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Abstract

We prove sufficient conditions, ensuring that a sequence of multiple Wiener-Itô integrals (with
respect to a general Gaussian process) converges stably to a mixture of normal distributions. Our key
tool is an asymptotic decomposition of contraction kernels, realized by means of increasing families of
projection operators. We also use an infinite-dimensional Clark-Ocone formula, as well as a version
of the correspondence between “abstract” and “concrete” filtered Wiener spaces, in a spirit similar
to Üstünel and Zakai (1997).
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1 Introduction

Let X be a centered Gaussian process and, for d ≥ 2 and n ≥ 1, let IXd (fn) be a multiple Wiener-Itô
stochastic integral, of order d, of some symmetric and square-integrable kernel fn with respect to X .
The aim of this paper is to establish general sufficient conditions on the kernels fn, ensuring that the
sequence IXd (fn) converges stably to a mixture of Gaussian probability laws. The reader is referred e.g.
to [10, Chapter 4], [21] and Section 2.3 below, for an exhaustive characterization of stable convergence.
Here, we shall recall that such a convergence is stronger than the convergence in law, and can be used in
particular to explain several non-central limit results for functionals of independently scattered random
measures; see for instance [21]. Our starting point is the following Central Limit Theorem (CLT).

Theorem 1 (see [19, Theorem 1 and Proposition 3]) If the variance of IXd (fn) converges to 1 (n→
+∞) the following three conditions are equivalent: (i) IXd (fn) converges in law to a standard Gaussian

random variable N (0, 1), (ii) E
[
IXd (fn)

4
]
→ 3, (iii) for every r = 1, ..., d − 1, the contraction kernel

fn ⊗d−r fn converges to 0.

Although the implication (ii) ⇒ (i) is rather striking, several recent applications of Theorem 1 (see
[22], [9], [4] or [3]) have shown that condition (iii) is easier to verify than (ii), since in general there
is no manageable formula for the fourth moment of a non-trivial multiple Wiener-Itô integral. Also,
the implication (iii) ⇒ (i) (which can be regarded as a simplification of the method of diagrams—see
e.g. [28]) suggests that the asymptotic study of the contraction kernels associated to the sequence fn
may lead to more general convergence results. In particular, in this paper we address the following
problem. Let Y ≥ 0 be a non-constant random variable having the (finite) chaotic representation Y =
1 + IX2 (g2) + · · · + IX2(d−1)

(
g2(d−1)

)
, let N ∼ N (0, 1) be independent of Y , and suppose that the

sequence IXd (fn) satisfies adequate normalization conditions; is it possible to associate to each fn and
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each r = 1, ..., d− 1, two generalized contraction kernels, say fn ⊗∗
d−r fn and fn ⊗∗∗

d−r fn, in such a way
that the two relations

fn ⊗∗
d−r fn →

n→+∞
g2r and fn ⊗∗∗

d−r fn →
n→+∞

0, ∀r = 1, ..., d− 1, (1)

imply that IXd (fn) converges stably to
√
Y × N? This kind of non-central phenomena (convergence

towards non-trivial mixtures of Gaussian laws) appears regularly, for instance in the analysis of the
power variations of fractional processes (see e.g. [3]), or in the study of non linear functionals of stationary
Gaussian sequences (see e.g. [7, Theorems 7-9]). Although there exists a panoply of results characterizing
the stable convergence in a semi-martingale setting (see [14], [6] or [10, Ch. 4]), none of them can be
directly applied to the case of a Gaussian process for which there is no explicit (semi)martingale structure
(this is true, in particular, for fractional processes). In this paper, we aim at providing results in this
direction for multiple integrals with respect to general Gaussian processes, by using some ancillary devices
borrowed from continuous-time martingale calculus (in a spirit similar to [19]), as well as a part of the
theory of filtrations on general Wiener spaces, as developed e.g. in [32] and [30] (see also [21] for some
related results in a non-Gaussian framework).

Now let H be a separable Hilbert space, and suppose that the process X = X (H) = {X (h) : h ∈ H}
is a centered Gaussian measure (also called an isonormal Gaussian process) over H (see e.g. [17, Ch.
1], or Section 2.2 below). Then, fn is a symmetric element of H⊗d (i.e., the dth tensor product of H)
for every n, and fn ⊗d−r fn ∈ H⊗2r, ∀r = 1, ..., d − 1. In what follows (see Theorem 11 and formulae
(34) and (35) below) we construct the two kernels fn ⊗∗

d−r fn and fn ⊗∗∗
d−r fn appearing in (1), by

using resolutions of the identity. These objects are defined as continuous and non-decreasing families
of orthogonal projections π = {πt : t ∈ [0, 1]} over H, indexed by [0, 1] and such that π0 = 0 and π1 =
Id.. Each resolution π induces a time structure on the Gaussian field X (H), and generates the canonical
filtration Fπ

