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On Continuity Properties of the Law

of Integrals of Lévy Processes

Jean Bertoin* Alexander Lindner! Ross Maller*

April 26, 2006

Abstract

Let (£,m) be a bivariate Lévy process such that the integral fooo e ¢~ dn, con-
verges almost surely. We characterise, in terms of their Lévy measures, those Lévy
processes for which (the distribution of) this integral has atoms. We then turn at-
tention to almost surely convergent integrals of the form [ := fooo g(&) dt, where g is
a deterministic function. We give sufficient conditions ensuring that I has no atoms,
and under further conditions derive that I has a Lebesgue density. The results are
also extended to certain integrals of the form fooo 9(&) dYy, where YV is an almost

surely strictly increasing stochastic process, independent of &.

1 Introduction

The aim of this paper is to study continuity properties of stationary distributions of
generalised Ornstein-Uhlenbeck processes and of distributions of random variables of the
form [ g(&) dt for a Lévy process £ and a general function g : R — R.

For a bivariate Lévy process (£,¢) = (&, (i)i>0, the generalised Ornstein-Uhlenbeck
(O-U) process (V;)i>o is defined as

t
Vi =e % (/ €§Sd§s+V0), t>0,
0
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where 1} is a finite random variable, independent of (&, (). This process appears as a
natural continuous time generalisation of random recurrence equations, as shown by
de Haan and Karandikar [[[1], and has applications in many areas, such as risk theory
(e.g. Paulsen [[[9]), perpetuities (e.g. Dufresne [f]), financial time series (e.g. Kliippelberg
et al. [[[4]) or option pricing (e.g. Yor [BJ)), to name just a few. See also Carmona et
al. [, B for further properties of this process. Lindner and Maller [I7q] have shown that
the existence of a stationary solution to the generalised O-U process is closely related to
the almost sure convergence of the stochastic integral fg e %= dn, as t — oo, where (£,n)
is a bivariate Lévy process, and 1 can be explicitly constructed in terms of (&, (). The sta-
tionary distribution is then given by fooo e~%- dn,. Necessary and sufficient conditions for
the convergence of fooo e~% dn, were obtained by Erickson and Maller [[]. Distributional
properties of the limit variable and hence of the stationary distribution of generalised O-U
processes are of particular interest. Gjessing and Paulsen [d] determined the distribution
in many cases when ¢ and 7 are independent and the Lévy measure of (£,7) is finite.
Carmona et al. [f] considered the case when 7; = ¢ and the jump part of £ is of finite
variation. Under some additional assumptions, they showed that fooo e~%-ds is absolutely
continuous, and its density satisfies a certain integro-differential equation. In Section
we shall be concerned with continuity properties of the limit variable fooo e~%= dn, with-
out any restrictions on (£, 7), assuming only convergence of the integral. We shall give a
complete characterisation of when this integral has atoms, in terms of the characteristic
triplet of (£,n). This characterisation relies on a similar result of Grincevicius [[I0] for
“perpetuities” which are a kind of discrete time analogue of Lévy integrals.

Then, in Section [J, we turn our attention to continuity properties of the distribution
of the integral fooo g(&) dt, where & = (&)¢>0 is a one-dimensional Lévy process with non-
zero Lévy measure and g is a general deterministic Borel function. Such integrals appear
in a variety of situations, for example concerningshattering phenomena in fragmentation
processes, see, e.g.,.Haas [[J]. Fourier analysis and Malliavin calculus are classical tools for
establishing the absolute continuity of distributions of functionals of stochastic processes.
In a different direction, the book of Davydov et al. [{] treats three different methods
for proving absolute continuity of such functionals: the “stratification method”, the “su-
perstructure method” and the “method of differential operators”. Chapter 4 in [{] pays
particular attention to Poisson functionals, which includes integrals of Lévy processes.
While it may be hard to check the conditions and apply these methods in general (in
particular to find admissible semigroups for the stratification method), it has been car-
ried out in some cases. For example, Davydov [[] gives sufficient conditions for absolute
continuity of integrals of the form fol g(Xy) dt for strictly stationary processes (X;);>0 and
quite general g. Concerning integrals of Lévy processes, Lifshits [[[G], p. 757, has shown



that fo (&) dt is absolutely continuous if £ is a Lévy process with infinite and absolutely
continuous Lévy measure, and ¢ is locally Lipschitz-continuous and such that on a set
of full Lebesgue measure in [0, 1] the derivative ¢’ of g exists and is continuous and non-
vanishing; see also Problem 15.1 in [f]. For our study of atoms of the distributions of
integrals such as fo (&) dt, we will impose less restrictive assumptions on ¢ in Section [J.
Note also that [[] and the references given there are usually concerned with the absolute
continuity of functionals such as fo (&) dt on the compact interval [0, 1], while we are
concerned with integrals over (0, c0). That absolute continuity of the distribution of inte-
grals over compact sets and over (0,00) can be rather different topics is straightforward
by considering the special case of compound Poisson processes. See also part (iii) of The-
orem R.3 below for situations where the integral over every finite time horizon may be
absolutely continuous, while the limit variable can degenerate to a constant.

Section [] is organised as follows: we start with some motivating examples, in some of
which fo (&) dt has atoms while in others it does not. Then, in Section .4 we present
some general criteria which ensure the continuity of the distribution of fo (&) dt. The
proofs there are based on the sample path behaviour and on excursion theory for Lévy
processes. Then, in Section B.J we use a simple form of the stratification method to obtain
absolute continuity of fo (&) dt for certain cases of g and £ (which assume however no
differentiability properties of g); the results are also extended to more general integrals
of the form fo (&) dY:, where Y = (Y3)i>0 is a strictly increasing stochastic process,
independent of the Lévy process &.

Observe that our focus will be on continuity properties of the distribution of the
integral fo (&) dt (or similar integrals), under the assumption that it is finite a.s. A
highly relevant question is to ask under which conditions the integral does converge. It is
important of course that any conditions we impose to ensure continuity of the integral,
or its absence, be compatible with convergence. We only occasionally address this issue,
when it is possible to give some simple sufficient (or, sometimes, necessary) conditions for
convergence. OQur approach is essentially to assume convergence and study the properties
of the resulting integral. For a much fuller discussion of conditions for convergence per se
we refer to Erickson and Maller [[, §], who give an overview of known results as well as
new results on the finiteness of Lévy integrals.

