
HAL Id: hal-00023393
https://hal.science/hal-00023393

Submitted on 26 Apr 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bayesian Networks Implementation of the Dempster
Shafer Theory to Model Reliability Uncertainty

Christophe Simon, Philippe Weber

To cite this version:
Christophe Simon, Philippe Weber. Bayesian Networks Implementation of the Dempster Shafer The-
ory to Model Reliability Uncertainty. Workshop on Bayesian Networks in Dependability (BND2006)
in the First International Conference on Availiability, Reliability and Security, ARES 2006, Vienna,
Austria, April 20-22, 2006., 2006, Vienna, Austria. pp.788-793. �hal-00023393�

https://hal.science/hal-00023393
https://hal.archives-ouvertes.fr


Bayesian Networks Implementation of the Dempster Shafer Theory to Model

Reliability Uncertainty

Christophe SIMON, Philippe WEBER

CRAN UMR 7039, CNRS-UHP-INPL

ESSTIN, 2 Rue Jean Lamour, 54519 Vandoeuvre, France

Phone: (++33) 383-685-134, email: christophe.simon@esstin.uhp-nancy.fr

Abstract

In many reliability studies based on data, reliability en-

gineers face incompleteness and incoherency problems in

the data. Probabilistic tools badly handle these kinds of

problems thus, it is better to use formalism from the evi-

dence theory. From our knowledge, there is a lack of indus-

trial tools that implement this theory. In this paper, the im-

plementation of the Dempster Shafer theory in a Bayesian

Network tool is proposed in order to compute system relia-

bility and manage epistemic uncertainty propagation. The

basic concepts used are presented and some numerical ex-

periments are made to show how uncertainty is propagated.

1. Introduction

Bayesian Networks bring a solution to estimate system

performances by concentrating in a compact structure the

states of component functioning and provide a causal or

diagnostic analysis of the system [3]. Works on system

safety and Bayesian Networks were developed by Boudali

and Dugan [2] and Bobbio, et al., [1] who explained how

fault trees can be implemented by using Bayesian Net-

works. Moreover investigations are made in dynamic re-

liability analyses, the paper [23] describes the reliability

modelling with a dynamic Bayesian Network that simulates

a stochastic process with exogenous constraints. The dy-

namic model proposed by Weber, et al. [22] is built from

the analysis of a system functioning and malfunctioning.

This model allows computing of state probability distribu-

tions by taking into account both the age of components and

maintenance operations.

From an industrial point of view, due to the complex-

ity of a system, it is classically accepted that observations

made on the system are partially realised. For instance, the

observations recorded in data can be done after inspection

or maintenance action therefore the complete knowledge is

not available at any time. During the use of these data with

uncensored measures, we can point out an epistemic uncer-

tainty on the state of the component and its influence on

the state of the system. In the probability framework, in-

complete data should be censored or completed according

to the principle of minimal commitment. It corresponds to

the maximum entropy principle. The corresponding proba-

bility masses are equally distributed on each possible state.

In the evidence framework, the belief mass associated to

the incomplete data, that is to say uncertainty on the state,

is allocated to the uncertain state modality according to the

minimal commitment principle. Thanks to the evidence the-

ory formalism, the principle of minimal commitment for-

malizes the idea that we should never give more support

than justified to any subset of the frame of discernment

[18]. Consequently, the probability framework imposes a

random view of uncertainty that is debatable. Therefore,

the framework of the evidence theory and more precisely

the Dempster-Shafer theory seems more appropriate to ex-

press and process the epistemic uncertainty.

Bayesian Networks are powerful modelling tools when

the problem is handled under a frequentist or subjectivist

point of view [19]. In addition, Valuable Networks [16, 7]

are powerful tools that are well adapted when the modelling

problem is handled under the knowledge point of view.

Shenoy, et al [5] have shown the advantages and drawbacks

of these tools. Moreover, they have proved their equivalence

under some conditions.

In this article, we propose a particular integration of the

Dempster-Shafer theory in the Bayesian Network tool in or-

der to handle the epistemic uncertainty problem. Moreover,

we take advantage of the power of the Bayesian Network

tools to model system reliability. Thus, the second section

of the paper is dedicated to the basics of the evidence the-

ory. Moreover, the paper shows how exact inference algo-

rithms used by the software simulating Bayesian Networks

provide a support to the simulation of the evidence theory

applied to the reliability evaluation. The third section of



the paper deals with an application to the reliability analy-

sis of the bridge system and how the epistemic uncertainty

is propagated through the Bayesian Network.