t = σ {X (πth) : h ∈ H}, t ∈ [0, 1] (note that Fπ
1 = σ (X) for every π). In particular,

the infinite dimensional process t 7→ {X (πth) : h ∈ H} , X (πtH) can be seen as an infinite collection
of possibly correlated Gaussian Fπ

t -martingales. As proved e.g. in [32] and [30] in the framework of
abstract Wiener spaces, each σ (X)-measurable and square integrable random variable (as Skorohod and
multiple Wiener-Itô integrals with respect to X) is therefore the terminal value of a Fπ

t -martingale,
which is in turn a “generalized adapted stochastic integral” with respect to the infinite dimensional
process t 7→ X (πtH). Since every real-valued Fπ

t -martingale can be shown to be continuous, it follows
that the stable convergence of σ (X)-measurable random variables can be studied by means of the theory
of stable convergence for continuous local martingales (see e.g. [10, Ch. 4]). In particular, our starting
point in the construction of the two contraction operators appearing in (1) is a stable convergence result,
proved in Proposition 9 below, involving the quadratic variation of continuous local martingales, as
well as a stochastic time-change result known as the Dambis-Dubins-Schwarz Theorem (DDS Theorem)
(see e.g. [25, Ch. V]). Observe that our Proposition 9 is reminiscent of the stable convergence results
proved by Feigin in [6]. See [31] for similar results involving the stable convergence of multi-dimensional
martingales, and [21] for an alternative approach based on a decoupling technique, known as the “principle
of conditioning”.

We recall that the use of the DDS Theorem has already been crucial in the proof of Theorem 1
and its generalizations, as stated in [19] and [22]. However, we shall stress that the proofs of the main
results of the present paper (in particular, Theorem 11 and Theorem 12 below) are considerably more
complicated. Indeed, when no resolution of the identity is involved – as it is the case for Theorem 1 –
all infinite dimensional Gaussian spaces are trivially isomorphic. It follows that every relevant element
of the proof of Theorem 1 is contained in the case of X (H) being the Gaussian space generated by
a standard one-dimensional Brownian motion on [0, 1] (that is, H = L2 ([0, 1])), and the extension to
general Gaussian measures can be achieved by elementary considerations (see for instance [19, Section
2.2]). However, in the present paper the filtrations Fπ

t = σ {X (πth) : h ∈ H} play a prominent role, and
the complexity of these objects may considerably vary, depending on the structure of the resolution π
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(in particular, depending on the rank of π–see Section 2.1 below). We shall therefore use a notion of
equivalence between pairs (H, π), where H is a Hilbert space and π is a resolution, instead of the usual
notion of isomorphism between Hilbert spaces. The use of this equivalence relation implies that, if the
rank of π equals q (q = 1, ...,+∞), then Fπ

t has roughly the structure of the filtration generated by a
q-dimensional Brownian motion. As a consequence, our first step will be the proof of our main results
in the framework of an infinite-dimensional Brownian motion, and the extension to the general case will
be realized by means of rather delicate arguments involving the previously described equivalence relation
(see Lemma 16 below). As will become clear later on, our techniques can be regarded as a ramification
of the theory of concrete representations for abstract Wiener spaces, a concept introduced in [30, Section
5]. The reader is also referred to [21] for some related results in a non-Gaussian context.

The remainder of the paper is organized as follows. In Section 2.1, we formally introduce the notion
of resolution of the identity and discuss some of its basic properties. In Section 2.2 some notions from
stochastic analysis and Skorohod integration are recalled. Sections 2.3-2.5 contain the statements and
the proofs of some useful stable convergence result for Skorohod integrals. Section 3 is devoted to the
proof of our main convergence results. We also discuss some relations with the theory of abstract Wiener
spaces. An Appendix contains the proof of a technical lemma.

2 Preliminary definitions and results

Throughout the paper, the following conventions are in order: all random objects are supposed to be

defined on the same probability space (Ω,F ,P); all σ-fields are assumed to be complete; the symbol
P→

stands for convergence in probability; R is the set of real numbers.

2.1 Hilbert spaces and resolutions of the identity

Let H be a real separable Hilbert space. The symbol (·, ··)
H

indicates the inner product on H, and

‖·‖
H

= (·, ·)1/2
H

as usual. The space H is always endowed with the Borel σ-field generated by the open
sets of the canonical distance associated to ‖·‖

H
. As already done in [21], we first study the convergence

of Skorohod integrals by means of increasing families of orthogonal projections, known as resolutions of
the identity.

