρρ′ + f(ρ′)Î ′(ρ)

)
cos(θ − θ′)

)

then using
(
ρ− f(ρ′)

)(
Î ′(ρ)− ρ′

)
≥ 0 for any ρ, ρ′ since Î ′ is increasing, we obtain the lower

bound R ≥ 2
β

(
1 − cos(θ − θ′)

)(
ρρ′ + f(ρ′)Î ′(ρ)

)
≥ 0. And because ρρ′ + f(ρ′)Î ′(ρ) = 0 iff

ρ = 0 or ρ′ = 0, this estimate easily implies the Proposition. ♣

From Proposition 1.2 and a compactness argument as in [Pr], follow that in the closure

of each orbit of equation (1.31) there is a solution of Euler-Lagrange equation (1.30) or (1.29),

i.e. a critical point for F+W . As suggested by numerical simulations, this critical point is not

unique, and depends on initial conditions (except of course when β ≤ 2.) We expect however

some uniqueness in the thermodynamical limit Λ∗ → ∞, modulo the symmetry group.

Now we give estimates on solutions of (1.31) or (1.30), borrowing some ideas to [Pr]. Eq.

(1.31) can be rewritten in the integrated form :

(1.35) m(x, t) = e−tm(x, 0) +

∫ t

0

dt1e
t1−tf(β|Jδ ∗m|)

Jδ ∗m

|Jδ ∗m|
(x, t1)

An effective construction of the solution is given by the “time-delayed” approximations. It

will also be used, discretizing time, in the numerical simulations below. We define inductively

10



mh(x, t), h > 0, on the intervals [hk, h(k + 1)[, k ∈ N, by mh(x, t) = m0(x) for 0 ≤ t < h,

and for hk ≤ t < h(k + 1), k ≥ 2 :

(1.36) mh(x, t) = ekh−tmh(x, kh) +

∫ t

hk

dt1e
t1−tf(βe−h|Jδ ∗mh|)

Jδ ∗mh

|Jδ ∗mh|
(x, t1 − h)

while for k = 1, just replace the first term eh−tmh(x, h) on the RHS of (1.36) by e−tm0(x).

Using Lipschitz properties of the coefficients, it is easy to see that, as h→ 0, mh(x, t) tends

to the solution m(x, t) of (1.31) uniformly for x ∈ Λ∗ and t in compact sets of R+. We prove

estimates on m(x, t) using sub- and supersolutions of (1.31). We start with :

Lemma 1.3: Assume β > 2, and let λ(t), t > 0 be the solution of

(1.37)
dλ

dt
(t) + λ(t) − f(βλ(t)) = 0, λ(0) = λ ∈ [0, 1[

If λ > mβ , then λ(t) ≤ λ for all t > 0.

Proof: Write (1.37) in the integrated form as in (1.35) and consider the approximating se-

quence λh(t). Since λh(t) tends to λ(t) uniformly on compact sets of R+, it suffices to show

the property stated in the Lemma for λh, and h > 0 small enough. For 0 ≤ t < h, λh(t) = λ,

so the property holds, while for h ≤ t < 2h, performing the integration in (1.36), and tak-

ing in account the modification for k = 1, we get λh(t) = eh−t(λ′ − f(βλ′)) + f(βλ′), with

λ′ = e−hλ. So by the discussion after (1.10), if λ > mβ , and h > 0 small enough, then

λ′ − f(βλ′) ≥ 0, and λh(t) ≤ λ′ < λ. By induction, using also that f is increasing, but

without changing h > 0 anymore, it is easy to see that this property carries over for all t > 0.

♣.

Then we claim that the modulus of the magnetization doesn’t increase in time. More

precisely we have :

Proposition 1.4: Assume β > 2, and let m(x, t) be the solution of (1.31) such that m0(x) =

m(x, 0) satisfies |m0(x)| ≤ λ < 1, for some λ > mβ , and all x ∈ Z2 (so including the exterior

region .) Then |m(x, t)| ≤ λ for all x ∈ Z2, and all t > 0.