2 The basics of the evidence theory

The evidence theory sometimes called belief functions

has been initiated by Dempster with his works on mile-

stones superior and inferior bounds of a family of probabil-

ity distributions [8] then reinforced by Shafer [15]. Differ-

ent processing models of imperfect information have thus

appeared: upper and lower model [21]; Dempster-Shafer

Theory and Hint Model of Kholas and Monney [12]; trans-

ferable Belief Model [18].

The model of Dempster-Shafer is a generalized Bayesian

model. The idea of this model is to allocate a number be-

tween 0 and 1 to indicate a degree of belief on a proposal

as in the probability framework. Nevertheless, it is not

considered a probability but a belief mass. The distribu-

tion of masses is called basic belief assignment. As in the

probability framework, the following allocation function is

found: m : 2Ω → [0, 1] such that:

m (∅) = 0;
∑

A∈Ω

m (A) = 1

where Ω is the frame of discernment. This frame is the

set of disjoint component states or reasoning modalities.

The basic belief assignment concerns the possibility to as-

sign masses to every 2Ω combinations and then expressing

epistemic uncertainty.

2.1 Basic belief assignment

The frame of discernment used in reliability study is gen-

erally described by the following equations:

Ω = {Up, Down} , m : 2Ω → [0, 1]

And

2Ω =

{

m (∅) = 0; m ({Up})
m ({Down}); m ({Up or Down})

Under the following constraint:
∑

A∈Ω

m (A) = 1

The basic belief assignment is possible on the

{Up or Down} modality where {Up} and {Down} are the

two disjoint states of a component. This basic belief as-

signment can be considered as a priori probability for root

nodes in evidence networks. It is called a priori belief mass.

The frame previously defined is the one commonly used

in reliability studies. Besides, it corresponds to assumptions

made in fault tree analyses. Currently, reliability engineers

extend this framework to multistate components. In this

case, the number of combinations in the allocation func-

tion m increases and consequently the number of epistemic

modalities also increases. This is a well known practice

problem in evidence theory. Nevertheless, in the case of

reliability studies based on databases, basic belief assign-

ment are computed directly from data and this computing

mitigate engineers’ efforts.

2.2 Evidence inference

In the literature, the inference algorithm based on princi-

ples stated by Pearl [14] is recommended to propagate cal-

culations in an evidence network. Recent algorithms de-

veloped for the inference in Bayesian Networks as junc-

tion trees by Jensen [11] provide a more efficient solution

to propagate calculations in acyclic oriented graphs such as

evidence networks. We propose to use this exact inference

algorithm to simulate the behaviour of an evidence network

in the Bayesian Network software (Bayesialab c©).

To compute the system reliability, we should model con-

junctive and disjunctive operators and integrate them in

Bayesian Networks tool to replace conditional probability

tables. These operators take into account the particular

{Up or Down} modality into the Bayesian inference. The

truth tables have been given by Guth in [9] and transcribed

in network nodes (see figures 1 and 2). As one can see in

these tables, the main difficulty is to define the relation be-

tween {Up or Down} input modality and all output modal-

ities. For an AND gate between two inputs (figure 1) if one

input is in state {Up} then the output is in the same state as

the second input. If one input is in state {Down} then there

is no ambiguity for the output which is obviously in state

{Down}. If one input is in uncertain state {Up or Down}
then two cases are encountered. Either the second input is

in state {Up} or {Up or Down} then the output is in state

{Up or Down}. If the second input is in state {Down}
then it is sure that the output is in state {Down}.

Tables 1 and 2 are called conditional belief tables. They

are introduced in a Evidence Network implemented by the

industrial tool Bayesialab as shown on figure 6. Nodes con-

tain the conjunctive or disjunctive operator chosen accord-

ing to the reliability problem modelled.

If the reliability analysis is extended to multistate com-

ponents but restricted to series and/or parallel connections

between subsystems, some efforts should be made on condi-

tional belief tables. For example, if a three-state reasoning

is introduced for a subsystem composed of 2 components

and the output is also based on three states, the number of

parameters for the conditional belief tables will increase to

73. Practically, conditional belief tables are equal to the



Figure 1. Conditional belief Table for AND
gate.

