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Abstract. In this note we demonstrate the occurrence of first-order transitions
in temperature for some recently introduced generalized XY models, and also
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point out the connection between them and annealed site-diluted (lattice-gas)
continuous-spin models.

PACS: 05.50.+q, 61.30.-v, 64.60
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1 Introduction

In some recent papers [28, 8, 25, 24] a class of generalized XY models was intro-
duced and studied. These models are ferromagnetic and, in the simplest case,
restricted to a nearest-neighbour XY - type interaction. In contrast to the plane
rotator interaction, they involve 3-component spins (just as the classical Heisen-
berg model does) and they possess an O(2) symmetry with respect to the X and Y
components. This part is multiplied by a product of single-site terms, depending
on the third (Z) component only, which is raised to an exponent p > 0. In the
following, this factor will be simply called “single-site term”.

For p = 1 one recovers the standard ferromagnetic XY model, in which the in-
teraction is defined by the scalar product of the nearest neighbour spin projections
on the XY - plane.

With the help of some correlation inequalities it was found [28] that in d = 2
there is a transition between a low-temperature Berezinskiı̌-Kosterlitz-Thouless
(BKT) phase and a high-temperature phase, whereas, in d ≥ 3 dimensions, the
existence of magnetic order at low temperatures was established.

The nature of this transition, however, was left open in these works. In d = 2
one might expect either a BKT scenario (an infinite-order transition between the
BKT phase and a high-temperature phase), which was found when this exponent
p is small, or a first-order one between the BKT phase and the high-temperature
phase , and in d = 3 there may be an ordinary second-order transition (again
found for small p), or a first-order transition. Recall that the first-order transition
means coexistence of different infinite-volume Gibbs measures. Here this implies
a jump in the energy density, in d ≥ 3 (but not in d = 2) accompanied by a jump
in the magnetisation.

In this note we point out that, by a minor adaptation of the reflection posi-
tive chessboard-estimates analysis for free-energy contours (which goes back to
[9, 21] and which was recently applied to study magnetic transitions for nonlinear
classical vector spin models in [12, 13, 14, 4, 22]), the occurrence of a first-order
transition for sufficiently large values of the exponent p can be proven. Such a
transition was already suspected to occur in d = 2, based on the numerical data of
[24]. In the last part of our paper we compare this result with further numerical
data.

We remark that with some small modifications our analysis covers also the
case of the first-order, instead of e.g. a BKT infinite-order, transition in some an-
nealed diluted lattice-gas models (see [6], [18], Sect. 2.4, and [7]), and even in some
continuum magnetic systems [19]. In this case the role of the nonlinearity is played
by terms involving either the lattice-gas particle occupation numbers [6, 18, 7], or
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the particle density [19]. This becomes in particular evident, when we consider
the model of [28] in the square-ditch approximation, see (2). Then the generalized
XY model reduces to an annealed site-diluted plane rotator model.

With minor modifications we can also treat generalized (3-component Heisen-
berg interactions for n-vector spins with n ≥ 4) or annealed dilute Heisenberg
models. In that case we expect that in d = 2 there will be a transition between two
phases with exponentially decaying correlations, similarly to what is expected for
the nonlinear models of [12, 13].

2 Model, proofs and results

For general background on the theory of Gibbs measures on lattice systems we
refer to [11, 16, 17, 32, 31]. The method of reflection positivity and chessboard
estimates [27] is reviewed in [30] and in the last 4 chapters of [16]. The fact that
our models satisfy the property of reflection positivity follows immediately from
the conditions described there.

Our systems are as follows. On each site of the lattice Z
d we have a three-

component unit spin, described by spherical coordinates φ and θ; our models
are then described by a nearest neighbour generalized XY interaction, i.e. the
plane rotator interaction in the φ-variables combined with a product of p-powers
of single-site terms in the θ-variables [28]. For a finite Λ ⊂ Z

d the (dimensionless)
Hamiltonian reads:

HΛ(φ, θ) := −
∑

〈i,j〉⊂Λ

[sin(θi) sin(θj)]
p cos(φi − φj) (1)

The integer exponent p > 0 is a parameter in our model, and a large value of
p means that spins can only interact noticeably when they are in a narrow ditch
around the equator θ = π/2, whose width is of order O(1/

√
p). This narrow and

deep ditch plays a similar role as the narrow-well potentials of [12, 13, 4].
We present our proof for the two-dimensional model where the ditch has a

square, instead of a polynomial, shape. Extensions to polynomial shapes then can
be done as in [12, 13, 4]. Indeed, our proof can be seen to be almost a corollary of
these papers, to which we refer for further details.

So, we consider the square-ditch approximation of the generalized XY model
(1) with Hamiltonians

HΛ
ε (φ, θ) := −

∑

〈i,j〉⊂Λ

n(θi)n(θj) cos(φi − φj) , n(θ) := 1ε(θ) , (2)
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where 1ε(x) denotes the characteristic function of the interval [π/2 − ε, π/2 + ε].
The square-ditch approximation (2) implies that two spins can interact only

when they both are in the ditch; in other words, one can interpret (2) as the Hamil-
tonian of annealed site-diluted plane rotator model with lattice-gas occupation
numbers n = 0, 1, as discussed in [6, 7], and as is also suggested by the notation.