Proof: Eq. (1.35) shows that

(1.38) |m(x, t)| ≤ e−t|m0(x)| +

∫ t

0

dt1e
t1−tf(β|Jδ ∗m|)(x, t1)

Now by the monotony properties of the convolution and the function f , we have f(β|Jδ ∗

m|)(x, t1) ≤ f(βJδ ∗ |m|)(x, t1), so the solution λ(t) of (1.37) with λ(0) = λ is a supersolution

for (1.38), and Lemma 1.3 easily implies the Proposition. ♣
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We now look for lower bounds on m(x, t). Since there are in general vortices, one cannot

expect a global, positive lower bound on |m(x, t)|, unless there is no vorticity on initial and

boundary values. On the other hand, we know (at least for a 1-d lattice, see [BuPi], ) that the

Gibbs measure of the configurations at equilibrium mδ ∈ X̃ (Λ∗|Λ∗c) with |mδ(x)| arbitrarily

close to mβ , has to be large. We have :

Proposition 1.5: Assume β > 2, and let m(x, t) be the solution of (1.31) such that m0(x) =

m(x, 0) as in Proposition 1.4 satisfies Re(νm0(x)) ≥ µ, for some fixed ν ∈ S1 and µ > 0 and

all x ∈ Λ∗. Assume furthermore that µ satisfies (µ2 + λ2)1/2 < βf(βλ), where λ is as in

Proposition 1.4. Then Re(νm(x, t)) ≥ µ for all x ∈ Λ∗, and all t > 0.

Proof: As in the proof of Proposition 1.4 we make use of a comparison function. So let µ(t)

verify the differential equation

(1.40)
dµ

dt
(t) + µ(t) − βf(βλ)

µ(t)

(µ(t)2 + λ2)1/2
= 0, µ(0) = µ

Write (1.40) in the integrated form as in (1.35) and consider the approximating sequence

µh(t) as in (1.36), including the modification for k = 1. We shall show that µh(t) ≥ µ for all

t > 0 provided µ(0) = µ verifies the inequality given in the Proposition. Namely, this holds

for 0 ≤ t < h, because then µh(t) = µ, while for h ≤ t < 2h, performing the integration as in

(1.36), we get µh(t) = eh−tµe−h(1−Mh) +µe−hMh, where Mh = βf(βλ)(e−2hµ2 + λ2)−1/2,

so by assumption µh(t) > e−hµ and µh(t) ≥ µ for h > 0 small enough. By induction, using

that the function ρ 7→ ρ(ρ2 +λ2)−1/2 is increasing on R+, and possibly decreasing h > 0 once

more, it is easy to see that µh(t) ≥ µ holds for all t > 0. Because the coefficients of (1.40) are

uniformly Lipschitz, µh(t) tends to µ(t) uniformly on compact sets in R+, and this property

holds again for µ(t).

Now we turn to the equation for m(x, t). Possibly after rotating the coordinates, we

may assume ν = 1, i.e. Rem0(x) ≥ µ and all x ∈ Λ∗ (again, we have included the boundary

condition in the initial configuration. ) Write m(x, t) = u(x, t) + iv(x, t), u, v real and take

real part of (1.31). The integrating form of the resulting equation writes :

(1.41) u(x, t) = e−tu(x, 0) +

∫ t

0

dt1e
t1−tf(β|Jδ ∗m|)

βJδ ∗ u

β|Jδ ∗m|
(x, t1)

As ρ′ 7→ f(ρ′)
ρ′

is decreasing on R+, and by Proposition 1.4, |Jδ ∗m| ≤
(
|Jδ ∗ u|

2 + λ2
)1/2

, we

have

f(β|Jδ ∗m|)

β|Jδ ∗m|
≥
f
(
β
(
|Jδ ∗ u|

2 + λ2
)1/2)

β
(
|Jδ ∗ u|2 + λ2

)1/2
≥

f(βλ)

β
(
|Jδ ∗ u|2 + λ2

)1/2
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the last inequality because f is increasing. Since u(x, 0) ≥ µ, by continuity we have u(x, 0) > 0

at least for small t > 0, and (1.41) gives

(1.42) u(x, t) ≥ e−tu(x, 0) + βf(βλ)

∫ t

0

dt1e
t1−t(Jδ ∗ u)

(
(Jδ ∗ u)

