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B.P. 6759, 45067 Orléans cedex 2, France .
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1 Introduction

Classical harmonic analysis on Rn has now been extended to other spaces. For
instance Harish-Chandra has considered the case of semi-simple Lie groups.
Then he was followed by Helgason, who studied the Riemannian symmetric
spaces of noncompact type, which are Riemannian spaces of negative curvature.
In particular, Harish-Chandra introduced and studied the spherical functions,
which play the role of the exponentials in these spaces. A more general setting,
in the flat case, has appeared two or three decades ago, with the theory of Dunkl
operators. It gives a vast generalization of the exponential functions, and of the
Fourier transform on Rn. But it gives also a generalization of the harmonic
analysis on tangent spaces of symmetric spaces. The natural counterpart of the
Dunkl theory in the negatively curved setting is the theory of Heckman and
Opdam. This theory has known a deep evolution with the discovery of the
Cherednik operators [6], the analogues of the Dunkl operators in the flat case.
Heckman and Opdam [11], [12], [14] have developed their theory in the last
two decades. They have first introduced a new family of functions Fλ on Rn,
which like in the Dunkl theory are associated to root systems and a parameter,
the multiplicity function. They can be defined essentially as eigenfunctions of
certain differential operators. When the multiplicity function, takes particular
values, then these operators coincide with the radial part of the G-invariant
differential operators on the symmetric spaces of noncompact type G/K. Thus
the restrictions to a Cartan subspace a of the spherical functions are particular
functions Fλ. In this way the theory of Heckman and Opdam is also a gener-
alization of the harmonic analysis on the symmetric spaces G/K. However all
the techniques used by Harish-Chandra can not always be transposed (at least
not trivially) in this new theory, because there are not anymore underlying Lie
groups. The main tools used in the harmonic analysis on the symmetric spaces
are in the one part an integral formula of the spherical functions, and in an-
other part a development in series of these spherical functions. Heckman and
Opdam have shown that their functions Fλ have a development in series of the
type Harish-Chandra, but there is not (at least not yet) an integral formula, for
general root systems. However this gap has been compensated by two main dis-
coveries. First the discovery of the differential-difference operators by Cherednik
[6], and then the discovery by Opdam of a new type of functions, the functions
Gλ [14], for which the calculus and estimates can be more easily performed.
These functions are eigenfunctions of the Cherednik operators. However until
recently the only asymptotic result was essentially the fact that the functions
Fλ and Gλ were bounded [14]. Delorme has obtained a much better estimate,
even in the more complicated case of a negative multiplicity [8], but it requires
involved materials and techniques.
In this paper we give sharp estimates of the functions Fλ, Gλ and their deriva-
tives, in an elementary way. Our method is only based on the study of the
system of differential and difference equations satisfied by the functions Gλ,
improving by the way what had already done De Jeu [13] and Opdam [14]
for bounding their functions. We also give a global estimate of the particular
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functions F0 and G0. It generalizes some results in the noncompact symmetric
spaces [1], [3]. Then we deduce from these estimates and from a general method
of Anker [2] the inversion formula on the Schwartz space. Finally we solve the
Heat equation and we give some estimates of the heat kernel.

Acknowledgments: This work is part of my PhD. It is a great pleasure to
thank my advisors Jean-Philippe Anker and Philippe Bougerol for their help
and advices.

2 Preliminaries

Let a be a Euclidean vector space of dimension n, equipped with an inner
product (·, ·). Let h = a ⊗R C be the complexification of a. The notation ℜ
and ℑ denote the real and imaginary part respectively, of an element in h or
possibly in C. Let R ⊂ a be an integral root system. We choose a subset of
positive roots R+. We denote by R+

0 the set of positive indivisible roots, by Π
the set of simple roots, and by Q+ the positive lattice generated by R+. Let
α∨ = 2

|α|2 α be the coroot associated to a root α and let

rα(x) = x − (α∨, x)α,

be the corresponding orthogonal reflection. We denote by W the Weyl group
associated to R, i.e. the group generated by the rα’s. If C is a subset of a, we call
symmetric of C any image of C under the action of W . Let k : R → [0, +∞)
be a multiplicity function, which by definition is W -invariant. In the sequel we
may actually forget about the roots α with kα = 0 and restrict ourself to the
root subsystem where k is strictly positive.
Let

a+ = {x | ∀α ∈ R+, (α, x) > 0},
be the positive Weyl chamber. We denote by a+ its closure, and by ∂a+ its
boundary. Let also areg be the subset of regular elements in a, i.e. those elements
which belong to no hyperplane {α = 0}. For I a subset of R+, let

aI := {x ∈ a | ∀α ∈ I, (α, x) = 0}

be the face associated to I. Let RI be the set of positive roots which are
orthogonal to aI , and let WI be the subgroup of W generated by the rα with
α ∈ RI .
For ξ ∈ a, let Tξ be the Dunkl-Cherednik operator. It is defined, for f ∈ C1(a),
and x ∈ areg, by

Tξf(x) = ∂ξf(x) +
∑

α∈R+

kα

(α, ξ)

1 − e−(α,x)
{f(x) − f(rαx)} − (ρ, ξ)f(x),

where

ρ =
1

2

∑

α∈R+

kαα.
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The Dunkl-Cherednik operators form a commutative family of differential-difference
operators (see [6] or [14]). The Heckman-Opdam Laplacian L is defined by

L =

n∑

i=1

T 2
ξi

,

where {ξ1, . . . , ξn} is any orthonormal basis of a (L is independent of the chosen
basis). Here is an explicit expression (see the appendix), which holds for f ∈
C2(a) and x ∈ areg:

Lf(x) = ∆f(x) +
∑

α∈R+

kα coth
(α, x)

2
∂αf(x) + |ρ|2f(x) (1)

−
∑

α∈R+

kα

|α|2

4 sinh2 (α,x)
2

{f(x) − f(rαx)}

Let λ ∈ h. We denote by Fλ the unique analytic W -invariant function on a,
which satisfies the differential equations

p(Tξ)Fλ = p(λ)Fλ for all W-invariant polynomials p

and which is normalized by Fλ(0) = 1 (in particular LFλ = (λ, λ)Fλ). We
denote by Gλ the unique analytic function on a, which satisfies the differential
and difference equations

TξGλ = (λ, ξ)Gλ for all ξ ∈ a, (2)

and which is normalized by Gλ(0) = 1.

The c-function.
We define the function c as follows (see [10] or [11]):

c(λ) = c0

∏

α∈R+

Γ(−(λ, α∨) + 1
2kα

2
)

Γ(−(λ, α∨) + kα + 1
2kα

2
)
,

where c0 is a positive constant chosen in such a way that c(−ρ) = 1, and kα
2

= 0
if α

2 /∈ R. Observe that if

π(λ) :=
∏

α∈R+
0

(λ, α∨),

then the function
b(λ) := π(λ)c(λ),

is analytic in a neighborhood of 0.

Remark 2.1 For the reader’s convenience, let us point out a conventional
difference between our setting and symmetric spaces. There Σ denotes the root
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system and m : Σ → N∗ the multiplicity function. Everything fits together if
we set R = 2Σ and k2α = 1

2mα. Notice in particular that ρ is defined in the
same way in both settings:

ρ =
1

2

∑

α∈Σ+

mαα =
1

2

∑

α∈R+

kαα.

3 Estimates

3.1 Positivity and first estimates

Let us begin with the following positivity result.

Lemma 3.1 Assume that λ ∈ a. Then the functions Fλ and Gλ are real and
strictly positive.

Proof of lemma: Since

Fλ(x) =
1

|W |
∑

w∈W

Gλ(w · x), x ∈ a, (3)

it is enough to prove the lemma for Gλ. First of all, the function Gλ is real
valued, since Gλ and Gλ satisfy the same equations (2), and hence are equal.
Assume next that Gλ vanishes. Let x be a zero of Gλ of minimal norm r = |x|.
Consider first the case where x is a regular point, and take a vector ξ in the
same chamber as x. As Gλ is positive for |x| < r, we have

∂ξGλ(x) ≤ 0.

Writing down (2), we get

∂ξGλ(x) =
∑

α∈R+

kα

(α, ξ)

1 − e−(α,x)
(Gλ(rαx) − Gλ(x)) + (ρ + λ, ξ)Gλ(x). (4)

Since for all roots α,
(α, ξ)

1 − e−(α,x)
≥ 0,

we deduce that ∂ξGλ(x) = 0, and that Gλ(rαx) = 0 for every α ∈ R. Hence Gλ

and ∇Gλ vanish at the point x and furthermore at each conjugate of x under
W . Differentiating (4), we see that every second order partial derivative of Gλ

vanishes on the W -orbit of x. And similarly for all higher order derivatives.
Since Gλ is analytic, we deduce that Gλ ≡ 0. This contradicts the fact that
Gλ(0) = 1.
Consider next the case where x is singular and let I = {α ∈ R+ | (α, x) = 0}.
The equations (2) become now

∂ξGλ(x) = −
∑

α∈I

2kα

(α, ξ)

|α|2 ∂αGλ(x) (5)

+
∑

α∈R+rI

kα

(α, ξ)

1 − e−(α,x)
(Gλ(rαx) − Gλ(x)) + (ρ + λ, ξ)Gλ(x).
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We may argue as before, taking ξ ∈ aI in the same face as x. Notice that the
first sum vanishes in the right hand side of (5), and that

∂ξ(rαGλ)(x) = ∂rαξGλ(rαx).

with rαξ in the same face as rαx. Eventually we obtain that all partial deriva-
tives of Gλ along directions belonging to aI vanish at x. Again since Gλ is
analytic, it must vanish on aI , which contradicts Gλ(0) = 1. This concludes the
proof of the lemma. �

The next proposition is fundamental in order to have uniform estimates in the
parameter λ ∈ h.