Figure 2. Conditional belief Table for OR gate.

truth tables of an AND or OR Gates. Thus, only the rela-

tion between the basic disjoint modalities of the inputs (not

the epistemic modalities) should be defined. The relations

between all other modalities were deduced directly from De

Morgan laws.

2.3 Plausibility and belief functions

Once the reliability engineer has defined the basic belief

assignment for each component and the network has com-

puted the assignment for each modality of the system state,

we expect information about the system failure probability.

In the Dempster Shafer Theory, two main functions help us

obtain some information about this probability, plausibility

and belief functions.

The plausibility function characterizes the degree in

which a proposal A is plausible based on available evi-

dence B expressed by each basic belief mass that con-

tributes to the realization of A. This function is defined as

pls : 2Ω → [0, 1] computed by the following equation:

pls (A) =
∑

B|A∩B 6=∅

m (B) (1)

A belief function exists and characterizes the degree in

which a proposal A is believable based on available ev-

idence expressed by each basic belief mass assigned on

Figure 3. Table of bel (Reliability).

the frame of discernment. This function is defined as

bel : 2Ω → [0, 1] computed by the following equation:

bel (A) =
∑

B|B⊆A

m (B) (2)

Using these calculus rules, we obtain an interesting char-

acteristic that is the bounding of the probability by the mea-

sures of belief and plausibility [13].

bel (A) ≤ Pr (A) ≤ pls (A) (3)

This property is well known and Shafer has already de-

fine it in his works in 1976 [15], and many authors have

used this relation between interval [bel, pls] and basic be-

lief assignment ([9], [4], [10]).

To compute belief and plausibility functions within

a Bayesian Network tool, two different nodes (bel, pls)
should be defined according to the conditional belief tables

shown on figures 3 and 4. These tables transcribed equa-

tions 1 and 2. As Bayesian Networks respect the additive

constraint (
∑

a∈Ω

Pr (a) = 1), belief and plausibility func-

tions should be computed in two separate nodes as shown

on the top of figure 6. This is the only solution to release

this constraint. Nevertheless, the additive constraint should

be respected inside each node. Thus, we need to introduce a

Notbelieve (resp. Implausibility) modality in the believe

node (resp. plausibility node).

One can note that these tables and the network structure

(figure 6) can also be used to compute plausibility and be-

lief functions on each component or node in order to have

information on probability boxes that bound the real value

of the failure probability for each subsystem.



Figure 4. Table of pls (Reliability).

Figure 5. Reliability diagram

3 Application to reliability

To argue the interest of the approach, we used the bridge

system previously defined by Torres-Toledano in [20]. This

system is a simple study case, however it allows to under-

stand all the problematic of the reliability modelling in its

general frame. Its Bayesian Network model to compute re-

liability has been given by Torres-Toledano and Sucar [20]

and its reliability diagram is given on figure 5.

3.1 A case study

The case study is composed of five components C1 to

C5. Each component can be in one of the two disjoint states

{Up} and {Down}. The elementary events Ei that is to say

the failures driving the component from state {Up} to state

{Down} are independent. The system is homogeneous and

no repairs are considered. These assumptions are usual in

reliability studies and do not reduce the generality of the

case study.

According to these assumptions, let us defined numerical

values for failure rates of each component (λ1 = λ2 =
λ5 = 10−3h−1; λ3 = λ4 = 2.10−3h−1).

The time of mission of the system is TF = 200h, then

R1 (TF ) = R2 (TF ) = R5 (TF ) = 0, 81873
and R3 (TF ) = R4 (TF ) = 0, 67032.

3.2 The total probability theorem

To compute the exact value of the reliability of the sys-

tem, a formal way through the total probability theorem is

Figure 6. Evidence Network.

investigated. In this method, two structures should be con-

sidered according to the state of C5. The total probability

theorem helps to write the equation of the system reliability

Rs (t):

Rs(t) = P (S is {Up} |C5 is {Up} , t) · R5(t)
+P (S is {Up} |C5 is {Down} , t) · (1 − R5(t))

(4)

Where Ri(t) is the reliability of the component Ci ac-

cording to the time t. By relation 4, the value of the relia-

bility RS (TF ) = 0, 85013 is obtained.