Definition I – A continuous resolution of the identity, is a family π = {πt : t ∈ [0, 1]} of orthogonal
projections satisfying:

(I-a) π0 = 0, and π1 = Id.;

(I-b) ∀0 ≤ s < t ≤ 1, πsH ⊆ πtH;

(I-c) ∀t0 ∈ [0, 1], ∀h ∈ H, limt→t0 ‖(πt − πt0)h‖H
= 0.

A subset F of H is said to be π-reproducing if the linear span of the set {πtf : f ∈ F , t ∈ [0, 1]} is dense
in H. The rank of π is the smallest of the dimensions of all the subspaces generated by the π-reproducing
subsets of H. A π-reproducing subset F of H is fully orthogonal if (πtf, g)H

= 0 for every t ∈ [0, 1] and
every f, g ∈ F . The collection of all π verifying properties (I-a)-(I-c) is noted R (H).

The reader is referred to [2] or [34] for further properties and characterizations of the class R (H). In
particular, we shall use the following consequence of [2, Lemma 23.2], that can be proved by a standard
Gram-Schmidt orthogonalization.

Lemma 2 Let π ∈ R (H) and let F be a π-reproducing subset of H such that dim
(
F
)

= rank (π), where

A stands for the closure of the vector space generated by a given set A. Then, there exists a π-reproducing
and fully orthogonal subset F ′ of H, such that dim

(
F ′
)

= dim
(
F
)
.

3



We will sometimes need to work with elements of R (H) that are not only continuous, but also
absolutely continuous.

Definition II – A resolution π = {πt : t ∈ [0, 1]} ∈ R (H) is said to be absolutely continuous if, for
every f, g ∈ H, the function t 7→ (πtg, f)

H
, t ∈ [0, 1], is absolutely continuous with respect to the Lebesgue

measure on [0, 1]. The class of absolutely continuous resolutions in R (H) is noted RAC (H) .

The elements of RAC (H) are used in [30, Section 5] to prove a remarkable bijection between abstract
and concrete filtered Wiener spaces. More details will be given in Section 3, were we establish a similar
result for isonormal Gaussian processes as a step to prove stable convergence criteria for multiple integrals.
With the next result we point out that, up to a “change of time”, every π ∈ R (H) can be represented in
terms of some element of RAC (H).

Lemma 3 For any π = {πt : t ∈ [0, 1]} ∈ R (H), there exists a non decreasing function

ψ = {ψ (t) : t ∈ [0, 1]}

such that ψ (0) = 0 and the monotone family of projections

π̃t , πψ(t), t ∈ [0, 1] ,

is an element of RAC (H).

Proof. Let q = rank (π) (q is possibly infinite) and let Fπ = {fj : 1 ≤ j ≤ q} be a π-reproducing

subset of H, normalized in such a way that
∑q
j=1 ‖fj‖

2
H

= 1. Define moreover the increasing function

φ (t) =
∑q

j=1 ‖πtfj‖
2
H
, t ∈ [0, 1], and set ψ (t) = inf {a : φ (a) = t}. Then, ψ is non decreasing, ψ (0) = 0,

and the family of projections
π̃t , πψ(t), t ∈ [0, 1] ,

is a resolution of the identity verifying
∑q
j=1 ‖π̃tfj‖

2
H

= t, for every t ∈ [0, 1]. Since Fπ is also π̃-
reproducing, we deduce from [2, Lemma 23.1] that π̃ is absolutely continuous.

2.2 Gaussian processes, Malliavin operators and representation theorems

Throughout the following, we write

X = X (H) = {X (f) : f ∈ H}

to indicate an isonormal Gaussian process, or a Gaussian measure, over the Hilbert space H. This means
that X is a centered Gaussian family, indexed by the elements of H and satisfying the isomorphic relation

E [X (f)X (g)] = (f, g)
H

, for every f, g ∈ H (2)

(the notation X (H) is adopted exclusively when the role of H is relevant to the discussion).

As in [32] or [30], to every π ∈ R (H) we associate the collection of σ-fields

Fπ
t (X) = σ {X (πtf) : f ∈ H} , t ∈ [0, 1] , (3)

and we observe that, for every π ∈ R (H), t 7→ Fπ
t (X) defines a continuous filtration (see [30, p. 14]).