We end this section by setting some notation. Recall that a Lévy process X = (Xi)i>0
in R? (d € N) is a stochastically continuous process having independent and stationary
increments, which has almost surely cadlag paths and satisfies Xy = 0. For each Lévy
process, there exists a unique constant v = vx = (71,...,7) € R?, a symmetric posi-

tive semidefinite matrix ¥ = Y, and a Lévy measure IT = ITx on R?\ {0} satisfying



Jga min{1, |z|?} ILx (dz) < oo, such that for all ¢ > 0 and 6 € R? we have

(1/1)log Eexp(i(, X.)) = i(y,6) — (6, 56) + / (€9 — 1 i(z,0)11) T (d2).

Rd

Here, (-,-) and | - | denote the inner product and Euclidian norm in R?, and 1, is the
indicator function of a set A. Together, (v, X, II) form the characteristic triplet of X. The
Brownian motion part of X is described by the covariance matrix Xx. If d = 1, then we will
also write 0% for Ly, and if d = 2 and X = (£, n), the upper and lower diagonal elements of
Yx are given by o and 7. We refer to Bertoin [[] and Sato [R1]] for further definitions and
basic properties of Lévy processes. Integrals of the form f; e~%- dn, for a bivariate Lévy
process (£,n) are interpreted as the usual stochastic integral with respect to its completed
natural filtration as in Protter [R0], where fab denotes integrals over the set [a, b], and f:+
denotes integrals over the set (a, b]. If n (or a more general stochastic process Y = (Y3)>0
as an integrator) is of bounded variation on compacts, then the stochastic integral is equal
to the pathwise computed Lebesgue-Stieltjes integral, and will also be interpreted in this
sense. Integrals such as fooo are to be interpreted as limits of integrals of the form fot
as t — 0o, where the convergence will typically be almost sure. The jump of a cadlag
process (Z;)i>o at time ¢ will be denoted by AZ, := Z;, — Z,_ = Z; — lim,y; Z,,, with the
convention Z;_ := 0. The symbol 2 il be used to denote equality in distribution of two
random variables, and «L» will denote convergence in probability. Almost surely holding
statements will be abbreviated by “a.s.”, and properties which hold almost everywhere
by “a.e.”. The Lebesgue measure on R will be denoted by A. Throughout the paper, in
order to avoid trivialities, we will assume that £ and 7 are different from the zero process
t— 0.

2 Atoms of exponential Lévy integrals

Let (&§,m) = (&, n:)e>0 be a bivariate Lévy process. Erickson and Maller [[]] characterised
when the exponential integral I; := fot e~%- dn,, t > 0, converges almost surely to a finite

random variable I as t — oo. They showed that this happens if and only if

(M) I1,,(dy) < oc. (2.1)

lim §& = 400 a.s.,, and /
o™ Ag(log [y)

R\[—e,e€]

Here, the function A is defined by

Ae(y) =1+ /ly e ((2,00))dz, y>1.

As a byproduct of the proof, they obtained that I; converges almost surely to a finite

random variable I if and only if it converges in distribution to I, as t — oo. Observe that
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the convergence condition (2-]]) depends on the marginal distributions of £ and 7 only,
but not on the bivariate dependence structure of ¢ and 7.

In this section we shall be interested in the question of whether the limit random
variable I can have a distribution with atoms. A complete characterisation of this will be
given in Theorem P.3. A similar result for the characterisation of the existence of atoms
for discrete time perpetuities was obtained by Grincevicius [[[(], Theorem 1. We will adapt
his proof to show that fooo e~%- dn, has atoms if and only if it is constant. This will be a
consequence of the following lemma, which is formulated for certain families of random
fixed point equations.

Lemma 2.1. For everyt > 0, let QQ;, M; and v, be random variables such that M; # 0
a.s., and P, is independent of (Qy, My). Suppose ¥ is a random variable satisfying

'l/} — Qt -+ Mtwt fOI' allt Z 0,

and such that
w24y, forallt>0,

and suppose further that

Qtid} as t— oo.

Then 1 has an atom if and only if it is a constant random variable.

Proof. We adapt the proof of Theorem 1 of [[[(]. Suppose that ¢ has an atom at a € R,
so that

P =a)=:5>0.
Then for all € € (0, 3) there exists some d > 0 such that

P —a| < 26) < B +¢. (2.2)
Since Q; 0 1b as t — oo, there exists ¢’ = ¢/(¢) such that
P(| — Q] > 6) = P(|[Myhy| > 0) <e forallt >t. (2.3)

Then (£3) and (E3) imply that, for all ¢ > ¢/

P(|Qi —al < 6) < P(|Qr — | = 0) + P(|¢ — a] < 26) <+ 2. (2.4)
Now observe that, for all ¢ > 0,

B = Plp=0a) <P =alp—Ql <)+ P(l—Q>0)
= | P(Qu+ Mes = 0. Mis| < 6) a0 < 9) + Plli = @il 2 &

= " P(Qi+ Mis = a,|Mis| < 8) Py = 5) + P(l) — Qi] = 9).

s€Dy



Here, the last equation follows from the fact that P(Q; + M;s = a) can be positive for
only a countable number of s, s € Dy, say, since the number of atoms of any random

variable is countable.

Since Y . p, P(1y = s) < 1for all s, and since P([t)—Qy| > 6) < e for t > t', by (R.3),
it follows that for such ¢ there is some s, € R such that

ﬁt = P(Qt+Mt$t:a,|MtSt| <5) Zﬁ—g (25)
Observing that, for all t > 0
W =a} U{Q: + Mys; = a, [Mys| < 6} C{[ — Q| = 0} U{|Q: — a| < 5},

we obtain for ¢ > ¢’ that

P(l = Q] = 0) + P(|Q: — a| <)
> P<w :a) +P<Qt+Mt3t = aa‘Mt5t| < 5) —P(Qt+Mt3t = aa‘Mt5t| < 0,9 :a)
= ﬁ+ﬁt_ﬁtp(¢t:5t)-

We used here that P(M; = 0) = 0. From (£.3) and (B.4) it now follows that
B Py =81) > B+ —e— (B+2¢) = — 3e.