Proposition 3.1 (a) For all λ ∈ h,

|Gλ| ≤ Gℜ(λ).

(b) For all λ ∈ a and for all x ∈ a

Gλ(x) ≤ G0(x)emaxw(wλ,x).

Proof of the proposition: For the first inequality, we study the behavior of
the ratio Qλ = Gλ

Gℜ(λ)
. We must show that |Qλ|2 ≤ 1. We will in fact prove that

for all ξ ∈ areg,
M(ξ, r) := max

w∈W
|Qλ(rwξ)|2

is a decreasing function of r ≥ 0. Since M(ξ, 0) = 1 for all ξ, the result
will follow. First of all observe that the function M is continuous and right
differentiable in the second variable r. Then, using (2), we get

∂ξ|Qλ|2(x) =
∑

α∈R+

2kα(α, ξ)

1 − e−(α,x)
(ℜ{Qλ(x)Qλ(rαx)} − |Qλ(x)|2)Gℜ(λ)(rαx)

Gℜ(λ)(x)
,

for all ξ and all x regular. Hence if x is a regular element such that

|Qλ(x)|2 = max
w

|Qλ(wx)|2,

and if ξ is a positive multiple of x, we have

∂ξ|Qλ|2(x) ≤ 0.

This means that
∂M

∂r
(ξ, |x|) ≤ 0,

where we consider right derivatives. So for every ξ regular, and every r ≥ 0,

∂M

∂r
(ξ, r) ≤ 0.

In order to conclude, we need the following elementary lemma, whose proof is
left to the reader.
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Lemma 3.2 Let f : R+ → R be a continuous and right derivable function. We
denote by f ′

d the right derivative of f . If for all x ∈ R+, f ′
d(x) ≤ 0, then f is

decreasing.

According to this lemma, we have M(ξ, r) ≤ M(ξ, 0) = 1, for all ξ ∈ areg and
all r ≥ 0. By continuity, this inequality remains true if ξ is singular. This
concludes the proof of the first inequality.
The second one is proved similarly, using the ratio

Rλ(x) :=
Gλ(x)e−maxw(wλ,x)

G0(x)
.

Specifically, if x is regular and ξ ∈ a, then

∂ξRλ(x) =
∑

α∈R+

kα(α, ξ)

1 − e−(α,x)
(Rλ(rαx) − Rλ(x))

G0(rαx)

G0(x)

+ ((λ, ξ) − max
w

(wλ, ξ))Rλ(x),

where we consider again right derivatives. So if x is such that

Rλ(x) = max
w

Rλ(wx)

and ξ is a positive multiple of x, then

∂ξRλ(x) ≤ 0.

Therefore
N(ξ, r) := max

w∈W
Rλ(rw · ξ)

is a decreasing function in r ≥ 0, for all ξ ∈ areg. We conclude as for the first
inequality. �

By averaging over the Weyl group, we deduce the following inequalities from
Proposition 3.1.

Corollary 3.1 1. For all λ ∈ h,

|Fλ| ≤ Fℜ(λ).

2. For all λ ∈ a and for all x ∈ a

Fλ(x) ≤ F0(x)emaxw∈W (wλ,x).

3.2 Local Harnack principles and sharp global estimates

In this subsection we first establish two Harnack principles for Gλ and Fλ when
λ ∈ a, and next deduce sharp global estimates of these functions Fλ and of the
function G0. Before stating the results we introduce some new notation. Let I
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be a subset of R+, and let d ≤ d′ be two strictly positive constants. We denote
by V I(d, d′) the following subset of a:

V I(d, d′) := {x ∈ a | ∀α ∈ RI , |(α, x)| ≤ d and ∀α /∈ RI , |(α, x)| > d′}.

Let x ∈ V I(d, d′), with I non empty. Let pI(x) denote its orthogonal projection
on aI . Let u ∈ aI be such that for every α /∈ RI , (α, u)sgn((α, x)) ≥ |α|. Define
now the vectors ξ1(x), and η1(x) as follows:

ξ1(x) =
pI(x) − x

|pI(x) − x| + u, and η1(x) =
pI(x) − x

|pI(x) − x| − u.

We will sometime just write them ξ1 and η1 for simplify the notation. Notice
that everything was done in order that

∀α /∈ RI , (α, ξ1(x))(α, x) ≥ 0 and (α, η1(x))(α, x) ≤ 0. (6)

Naturally we have also

∀α ∈ RI , (α, ξ1(x))(α, x) = (α, η1(x))(α, x) ≤ 0. (7)

We denote by p1 and q1 the projections of x on aI along the directions ξ1

and η1 respectively (we suppose that d′ is sufficiently large in order that these
projections still lie in the same chamber than x). Then we denote by p∅ and q∅

the orthogonal projections of p1 and q1 respectively on V ∅(d, d). We define also
the vectors ξ2 and η2 (like before we forget the dependence in x in the notation)
by

ξ2 =
p∅ − p1

|p∅ − p1|
+ u, and η2 =

q∅ − q1

|q∅ − q1|
− u.

Eventually let p2 and q2 be the projections on V ∅(d, d) of p1 and q1 respectively
along the directions ξ2 and η2 (here again we suppose that d′ is sufficiently large
in order that these projections lie in the same chamber than x). We summarize
these definitions in the following figure

HHH
���

�������

HHHHHHH

qHHY���

��*

HHj

x
q1

p1

pI x
p∅

q∅

q2

p2

aI V I(d, d′) V ∅(d, d)

~η1

~ξ1

~ξ2

~η2
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We can now state the lemma

Lemma 3.3 (Local Harnack principle 1) Let λ ∈ a, and let d and d′ be
chosen as above. There exist two constants C > 0 and c > 0 such that for all
x ∈ V I(d, d′),

max
w∈WI

Gλ(wx) ≤ C min
w∈WI

Gλ(wp2(x)),

and
min

w∈WI

Gλ(wx) ≥ c max
w∈WI

Gλ(wq2(x)).

Proof of the lemma: We begin by the first inequality. Let x ∈ V I . First
remark that |x− p1(x)| and |x− q1(x)| are bounded by a constant, say h, which
depends only on d. We introduce the function Mλ defined on a by:

Mλ(x) = max
w∈WI

Gλ(wx).

Let y be such that Gλ(y) = Mλ(y). We have

∂ξ1Gλ(y) =
∑

α∈RI

kα

(α, ξ1)

1 − e−(α,y)
(Gλ(rαy) − Gλ(y))

+
∑

α∈R+rRI

kα

(α, ξ1)

1 − e−(α,y)
(Gλ(rαy) − Gλ(y))

+ (ρ + λ, ξ1)Gλ(y)

≥ −
∑

α∈R+rRI

kα

(α, ξ1)

1 − e−(α,y)
Gλ(y) + (ρ + λ, ξ1)Gλ(y).

The lower bound is deduced from our choice of y and from the properties of

ξ1 (6) and (7). Now when α ∈ R+ r RI , the ratio (α,ξ1)
1−e−(α,y) is bounded by

a constant which depends only on d′. Thus we can find a constant K, which
depends only on d′ and λ such that for all y ∈ V I(d, d′),

∂ξ1Mλ(y) ≥ −KMλ(y).

Here like in the proof of Proposition 3.1, we consider the right derivatives. Still
by Lemma 3.2, we get

Mλ(x) ≤ eKhMλ(p1(x)). (8)

Now we introduce the function Nλ defined on a by

Nλ(x) = min
w∈WI

Gλ(wx).

Observe already that Nλ and Mλ are equal on aI , and in particular in p1(x).
Moreover, by the same technique as above, we can find a strictly positive con-
stant K ′ such that

Nλ(p1(x)) ≤ eK′hNλ(p2(x)).
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Together with (8) this proves the first inequality of the lemma. The second
one can be proved exactly in the same way, by using this time the intermediate
point q1(x). �

We could deduce from this lemma a local Harnack principle for Fλ too. We
will instead give a simple expression of the gradient of Fλ, which implies such a
principle. Moreover this expression will be needed in the proof of Theorem 3.3.

Lemma 3.4 (Local Harnack principle 2) For all x ∈ a+ and for all λ ∈ a,

∇Fλ(x) = − 1

|W |
∑

w∈W

w−1(ρ − λ) Gλ(wx). (9)

In particular,
|∇Fλ(x)| ≤ (|ρ| + |λ|)Fλ(x).