Also, for every f ∈ H, the process t 7→ X (πtf), t ∈ [0, 1], is a centered and continuous Fπ
t (X)-martingale

such that, for every η > 0, the increment X ((πt+η − πt) f) = X (πt+ηf) − X (πtf) is independent of
Fπ
t (X) (see e.g. [30, Corollary 2.1]).
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As in [21], we write L2 (P,H, X) = L2 (H, X) to indicate the set of σ (X)-measurable and H-valued

random variables Y such that E

[
‖Y ‖2

H

]
< +∞. The class L2 (H, X) is a Hilbert space, with inner product

given by (Y, Z)L2(H,X) = E
[
(Y, Z)

H

]
. Following [30], we associate to every π ∈ R (H) the subspace

L2
π (H, X) of π-adapted elements of L2 (H, X), that is: Y ∈ L2

π (H, X) if, and only if, Y ∈ L2 (H, X) and,
for every t ∈ [0, 1] and every h ∈ H,

(Y, πth)H
∈ Fπ

t (X) . (4)

For any resolution π ∈ R (H), L2
π (H, X) is a closed subspace of L2 (H, X). We may occasionally

write (u, z)L2
π(H) instead of (u, z)L2(H), when both u and z are in L2

π (H, X). Now, for π ∈ R (H), define

Eπ (H, X) to be the space of elementary elements of L2
π (H, X), that is, Eπ (H, X) is the collection of those

elements of L2
π (H, X) that are linear combinations of H-valued random variables of the type

h = Φ (t1) (πt2 − πt1) f , (5)

where t2 > t1, f ∈ H and Φ (t1) is a Fπ
t1 (X)-measurable, real-valued and square-integrable random

variable. A proof of the following useful result can be found in [21, Lemma 3] or [30, Lemma 2.2].

Lemma 4 For every π ∈ R (H), the span of the set Eπ (H, X) of adapted elementary elements is dense
in L2

π (H, X).

In what follows, we shall apply to the Gaussian measure X some standard notions and results from
Malliavin calculus (the reader is again referred to [17] and [18] for any unexplained notation or definition).
For instance, D = DX and δ = δX stand, respectively, for the usual Malliavin derivative and Skorohod
integral with respect to the Gaussian measure X (the dependence on X will be dropped, when there is

no risk of confusion); for k ≥ 1, D
k,2
X is the space of k times differentiable functionals of X , endowed with

the norm ‖·‖k,2 (see [17, Chapter 1] for a definition of this norm); dom (δX) is the domain of the operator

δX . Note that DX is an operator from D
k,2
X to L2 (H, X), and also that dom (δX) ⊂ L2 (H, X). For

every d ≥ 1, we define H⊗d and H⊙d to be, respectively, the dth tensor product and the dth symmetric
tensor product of H. For d ≥ 1 we will denote by IXd the isometry between H⊙d equipped with the norm√
d! ‖·‖

H⊗d and the dth Wiener chaos of X . Given g ∈ H⊗d, we note (g)s the symmetrization of g, and

IXd (g) = IXd ((g)s)

Plainly, for f, g ∈ H⊗d, IXd (f + g) = IXd ((f)s + (g)s) = IXd (f) + IXd (g). Recall that, when H =
L2 (Z,Z, ν), (Z,Z) is a measurable space, and ν is a σ-finite measure with no atoms, then H⊙d =
L2
s

(
Zd,Z⊗d, ν⊗d

)
, where L2

s

(
Zd,Z⊗d, ν⊗d

)
is the space of symmetric and square integrable functions on

Zd. Moreover, for f ∈ H⊙d, IXd (f) coincides with the multiple Wiener-Itô integral (of order d) of f with
respect to X , as defined e.g. in [17, Section 1.1.2].

To establish the announced stable convergence results, we use the elements of R (H) to represent
random variables of the type δX (u), u ∈ dom (δX), in terms of continuous-time martingales. In particular,
we will use the fact that (i) for any π ∈ R (H), L2

π (H, X) ⊆ dom (δX), and (ii) for any u ∈ L2
π (H, X) the

random variable δX (u) can be regarded as the terminal value of a real-valued Fπ
t -martingale, where Fπ

t

is given by (3). A proof of the following result can be found in [32, Lemme 1] and [30, Corollary 2.1]

Proposition 5 Let the assumptions of this section prevail. Then:

1. L2
π (H, X) ⊆ dom (δX), and for every h1, h2 ∈ L2

π (H, X)

E [δX (h1) δX (h2)] = (h1, h2)L2
π(H,X) . (6)

5



2. If h ∈ Eπ (H, X) has the form h =
∑n

i=1 hi, where n ≥ 1, and hi ∈ Eπ (H, X) is s.t.

hi = Φi ×
(
π
t
(i)
2

− π
t
(i)
1

)
fi, fi ∈ H, i = 1, ..., n,

with t
(i)
2 > t

(i)
1 and Φi square integrable and Fπ

t
(i)
1

(X)-measurable, then

δX (h) =
n∑

i=1

Φi ×
[
X
(
π
t
(i)
2
fi

)
−X

(
π
t
(i)
1
fi

)]
. (7)

3. For every u ∈ L2
π (H, X), the process

t 7→ δX (πtu) , t ∈ [0, 1] ,

is a continuous Fπ
t (X)-martingale initialized at zero, with quadratic variation equal to

{
‖πtu‖2

H
: t ∈ [0, 1]

}
.