Notice that the (a priori) one-site distribution of those numbers is induced by
the uniform probability θ-measure on the interval [0, π]. Therefore, ε is related to
the chemical potential ν that governs the lattice-gas overall particle density. By
the standard definition of the lattice-gas chemical potential we obtain:

ν = β−1 ln
2ε

π − 2ε
, (3)

where β−1 = Θ denotes the (dimensionless) temperature of the system. Hence
at fixed temperature the chemical potential becomes negative and large in mag-
nitude when ε is close to zero, which corresponds to a small lattice-gas density;
whereas for ε → π/2, i.e. for ν → +∞, one obtains a non-diluted plane rotator
model (2) with n(θ) = 1 for all θ.

For the proof we consider in a two-dimensional lattice a square Λ, of a linear
size N which is a multiple of 4, with periodic boundary conditions. Associated to
Hamiltonians HΛ

ε (φ, θ) are Gibbs measures

µΛ(dφ, dθ) =
1

ZΛ
exp[−βHΛ

ε (φ, θ)]µΛ
0 (dφ, dθ) ,

which are reflection positive (RP). Here µ0 denotes the rotation-invariant product
measure, and β is the dimensionless inverse temperature.

RP is the key property for the chessboard estimates. They allow us then, follow-
ing e.g. [13], to obtain contour estimates. First we can establish the estimate on the
partition function

ZΛ ≥ 1

and furthermore, by integrating over intervals |θ| ≤ ε and |φ| ≤ π/20, we see that
also

ZΛ ≥ (C1 ε exp(2C2β))|Λ|

with constants C1 and C2 = cos(π/20) (which is close to 1) which are independent
of ε.

On the other hand, let us call a site ordered, if the spin on that site, as well as all
its neighbours, are in the ditch, and disordered, if it is not in the ditch, and consider
the same universal contour as in [30, 13], consisting of alternating diagonals at
distance 2, which, in turn, consist of ordered and disordered sites (separated by
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sites which are neither); thus we find that the restricted partition function obtained
by integrating all configurations compatible with the universal contour satisfies

ZΛ
univcont ≤ ((2ε)3/4 exp(β))|Λ|.

Then, just as in the proof of Theorem 1 of [12] we obtain

ZΛ
univcont

ZΛ
≤ ε|Λ|/(4+C3)

with C3 some constant determined by the choice of C1 and C2.
This implies by standard arguments that, when ε is chosen small enough, con-

tours separating ordered and disordered sites are suppressed, uniformly on a tem-
perature Θ interval; since at low temperatures most sites are ordered and at high
temperatures most sites are disordered, there will be a temperature, where disor-
dered and ordered phase(s) (or infinite-volume Gibbs measures) coexist.

We notice that by the Mermin-Wagner theorem [23, 10, 20, 26], in two dimen-
sions all Gibbs measures are rotation-invariant, so that the spontaneous magneti-
sation is necessarily zero. Since the results of [28] imply that the generalized XY
models (1) at low temperatures display a BKT phase, our present statement says
that for these models with high-exponent-p-potentials the transition between this
phase and the high-temperature one is first-order.

In the three-dimensional version of the model (1), however, the low-temperature
phase is magnetized, but again the transition in temperature to the high-temperature
regime is first-order.

Notice also that in general proofs involving contour arguments do not provide
very sharp estimates about the optimal parameter values for which a first-order
transition appears, therefore we will not pursue this road. Below we discuss what
we expect to be the situation based on numerical data, that is, which is the value of
the parameter p above which one might expect the first-order transition to appear.

Before ending this section, let us go back in some more detail to the lattice-gas
interpretation of the square-ditch approximation (2).

The theorem just proven implies that, for d = 2, the XY lattice-gas model pos-
sesses a first-order transition on a suitable curve in the (Θ, ε)-plane. This answers
an open question from [7] about the first-order phase transition in d = 2 diluted
plane rotator model (2). On the whole our results complement those of [7, 19] and
[28] for this model, since they concern different parts of the phase diagram in the
(Θ, ν)- or in the (Θ, ε)-plane, as well as the mechanism of the phase transition.

For example, in [19] the existence of the low-temperature BKT phase in the di-
luted plane rotator model is proven for a relatively large positive ν, but without any
conclusion on the mechanism connecting low-temperature and high-temperature
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behaviour. On the other hand, the Ginibre and the Wells inequalities applied to
this model (in the same way as it was done for the generalized XY model in [28])
ensure the existence of a low-temperature BKT phase for any bounded ν, but again
without conclusion on the mechanism of the transition.

Moreover, the same analysis leads also to the existence of a low-temperature
BKT phase for generalized XY models with annealed site-dilution, for all ν, simi-
larly to what happens for the plane rotator model.

In [7] the first-order phase transition with simultaneous jumps of magnetiza-
tion and particle density was established in the d > 2 diluted plane rotator model
in some domain of both types of ν (positive and negative) at very low temperatures.