2 + λ2
)−1/2

(x, t1)

Now, using the monotony of the convolution, and again the fact that the function ρ 7→

ρ(ρ2 + λ2)−1/2 is increasing on R+, we can easily show that the solution µ(t) of (1.40) with

µ(0) = µ is actually a subsolution for (1.42), for all t > 0 ; the properties proved already for

µ(t) then imply the Proposition. ♣

Of course, by continuity, Propositions 1.4 and 1.5 imply the corresponding estimates for

the solution of Euler-Lagrange equation (1.29) or (1.31). Our last result states that if β ≤ 2,

then m(x, t) tends to 0 t → ∞, which is consistent with the absence of phase transition (or

spontaneous magnetization) at high temperature.

Proposition 1.6: Assume β ≤ 2, and let m(x, t) be the solution of (1.31). Then m(x, t) → 0

on Λ∗ as t→ +∞.

Proof: Using that f(ρ′) ≤ 1
2
ρ′, all ρ′ > 0, (1.38) shows that

|m(x, t)| ≤ e−t|m0(x)| +
β

2

∫ t

0

dt1e
t1−tJδ ∗ |m|(x, t1)

So by taking convolution

Jδ ∗ |m|(x, t1) ≤ e−t1Jδ ∗ |m0|(x) +
β

2

∫ t2

0

dt2e
t2−t1J

∗(2)
δ ∗ |m|(x, t2)

and integrating the resulting inequality :

|m(x, t)| ≤ e−t
[
|m0(x)| +

βt

2
Jδ ∗ |m0|(x) +

(β
2

)2
T (2)

(
e(·)J∗2

δ ∗ |m|(x, ·)
)
(t)

]

where T (k)u(t) =
∫ t

0
dt1

∫ t1
0
dt2 · · ·

∫ tk−1

0
dtku(tk) denotes the k-fold integral of u, and J∗k

δ the

k-fold convolution product of Jδ with itself. By induction, we get :

|m(x, t)| ≤ e−t
[
|m0(x)| +

β

2
tJδ ∗ |m0|(x) + · · ·+

(β
2

)k tk

k!
J∗k

δ ∗ |m0|(x)

+ T (k+1)
(
e(·)J

∗(k+1)
δ ∗ |m|(x, ·)

)
(t)

]

The series is uniformly convergent for t in compact sets so we can write

|m(x, t)| ≤ e−t
+∞∑

k=0

(β
2

)k tk

k!
J∗k

δ ∗ |m0|(x)

13



When β < 2, using J∗k
δ ∗ |m|(x, 0) ≤ |m0(x)| ≤ 1, it follows that m(x, t) → 0 for all x ∈ Λ∗

as t → ∞. This holds again for β = 2 since we may assume that m0 has compact support,

and we know (see [Hö,Lemma 1.3.6]) that J∗k
δ → 0 uniformly on R2 (or on Z2 in the discrete

case, ) as k → ∞. ♣

4. Vortices.

We consider here the problem of finding numerically the critical points of Euler-Lagrange

equation (1.30) by solving (1.31) subject to a boundary condition on Λ∗c presenting vorticity.

Let m : R2 → C be a differentiable function, considered as a vector field on R2, and subject

to the condition |m(x)| → ℓ > 0 as |x| → ∞ uniformly in x̂ = x/|x|. Then the integer

degRm =
1

2π

∫

|x|=R

d(argm) =
1

2iπ

∫

|x|=R

dm

m

is independent of R when R > 0 is large enough, is called the (topological) degree of m at

infinity, and denoted by deg∞m.

We define in the same way the local degree (or topological defect) degx0
m of m near

x0, provided m(x) 6= 0, x 6= x0, by integrating on a small loop around x0. The local degree

takes values dj ∈ Z. When m has finitely many zeros xj inside the disc of radius R, its total

degree (or vorticity) is defined again as the sum of all local degrees near the xj ’s. In many

boundary value problems, (or generalized boundary value problems, in the sense that the

boundary is at infinity, ) such as Ginzburg-Landau equations, the total vorticity is conserved,

i.e. deg∞m =
∑

j

degxj
m. Generically dj = ±1 (“simple poles”.) Our aim is to check this

conservation principle in the present situation.