In the terminology of [32], relation (6) implies that L2
π (H, X) is a closed subspace of the isometric

subset of dom (δX), defined as the collection of those h ∈ dom (δX) such that

E

(
δX (h)2

)
= ‖h‖2

L2(H,X) . (8)

Note that, in general, this isometric subset is not a vector space – see e.g. [32, p. 170]. The next
result is partly a consequence of the continuity of π. It is an abstract version of the Clark-Ocone formula
(see [17]), and can be proved along the lines of [32, Théorème 1, formula (2.4) and Théorème 3]. Observe
that, in [32], such a result is proved in the context of abstract Wiener spaces. However, such a proof uses
exclusively isometric properties such as (8), and the role of the underlying probability space is immaterial.
It follows that the extension to general isonormal Gaussian processes is standard: see e.g. [18, Section
1.1]. The reader is also referred to [15] for a general Clark-Ocone formula concerning Banach space valued
Wiener functionals.

Proposition 6 (Abstract Clark-Ocone formula) Under the above notation and assumptions (in par-
ticular, π ∈ R (H)), for every F ∈ D

1,2
X ,

F = E (F ) + δ
(
proj

{
DXF | L2

π (H, X)
})

, (9)

where DXF is the Malliavin derivative of F , and proj
{
· | L2

π (H, X)
}

is the orthogonal projection operator
on L2

π (H, X).

Remarks – (a) The right-hand side of (9) is well defined, since DXF ∈ L2 (H, X) by definition, and
therefore

proj
{
DXF | L2

π (H, X)
}
∈ L2

π (H, X) ⊆ dom (δX) ,

where the last inclusion is stated in Proposition 5.
(b) Since D

1,2
X is dense in L2 (P) and δX

(
L2
π (H, X)

)
is an isometry (due to (6)), formula (9) yields

that every F ∈ L2 (P, σ (X)) admits a unique “predictable representation” of the form

F = E (F ) + δX (u) , u ∈ L2
π (H, X) ; (10)

see also [32, Remarque 2, p. 172].

In the next section, we present a general criterion (Theorem 7), ensuring the stable convergence of a
sequence of Skorohod integrals towards a mixture of Gaussian distributions. The result has been proved in
[21], by using a general convergence criteria for functionals of independently scattered random measures.
Here we present an alternative proof (partly inspired by some arguments contained in [31]), which is
based on a time-change technique for continuous-time martingales.

6



2.3 Stable convergence of Skorohod integrals

We first present a standard definition of the classes M and M̂ of random probability measures and
random fourier transform.

Definition III – Let B (R) denote the Borel σ-field on R.

(III-a) A map µ (·, ·), from B (R)×Ω to R is called a random probability (on R) if, for every C ∈ B (R),
µ (C, ·) is a random variable and, for P-a.e. ω, the map C 7→ µ (C, ω), C ∈ B (R), defines a
probability measure on R. The class of all random probabilities is noted M, and, for µ ∈ M, we
write Eµ (·) to indicate the (deterministic) probability measure

Eµ (C) , E [µ (C, ·)] , C ∈ B (R) . (11)

(III-b) For a measurable map φ (·, ·), from R×Ω to C, we write φ ∈ M̂ if there exists µ ∈ M such that

φ (λ, ω) = µ̂ (λ) (ω) , ∀λ ∈ R, for P-a.e. ω, (12)

where µ̂ (·) is defined as

µ̂ (λ) (ω) =

{ ∫
exp (iλx)µ (dx, ω) if µ (·, ω) is a probability measure

1 otherwise.
, λ ∈ R. (13)

For every ω ∈ Ω, µ̂ (λ) (ω) is of course a continuous function of λ, and the probability Eµ (·) =∫
Ω
µ (·, ω)dP (ω) defined in (11) is often called a mixture of probability measures. The notion of stable

convergence, which is the content of the next definition, extends the usual notion of convergence in law.

Definition IV (see e.g. [10, Chapter 4]) – Let F∗ ⊆ F be a σ-field, and let µ ∈ M. A sequence of
real valued r.v.’s {Zn : n ≥ 1} is said to converge F∗-stably to Eµ (·), written Xn →(s,F∗) Eµ (·), if, for
every λ, γ ∈ R and every F∗-measurable r.v. Z,

lim
n→+∞

E [exp (iγZ)× exp (iλXn)] = E [exp (iγZ)× µ̂ (λ)] , (14)

µ̂ ∈ M̂ is given by (13).

If Xn converges F∗-stably, then the conditional distributions L (Xn | A) converge for any A ∈ F∗ such
that P (A) > 0 (the reader is referred e.g. to [10, Proposition 5.33] for an exhaustive characterization of
stable convergence). By setting Z = 0, we obtain that if Xn →(s,F∗) Eµ (·), then the law of the Xn’s
converges weakly to Eµ (·). Observe also that, if a sequence of random variables {Un : n ≥ 0} is such that
(Un − Zn) → 0 in L1 (P) and Xn →(s,F∗) Eµ (·), then Un →(s,F∗) Eµ (·).