Using (B-H) and the fact that v 2 1y, we obtain

3e 3e
(¢ = s1) (Vr = 1) > 3, B—¢
Letting ¢ — 0 and observing that P(¢¥ = a) > 0, it follows that P(¢) = a) = 1. O

As a consequence, we obtain:

Theorem 2.2. Let (£,71) be a bivariate Lévy process such that & converges almost surely
to o0 ast — oo, and let I, := fg e~%- dn,. Denote the characteristic triplet of (£,7) by
(7,5, e ), where v = (71,72), and denote the upper diagonal element of ¥ by of. Then
the following assertions are equivalent:

(i) I converges a.s. to a finite random variable I ast — oo, where I has an atom.
(ii) I, converges a.s. to a constant random variable as t — oo.
ii) 3k e R\ {0} such that P ( [fe S dn, = k(1 —e &) forall t >0) = 1.

0

(iv) 3 k € R\ {0} such that e=* = E(—n/k), i.e. e ¢ is the stochastic exponential of
—n/k.



(v) 3 ke R\ {0} such that

1k
25777:<k k2>0-§7

the Lévy measure Il¢,, of (§,n) is concentrated on {(z, k(1 —e™™)) : x € R},

and
Y=kl = 02/2 + / (e7" — 14 ) ¢ (dx). (2.6)
x2+k2(1—e—7)2<1
Proof. To show the equivalence of (i) and (ii), suppose that [ exists a.s. as a finite random

variable and define

[e%¢) t
v=1= / e - dns, Qi:=1; = / e % dns and M, = e &, t>0.
0 0

Then ~
t+

So we have the setup of Lemma P.1]:
Y= Qi+ My, t >0, (2.7)

Q) converges in probability (in fact, a.s.) to ¢ as t — oo, and ¥ is independent of (Q;, M;)
for all ¢ > 0. We conclude from Lemma P.1] that I = ¢ is finite a.s. and has an atom if
and only if it is constant, equivalently, if (ii) holds.

Now suppose that (ii) holds and that the constant value of the limit variable is k.
Then it follows from (B.7) that, a.s.,

t
k= / e %= dn, 4+ e %k, for each t > 0,
0

hence

t
/ e dn, = k(1 —e*) forallt>0. (2.8)
0

Observe that &k = 0 is impossible by uniqueness of the solution to the stochastic differential
equation dfot X,_dn, = 0 (which implies e=% = X, = 0, impossible). Since Q; and e~
are cadlag functions, (B.§) holds on an event of probability 1. This shows that (ii) implies
(iii). The converse is clear, since lim; ., {; = 0o a.s. by assumption.

Dividing (2-§) by —k, we obtain e~ = 1+ [} e=%-d(—n,/k), which is just the defining
equation for e™¢ = &£(—n/k), see Protter 0], p. 84, giving the equivalence of (iii) and
(iv).

The equivalence of (iv) and (v) follows by straightforward but messy calculations using
the Doléans-Dade formula and the Lévy-It6 decomposition (for the calculation of 7), and

is relegated to the appendix. O



Remarks. (i) Under stronger assumptions, Theorem P.] may be strengthened to con-
clude that [ has a density or is constant. Suppose (£,7) is a bivariate Lévy process
such that & has no positive jumps and drifts to oo, i.e. lim; . & = oo a.s. Assume
further that [p,,_, ;(log|y[) IL;(dy) < co. Then the condition (.1) is fulfilled, and thus
I := limy_o fot e~%-dn, exists and is finite a.s. Applying the strong Markov property at
the first passage time 7T, := inf{t > 0: & > 2} = inf{t > 0: & = z} (since £ has no
positive jumps) yields the identity

Ty
_[ = / e—fs—dns + e_x.ll
0

where I’ has the same distribution as I and is independent of fOT”” e %-dn,. Thus [ is a
self-decomposable random variable, and as a consequence its law is infinitely divisible and
unimodal and hence has a density, if it is not constant; see Theorem 53.1, p. 404, in Sato
B1)]. Thus I is continuous. A generalisation of this result to the case of multivariate 7 was
recently obtained by Kondo et al. [[J].

(ii) As another important special case, suppose ¢ is a Brownian motion with a positive
drift, and in addition that fR\[_m] (log |y|) IL,(dy) < co. Then I is finite a.s. From Condi-
tion (iii) of Theorem we then see that Anm, = 0, so the condition can hold only if 7
is also a Brownian motion. By Ito’s lemma, Condition (iii) implies dr, = k(d&, — 0Zdt/2),
or, equivalently, n, = k(& — 0¢t/2). Similarly, if  is a Brownian motion, (iii) of Theorem
R.7 can only hold if ¢ is a Brownian motion and the same relation is satisfied. Thus we
can conclude that, apart from this degenerate case, [~ e Pdn, and [~ e *dB;, when

convergent a.s., have continuous distributions, for a Brownian motion B;.

3 Integrals with general ¢

We now turn our attention to the question of whether the integral fo (&) dt can have
atoms, where ¢ is a more general deterministic function, and £ = (&);>¢ is a non-zero
Lévy process. To start with, we shall discuss some natural motivating examples. Then we
shall present a few criteria that ensure the absence of atoms. Finally, we shall obtain by a
different technique, which is a variant of the stratification method, a sufficient condition
for the absolute continuity of the integral.

3.1 Some examples

Example 3.1. Let (&)i>0 be a compound Poisson process (with no drift) and g : R — R a
deterministic function such that g(0) # 0 and such that fo (&) dt is finite almost surely.
Then fo (&) dt has a Lebesque density.



Proof. Denote the time of the first jump of & by 7. Recall that £ is always assumed

nondegenerate, so T} is a nondegenerate exponential random variable. We can write

/0 (&) dt = g(O)T + / " g(Cn) dt

(from which it is evident that the integral on the righthand side converges a.s.). Recall
that the jump times in a compound Poisson process are independent of the jump sizes.
By the strong Markov property of Lévy processes (see [[[], Prop. 6, p. 20), the process
(&y+t)t>0, and a fortiori the random variable fo (&7,44) dt, are independent of 3. From
this follows the claim, since ¢(0)7; has a Lebesgue density and hence its sum with any

independent random variable has also. O

The following example shows that this property does not carry over to compound

Poisson processes with drift, at least not if the support of ¢g is compact.