So in the discrete case, we define analogously the degree of m(x) = ρeiθ at infinity to be

the degree restricted to the lattice Λ∗c, e.g. by d = degΛ∗c m = 1
2π

∑

j

(θj+1 − θj) along some

closed loop Γi ⊂ Λ∗c encircling Λ∗, the sites along Γi being labelled by j, assuming that this

integer takes the same value on each Γi.

The local degree near x0, where m(x0) = 0, is identified again by computing the angle

circulation on a loop encircling x0. Local degrees are also expected to take, generically, values

±1.

We chose our parameters as follows. We start with prescribing the degree of the spin

variable σ on Λc, and take on Γi, the i:th loop away from Λ, containing Ni sites, (Ni = 4i+P ,

where P is the perimeter of Λ, we take enough i’s to cover the range of interaction, ) with a

uniform distribution σj = exp i(2πdj/Ni+φ0), 1 ≤ j ≤ Ni ; here φ0 is a constant (e.g. φ0 = 1)

that “breaks” the symmetry of the rectangle Λ. We can also take a random distribution
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σj = exp
(
2iπd(j/Ni + εij)

)
, where εij are uniform random variables with

Ni∑

j=1

εij = 0, and

(εij)i,1≤j≤Ni−1, independent, identically distributed, with a variance small enough.

To this spin distribution on Λc, we apply the block spin transformation (1.2), so to have a

distribution of magnetization on Λ∗c, then we prescribe arbitrary initial conditions inside Λ∗,

which we choose again to be random numbers, with absolute value less than, or comparable

to mβ . We can also take zero initial values, which gives a particular symmetry to the solution

(see below.)

We usually fix the inverse temperature β = 5 ; the results do not depend on β in an

essential way, we just observe that magnetization tends to 0 as β → 2+. The diameter N of

the lattice Λ ranges from 26 to 210, the size δ/γ of the diameter of the block-spin ∆(x) is set

to 4 (most of the time) so the diameter L∗ of the lattice Λ∗ ranges from 24 to 28. The lattice

is either a square, or a rectangle.

The size 1/δ of the length of interaction in Λ∗ ranges from 2 to 32, thus the corresponding

interaction in Λ has length 1/γ = 4/δ between 8 to 128.

Equation (1.31) is solved by “time-delayed” approximations as in (1.36), implemented

by the second order trapezoidal method to compute the integrals.

These experiments lead to the following observations, vortices display in a different

way, according to the initial configuration on Λ∗, but always obey the conservation of total

vorticity.

Fig 1.a: L∗ = 128, d = 2, zero initial condition Fig 1.b: L∗ = 128, d = 2, random initial condition

1. To start with, we assume uniform distribution of spins on the boundary.

The particular case of zero initial values and a square lattice, gives raise to interesting

symmetries (or degeneracies) in the picture : namely, vortices tend to occupy most of Λ∗ so
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to cope with the symmetry of the square. So for d = 1 there is a single vortex in the center,

for d = 2 (cf Fig 1.a) a vortex of multiplicity 2, (unless the degeneracy is lifted and turns

into 2 nearby vortices, ) for d = 4 − 1, (cf Fig 2.a) one vortex of degree -1 surrounded by 4

vortices of degree +1 near the corners, for d = 4, 4 vortices of degree +1 near the corners,

for d = 4 + 1, same configuration as for d = 3, for d = 4 + 2 the picture looks alike, with

a double vortex at the center, for d = 2 × 4 − 1, 4 new vortices appear near the center (cf

Fig 3.a), etc. . .So the configuration depends essentially of the residue of d modulo 4 : new

vortices show up from the middle towards the corners along the diagonals of Λ∗.

Fig 2.a: L∗ = 128, d = 3, zero initial condition Fig 2.b: L∗ = 128, d = 3, random initial condition

Still for a square lattice, but random initial conditions inside Λ∗, vortices are simple and

tend to display at the periphery of Λ∗, in a pretty regular way, leaving some large ordered

domain near the center.