In what follows, Hn, n ≥ 1, is a sequence of real separable Hilbert spaces, whereas, for each n ≥ 1,
Xn = Xn (Hn) = {Xn (g) : g ∈ Hn}, is an isonormal Gaussian process over H. The following theorem
already appears in [21], where it is proved by using a decoupling technique known as the “principle of
conditioning”. In Section 2.4 we shall present an alternative proof based exclusively on continuous-time
martingale arguments.

Theorem 7 Under the previous notation and assumptions, for n ≥ 1, let πn = {πn,t : t ∈ [0, 1]} ∈
R (Hn) and un ∈ L2

πn
(Hn, Xn). Suppose that there exists a sequence {tn : n ≥ 1} ⊂ [0, 1] and σ-fields

{Un : n ≥ 1}, such that

‖πn,tnun‖2
Hn

P→ 0 (15)

7



and
Un ⊆ Un+1 ∩ Fπn

tn (Xn) . (16)

If

‖un‖2
H

P→ Y , (17)

for some Y ∈ L2 (P) such that Y 6= 0, Y ≥ 0 and Y ∈ U∗ , ∨nUn, then, as n→ +∞,

δXn
(un) →(s,U∗) Eµ (·) ,

where µ ∈ M verifies µ̂ (λ) = exp
(
−λ2

2 Y
)
.

Remark – Condition (16), that already appears in the statement of the main results of [21], can be
seen as a weak version of the nesting condition used e.g. in [6] to establish sufficient conditions for the
stable convergence of semimartingales.

By using the Clark-Ocone formula stated in Proposition 6, we deduce from Theorem 7 a criterion for
the stable convergence of (Malliavin) differentiable functionals. It is the key to prove the main results of
the paper.

Corollary 8 Let Hn, Xn (Hn), πn, tn and Un, n ≥ 1, satisfy the assumptions of Theorem 7, and consider
a sequence of random variables {Fn : n ≥ 1}, such that E (Fn) = 0 and Fn ∈ D

1,2
Xn

for every n. Then, a
sufficient condition to have that

Fn →(s,U∗) Eµ (·)

where U∗ , ∨nUn, µ̂ (λ) = exp
(
−λ2

2 Y
)
, ∀λ ∈ R, and Y ≥ 0 is such that Y ∈ U∗, is

∥∥πn,tnproj
{
DXn

Fn | L2
πn

(Hn, Xn)
}∥∥2

Hn

P→ 0 and
∥∥proj

{
DXn

Fn | L2
πn

(Hn, Xn)
}∥∥2

Hn

P→
n→+∞

Y .

(18)

2.4 Martingale proof of Theorem 7

In this section, we provide a proof of Theorem 7 involving exclusively continuous martingale arguments.
It is based on the following general result.

Proposition 9 Fix T ≤ +∞. For n ≥ 1, let {Wn
t : t ∈ [0, T )} be a Brownian motion with respect to a

filtration Hn = {Hn
t : t ∈ [0, T )} of the space (Ω,F ,P) (satisfying the usual conditions) and suppose that

there exists a sequence of random variables {τn : n ≥ 1} such that τn is a Hn-stopping time with values

in [0, T ) and τn
P→ 0 as n→ +∞. Set moreover, for n ≥ 1, V nt = Wn

τn+t −Wn
τn

, t ∈ [0, T ). Then,

1. V n −Wn law⇒ 0;

2. if there exists a sequence of σ-fields {Un : n ≥ 1} such that

Un ⊆ Un+1 ∩Hn
τn

then for every random element X defined on (Ω,F ,P), with values in some Polish space (S,S) and
measurable with respect to U∗ , ∨nUn,

(Wn, X)
law⇒ (W,X) and (V n, X)

law⇒ (W,X) (19)

where W is a standard Brownian motion independent of X.

8



Proof. The proof is partly inspired by that of [31, Theorem 3.1]. Since τn
P→ 0 by assumption, Point

1 in the statement is a direct consequence of the Continuous Mapping Theorem (see e.g. [1]). Moreover,

(19) is proved, once it is shown that (V n, X)
law⇒ (W,X). To do this, observe first that, for every n, Vn

is a standard Brownian motion, started from zero and independent of Hn
τn

. We shall now show that, as
n→ +∞, for every A ∈ B (C [0, T )) (B (C [0, T )) is the Borel σ-field of the class C [0, T ) of the continuous
functions on [0, T )) and every B ∈ S,

P [V n ∈ A,X ∈ B] − P [W ∈ A] P [X ∈ B] → 0. (20)