Example 3.2. Let £ = (&)>0 = (at + Qi)i>0 be a compound Poisson process together
with a deterministic drift a # 0, such that lim;_., & = sgn(a)oo a.s. Suppose that g is
a deterministic integrable Borel function with compact support. Then fo (&) dt is finite

almost surely and its distribution has atoms.

Proof. Since ¢ drifts to £o0 a.s., there is a random time 7 after which & ¢ supp g for all
t; that is, if £ enters supp g at all; if it doesn’t, then g(§;) = 0 for all ¢ > 0. In either case,
f > g(&)dt = 0, and since g is integrable and the number of jumps of @ until time 7 is
almost surely finite, it follows that fo (&) dt < oo a.s.

Suppose now that a > 0, so that £ drifts to +o00 a.s., and let r = sup(supp g). If
r < 0 there is a positive probability that & does not enter supp g, except, possibly, when
r =t =0, and then ¢g(&) = 0; in either case, fo (&) dt = 0 with positive probability,
giving an atom at 0. If » > 0, let 7" = r/a. The event A that the first jump of £ occurs at or
after time 7T has positive probability. On A, & = at for all 0 < ¢ < T. Also, since ¢ drifts
to 400 a.s., on a subset of A with positive probability £ does not re-enter supp g after
time 7T'. On this subset, we have fo (&) dt = fo (at) dt, which is constant. Similarly if
a <0. U

Our third example relies on the following classical criterion for the continuity of in-
finitely divisible distributions (cf. Theorem 27.4, p. 175, in Sato [21]}), that we shall further

use in the sequel.

Lemma 3.3. Let p be an infinitely divisible distribution on IR with an infinite Lévy

measure, or with a non-zero Gaussian component. Then u is continuous.

If € has infinite Lévy measure, or no drift, Example may fail, as shown next:



Example 3.4. Suppose that € is a subordinator with infinite Lévy measure, or is a non-

zero subordinator with no drift. Then fooo Lio1y(&) dt is finite a.s. and has no atoms.

Proof. Since & drifts to oo a.s. it is clear that fooo Ljo,17(&) dt is finite almost surely. For
x > 0 define
L, :=inf{t >0:& > x}.

Then [;° 110.1j(&) dt = Ly, and for a > 0 we have

{Li=a} = {inf{u:§ >1} =a}
= {¢{ <1lforalle >0, & c>1foralle >0}
- {ga = 1} U {Aga > 0}

A Lévy process is stochastically continuous so P(A&, > 0) = 0. If ¢ is a subordinator with
infinite Lévy measure, then P(§, = 1) = 0 by Lemma B.3. Thus we get P(L; = a) = 0.
If £ is a subordinator with no drift, then A¢,, > 0 a.s. ([, p. 77) (and this includes the

case of a compound Poisson), so again

P(L, = a) = P(L; = a, A&y, > 0) < P(AE, > 0) = 0. O

3.2 Some criteria for continuity

We shall now present some fairly general criteria which ensure the continuity of the
distribution of the integral fo (&)dt whenever the latter is finite a.s. and the Lévy
process & is transient (see Bertoin [, Section 1.4 or Sato [RI]|, Section 35 for definitions

and properties of transient and recurrent Lévy processes).

Remarks. (i) One might expect that the existence of fo (&) dt already implies the
transience of . That this is not true in general was shown by Erickson and Maller [{],
Remark (ii) after Theorem 6. As a counterexample, we may take £ to be a compound
Poisson process with Lévy measure II(dz) = v/20; 4+ 6_ 5. Note that [zII(dz) = 0, so
¢ is recurrent. Nonetheless £ never returns to 0 after its first exit-time and thus 0 <
foool{gt 0y dt < o0 a.s.

(ii) Sufficient conditions under which the existence of [* g(&) dt implies the transience
of ¢ are mentioned in Remark (iii) after Theorem 6 of [§. One such sufficient condition

is that there is some non-empty open interval J C R such that inf{g(z) : z € J} > 0.

We shall now turn to the question of atoms of fo (&) dt. For the next theorem,
denote by E° the set of inner points of a set E, by E its topological closure and by 0F

its boundary.
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Theorem 3.5. Let g : R — [0,00) be a deterministic Borel function. Assume that its
support, suppg, is compact, that g > 0 on (suppg)°, and that 0 € (suppg)°. Write
Osupp g := supp g\ (supp g)° for the boundary of supp g. Let & be a transient Lévy process,
and assume that I := [ g(&)dt is almost surely finite. If either

(i) € is of unbounded variation and Jsupp g is finite,

or

(ii) € is of bounded variation with zero drift and Osupp g is at most countable,

then the distribution of I has no atoms.

Proof. 1f £ is a compound Poisson process without drift, the result follows from Exam-
ple B.1], so we will assume that ¢ has unbounded variation, or is of bounded variation with
zero drift such that its Lévy measure is infinite, and that g has the properties specified in
the statement of the theorem.

Write .
I(x) ::/0 g(&)dt, x € (0,00].

Then = — I(x) is increasing and I = I(o0) is finite a.s. by assumption, so /(z) < oo a.s.
for all z > 0. Plainly I(z) is a.s. continuous at each = > 0. Assume by way of contradiction
that there is some a > 0 such that P(I = a) > 0, and proceed as follows.
Define
To:=inf{u >0:I(u) =s}, s>0.

Since &; is adapted to the natural filtration {F;}i>o of (&;)i>0, S0 is g(€.) (g is Borel), thus
{T, > u} = {J, 9(&)dt < s} € F,, because I(-) is adapted to {F;};>0. Thus T is a
stopping time for each s > 0. Further, T > 0 for all s > 0. Since 0 € (supp ¢)°, it is clear
that a # 0. By assumption, £ is transient, so there is a finite random time ¢ such that
& ¢ suppyg for all t > o. Then I(c0) = I(0), and it follows that P{T, < oo} > 0.