Proof of the lemma: By differentiating (3) we get as above

∂ξFλ(x) =
1

|W |
∑

w∈W

∂wξGλ(wx),

for all ξ ∈ a. Now we use the equations (2), which gives

∂ξFλ(x) =
1

|W |
∑

w∈W

∑

α∈R+

kα

(α, wξ)

1 − e−(α,wx)
{Gλ(rαwx) − Gλ(wx)}

+
1

|W |
∑

w∈W

(ρ + λ, wξ)Gλ(wx)

= − 1

|W |
∑

w∈W

∑

α∈R+

kα(α, wξ){ 1

1 − e−(α,wξ)
+

1

1 − e(α,wξ)
︸ ︷︷ ︸

=1

}Gλ(wx)

+
1

|W |
∑

w∈W

(ρ + λ, wξ)Gλ(wx)

=
1

|W |
∑

w∈W

(λ − ρ, wξ)Gλ(wx).

This proves the first claim of the lemma. The second one is an easy consequence,
using again (3) and the positivity of Gλ. �

We can now deduce a sharp global estimate of F0 which extends the result
of Anker [1] to any multiplicities k > 0. Recently Sawyer [18] has obtained the
same result for root systems of type A, using explicit formulas.

Theorem 3.1 In a+,

F0(x) ≍ e−(ρ,x)
∏

α∈R+
0

(1 + (α, x)).
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Proof of the theorem: We resume the proof in [1], that we sketch. The
local Harnack principle for F0 (which was deduced in [1] from Harish-Chandra’s
integral formula) allows us to move the estimate away from the walls in a+.
There we expand F0, using the Harish-Chandra series

Fλ(x) =
∑

w∈W

∑

q∈Q+

c(wλ)Γq(wλ)e(wλ−ρ−q,x)

that we multiply by π(λ) in order to remove the singularity of the c-function at
the origin. Then we differentiate with respect to π( ∂

∂λ
)|λ=0, in order to recover

F0, up to a positive constant. As a result we obtain a converging series

F0(x) =
∑

q∈Q+

Fq(x)e−(ρ+q,x),

with polynomial coefficients Fq and leading term

F0e
−(ρ,x) ∼ const.π(x)e−(ρ,x).

�

Remark 3.1 We may estimate in a similar way the function Fλ when λ is
real. The result reads as follows: for any λ ∈ a+,

Fλ(x) ≍
∏

α∈R+
0 |(α,λ)=0

(1 + (α, x))e(λ−ρ,x)

on a+.

Let us turn to the function G0. For x ∈ a, we denote by x+ its unique symmetric
in a+.

Theorem 3.2 In a,

G0(x) ≍
∏

α∈R+
0 |(α,x)≥0

(1 + (α, x))e(−ρ,x+). (10)

Proof of the theorem: Let us first show that Gλ has a series expansion in
each chamber, like it was done by Opdam in the negative chamber a− [14]. We
resume his proof. He first obtained that there exists a polynomial p such that
for all x ∈ areg,

(
∏

α∈R+
0

(λ, α∨) − kα − 2k2α)Gλ(x) = p(λ, Tξ)Fλ(x).

By expanding Fλ and T = Tξ in each chamber, we find developments of the
function Gλ:

Gλ(x) =
∑

w′∈W

c(w−1w′λ)
∑

q∈wQ+

Gw,w′

λ,q e(w′λ−wρ−q,x)
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for all x ∈ wa+. Moreover Opdam has proved that Gw0,w′

λ,0 is equal to |W |δ1,w′π(λ),
where w0 denotes the longest element in W . Now we apply the same technique
as in Theorem 3.1. First we multiply these developments by π(λ), and then we
differentiate with respect to π( ∂

∂λ
)|λ=0. We get developments of the function

G0 in each chamber:

G0(x) =
∑

q∈wQ+

Gw
q (x)e−(wρ+q,x) (11)

for all x ∈ wa+, where the Gw
q are real polynomials. Moreover according to

the above mentioned result of Opdam, we see that Gw0
0 is a strictly positive

constant. Recall some basic notation. The length l(w) of an element of W is
defined by

l(w) = |R+
0 ∩ wR−

0 |.
Recall that Π denotes the set of simple roots in R+. Each q ∈ Q+ writes
q =

∑

α∈Π nαα, with nα ∈ N. We denote by |q| :=
∑

α∈Π nα the length of
q. For q′ ∈ Q+, we write q′ ≤ q, if q − q′ ∈ Q+. Naturally we have similar
definitions on wQ+, where we denote by |q|w the length of any q ∈ wQ+ and
we write q′ ≤w q, if q′ ∈ wQ+ and q − q′ ∈ wQ+. Consider the polynomials

πw(x) =
∏

α∈R+
0 ∩wR+

0

(α∨, x) and π̃w(x) =
∏

α∈R+
0 ∩wR+

0

(

1 + (α∨, x)
)

.

We need the following lemma, which will be used throughout the proof of The-
orem 3.2.

Lemma 3.5 Let w ∈ W .

1. If α ∈ Π ∩ wR+, then πrαw(rαx) = πw(x)
(α∨,x) , for all x ∈ areg.

2. If α ∈ R+
0 ∩ wR+

0 , then π̃rαw(rαx) ≤ π̃w(x)
1+(α∨,x) , for all x ∈ wa+.

3. If α ∈ R−
0 ∩wR+

0 , then there exists a constant C > 0, such that π̃rαw(rαx) ≤
Cπ̃w(x)(1 + (α∨, x))|R

+|, for all x ∈ wa+.

Proof of the lemma: Let us prove the first claim. Since α ∈ Π, rα maps
R+

0 r {α} onto itself, hence R+
0 ∩ rαwR+

0 onto (R+
0 ∩ wR+

0 ) r {α}. The first
claim follows.
Let us prove the second claim. We define therefore an injective map i from
R+

0 ∩ rαwR+
0 into (R+

0 ∩ wR+
0 ) r {α}, such that rαβ ≤w i(β) for all β. The

second claim will follow. Let β ∈ R+
0 ∩ rαwR+

0 . If rαβ ∈ R+
0 , then we set

i(β) = rαβ. Otherwise, we have (α, β) ≥ 0. Hence rαβ ≤w β. But rαβ ∈ wR+
0 ,

and therefore rαβ ≥w 0. Thus β ∈ R+
0 ∩ wR+

0 and we set i(β) = β. The map i
defined this way has all required properties.
Let us prove the third claim. We define this time an injective map i from I ⊂
R+

0 ∩rαwR+
0 into R+

0 ∩wR+
0 such that, if β ∈ I, then rαβ ≤w i(β)+ |(α∨, β)|α,

and otherwise rαβ ≤w |(α∨, β)|α. The third claim will follow. Assume that
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β ∈ R+
0 ∩ rαwR+

0 . If rαβ ∈ R+
0 , then we set i(β) = rαβ. Otherwise (α, β) ≤ 0.

Next, either β ∈ wR+
0 , in which case rαβ ≤w β+|(α∨, β)|α, and we set i(β) = β.

Or β ∈ wR−
0 in which case rαβ ≤w |(α∨, β)|α. The map i defined this way has

all required properties. �

By expanding G0 in (4) according to (11) we get

∇Gw
q (x) = Gw

q (x)q +
∑

α∈R+∩wR+

kαGrαw
rαq (rαx)α (12)

+
∑

α∈wR+

kα

∑

j∈N∗

{Grαw
rα(q−jα)(rαx) − Gw

(q−jα)(x)}α,

for all w ∈ W , all q ∈ wQ+, and all x ∈ wa+.

Step 1: Let us first establish the estimate

|Gw
0 (x)| ≤ Cπ̃w(x) ∀w ∈ W, ∀x ∈ wa+.

It is obvious for w = w0. Let us prove it by induction on l(w0) − l(w). For
q = 0, (12) amounts to

∂ξG
w
0 (x) =

∑

α∈R+∩wR+

kα(α, ξ)Grαw
0 (rαx).

Using the induction hypothesis and Lemma 3.5, we get

∂ξG
w
0 (x) ≤ C

∑

α∈R+∩wR+

kα(α, ξ)π̃rαw(rαx)

≤ C
∑

α∈R+∩wR+

kα

(α, ξ)

1 + (α∨, x)
π̃w(x)

= C∂ξπ̃w(x)

for all x ∈ wa+ and ξ ∈ wa+, in particular for ξ ∈ R+x. Since Gw
0 (0) ≤ C

provided C is large enough, we obtain the upper estimate

Gw
0 (x) ≤ Cπ̃w(x) ∀x ∈ wa+.

The same argument yields the lower estimate

Gw
0 (x) ≥ −Cπ̃w(x) ∀x ∈ wa+.