As a matter of fact, since Un ⊆ Hn
τn

, and thanks to the martingale convergence theorem and the fact
that X ∈ ∨nUn,

E
∣∣P
[
X ∈ B | Hn

τn

]
− 1X∈B

∣∣ ≤ E
∣∣P
[
X ∈ B | Hn

τn

]
− P [X ∈ B | Un]

∣∣
+E |1X∈B − P [X ∈ B | Un]|

≤ 2E |1X∈B − P [X ∈ B | Un]| →
n→+∞

0,

thus implying that P
[
X ∈ B | Hn

τn

] L1

→ 1X∈B, and therefore

P [V n ∈ A,X ∈ B] − P [W ∈ A] P [X ∈ B] = P [V n ∈ A,X ∈ B] − E
[
1Vn∈AP

[
X ∈ B | Hn

τn

]]

+E
[
1Vn∈AP

[
X ∈ B | Hn

τn

]]
− P [W ∈ A] P [X ∈ B]

= P [V n ∈ A,X ∈ B] − E
[
1Vn∈AP

[
X ∈ B | Hn

τn

]]
→

n→+∞
0,

where the last equality follows from the independence of Vn and Hn
τn

. Since (20) implies that (V n, X)
law⇒

(W,X), with W and X independent, the proof is concluded.

Proof of Theorem 7 – According to Proposition 5-3, for each n the process t 7→ δXn
(πn,tun) is

a continuous square-integrable Fπn

t (Xn)-martingale with quadratic variation t 7→ ‖πn,tun‖2
Hn

, ψn (t),
t ∈ [0, 1]. Now define

Gns , Fπn
ρn,s

, s ≥ 0, where ρn,s = inf {x ∈ [0, 1] : ψn (x) > s} ,

with inf ∅ = 1, and observe that the above definition is well given and also that, for every n ≥ 1, every
t ∈ [0, 1] and s ≥ 0, ψn (t) = ‖πn,tun‖2

Hn
is a Gn-stopping time and ρn,s is a Fπn-stopping time. In

particular, for every x ≥ 0 and t ∈ [0, 1],

{ψn (t) > x} = {ρn,x < t} ∈ Fπn

t .

According to the well known Dambis-Dubins-Schwarz Theorem (see e.g. [25, Ch. V]), the underlying
probability space can be suitably enlarged in order to support a sequence of stochastic processes Wn such
that, for each fixed n, Wn is a Gn-Brownian motion started from zero, and also

δXn
(πn,tun) = W

(n)
ψn(t), t ∈ [0, 1] . (21)

Since, in general, ρn,ψn(t) ≥ t, Gnψn(t) ⊇ Fπn

t for every t ∈ [0, 1]. It follows that, for the sequence tn
appearing in the statement of Theorem 7,

Un ⊆ Un+1 ∩ Fπn

tn ⊆ Un+1 ∩ Gnψn(tn).

Thus, all conditions of Proposition 9 are verified, with Hn = Gn and τn = ψn (tn), and therefore, for
every U∗ = ∨nUn-measurable and real-valued random variable Z,

(Wn, Z)
law⇒ (W,Z) ,
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where W is a Brownian motion independent of Z. Moreover, since ψn (1) = ‖πn,1un‖2
Hn

P→ Y ∈ U∗ by
assumption, we conclude that, for every Z ∈ U∗,

(Wn, Z, ψn (1))
law⇒ (W,Z, Y ) .

Now observe that δXn
(un) = Wn

ψn(1) by (21) and also that, thanks to a further application of the
Continuous Mapping Theorem,

(
Wn
ψn(1), Z

)
= (δXn

(un) , Z)
law⇒ (WY , Z) ,

implying that, for every γ, λ ∈ R,

E

[
eiγZeiλδXn (un)

]
→ E

[
eiγZeiλWY

]
= E

[
eiγZe−

λ2

2 Y
]
,

which yields the desired conclusion. �

2.5 Further refinements

The following result is a refinement of Theorem 7 and Corollary 8. It will be used in the next section to
characterize the stable convergence of double Wiener-Itô integrals. It is proved in [21, Proposition 10,
Theorem 22 and formula (123)]. The setting is that of Theorem 7: Hn, n ≥ 1, is a real separable Hilbert
space; Xn = Xn (Hn), n ≥ 1, is an isonormal Gaussian process over Hn.

Theorem 10 Keep the assumptions of Theorem 7 (in particular, un ∈ L2
πn

(Hn, Xn) for every n, and
(15), (16) and (17) are verified). Then, as n→ +∞,

E
[
exp (iλδXn

(un)) | Fπn

tn (Xn)
] P→ exp

(
−λ

2

2
Y

)
, ∀λ ∈ R.