In the present note we find (as a byproduct of our generalized-XY-model analy-
sis) a first order-phase transition in the diluted plane rotator model (2) for moderate
negative ν, since we consider in (3) sufficiently small ε as well as sufficiently small
Θ. As mentioned before, this answers positively the question from [7] about the
first-order phase transition in model (2), at least for those ν.

Based on [6], one knows that staggered states may be involved in the mech-
anism of a first order transition at positive chemical potentials, at intermediate
temperatures; this will not happen in the regime of negative chemical potentials
which is covered by our results.

3 Related results and extensions

Extensions of the above theorem to other pair interaction potentials are also pos-
sible.

For example, the models studied in [12, 13, 14, 4] involve n−component spins
for any (n ≥ 2) and possess an O(n) symmetry. Indeed, their interactions are
functions of the scalar product between the two interacting spins, having the shape
of a narrow well.

The spin interaction in [18], Sect. 2.4, is of the same type and may be viewed
as a diluted version of the Patrascioiu-Seiler model with a narrow-ditch interaction.
For discussion of its low-temperature phase see e.g. [1].

The proof scheme indicated above works for various combinations of single-
site terms and nearest neighbour interaction terms, of which at least some need to
have a narrow shape. The spins can be n-component spins, and the symmetry
can be greeneither O(n) or O(2) or some symmetry in between. For example, we
might have narrow-ditch single-site potentials (as mentioned above), or narrow-
well single-site potentials as in [9], as well as narrow-well interactions ([12, 13, 14])
or narrow-ditch interactions (see [18], Sect. 2.4, and [2]). The interactions can have
one well (or ditch) for ferromagnets, two (for liquid crystal models, possessing
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RP (n−1) symmetry), or more and could also include diagonal nearest neigbour
terms (as in [22], inspired by the model [29]). The narrowness of such terms then
either creates or reinforces the first-order behaviour.

Another kind of possible extensions is related to quantum versions of our mod-
els. This observation is inspired by the recent paper [2], which studies, in partic-
ular, a non-linear quantum XY model. The main ingredient for their arguments
is the quantum RP property, which is a quite subtle matter, but the ferromagnetic
quantum XY model does verify it. Since in (2) the interaction terms are multiplied
by simple single-site classical random variables (the scalar occupation numbers),
the square-ditch Hamiltonian also verifies the quantum RP property. Then accord-
ing to [2] we can claim the existence of the first order phase transition in this
quantum model, since we proved it for the classical model (2) and we know that
its quantum analogue verifies the quantum RP property.

4 Numerical estimates of transition orders and tem-

peratures

When d = 3, a Mean Field (MF) study of the ordering transition is at least
qualitatively correct, and relatively feasible in computational terms; moreover,
this treatment can be refined by using various cluster-variational techniques; we
used here a Two-Site Cluster (TSC) approach, and both treatments follow Ref.
[28]. Calculations were carried out for 5 ≤ p ≤ 12, and then p = 12, 16, 20.
In both cases we found that, upon increasing p, the transition changes from second
to first order; the two treatments exhibited different thresholds, i.e. a threshold of
p between 5 and 6 for MF, and a threshold of p between 10 and 11 for TSC; re-
sults of both treatments are presented and compared in Tables (1) and (2), where
first-order transitional properties, such as the energy jump, ∆U∗, and the order pa-
rameter at the transition, M , are shown for p ≥ 11, where both treatments predict
a first-order transition.

As a side remark, we also notice that the results of [3] imply the existence of a
first-order transition for any p ≥ 6 in sufficently high dimension.

On the other hand, simulation results, obtained for d = 3 and to be reported
elsewhere [5], show a second-order transition for p = 8, and suggest a first-order
one for p = 12, 16, 20.
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[4] M. Biskup and R. Kotecký. Forbidden gap argument for phase transitions
proved by means of chessboard estimates. arXiv:math-ph/0505011, Commun.
Math. Phys., to appear, 2006.

[5] H. Chamati and S. Romano. Article in preparation.
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Table 1: MF results for transitional properties of the generalized XY models in
three dimensions, obtained with different values of the exponent p.

p ΘMF type ∆U∗ M

5 1.1082 II
6 1.0287 I
7 0.9741 I
8 0.9336 I
9 0.9019 I

10 0.8762 I
11 0.8548 I 1.2336 0.7506
12 0.8366 I 1.3140 0.7687
16 0.7836 I 1.5355 0.7836
20 0.7486 I 1.6712 0.8387

Table 2: TSC results for transitional properties of the generalized XY models in
three dimensions, obtained with different values of the exponent p.

p ΘTSC type ∆U∗ M

5 1.1011 II
6 1.0416 II
7 0.9935 II
8 0.9537 II
9 0.9199 II

10 0.8907 II
11 0.8659 I 0.3242 0.3994
12 0.8461 I 0.5437 0.5098
16 0.7906 I 1.0097 0.6721
20 0.7549 I 1.2578 0.7374
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