Step 2: Let us next establish the following estimate: There exist a constant C >
0 and h ∈ a+, such that for every w ∈ W , q ∈ wQ+ and x ∈ Cw

h := wh + wa+,

|Gw
q (x)| ≤ C|q|w π̃w(x)(1 + q(x))|R

+|. (13)

The case q = 0 was considered in step 1. Let q ∈ Q+
r{0} and w ∈ W . Assume

that (13) holds for all (q′, w′) ∈ w′Q+ × W such that |q′|w < |q|w or such that
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|q′|w = |q|w and l(w′) < l(w). Using (12), the induction hypothesis and Lemma
3.5, we get

∂ξ

[

C|q|w π̃w(1 + q)|R
+| − Gw

q

]

(x) ≥ (q, ξ)
[

|R+|C|q|w π̃w(1 + q)|R
+|−1 − Gw

q

]

(x), (14)

for all ξ ∈ wa+ and all x ∈ wh+wa+, provided C > 0 is large enough. Using now
(11) at the point wh we can also assume, by taking again larger C if necessary,
that

Gw
q (wh) ≤ C|q|w ,

for all q ∈ wQ+. Let now u ∈ wh + wa+ be such that (1 + (q, u)) = |R+|.
Equation (14) implies that

[C|q|w π̃w(1 + q)|R
+| − Gw

q ](x) ≥ 0, (15)

for all x in the segment [wh, u]. For x = wh + t(u − wh) with t ≥ 1, we have

∂u

[

C|q|w π̃w(1+q)|R
+−Gw

q

]

(x) ≥ (q, u)
|R+|

(1 + (q, x))

[

C|q|w π̃w(1+q)|R
+|−Gw

q ∨0
]

(x).

Thus (15) holds also for x = wh + t(u − wh) with t ≥ 1. This proves the upper
estimate

Gw
q (x) ≤ C|q|w π̃w(x)(1 + q(x))|R

+|,

in Cw
h . The same argument gives the lower estimate

Gw
q (x) ≥ −C|q|w π̃w(x)(1 + q(x))|R

+|.

Step 3: Let us now find a lower bound for Gw
0 . We prove by induction on

l(w0) − l(w) that there exist a constant c > 0 and h ∈ a+, such that

Gw
0 (x) ≥ cπw(x)

for all x ∈ Cw
h . We suppose that it is true for w′ such that l(w′) > l and we

consider w of length l. By the induction hypothesis there exists some h ∈ a+ and
c > 0 such that, Grαw

0 (rαx) ≥ cπrαw(rαx), for all x ∈ Cw
h and all α ∈ R+∩wR+.

Let now c′ > 0 be another constant. Assume that for some x0 ∈ Cw
h ,

[Gw
0 − c′πw](x0) ≤ [Gw

0 − c′πw](wh) − 1,

and suppose that x0 is such element of minimal norm in Cw
h . Let (α∗)α∈wΠ be

the dual basis of wΠ, i.e. for α and β in wΠ, (α∗, β) = 0 if α 6= β and = 1
otherwise. Let α0 ∈ wΠ be such that (α0, x0 − h) = maxβ∈wΠ(β, x0 − h). It
implies that, for small ǫ > 0 at least, x0 − ǫα∗

0 ∈ Cw
h . Hence

∂α∗
0
[Gw

0 − c′πw](x0) ≤ 0.

On the other hand we know that for x ∈ wa+,

∇[Gw
0 − c′πw](x) =

∑

β∈R+∩wR+

β[kβG
rβw

0 (rβx) − 2c′

|β|2
πw(x)

(β∨, x)
]. (16)

Now we need the following elementary lemma.
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Lemma 3.6 Let α ∈ wΠ. Assume that there exists β ∈ R+
0 ∩ wR+, such that

α ≤w β. Then there exists γ ∈ Π ∩ wR+, such that α ≤w γ.

Proof of the lemma: Let β =
∑

γ∈Π nγγ be the decomposition of β in Π.

Since β ∈ wR+
0 , there exists γ ∈ Π ∩ wR+

0 such that nγ > 0. We see moreover
that γ̃ :=

∑

γ∈Π∩wR+
0

nγγ ∈ wR+, and that β ≤w γ̃, which concludes the proof

of the lemma. �

Suppose now that there does not exist γ ∈ Π ∩ wR+ such that α0 ≤w γ.
Then by Lemma 3.6, no other β ∈ R+ ∩ wR+ satisfies α0 ≤w β. Thus from
equation (16) we get that for all y in the segment between x0 − ǫα∗

0 and x0,
∂α∗

0
[Gw

0 − c′πw](y) = 0, which contradicts the initial hypothesis on x0. We con-
clude that there exists γ ∈ Π ∩ wR+ such that α0 ≤w γ. Again from (16) we
get

∂α∗
0
[Gw

0 − c′πw](x0) ≥ c1cπrγw(rγx0) − c2c
′ πw(x0)

(α∨
0 , x0)

,

where c1 and c2 are positive constants. But with the first point of Lemma

3.5 we have πrγw(rγx0) = πw(x0)
(γ∨,x0)

. Moreover by our choice of α0, we have

(γ, x0) ≤ |γ|w(α0, x0). Thus if c′ is sufficiently small we get

∂α∗
0
[Gw

0 − c′πw ](x0) > 0

and a contradiction. The induction hypothesis for w follows.

Putting now the third steps together, we get the desired estimate of G0 away
from the walls. With Lemma 3.3, this concludes the proof of the theorem. �

The preceding theorem has for us a very important consequence. Let E be the
Euler operator. It is defined for f regular, and x ∈ a, by Ef(x) = (x,∇f(x)).
The following theorem generalizes the analogue result of [3] in the setting of
symmetric spaces. Our proof is in a certain sense more elementary than in [3],
because we do not make use of the descent technique of Harish-Chandra.
The first claim of the theorem will be needed in the estimate of the heat semi-
group (Proposition 5.2). It will also be used in the study of the asymptotic
convergence of the F0-processes (see [3]). It will allow us in [19] to generalize
some results of Anker, Bougerol, and Jeulin [3] for all k > 0. The second claim
is just a technical result needed in the proof of the estimate of the heat kernel
(see Theorem 5.2).

Theorem 3.3 1. There exists a constant K > 0 such that for any x ∈ a+,

0 ≤ E[log(eρF0)](x) ≤ K.
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2. We have the two following estimates

E[log(eρF0)](x) = |R+
0 | + O(

1

1 + minα∈R+(α, x)
),

∑

α∈R+
0

(α, x)
√

1 + (α, x)2
∂α(log(eρF0))(x) ≍ 1

1 + minα∈R+(α, x)
.

Proof of the theorem: With the formula (3) and (9), we get for any x ∈ a+,

E[log(eρF0)](x) =
1

|W |
∑

w∈W

[(ρ, x) − (ρ, wx)]
G0(wx)

F0(x)
. (17)

1. Formula (17) proves already the first inequality. For the second inequality
we show by induction on the length l(w) of w ∈ W that for all x ∈ a+,

(ρ, x) − (ρ, wx) ≤ K ′l(w) max
α∈R+

0 ∩wR−
|(α, wx)|, (18)

where K ′ = maxα∈R+
0
(ρ, α∨) is a constant. Suppose that the induction

hypothesis is true for all w of length less or equal to l. Let v ∈ W be
of length l + 1. Let α ∈ Π ∩ vR−, and let w = rαv. We have l(w) = l.
Moreover since α ∈ Π, rα maps R+

0 ∩wR−
0 onto (R+

0 ∩ vR−
0 ) r {α}. But

for all x ∈ a,

(ρ, x) − (ρ, vx) = (ρ, x) − (ρ, wx) − (α, vx)(ρ, α∨).

Thus (18) follows for v by using the induction hypothesis. Now with
Theorems 3.1 and 3.2, the first claim is proved.

2. These estimates result also from Formula (17) and the global estimates
(Theorems 3.1 and 3.2) of G0 and F0. The fact that |R+

0 | is the limit of
E[log(eρF0)](x) when (α, x) → ∞ for all α can be seen exactly like in [3]
by expanding the functions Fλ in series. This finishes the proof of the
theorem. �

3.3 Estimates of the derivatives

In this subsection we estimate the derivatives of the hypergeometric function
Gλ(x), first in x alone and next jointly in (λ, x).

Proposition 3.2 Let p be a polynomial of degree N . Then there exists a con-
stant C such that, for any λ ∈ h and for any x ∈ a,

|p(
∂

∂x
)Gλ(x)| ≤ C(1 + |λ|)NF0(x)emaxw ℜ(wλ,x).

Proof of the proposition: According to Proposition 3.1, we know that this
estimate holds with no derivative.
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Step 1 : Estimate away from walls
By induction, Formula (4) allows us to express on areg derivatives of Gλ in terms
of lower order derivatives and to estimate them away from walls. More precisely
we obtain this way the desired estimate when x stays at distance ≥ ǫ

1+|λ| from

walls.
Step 2 : Estimate on faces
Assume that x lies in a face aI (of minimal dimension), then (4) becomes (5),
which writes also

∂Aw,I(ξ)Gλ(x) =
∑

α∈R+rRI

kα

(α, ξ)

1 − e−(α,x)
(Gλ(rαx) − Gλ(x)) (19)

+ (ρ + λ, ξ)Gλ(x),

where

Aw,I(ξ) = ξ + 2
∑

α∈RI

kα

|α|2 (α, ξ)α.