Fig 3.a: L∗ = 128, d = 7, zero initial condition Fig 3.b: L∗ = 128, d = 7, random initial condition
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Thus, these configurations maximize the area of the lattice where the magnetizations are

aligned , with an absolute value close to mβ , (in accordance with the fact that energy Hγ of

the microcanonical ensemble decreases as the spins align. ) Their direction in general, points

out along one of the diagonals of Λ∗. This is illustrated in Fig.1,2,3.b above, for a vorticity

d = 2, 3, 7 resp. In particular, Fig.2 shows the topological bifurcation from d=4-1 to d=3.

These simulations also suggest that the equilibrium configurations shouldn’t depend on the

initial conditions, but for an exceptional set.

Now we vary the shape of the lattice, changing the square into a rectangle, keeping in

mind that thermodynamic limit, most of the time, should be taken in the sense of Fisher,

i.e. the lenght of the rectangle Λ∗ doesn’t exceed a constant times |Λ∗|1/2. As expected,

vortices tend to align along the largest dimension, but again, limiting configurations depend

on whether the initial condition inside Λ∗ is set to zero or not.

Fig 4.a: L∗ = 512, ℓ∗ = 128, d = 16, zero initial condition

Thus, for zero initial condition, vortices display along the largest median of Λ∗, with

possible extra vortices near the corners (inheriting the features of the square lattice. ) Namely,

they tend to repel each other so the energy cost in clustering is minimized by occupying the

corners. Typically, such configurations occur if d ≥ 4 and the lenght of Λ∗ is only twice its

width. But for sufficiently long lattices, or small degree, they just stand the median line. See

Fig.4.a and 4.c.
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Fig 4.b: L∗ = 512, ℓ∗ = 128, d = 16, random initial condition

Fig 4.c: L∗ = 512, ℓ∗ = 128, d = 5, zero initial condition

For random initial conditions (Fig.4.b), we recover the general picture of square lattices,

i.e. vortices set along the boarder of Λ∗, leaving a large space in the middle with parallel
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magnetizations. In any case, degeneracies are lifted, and all vortices have degree +1.

2. Now we examine the case of random distribution of spins on the boundary Λ∗c.

Vortices change their place according to the initial random value, and tend again to gather

inside Λ∗, but take always the value +1 (we always assume d > 0.) The sole effect of

randomness in the boundary condition is to change the place of the vortices: namely they

tend to get even closer to the boundary, so to leave larger ordered regions in the middle. See

Fig 5.a, 5.b and compare with Fig 2.b, 3.b.

Fig 5.a: L∗ = 128, d = 3 Fig 5.b: L∗ = 128, d = 7

Another interesting result concerns the value of energy for the minimizing configurations.

In case of Ginzburg-Landau equation, −∆ψ + (|ψ|2 − 1)ψ = 0, where ψ is subject to a

boundary condition with vorticity, it is known that energy of the minimizer vs. vorticity,

has an asymptotic, as the n vortices xj become distant from each other, the leading order

term is given by a“proper energy”, proportional to
n∑

i=1

d2
i , and the next correction is the

inter-vortex energy given by so-called Kirchhoff-Onsager hamiltonian, of the form W0 =

−π
∑

i6=j

didj log |xi − xj | (see e.g. [BeBrHe] and [OvSi2] for precise statements. ) It can be

interpreted as the electrostatic energy for a system of charges dj interacting through Coulomb

forces. It turns out that, despite forces in action have no electrostatic character, Kirchhoff-

Onsager correction holds with a good accuracy in our case, even for long range interactions

(i.e. for small γ, ) but provided the inter-vortex distance is bounded below by the range of

the interaction. We have listed below some graphs of K = (F + W ) −W0, obtained with

uniform boundary conditions, which show that K roughly grows linearly with d (cf Fig 6).
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Fig 6.a: L∗ = 128, zero initial condition Fig 6.b: L∗ = 128, random initial condition

Fig 6.b, shows that several random trials for initial conditions give approximately the

same renormalized energy K.

We end up with studying minimizers of the free energy functional, when we set up totally

random boundary values, i.e without prescribing any topological degree. The configuration,

of course, have no particular structure, but show some ordered areas among more chaotic

regions. See Fig 7.a, 7.b.

Fig 7.a: L∗ = 128 Fig 7.b: L∗ = 128
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