Define the stopping times 7, := T,_1/, A n. Then (7,)nen is strictly increasing to
T,, showing that T, is announceable; it follows that ¢ +— &, is continuous at ¢t = T}, on
{T, < o0}, see e.g. Bertoin [f], p. 21 or p. 39. Let B = {T}, < oo, I(o0) = a}. We restrict
attention to w € B from now on. Since T, is the first time I(-) reaches a, for every € > 0
there must be a subset J. C (T, —¢,T,) of positive Lebesgue measure such that g(&;) > 0
for all t € J.. Thus & € suppg for all t € J., and so &, € suppg. Since we assume
that dsupp g := supp g \ (supp ¢g)° is countable, and that ¢ has infinite Lévy measure or
a non-zero Gaussian component, we have by Lemma B.3 that P(& € dsupp g) = 0 for all
t > 0. Consequently

EMt>0:& € 0suppg}) = / P(& € Osupp g)dt = 0.
0

11



It follows that there are times ¢ < T, arbitrarily close to T, with & in (supp ¢)°. By the
continuity of ¢t — & at ¢t = T,, we then have &, € m for w € B C B, where
P(B') = P(B) > 0. Since g > 0 on (suppg)° it follows that {7, € 9((supp g)°) on the
event B C {I(oc0) = a}; for, if not, this would imply, by an application of the Markov
property, that I(t) > a for t > T,, which is impossible.

Now suppose (i), so that & is of infinite variation. Then it follows from Shtatland’s
(1965) result ([RJ], see also Sato [R1], Thm 47.1, p. 351) that 0 is regular for both (—o0, 0)
and (0, 00). Since &1, belongs to the finite set dsupp g, there is an open interval U C
(supp g)° which has &7, either as left or right end point. In either case, the regularity of
0 for (0,00) and for (—oo,0) implies that immediately after time 7, there must be times
t such that & is strictly less than &7, and other times ¢ such that & is strictly greater
than &7, By the continuity of ¢ at T, it follows that there must be times after T, such
that & € U. Consequently, there is some € = e(w) > 0 such that {1, .. € (suppg)°. By
the right-continuity of ¢ at T, + ¢ it follows further that I(co) > I(7,) = a on B’, where
P(B') > 0 and B’ C {I(c0) = a}, a contradiction.

Alternatively, suppose (ii), so that £ has finite variation and zero drift (and infinite
Lévy measure). Then it follows that £ almost surely does not hit single points (by Kesten’s
theorem [[[3]; see [, p. 67). Thus, since d((supp g)°) C supp g \ (supp ¢)° and the latter
is at most countable, £ almost surely does not hit d((supp g)°). But on the set B’, where
P(B') > 0 and B’ C {T, < oo, I(o0) = a}, we have &, € O((supp g)°), contradicting
P(I(c0) =a) > 0. O

Remarks. (i) The assumptions on the topological structure of {z : g(x) > 0} in the
previous theorem are easy to check. That they cannot be completely relaxed can be seen
from the following example: let g(z) = 1 for all x € QN [—1, 1] and g(z) = 0 otherwise,
then suppg = [-1,1], (suppg)° = (—1,1), but g > 0 on (—1,1) does not hold. And in
fact, it is easy to see that in that case we have for every Lévy process of unbounded

variation or infinite Lévy measure that

E/o g(ft)dt:E/o 1@0[—1,1}(ft)dt:/0 P(fteQﬂ[—l,l])dt:O

by Lemma B.3, so that fooo g(&)dt =0 as.
(ii) Suppose g is as in Theorem B.5, and assume fooo g(x)dx < 0. Let € be a Brownian
motion with non-zero drift. Then [ g(&)dt < oo a.s. by Theorem 6 of [H] and the integral

has a continuous distribution by Theorem B.5.

Theorem B.J allows a wide class of transient Lévy processes (we have to exclude £ which
are of bounded variation with nonzero drift, by Ex. B.9), but restricts us, essentially, to

nonnegative g which have compact support. Another approach which combines excursion
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theory and Lemma 5.3 allows a much wider class of g at the expense of placing restrictions
on the local behaviour of €. Here is the first result in this vein. We refer e.g. to Chapters

IV and V in [[]] for background on local time and excursion theory for Lévy processes.

Theorem 3.6. Let g : R — [0,00) be a measurable function such that g > 0 on some
netghbourhood of 0. Suppose that & is a transient Lévy process such that 0 is reqular for
itself, in the sense that inf {t > 0:& =0} =0 a.s., and that the integral I := fo (&)dt
is finite a.s. Then the distribution of I has no atoms.

Proof. Thanks to Example 3.1, we may assume without losing generality that £ is not a
compound Poisson. Then 0 is an instantaneous point, in the sense that inf{t > 0 : & #
0} = 0 a.s. The assumption that ¢ is transient implies that its last-passage time at 0,
defined by

C:=sup{t>0:&, =0},

is finite a.s. Since the point 0 is regular for itself, there exists a continuous nondecreasing
local time process at level 0 which we denote by L = (L;,t > 0); we also introduce its

right-continuous inverse
L7Yt) :=inf{s >0: L, > t}, t>0

with the convention that inf(® = oco. The largest value of L, namely, L., is finite a.s.;
more precisely, Lo, has an exponential distribution, and we have L™!(Ly,—) = ¢ and
L7Y(t) = oo for every t > Ly, ([, Prop. 7 and Thm 8, pp. 113-115). We denote the set

of discontinuity times of the inverse local time before explosion by
D:={t < Ly : L' (t=) < L7 (1)}

and then, following [t6, we introduce for every t € D the excursion £(¢) with finite lifetime

Gro=L7H(t) = L7 (t=) by
es(t) = &Er-1(t—)ts 0<s<G-

It6’s excursion theory shows that conditionally on L., the family of finite excursions
(e(t),t € D) is distributed as the family of the atoms of a Poisson point process with
intensity Loo1{¢<cc}n, Where n denotes the Itd6 measure of the excursions of the Lévy
process & away from 0, and ¢ the lifetime of a generic excursion ([, Thm 10, p. 118).
Since £ is not a compound Poisson process, the set of times ¢ at which & = 0 has zero

Lebesgue measure a.s., and we can express the integral in the form I = A + B with

A= Z/ g(&,) ds—Z/Ct (e4(t (3.9)

teD teD
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and

B | " gle)ds.