Notice that the linear map Aw,I : a → a is one-to-one, since the expression

(Aw,I(ξ), ξ) = |ξ|2 + 2
∑

α∈RI

kα

|α|2 (α, ξ)2

is strictly positive for all nonzero ξ. By induction, (19) yields the following
estimate: for every ǫ > 0, there exists a constant C ≥ 0 such that, for all multi-
indices κ, for all λ ∈ h and for x ∈ aI such that minα∈R+rRI

|(α, x)| ≥ ǫ
1+|λ| ,

|( ∂

∂x
)κGλ(x)| ≤ |κ|!C|κ|(1 + |λ|)|κ|F0(x)emaxw∈W (wℜλ,x). (20)

Step 3 : Estimate near the faces
If x is near a face aI , we use (20) and the Taylor development of Gλ in the
orthogonal projection of x on aI . More precisely let ǫ > 0 be such that Cǫ < 1,
where C is the constant appearing in (20). Then there exists a constant C′ > 0
such that, for all multi-indices κ, for all λ ∈ h and for x ∈ a at distance ≤ ǫ

1+|λ|
from aI , such that minα∈R+rRI

|(α, x)| ≥ ǫ
1+|λ| ,

|( ∂

∂x
)κGλ(x)| ≤ C′(1 + |λ|)|κ|F0(x)emaxw∈W (wℜλ,x). (21)

Step 4 : Conclusion
Now we first use the step 3 near the origin. We get ǫ0 > 0 and C0 > 0, such
that (21) holds (with C0 in place of C′) for x ∈ a at distance ≤ ǫ0

1+|λ| from the

origin. Then we use the step 3 near the faces of dimension 1. We get ǫ1 and C1

such that (21) holds for x ∈ a at distance ≤ ǫ1
1+|λ| from any face of dimension

1, and at distance ≥ ǫ0
1+|λ| from the origin. And like this we get successively,
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for each d ∈ N, constants ǫd > 0 and Cd associated to the faces of dimension d.
Eventually we conclude with the first step. �

We can now derive the fundamental estimate:

Theorem 3.4 Let p and q be polynomials of degree M and N . Then there
exists a constant C such that, for all λ ∈ h and for all x ∈ a,

|p(
∂

∂λ
)q(

∂

∂x
)Gλ(x)| ≤ C(1 + |x|)M (1 + |λ|)NF0(x)emaxw ℜ(wλ,x).

Proof of the Theorem: The proof is standard. Theorem 3.4 is deduced from
Proposition 3.2 using Cauchy’s formula. More precisely, one integrates Gλ(x)
in the variable λ over n-tori with radii comparable to 1

1+|x| . �

Remark 3.2 This estimate holds true for Fλ too.

4 Hypergeometric Fourier transform and Schwartz

spaces

We first recall the definitions of the hypergeometric Fourier transform and of
its inverse, according to Cherednik [7]. Let µ be the measure on a given by

dµ(x) =
∏

α∈R+

|2 sinh(
α

2
, x)|2kα

︸ ︷︷ ︸

:=δ(x)

dx.

The hypergeometric Fourier transform H is defined for nice functions f on a by

H(f)(λ) =

∫

a

f(x)Gλ(−x)dµ(x), ∀λ ∈ h. (22)

Let ν be the asymmetric Plancherel measure on ia defined by

dν(λ) = c
∏

α∈R+

Γ((λ, α∨) + kα + 1
2kα

2
)Γ(−(λ, α∨) + kα + 1

2kα
2

+ 1)

Γ((λ, α∨) + 1
2kα

2
)Γ(−(λ, α∨) + 1

2kα
2

+ 1)
dλ,

where c is a normalizing constant. The inverse transform I is given for nice
functions h by

I(h)(x) =

∫

ia

h(λ)Gλ(x)dν(λ), ∀x ∈ a. (23)

In the case k = 0, H and I reduce to the classical Euclidean Fourier transform

F(f)(λ) =

∫

a

f(x)e−(λ,x)dx
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and its inverse

F−1(h)(x) = (2π)−n

∫

ia

h(λ)e(λ,x)dλ.

We shall consider the following function spaces. The classical Schwartz space
on ia is denoted by S(ia). Its topology is defined by the semi-norms

τp,N (h) = sup
λ∈ia

(1 + |λ|)N |p(
∂

∂λ
)h(λ)|,

where p is any polynomial and N ∈ N. As usual C∞
c (a) denotes the space of

C∞ functions on a with compact support and C∞
Γ (a) the subspace of functions

with support in a given compact subset Γ. Let us denote by C(a) the space of
C∞ functions on a, such that for all polynomials p and all N ∈ N,

sup
x∈a

(1 + |x|)NF0(x)−1|p(
∂

∂x
)f(x)| < +∞,

It is the Schwartz space on a associated to the measure µ. Its topology is defined
by the semi-norms

σp,N (f) = sup
x∈a

(1 + |x|)NF0(x)−1|p(
∂

∂x
)f(x)|.

Notice that according to Proposition 3.1, we may replace F0(x) by e−(ρ,x+) in
the definition of C(a) and its topology. Let us recall that x+ is the only point
in the orbit W · x which lies in a+.

Lemma 4.1 1. C(a) is a Fréchet space.

2. C∞
c (a) is a dense subspace of C(a).

Proof of the lemma: These facts are standard. The second one is proved for
example in [8], more precisely in Appendix A by M. Tinfou. �

Eventually, the Paley-Wiener space PW (h) consists of all entire functions h
on h which satisfy the following growth condition:

∃R ≥ 0, ∀N ∈ N, sup
λ∈h

(1 + |λ|)Ne−R|ℜλ|h(λ) < ∞.

Given a W -invariant convex compact subset Γ in a, PWΓ(h) denotes the sub-
space of PW (h) defined by the specific condition

∀N ∈ N, sup
λ∈h

(1 + |λ|)Ne−γ(−ℜλ)h(λ) < ∞.

Here γ(λ) = supx∈Γ(λ, x) is the gauge associated to the polar of Γ.
The mapping properties of the hypergeometric Fourier transform were investi-
gated by Opdam [14] and revisited by Cherednik [6]. Here are two main results
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(i) Paley-Wiener theorem: H and I are (up to positive constants) inverse
isomorphisms between C∞

c (a) and PW (h).

(ii) Plancherel type formula:

∫

a

f(x)g(−x)dµ(x) = const ·
∫

ia

Hf(λ)Hg(λ)dν(λ).

Opdam [14] proved eventually a more precise Paley-Wiener theorem: H and I
map C∞

Γ (a) and PWΓ(h) into each other (and hence are inverse maps, up to a
positive constant), where Γ is the convex hull of any W -orbit W · x in a. The
proof works as well for the polar sets

Γ = {x ∈ a | (Λ+, x+) ≤ 1}

where Λ is any regular element in a. We shall need this version of the Paley-
Wiener theorem with positive multiples of ρ.
We are now able to resume Anker’s approach [2] in order to analyze the hyper-
geometric Fourier transform in the Schwartz class. The following type of result
was already obtained by Delorme [8], following Harish-Chandra’s strategy. On
one hand, Delorme considers only W -invariant functions but, on the other hand,
he deals with the more difficult case where k < 0.

Theorem 4.1 The hypergeometric Fourier transform H and its inverse I are
topological isomorphisms between C(a) and S(ia).

Sketch of the proof: The proof is divided in two parts which correspond to
the following two lemmas. The first one is elementary.

Lemma 4.2 The hypergeometric Fourier transform H maps C(a) continuously
into S(ia).

Lemma 4.3 The inverse transform I : PW (ia) → C∞
c (a) is continuous for the

topology inherited from S(ia) and C(a) respectively.

Proof of the lemma: Let h ∈ PW and f = I(h). Given a semi-norm σ = σp,N

on C(a), we must find a semi-norm τ on S(ia) such that

σp,N (f) ≤ τ(h).

We denote by g the image of h by the inverse Euclidean Fourier transform
F−1. According to the Paley-Wiener theorems for the hypergeometric and
the Euclidean Fourier transforms, we have the following support conservation
property: supp(f) is contained in Γr = {x ∈ a | (ρ, x+) ≤ r} if and only if
supp(g) ⊂ Γr. Let ωj ∈ C∞(a) such that ωj = 0 inside Γj−1, ωj = 1 outside
Γj , and ωj is uniformly bounded in j ∈ N∗, as well as each derivative. Set
gj = ωjg, hj = F(gj) and fj = I(hj). Here is a crucial observation: we have
gj = g outside Γj , hence fj = f outside Γj , by the above support property. Let
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us estimate f = fj on Γj+1 r Γj . First of all, using Proposition 3.2, there exist
N ′ ∈ N and C > 0 such that

sup
x∈Γj+1rΓj

(1 + |x|)NF0(x)−1|p(
∂

∂x
)fj(x)| < CjNτ1,N ′(hj).

Next, by the Euclidean Fourier analysis

τ1,N ′(hj) ≤ C

N ′
∑

l=0

sup
x∈a

(|x| + 1)n+1|∇lgj(x)|.

Observe that gj and its derivatives vanish in Γj−1. Hence

jNτ1,N ′(hj) ≤ C

N ′
∑

l=0

sup
x∈arΓj−1

(|x| + 1)N+n+1|∇lg(x)|.

Again, by Euclidean Fourier analysis,

N ′
∑

l=0

sup
x∈a

(|x| + 1)N+n+1|∇lg(x)| ≤ CτN+n+1,N ′′(h).