3.3 The evidence network model

Let us consider the Bayesian Network tool

Bayesialab c©(http://www.bayesia.com) implementing

the Dempster Shafer Theory and lets it apply to the case

study. The structure of the evidence network model is

presented on figure 6. For evidence networks, a priori

belief masses have been defined according to the reliability

of each component. Figure 7 shows how a priori belief

masses are assigned for component C1.

3.4 A case with no epistemic uncertainty

According to the evidence network shown on figure 6,

the reliability of the system is evaluated thanks to the infer-

ence algorithm. The result is exactly equal to the one com-



Figure 7. a priori belief mass assignment on
C1.

Up Down Up or Down

Rs(TF ) 0, 85013 0, 14987 0

Table 1. System reliability by inference with-
out uncertainty

puted by the total probability theorem. It confirms the ex-

actness of evidence networks. If no epistemic uncertainty is

introduced in component states (m ({Up or Down}) = 0),
then the reliability value previously computed is confirmed.

Obviously, the Dempster Shafer Theory offers a gen-

eral Bayesian framework entirely compatible with the prob-

abilistic one. Results without uncertainty can be ob-

served on figure 8 and the following condition is ob-

tained: bel (Rs(TF ) is {Up}) = Pr (Rs(TF ) is {Up}) =
pls (Rs(TF ) is {Up}) = 0, 85013.

3.5 A case with an epistemic uncertainty

Let us consider the case of an epistemic uncertainty in-

troduced on the state of one component. The propagation

of this uncertainty is observed in the Bayesian Network tool

(see figures 9 and 10). According to the importance of the

component in the system and the quantity of uncertainty, the

Figure 8. Inference results (m (C1 = 0)).

Figure 9. Inference results (m (C1 = 0, 1)).

Figure 10. Inference results (m (C1 = 0, 3)).

epistemic uncertainty on the system reliability can vary im-

portantly. For example, if a mass of epistemic uncertainty

m (C1 is {Up or Down}) = 0, 1 is introduced in compo-

nent C1 then:

bel (Rs(TF ) is {Up}) = 0, 8408
Pr (Rs(TF ) is {Up}) = 0, 85013
pls (Rs(TF ) is {Up}) = 0, 8595

This calculus leads to m (Rs (TF ) is {Up or Down}) =
0, 0187 (figure 9). If the uncertainty on C1 grows up to 0, 3
m (Rs (TF ) is {Up or Down}) goes to 0, 0561 (figure 10)

and the following values are obtained:

bel (Rs(TF ) is {Up}) = 0, 8221
Pr (Rs(TF ) is {Up}) = 0, 85013
pls (Rs(TF ) is {Up}) = 0, 8782

If the basic belief assignment on the system state ex-

presses an epistemic uncertainty then bel and pls measures

are not equal and bound the system reliability.

In the framework of the evidence theory, we recognize a

two-level mental model: the creedal level where beliefs are

held and represented by belief functions, and the pignistic

level where decisions are made [17]. Many transformation

functions can be found: the pignistic transformation defined

by smets [17] or the plausibility transformation [6]. In this

paper, we have chosen to work on the credal level and ma-

nipulate the basic belief assignments and their propagation



through Bayesian Networks inference. The goal is to help

the reliability engineer to handle the epistemic uncertainty

of the system state according to the epistemic uncertainty of

the state of the components. The belief measure informs the

reliability engineer about the worst value of the reliability of

the system. By running diagnostic or intercausal modes of

Bayesian Networks inference, the reliability engineers can

identify the components which introduce the epistemic un-

certainty on the state of the system. Then, he can plan all

needed inspection to reduce this uncertainty.

4 Conclusion

In this paper, the powerful representation and the exact-

ness of Bayesian Networks in reliability studies are shown.

In some context such as incomplete data in databases or

incoherency between data and reliability models, we can

use uncensored data with the Dempster Shafer Theory to

take the epistemic uncertainty into account. The paper has

shown how basic concepts of the Dempster Shafer Theory

can be implemented in Bayesian Networks tool to manage

this kind of uncertainty and to extract the most of informa-

tion from available data.
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