Excursion theory implies that A and B are independent, and hence we just need to check
that A has no atom. Now, the conditional distribution of A given L is infinitely divisible,
with Lévy measure A given by the image of Lo1{;<oyn under the map e — focg(ss)ds.
The fact that 0 is an instantaneous point implies that the measure 1;¢..yn is infinite,
and further that the excursions () leave 0 continuously for all ¢ € D a.s. The assumption
that g > 0 on some neighbourhood of 0 then entails that [ g(e4(t))ds > 0 for every t € D.
Thus A{(0,00)} = 00, and we conclude from Lemma B.3 that the conditional distribution
of A given L., has no atoms. It follows that P(A = a) = E(P(A = a|Ls)) = 0 for every

a > 0, completing the proof of our statement. O

Remark. See Bertoin [fl], Ch. V and Sato [BI]], Section 43, for discussions relevant to

Lévy processes for which 0 is regular for itself.

An easy modification of the argument in Theorem B.§ yields the following criterion in
the special case when the Lévy process has no positive jumps. This extends the result of

Theorem B.J by allowing a drift, as long as there is no upward jump.

Proposition 3.7. Let g : R — [0,00) be a measurable function with g > 0 on some
netghbourhood of 0. Suppose that & = at — oy, where a > 0 and o is a subordinator with
infinite Lévy measure and no drift, and such that the integral I := fooo g(&)dt is finite a.s.
Assume further that a # Eoy, so that & is transient. Then the distribution of I has no
atoms.

Remark. We point out that in the case when £ is a Lévy process with no positive jumps
and infinite variation, then 0 is regular for itself ([[], Cor. 5, p. 192), and thus Theorem B.4
applies. Recall also Example 3.2 for the case of compound Poisson processes with drift.
Therefore our analysis covers entirely the situation when the Lévy process has no positive

jumps and is not the negative of a subordinator.

Proof. Introduce the supremum process & = Supg<s<; §s- We shall use the fact that the
reflected process & — ¢ is Markovian and that £ can be viewed as its local time at 0; see
Theorem VIL.1 in [I], p. 189. The first-passage process T, :=inf{t > 0:& >z} (z > 0)
thus plays the role of the inverse local time. It is well-known that 7' is a subordinator
(killed at some independent exponential time when ¢ drifts to —oo); more precisely, the
hypothesis that & = at — 0, has bounded variation implies that the drift coefficient of T
is a™! > 0.
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Let us consider first the case when £ drifts to oo, so the first-passage times 7). are
finite a.s. We write D for the set of discontinuities of T and for every x € D, we define

the excursion of the reflected Lévy process away from 0 as
es(x) = o —&r,_ 45, 0<s<(:=T,—T,_.

According to excursion theory, the point measure
> et

is then a Poisson random measure with intensity dx ® n, where i denotes the It6 measure
of the excursions of the reflected process € — & away from 0. Let b > 0 be such that g > 0

on [—b,b]. We can express
/ g(&)ds = A+ B+C
0

where

A = a_l/ooog(x)dx,
B = > /jxg@s)ds: > /fg(x—as(:c))ds,

zeDx<b? T 2€D,x<b
Ty C
C = Z / g(&s)ds = Z / g(x —es(x))ds .
z€D,x>b To- €D, x>b 0

The first term A is deterministic, and B and C' are independent infinitely divisible random
variables (by the superposition property of Poisson random measures). More precisely, the

Lévy measure of B is the image of 1o<;<pydr ® 1 by the map

e [ ote - s,

Observe that the value of this map evaluated at any x € [0, b] and excursion ¢ is strictly
positive (because excursions return continuously to 0, as & has no positive jumps). On
the other hand, the assumption that the Lévy measure of the subordinator o, = at — &; is
infinite ensures that 0 is an instantaneous point for the reflected process € — ¢, and hence
the Itdo measure 7 is infinite. It thus follows from Lemma J.3 that the infinitely divisible
variable B has no atom, which establishes our claim.

The argument in case £ drifts to —oo is similar; the only difference is that the excursion
process is now stopped when an excursion with infinite lifetime arises. This occurs at
time (in the local-time scale §) £, = Sup;>o ¢, where this variable has an exponential
distribution. O
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3.3 A criterion for absolute continuity

Next we will investigate some different sufficient conditions, and some of them also ensure
the existence of Lebesgue densities. We will work with more general integrals of the form
fo (&) dY; for a process (Y:)>0 of bounded variation, independent of the Lévy process €.
The method will be a variant of the stratification method, by conditioning on almost every
quantity apart from certain jump times. Such an approach was also used by Nourdin and
Simon [[[§] for the study of absolute continuity of solutions to certain stochastic differential
equations.

We need the following lemma, which concerns only deterministic functions. Part (a)
is just a rewriting of Theorem 4.2 in Davydov et al. [{], and it is this part which will be
invoked when studying fo (&) dY; for Y, = t.

Lemma 3.8. Let Y : [0,1] — R be a right-continuous deterministic function of bounded

variation. Let f :[0,1] — R be a deterministic Borel function such that

f#0 ae. (3.10)

and such that the Lebesque-Stieltjes integral fo t) dY; exists and is finite. Let
H: (0,1 = R, :L’l—>/ f(t)dyy,
0+

and denote by pn = H(\ 1)) the image measure of X under H. Then the following are
sufficient conditions for (absolute) continuity of ju:

(a) Suppose the absolute continuous part of the measure induced by Y on [0,1] has a
density which is different from zero a.e. Then p s absolutely continuous.

(b) Suppose that 'Y is strictly increasing and that f is in almost every point t € [0, 1] right-

or left-continuous. Then p is continuous.

Proof. (a) Denoting the density of the absolute continuous part of Y by ¢, it follows
that H is almost everywhere differentiable with derivative f¢ # 0 a.e., and the assertion
follows from Theorem 4.2 in Davydov et al. [{].