In summary, there exist N ′′ ∈ N and C > 0 such that, for every j ∈ N∗,

sup
x∈Γj+1rΓj

(1 + |x|)NF0(x)−1|p(
∂

∂x
)f(x)| ≤ CτN+n+1,N ′′(h).

The remaining estimate of f in Γ1 is elementary. �

In the W -invariant setting, the hypergeometric Fourier transform and its in-
verse write

H(f)(λ) =

∫

a

f(x)Fλ(−x)dµ(x)

and

I(h)(λ) =

∫

ia

h(λ)Fλ(x)dν′(λ)

where

dν′(λ) = const ·
∏

α∈R+

Γ((λ, α∨) + kα + 1
2kα

2
)Γ(−(λ, α∨) + kα + 1

2kα
2
)

Γ((λ, α∨) + 1
2kα

2
)Γ(−(λ, α∨) + 1

2kα
2
)

dλ

= const · c(λ)−1c(−λ)−1 dλ

is the symmetric Plancherel measure or Harish-Chandra measure (see [7]). We
denote by C(a)W and S(ia)W the spaces of W -invariant functions of C(a) and
S(ia) respectively, which we identify also with their restriction to a+. From
Theorem 4.1 we get

Corollary 4.1 These transforms are topological isomorphisms between C(a)W

and S(ia)W .

We recover this way the main result of [8] in the easy case k > 0.
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5 The heat kernel

5.1 Solution to the Cauchy problem

In this section we solve the heat equation (with Cauchy data) for the Heckman-
Opdam Laplacian. We follow essentially the presentation of Rösler [17] section
4, and refer to this article for some proofs, which are identical in our setting.
We denote by D the modified Laplacian defined by

D =
1

2
(L − |ρ|2).

The heat operator H is defined by

H = ∂t −D

on C2,1(a×R). We consider the standard Cauchy problem: Given a continuous
bounded function f on a, find u ∈ C2,1(a × (0, +∞)) ∩ C0(a × [0, +∞)), such
that

{
Hu = 0 on a × (0, +∞)

u(·, 0) = f.
(24)

Definition 5.1 The heat kernel pt(x, y) is defined for x, y ∈ a and t > 0 by

pt(x, y) =

∫

ia

e−
t
2 (|λ|2+|ρ|2)Gλ(x)Gλ(−y)dν(λ). (25)

The heat semigroup (Pt, t ≥ 0) is defined for f ∈ C(a) and t ≥ 0 by

Ptf(x) :=

{ ∫

a
pt(x, y)f(y)dµ(y) if t > 0

f(x) if t = 0.

Using the hypergeometric Fourier transform and its inverse, we can express the
heat semigroup as follows

Ptf = I(λ 7→ e−
t
2 (|λ|2+|ρ|2)H(f)(λ))

and deduce its basic properties which are summarized in the following theorem
(the analogue of Theorem 4.7 in [17]).

Theorem 5.1 1. (Pt, t ≥ 0) is a strongly continuous semigroup on C(a).

2. Let f ∈ C(a). Then u(x, t) = Ptf(x) solves the Cauchy problem (24).

As in the Dunkl setting, we show next that (Pt, t ≥ 0) can be extended to a
strongly continuous semigroup on C0(a) (the space of continuous functions f :
a → C which vanish at infinity, equipped with the norm |f |∞ = supx∈a |f(x)|).
Consider D as a densely defined linear operator on C0(a) with domain C(a).

Proposition 5.1 1. The operator (D, C(a)) has a closure, which generates
a Feller semigroup (T (t), t ≥ 0) on C0(a).
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2. T (t) coincides with Pt on C(a).

Proof of the Proposition:

1. In order to apply the Hille-Yosida Theorem (see [9] Theorem 2.2 p.165)
we need to check the following two properties:

(a) Let f ∈ C(a). Assume that x0 is a global maximum of f . Then
Df(x0) ≤ 0 (this is the positive maximum principle).

(b) (µI −D)(C(a)) is dense in C0(a) for some µ > 0.

(a) follows from the explicit expression (1) of L. For (b) we prove with
Theorem 4.1 that (µI −D) maps C(a) onto itself for every µ > 0. In fact
if f ∈ C(a), then

H((µI −D)f)(λ) = (µ +
|ρ|2 + |λ|2

2
)H(f)(λ), λ ∈ ia.

2. The equality T (t)f = Ptf results from the uniqueness of solution to (24)
within the class of all differentiable functions on [0,∞) with values in
C0(a) (see [17]). �

Corollary 5.1 The heat kernel pt(x, y) is positive on a×a× (0,∞), symmetric
in (x, y), and satisfies the following properties:

1. For all x, y ∈ a, for all t > 0 and all w ∈ W , pt(wx, wy) = pt(x, y).

2. For all t > 0 and x ∈ a, pt(x, ·) ∈ C(a).

3. Let f ∈ Cb(a). Then

u(x, t) = Ptf(x) =

{ ∫

a
pt(x, y)f(y)dµ(y) if t > 0

f(x) if t = 0

is still a solution to the Cauchy problem (24).

4. For all t > 0 and all x ∈ a,
∫

a
pt(x, y)dµ(y) = 1.

Proof of the corollary: The positivity property results from the last propo-
sition, which implies that Ptf ≥ 0 for any f ∈ C(a) with f ≥ 0. Thus (see [17])
pt(x, y) ≥ 0 for all t > 0 and x, y ∈ a, by continuity of pt(x, ·). The invariance of
pt under the Weyl group results from the invariance of D when R+ is replaced
by wR+, for any w ∈ W . The symmetry of pt results in the same way from its
invariance by −Id, and from Formula (25). The second and third assumptions
are classical and result from basic properties of the Gλ (see [17]). The last
assumption results from the point 3 and the fact that T (t)1 = 1 (because D is
conservative, see [9] p.166). �
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The W -invariant heat kernel pW
t is defined for all x, y ∈ a and t > 0 by

pW
t (x, y) =

∑

w∈W

pt(x, wy) =
1

|W |
∑

w,w′∈W

pt(wx, w′y)

=

∫

ia

e−
t
2 (|λ|2+|ρ|2)Fλ(x)Fλ(−y)dν′(λ).

The W -invariant semigroup (PW
t , t ≥ 0) is defined for f ∈ C(a+), x ∈ a+ and

t ≥ 0, by

PW
t f(x) =

∫

a+

pW
t (x, y)f(y)dµ(y), if t > 0,

and PW
0 f(x) = f(x). We have naturally the analogue of Theorem 5.1. The

generator of (PW
t , t ≥ 0) is equal on C(a)W to the differential part D of D. The

analogue of Proposition 5.1 for D, is a consequence of Corollary 4.1 and the
following lemma. The second claim of this lemma will be used in [19].

Lemma 5.1 The space C(a)W is dense in C0(a+). Moreover if f ∈ C∞
c (a+),

there exists a sequence (uj)j ∈ C(a+)W which converges uniformly to f , and
which satisfies: there exists a positive constant C > 0, independent of j, such
that |∇uj(x)| ≤ C for all x ∈ a+, and if d(x, ∂a+) > 1

j
, then |∆uj(x)| ≤ C,

whereas if d(x, ∂a+) ≤ 1
j
, then |∆uj(x)

j
| ≤ C.

Proof of the lemma: The density result is a consequence of the Stone-
Weierstrass theorem. However here we need more information, so we need the
usual technique of regularization by convolution with an approximate of unity.
Let f ∈ C∞

c (a+). We can extend it to a by W -symmetry, and we get a function
f̃ which is symmetric, and Lipschitz. Let u be an approximate of unity, which is
a W -symmetric C∞ function, with compact support in the unit ball, and with
integral equal to one. Then we consider the sequence of functions (uj)j defined

by uj(x) :=
∫

a
f̃(x − y)jnu(jy)dy for x ∈ a. It is classical to see that uj is C∞

and converges uniformly to f̃ . It is also immediate that uj is W -symmetric. To

see that it has the required properties, observe that f̃ is derivable (in the sense
of distributions) with a bounded derivative near the walls, and it is C∞ away
from the walls. �

We set ht(x) = pt(0, x) = 1
|W |p

W
t (0, x) for x ∈ a+, and t > 0. We have the

formula:

ht(x) =

∫

ia

e−
t
2 (|λ|2+|ρ|2)Fλ(x)dν′(λ). (26)

We will now prove that the heat kernel is in fact strictly positive. As usually
we will prove this fact by using a strong minimum principle. The result may be
found in [15], but stated in a slightly different way. Thus we include a proof.
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Lemma 5.2 (Strong minimum principle) Let t0 ∈ R. Let u ∈ C2,1(a ×
(t0, +∞)) ∩ C(a × [t0, +∞)). Assume that Hu ≥ 0 on a × (t0, +∞), u ≥ 0 on
a × [t0, +∞), and u(0, t) > 0, for all t ≥ t0. Then u > 0 on a × (t0, +∞).

Proof of the lemma: Consider the ellipsoid

E : |x|2 + γ(t − t0)
2 < δ.

Assume that u > 0 on E, and that u(x∗, t∗) = 0 for some (x∗, t∗) ∈ ∂E, with
t∗ > t0. By hypothesis (x∗, t∗) can not be the north pole. Moreover by reducing
E if necessary, we can always suppose that it is the only point in E ∩ {t > t0}
where u vanishes. We shall perturb u in a small ball

B : |x − x∗|2 + (t − t∗)
2 < ǫ2,

with 0 < ǫ < min(1
2 |x∗|, 1

2 (t∗ − t0)
2). Consider the auxiliary function

ω(x, t) = e−rδ − e−r{|x|2+γ(t−t0)
2}.

Let us compute and estimate

Hω(x, t) = 2r
{

2r|x|2 − 1 + γ(t − t0) −
∑

α∈R+

kα(α, x) coth(
α

2
, x)

}

× e−r{|x|2+γ(t−t0)
2}.

This expression can be made strictly positive on B, by choosing r > 0 sufficiently
large. The function v = u + ǫ′ω

• is strictly positive on B \ E, since ω > 0 outside of E,

• is equal to u on B ∩ ∂E, since ω vanishes on ∂E,

• can be made strictly positive on ∂B ∩ E by choosing ǫ′ > 0 sufficiently
small.

Thus the minimum v∗ ≤ 0 of v on B is achieved at an inner point. There
∂tv = 0, ∇v = 0, and ∆v ≥ 0. Hence Hv ≤ 0. But on the other side
Hv = Hu + ǫ′Hω > 0, and we have a contradiction. �

We can deduce from this lemma the

Corollary 5.2 The heat kernel pt(x, y) is strictly positive on a × a × (0, +∞).

Proof of the corollary: First we apply the preceding lemma for the function
u(x, t) = ht(x). We have simply to prove that ht(0) is strictly positive for all
t > 0. This comes from Formula (26). Moreover since the preceding lemma
may be applied for any t0 > 0, we get that pt(x, 0) > 0 for any t > 0 and x ∈ a.
Suppose now that pt(x, y) = 0 for some x, y ∈ a − {0} and t > 0. We have

pt(x, y) =

∫

a

p t
2
(x, z)p t

2
(z, y)dµ(z).

But as p is positive and continuous, this implies that p t
2
(x, 0)p t

2
(0, y) = 0, and

we get a contradiction. �
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Remark 5.1 Since the space C(a) is dense in all the Lp(a, µ) spaces, for p ∈
[1,∞), the Hille-Yosida theorem (cf [9]) assures that D is closable on Lp(a, µ)
and generates a heat semigroup (T (p)(t), t ≥ 0), which is strongly continuous.
Moreover, still by an argument of uniqueness in the Cauchy problem, we see
that T (p) coincides with the preceding operator P on C(a). And by continuity
we see that T (p) is just the natural extension of P on Lp(a, µ). It is equal for
f ∈ Lp(a, µ), x ∈ a, and t > 0, to

T (p)(t)f(x) = Ptf(x) =

∫

a

pt(x, y)f(y)dµ(y).

Obviously the same discussion apply in the radial situation (with D and PW in
place of D and P respectively).

5.2 Estimates and asymptotic of the heat kernel

In this subsection we establish a sharp global estimate of ht (Theorem 5.2)
and an asymptotic of pT (x,

√
Ty) when T → ∞ (Proposition 5.3). Let γ :=

∑

α∈R+
kα, and like usually for x ∈ a, we denote by x+ its symmetric in a+.

A problem in order to get global estimate of pt is that it is not a convolution
operator. Thus pt(·, ·) can not be simply expressed in terms of the function
ht(·). Therefore the next Theorem is only a partial result. A better one could
be obtain if we had a global estimate of the Dunkl kernel.

Theorem 5.2 The following global estimate holds, for all t > 0 and x ∈ a:

ht(x) ≍ t−γ−n
2







∏

α∈R+
0

(1 + |(α, x)|)(1 + t + |(α, x)|)kα+k2α−1







× e−|ρ|2 t
2−(ρ,x+)− |x|2

2t .

Proof of the theorem: Thanks to Theorem 3.3, and the known expression of
the heat kernel associated to the Dunkl Laplacian [17], we can use exactly the
same proof as in [5]. In this proof it was made use of the heat kernel in balls
of radius R > 0 with boundary conditions. This may be avoided by using weak
parabolic minimum (or maximum) principles for unbounded domains, which
hold also because the heat kernel vanishes at infinity. �

Our next result gives an equivalent of pT (x,
√

Ty) when T tends to ∞. This
result will be needed in [19] for the proof of the convergence of the normalized
F0-process. However since the proof is easier in the W -invariant case, we begin
by the analogue result for pW

T (x,
√

Ty). Then we will simply explain what has
to be modified in the non invariant setting.

Proposition 5.2 There exists a constant K > 0, such that for any x ∈ a+ and
any y ∈ a+,

pW
T (x,

√
Ty) ∼ Ke−

|y|2
2 T−n

2 −|R+
0 |e−

|ρ|2
2 T F0(−x)F0(

√
Ty),
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when T → +∞.

Proof of the proposition: We resume the ”analysis away from walls” carried
out in [4]. It consists in expanding Fλ in the heat kernel expression

pW
T (x,

√
Ty) =

∫

ia

e−
T
2 (|λ|2+|ρ|2)Fλ(−x)Fλ(

√
Ty)dν′(λ) (27)

using the Harish-Chandra series [11]

Fλ(y) =
∑

w∈W

c(wλ)e(wλ−ρ,y)
∑

q∈Q+

Γq(wλ)e−(q,y).

Recall that this expression holds for y ∈ a+. Now we replace Fλ(
√

Ty) by its
development in series in the integral (27). The properties of the coefficients qχ

allow us to invert the integral term and the series (see [4] for more details).
Therefore we get

pW
T (x,

√
Ty) =

∑

q∈Q+

Eq(x, y)e−
|ρ|2
2 T−(ρ+q,

√
Ty) (28)

where (using the W -invariance of ν′ in λ), for x, y ∈ a,

Eq(x, y) = K

∫

ia

e−
T
2 |λ|2+(λ,

√
T y)Fλ(−x)c(λ)Γq(λ)dν′(λ).

Here K is a constant whose value may change in the sequel. We denote by b′

the function defined by

b′(λ)
c(λ)

π(λ)
dν′(λ) = dλ.

It is holomorphic in zero. Observe now that

π(
1

T

∂

∂λ

)e−
T
2 |λ|2 = π(−λ)e−

T
2 |λ|2 .

This formula comes from the fact that there are no skew symmetric polynomial
of strictly lower degree than |R+

0 |. Thus the function E0 may be rewritten into

E0(x, y) = K

∫

ia

e−
T
2 |λ|2π(

1

T

∂

∂λ

){e(λ,
√

Ty)Fλ(−x)b′(λ)−1}dλ.

Then we make the change of variables v = y+λ√
T

, and we get

E0(x, y)e−
|ρ|2
2 T−(ρ,

√
Ty) ∼ KF0(−x)e−

T
2 |ρ|2−(ρ,

√
Ty)− |y|2

2 T−D
2 π(

√
Ty)

×
∫

ia

e
1
2 |v|

2
F v−y√

T

(−x)

F0(−x)
b′

−1
(
v − y√

T
)dv.

The preceding integral has a finite limit, independent of x and y, when T tends
to infinity. Thus using the known asymptotic of F0 (Theorem 3.1), we conclude
that the first term of the series in (28) has the desired asymptotic. A similar
study would show that the leading terms are negligible. This concludes the
proof of the proposition. �
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Proposition 5.3 There exists a constant K > 0, such that for any x ∈ a, and
any y ∈ areg, if wy ∈ a+, then

pT (x,
√

Ty) ∼ Ke−
|y|2
2 T−n

2 −|R+
0 |e−

|ρ|2
2 T G0(wx)F0(

√
Ty),

when T → +∞.

Proof of the proposition: The proof is analogue as for the preceding proposi-
tion. First we have pT (x,

√
Ty) = pT (wx, w

√
Ty). Then in the integral expres-

sion of pT (wx, w
√

Ty) , we replace Gλ(−w
√

Ty) by its development in series.
Since −wy ∈ a−, we already know the dominant coefficients of the development.
Indeed they were computed by Opdam in [14]: they are all null except one which
is equal up to a constant to π(λ). But π(λ)dν(λ) behaves like dν′(λ) in zero,
i.e. like |π(λ)|2. Thus we can follow the rest of the proof of the preceding
proposition, and we get the result. �

5.3 The Poisson equation for D
Our sharp estimates of Theorem 3.4 allows us to prove the

Proposition 5.4 Let f ∈ L1(a, µ). Then the function Gf : x 7→
∫ ∞
0

Ptf(x)dt
is finite µ-a.e. If moreover F(f) ∈ L1(ia, ν), then Gf is bounded, belongs to
C2(a), and satisfies the Poisson equation DGf = −f .