(b) Suppose that Y is strictly increasing and denote

K :={t € (0,1): fis right- or left-continuous in ¢}.

By assumption, K has Lebesgue measure 1. Using the right-/left-continuity, for every
t € K such that f(t) > 0 there exists a unique maximal interval J(¢) C (0, 1) of positive
length such that ¢ € J,(t) and f(y) > 0 for all y € J,(¢). By the axiom of choice there
exists a subfamily K, C K such that (J.(t) : ¢ € K,) are pairwise disjoint and their

16



union covers K N{t € (0,1): f(t) > 0}. Since each of these intervals has positive length,
there can only be countably many such intervals, so K, must be countable.

Similarly, we obtain a countable cover (J_(t) :t € K_) of KN{t € (0,1): f(t) < 0}
with disjoint intervals. Now let @ € Range(H). Then

H'({a) ¢ | JE da)nnw) | u| U E " {a)nw)

teK teK_

U([0,1]\ K)u{t e [0,1]: f(t) =0} uU{0,1}.

Observing that
A(H ({a}) N J(t) = A ((Hyge) ' ({a}) =0

since H is strictly increasing (decreasing) on J,(t) (J_(t)) as a consequence of f > 0 on
Jo(t) (f <0on J_(t)) and strict increase of Y, it follows that A(H~!({a})) = 0, showing
continuity of u. O

We now come to the main result of this subsection. Note that the case Y; = ¢ falls under
the case (i) considered in the following theorem, giving particularly simple conditions for
absolute continuity of fooo g(&) dt. In particular, part (b) shows that if ¢ has infinite Lévy
measure and g is strictly monotone on a neighbourhood of 0, then fooo g(&) dt is absolutely

continuous.

Theorem 3.9. Let & = ()10 be a transient Lévy process with non-zero Lévy measure 1.
LetY = (Y:)i>0 be a stochastic process of bounded variation on compacts which has cadlag
paths and which is independent of &. Denote the density of the absolutely continuous part
of the measure induced by the paths t — Yi(w) by ¢,. Let g : R — R be a deterministic

Borel function and suppose that the integral

I .= 1) dY;
/(O,OO) 9(&)

exists almost surely and is finite.
(a) [general Lévy process] Suppose that there are a compact interval J C R\ {0} with
I (J) > 0 and some constant ty > 0 such that

AMJt| > to:9(t) =9g(t+2)}) =0 forallze J (3.11)

Case (i): If A({t € [to,00) : ¢(t) = 0}) =0 a.s., then I is absolutely continuous.
Case (ii): If Y is strictly increasing on [tg, o0) and g has only countably many discontinu-

ities, then I does not have atoms.
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(b) [infinite activity Lévy process] Suppose the Lévy measure Il¢ is infinite. Suppose further
that there is € > 0 such that

A{t € (—g,e):g(t) =g(t+2)}) =0 for all z € [—¢,¢]. (3.12)

Case (i): If AM({t € (0,¢) : ¢(t) = 0}) =0 a.s., then I is absolutely continuous.
Case (ii): IfY is strictly increasing on (0,€) and g has only countably many discontinuities,

then I does not have atoms.

Proof. (a) Let J be an interval such that (B.I1)) is satisfied, and define

Ry = Z A, My:=&— Ry, t>0.

0<s<t,Afs€J

Then R = (R;):>o is a compound Poisson process, independent of M = (M;);>o. Fori € N
denote by 7; and Z; the time and size of the i*" jump of R, respectively, and let Tj := 0.
Further, denote

I, = / g(&) dY;
(T2i—2,T24]
2i—2 2i—1
S (o575 (5 2) o
(T2i—2,T2i—1] j=1

j=1
2i—1
+/ g<Mt+ZZJ> dy;
(T2i—2,T2i] j=1

+ [g(éTm&) - g(£T2i71 - ZQifl)] AYT%A
+ [g<§T2¢) - g(me - Z2i] AYT%' (313)

We now condition on all random quantities present except the odd numbered T;. Thus,

for every Borel set B C R, we write

P(I€B)=EP (Z I; € B|Y, M, (Ty)) jen (Zj)jeN> :
i=1

To show that I has no atoms, it is hence sufficient to show that

i=1

for every Borel set B of the form B = {a} with a € R. Similarly, for showing that I is
absolutely continuous it is sufficient to show that (B.14)) holds for every Borel set B of

Lebesgue measure 0. Observe that the (I;);en are conditionally independent given

Y, M, (T2j)j6Na (Zj)j6N> =0 as. (314)

V= (Y, M, (T%)en, (Z;)jen).
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Thus the conditional probability that I = »":° I; € B is the convolution of the conditional
probabilities that I; € B, ¢ € N. Hence it suffices to show that there is some random integer
19 € N such that almost surely, the conditional distribution of I;, given V' is absolutely
continuous (case (i)) or has no atoms (case (ii)), respectively.

Define the integer iy as the first index ¢ such that

te(Toi—2,T2;

2i—2
j=1

with ¢y as in (B.11]). Since £ is transient iy is almost surely finite. As a function of V,
ip is constant under the conditioning by V. The right hand side of (B.I3) is comprised
of four summands. The second and fourth summands are constant given V. The third
summand is still random, after conditioning, since T5; ; enters in AY’; but here R and
Y are independent, so that the third summand equals 0 a.s. Thus it is sufficient to show

that, given V', the first summand, evaluated at iy, namely

2i9—2 2i9—1
I, :=/ (g (Mt+ > Zj) —9 (Mt + ) Z])) dy,,
(T2ig—2,T2i0 1] j=1 j=1

is almost surely absolutely continuous (case (i)) or has no atoms (case (ii)). Define the
functions f = fv : [Toi—2, T2iy) = R and H = Hy : (Ty, -2, Taig] — R by

ft) = 9<Mt+ozzj>_ 9<Mt+ozzj>a

J=1

H(x) = /(T’ ]f(t)dYt.

Observing that Ty;,_1 is uniformly distributed on (75,9, T5;,) given V, it follows from
Fubini’s theorem that for any Borel set B C R

I dx
P([io c B‘V) = E<1{H(TQZ~O,1)€B}‘V) = / 1{H($)€B} W
(T2ig—2,T2ig) 2i 2ip—2
ANH(B))
T2i0 - T2i0—2.

We shall apply Lemma to show that EO given V' is absolutely continuous or has no
atoms, respectively. For this, observe that (B.10) is satisfied because of (B.11)) and (B.17),
and note that z := Zy;,_; € J, since all the jumps of R are in the interval J. In case (i)
this then gives absolute continuity of Z‘o conditional on V' by Lemma B.§ (a) and hence
of the distribution of I. Now concentrate on case (ii), when Y is strictly increasing on

[tg, 00) and g has only countably many discontinuities. Denote this set of discontinuities
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of g by F'. By assumption, F' is countable. This then implies that almost surely, the
function f is almost everywhere right-continuous. For by the a.s. right-continuity of the

paths of Lévy processes, f can happen to be non-right-continuous at a point ¢t only if
W= M+ Y Z e For g = M+ Y.7° % Z; € F. But

EAt>0:¢V eFore? e FY) = / PEY eFor e e P dt,
0

and by Lemma B.J the last integral is zero if £ has infinite Lévy measure, so that almost
surely, f is almost everywhere right-continuous if II¢ is infinite. If £ has finite Lévy mea-
sure, then f is trivially almost everywhere right-continuous. So we see that in case (ii)
our assumptions imply the conditions of Lemma B.§ (b), which then gives the claim.

(b) The proof is similar to the proof of (a): for 0 < § < ¢/2, let

R” = Y A, MP=&-R", t>0,
Al €ld.e/2)

and denote the time and size of the i*" jump of R® = (Rgé))tzo by Tl-(é) and Zi(é), respec-
tively. Further, define the set €25 by
Q5 = {T <, sup |M?|<e/2}.
0<t<T"
Let Ps(-) := P(-|Q2s), and denote expectation with respect to Ps by FEjs. Since P(€;) — 1
as 0 | 0 because the Lévy measure of £ is infinite, it is sufficient to show that, given

d > 0, we have Ps(B) = 0 for all Borel sets B such that A\(B) = 0 (case (i)), or such that
B ={a}, a € R (case (ii)), respectively. Let

Vs = (Y, MO (T30, (Z”) en.

Then we can write

Pg([ € B) = E(;P(g([ € BH/(;),

and it suffices to show that Ps(I € B|Vs) = 0 a.s. for the sets B under consideration. But,

conditional on Vy, I almost surely differs from

’[13:/ (g(M(é))_g<M(5)_|_Z )) dY,
(0.15")

only by a constant. It then follows in complete analogy to the proof of (a) that under Ps,
fl given Vs has no atoms or is absolutely continuous, respectively, which then transfers to
I under Ps and hence to I under P. O
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Remarks. (i) The preceding proof has shown that the independence assumption on ¢
and Y can be weakened. Indeed, we need only assume that the processes (R;)i>0 and Y
are independent.

(ii) In addition to the assumptions of Theorem B.9, assume that g is continuous. Then

almost surely, g(§;,—) = g(&)— exist for all ¢ > 0, and the assertions of Theorem B.9 remain

/ 9(&) - dY;.
(0,00)

This follows in complete analogy to the proof of Theorem B.9.

true for integrals of the form

(iii) Similar statements as in Theorem B-g can be made for integrals of the form [ (g(& +

(1)) dt, where 1) is some deterministic function behaving nicely. We omit the details.

Appendix

Proof of the equivalence of (iv) and (v) in Theorem R.2. Assume (iv), and observe
that by the Doléans-Dade formula (e.g. [BQ], p. 84), e=¢ = £(—n/k), where k # 0, if and
only if Il,({y € R: k~'y > 1}) = 0 and & = X, where

Xy o=k +kP00t/2 — Z (log(1 — k~'An,) + k' Any), t>0. (3.16)

0<s<t

Now (X,7n) is a bivariate Lévy process, whose Gaussian covariance matrix is given by
1 k
kK2
the Lévy measure IIx , of (X,n) is concentrated on {(x, k(1 —e %)) : z € R}.

Conversely, if (Y, n) is a bivariate Lévy process with Gaussian covariance matrix given

Yx, = 0%. Further, (B:16) implies AX; = —log(1 — k~*An,), showing that

by Xy, = Xx,,, whose Lévy measure is concentrated on {(z,k(1 —e™*)) : 2 € R}, then
AY; = —log(1 — k~'An,), and it follows that there is some ¢ € R such that Y; = X, + ct,
so that e Y+ = (£(—n/k));. Hence we have established the equivalence of (iv) and (v)
in Theorem P.2, subject to relating v; and 7, as in (2.G).

To do this, let X; as in (B.16) and use the Lévy-Ito decomposition. Define

X (AX) / / <$1)
= lim Tt Mxn(d(z1, 7))
( nzgl) €l0 o;t AT}S w3 tade(e?,1] \ L2 !

(AX5)2+(Ans)2>e2

and (Xt(Q), n§2))/ = (Xy,m) — (Xt(l),nbfl))' where the limit is a.s. as € | 0. (Note that the
expression in big brackets on the right is not precisely the compensated sum of jumps.)

Then (Xt(z), 7}9)220 is a Lévy process with characteristic triplet (v, %, 0), so has the form
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(Xt(2)7 §2))' = (1it, yot) + B’h t > 0, where (gt)tzo is a Brownian motion in R?. From this
follows that
X&) kP = (1 — k)t + B, >0, (3.17)

for some Brownian motion (Et)tzo in R'. We wish to determine v; — k= 1v,. To do this,

observe that from (B.16) and 0% = k%07, we have

(X=X =k — V)
= o%t/2 + Z (AX, — k™' An,)

0<s<t

—lim > (AX, - kA —t / / o ”m — k) Ty (d(2y, 20))

el0
0<s<t
(AX5)24(Ans)2>e2

Noting that k~'An, = 1 —e~2%s and that D ocs<t(AX—1 +e~2%s) converges absolutely,
we obtain, letting € | 0, that

) AR e
$1+$2§1

= ait/2+t/ (x — 1+ e %) x(dr).

22+k2(1—e—*)2<1

Comparing this with (B.I7) gives (B.G). O
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