Proof of the proposition: Let f ∈ L1(a, µ). For all x, and all ǫ > 0, we have

|Gf(x)| = |
∫ ∞

0

e−
t
2 |ρ|

2

∫

a

∫

ia

e−
t
2 |λ|

2

G(λ, x)G(−λ, y)dν(λ)f(y)dµ(y)dt|

≤ |
∫ 1

0

Ptf(x)dt| + C|f |1
∫ ∞

1

e−
t
2 |ρ|

2 |
∫

ia

e−
t
2 |λ|

2

dν(λ)|dt,

where C is a constant. But since for any t ≥ 0, Pt is a contraction on L1, we

have therefore |Ptf |1 ≤ |f |1. Thus |
∫ 1

0 Ptfdt|1 ≤ |f |1 < ∞. And then µ-a.e.,

|
∫ 1

0 Ptfdt| < ∞. Finally we get that µ a.e. Gf < ∞. This proves the first claim
of the proposition. Now let f ∈ L1(a, µ), be such that F(f) ∈ L1(ia, ν). Then
we have

|Gf(x)| ≤
∫

ia

F(f)(λ)

∫ ∞

0

e−
t
2 |(|λ|

2+ρ|2)dtdν(λ)

≤ 2

∫

ia

F(f)(λ)

|λ|2 + |ρ|2 dν(λ).

This shows that Gf is bounded. Moreover using a theorem of derivation under
the integral, and our precise estimate of the derivatives of the functions Gλ, we
see that Gf ∈ C2(a) and satisfies DGf = −f . This finishes the proof of the
proposition. �
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6 Appendix : computation of the Heckman-Opdam

laplacian

First we give another expression of the Cherednik operator:

Tξf(x) = ∂ξf(x) +
∑

α∈R+

kα

2
(α, ξ) coth

(α, x)

2
{f(x) − f(rα.x)}

−
∑

α∈R+

kα

2
(α, ξ)f(rα.x).

Now we compute

∑

α∈R+

kα

2
coth

(α, x)

2
{Tαf(x) − Tαf(rα.x)}

=
∑

α∈R+

kα

2
coth

(α, x)

2
{∂αf(x) − ∂αf(rα.x)}

+
∑

α,β∈R+

kαkβ

4
(α, β) coth

(α, x)

2
coth

(β, x)

2
{f(x) − f(rα.x)}

−
∑

α, β
︸︷︷︸

β′

∈R+

kα

k′
β

︷︸︸︷

kβ

4

−(α,β′)
︷ ︸︸ ︷

(α, β) coth
(α, x)

2
coth

(β′,x)
︷ ︸︸ ︷

(β, rα.x)

2
{f(rα.x) − f(

rαrβ′
︷︸︸︷
rβrα .x)}

−
∑

α,β∈R+

kαkβ

4
(α, β) coth

(α, x)

2
f(rβ .x)

+
∑

α,β∈R+

kαkβ

4
(α, β) coth

(α, x)

2
f(rβrα.x)

=
∑

α∈R+

kα

2
coth

(α, x)

2
{∂αf(x) − ∂αf(rα.x)}

+
∑

α,β∈R+

kαkβ

4
(α, β) coth

(α, x)

2
coth

(β, x)

2
{f(x) − f(rβrα.x)}

−
∑

α,β∈R+

kαkβ

4
(α, β) coth

(α, x)

2
{f(rβ .x) − f(rβrα.x)}.

Thanks to the following lemma, we can remove the hyperbolic cotangent in the
second sum.

Lemma 6.1 Let R be an integral root system (non necessarily reduced). Then

∑

α,β∈R+,rβ◦rα=τ

kαkβ(α, β){coth
(α, x)

2
coth

(β, x)

2
− 1} = 0
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for all non trivial rotation τ .

Proof of the lemma: Applying the Euclidean Laplacian to the Weyl denom-
inator formula ∏

α∈R+

{e
(α,x)

2 − e−
(α,x)

2 } =
∑

w∈W

e(w.ρ,x)

we get the identity

∑

α,β∈R+,α6=β

(α, β){coth
(α, x)

2
coth

(β, x)

2
− 1} = 0

which holds for all reduced root system. Now by restricting to the different root
systems of rank 2, we see that this relation is equivalent to the lemma.
• A1 × A1: trivial.
• A2:

-�
�
���

A
A

AAK

�
�

�
���

A
A
AAU

α1

α2 α1 + α2

The lemma reduces to the identity

k2

2
{− coth

α1

2
coth

α2

2
+coth

α1

2
coth

α1 + α2

2
+coth

α2

2
coth

α1 + α2

2
− 1} = 0.

• B2 = C2:

-�
�

���

@
@

@@I 6

�
�

�
��	

@
@

@@R?

α1

α2 α1 + α2 2α1 + α2

The lemma reduces to the identity

k1k2{ − coth
α1

2
coth

α2

2
+ coth

α1

2
coth

2α1 + α2

2

+ coth
α2

2
coth

α1 + α2

2
+ coth

α1 + α2

2
coth

2α1 + α2

2
− 2} = 0.

• BC2:
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-�
���

@
@@I 6
�

�
��	

@
@@R?

-�

?

6

α1 2α1

α2 α1 + α2
2α1 + α2

2α1 + 2α2

The lemma reduces to the following identities of type B2 = C2

k1k2{ − coth
α1

2
coth

α2

2
+ coth

α1

2
coth

2α1 + α2

2

+ coth
α2

2
coth

α1 + α2

2
+ coth

α1 + α2

2
coth

2α1 + α2

2
− 2} = 0

2k2k3{ − coth
α1

2
coth

α2

2
+ coth

α1

2
coth

2α1 + α2

2

+ coth
α2

2
coth

α1 + α2

2
+ coth

α1 + α2

2
coth

2α1 + α2

2
− 2} = 0.

• G2:

-�
�
���

A
A

AAK

�
�

�
���

A
A
AAU

�
�

�
�

��3

�
�

�
�

��+

6

?

Q
Q

Q
Q

QQk

Q
Q

Q
Q

QQs

α1

α2 α1 + α2 2α1 + α2 3α1 + α2

3α1 + 2α2
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The lemma reduces to the following identities, the last ones being of type A2

3k1k2

2
{ − coth

α1

2
coth

α2

2
+ coth

α1

2
coth

3α1 + α2

2

+ coth
α2

2
coth

α1 + α2

2
+ coth

α1 + α2

2
coth

3α1 + 2α2

2

+ coth
2α1 + α2

2
coth

3α1 + α2

2
+ coth

2α1 + α2

2
coth

3α1 + 2α2

2
− 4} = 0

k2
1

2
{ − coth

α1

2
coth

α1 + α2

2
+ coth

α1

2
coth

2α1 + α2

2

+ coth
α1 + α2

2
coth

2α1 + α2

2
− 1} = 0

3k2
2

2
{ − coth

α2

2
coth

3α1 + α2

2
+ coth

α2

2
coth

3α1 + 2α2

2

+ coth
3α1 + α2

2
coth

3α1 + 2α2

2
− 1} = 0.

�
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Eventually we get the expression of the Heckman-Opdam Laplacian:

Lf(x) =

n∑

j=1

T 2
ξj

f(x)

=
n∑

j=1

∂ξj
Tξj

f(x) +
∑

α∈R+

kα

2
coth

(α, x)

2

Tαf(x)−Tαf(rα.x)
︷ ︸︸ ︷

n∑

j=1

(α, ξj){Tξj
f(x) − Tξj

f(rα.x)}

−
∑

α∈R+

kα

2

n∑

j=1

(α, ξj)Tξj
f(rα.x)

︸ ︷︷ ︸

Tαf(rα.x)

= ∆f(x) +
∑

β∈R+

kβ

4

n∑

j=1

(β, ξj)
2

︸ ︷︷ ︸

|β|2

− sinh−2 (β,x)
2

︷ ︸︸ ︷

(1 − coth2 (β, x)

2
){f(x) − f(rβ .x)}

+
∑

β∈R+

kβ

2
coth

(β, x)

2

∂βf(x)+∂βf(rβ.x)
︷ ︸︸ ︷

n∑

j=1

(β, ξj){∂ξj
f(x) − ∂rβ .ξj

f(rβ .x)}

−
∑

β∈R+

kβ

2

n∑

j=1

(β, ξj)∂rβ .ξj
f(rβ .x)

︸ ︷︷ ︸

−∂βf(rβ .x)

+
∑

α∈R+

kα

2
coth

(α, x)

2
{∂αf(x) − ∂αf(rα.x)}

+
∑

α,β∈R+

kαkβ

4
(α, β){f(x) − f(rβrα.x)}

−
∑

α,β∈R+

kαkβ

4
(α, β) coth

(α, x)

2
{f(rβ.x) − f(rβrα.x)}

−
∑

α, β
︸︷︷︸

β′

∈R+

kα

k′
β

︷︸︸︷

kβ

4

−(α,β′)
︷ ︸︸ ︷

(α, β) coth

(β′,x)
︷ ︸︸ ︷

β, rα.x)

2
{f(rα.x) − f(

rαrβ′
︷︸︸︷
rβrα .x))}

+
∑

α,β∈R+

kαkβ

4
(α, β)f(rβrα.x)

= ∆f(x) +
∑

α∈R+

kα coth
(α, x)

2
∂αf(x) + |ρ|2f(x)

−
∑

α∈R+

kα

|α|2

4 sinh2 (α,x)
2

{f(x) − f(rα.x)}.
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