Moreover, if there exists a finite random variable C (ω) > 0 such that, for some η > 0,

E
[
|δXn

(un)|η | Fπn

tn

]
< C (ω) , ∀n ≥ 1, a.s.-P,

then, there is a subsequence {n (k) : k ≥ 1} such that, a.s. - P,

E

[
exp (iλδXn

(un)) | Fπn(k)

tn(k)

]
→

k→+∞
exp

(
−λ

2

2
Y

)
, ∀λ ∈ R.

3 Main results

Although Corollary 8 is quite general, the explicit computation of the projections

proj
{
DXn

Fn | L2
πn

(H, Xn)
}
, n ≥ 1,

may be rather difficult. In this section, we prove simpler sufficient conditions ensuring that the second
asymptotic relation in (18) is satisfied, when (Fn) is a sequence of multiple Wiener-Itô integrals of a
fixed order. In particular, these conditions do not involve any projection on the spaces L2

πn
(H, Xn). The

techniques developed below can be suitably extended to study the joint convergence of vectors of multiple
Wiener-Itô integrals. This issue will be studied in a separate paper.
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3.1 Statements

To start, fix a real separable Hilbert space H and let {ek : k ≥ 1} be a complete orthonormal system in
H. For every d ≥ 1, every p = 0, ..., d and f ∈ H⊙d, we define the contraction of f of order p to be the
element of H⊗2(d−p) given by

f ⊗p f =
∞∑

i1,...,ip=1

〈
f, ei1 ⊗ · · · ⊗ eip

〉
H⊗p ⊗

〈
f, ei1 ⊗ · · · ⊗ eip

〉
H⊗p , (22)

and we denote by (f ⊗p f)s its symmetrization. As shown in [19] and [22], the asymptotic behavior of
the contractions f ⊗p f , p = 1, ..., n− 1, plays a crucial role in the proof of CLTs for multiple Wiener-Itô
integrals. To obtain analogous results in the case of stable convergence, we need to define a further class
of contraction operators, constructed by means of resolutions of the identity. To this end, fix π ∈ R (H),
t ∈ [0, 1] and d ≥ 1, and define π⊗d

t : H⊗d 7→ H⊗d to be the nth tensor product of πt, that is, π⊗d
t is the

projection operator, from H⊗d to itself, given by

π⊗d
t = πt ⊗ πt ⊗ · · · ⊗ πt︸ ︷︷ ︸

d times

. (23)

For every d ≥ 1, p = 0, ..., n, t ∈ [0, 1] and f ∈ H⊙d, we write f ⊗π,tp f to indicate the element of

H⊗2(d−p) given by

f ⊗π,tp f =

∞∑

i1,...,ip=1

〈
f,
(
π
⊗p
1 − π

⊗p
t

)
ei1 ⊗ · · · ⊗ eip

〉
H⊗p ⊗

〈
f,
(
π
⊗p
1 − π

⊗p
t

)
ei1 ⊗ · · · ⊗ eip

〉
H⊗p , (24)

and, as before, we denote by
(
f ⊗π,tp f

)
s

its symmetrization. We define f ⊗π,tp f to be the generalized

contraction kernel of order p, associated to π and t. For instance, for f ∈ H⊙d,

f ⊗π,0p f = f ⊗p f , f ⊗π,1p f = 0, and f ⊗π,td f =
∥∥(π⊗d

1 − π⊗d
t

)
f
∥∥2

H⊗d . (25)

Remark – When H = L2 (Z,Z, ν), where ν is σ-finite and non-atomic, and π ∈ R (H) has the form

πtf (z) = f (z)1Zt
(z) , z ∈ Z,

where Zt is an increasing sequence in Z such that Z0 = ∅ and Z1 = Z, we have the following elementary
relation: for every d ≥ 1, p = 0, ..., d, t ∈ [0, 1] and f ∈ H⊙d = L2

s

(
Z⊗d,Z⊗d, ν⊗d

)
,

f ⊗π,tp f
(
z1, ..., z2(d−p)

)
=

∫

Zp\Zp
t

f (z1, ..., zd−p,xp) f
(
zd−p+1, ..., z2(d−p),xp

)
ν⊗p (dxp) ,

since, for every h ∈ L2
s (Z⊗p,Z⊗p, ν⊗p),

(
π
⊗p
1 − π

⊗p
t

)
h (xp) =

(
1Zp (xp) − 1Zp

t
(xp)

)
h (xp) = 1Zp\Zp

t
(xp)h (xp) .

The next result, which is the main achievement of the paper, generalizes the crucial part of the CLT
stated in [19, Theorem 1] to the case of the stable convergence. Its proof is postponed to the next section.

Theorem 11 Let Hn, Xn (Hn), πn, tn and Un, n ≥ 1, satisfy the assumptions of Corollary 8. Fix d ≥ 2,
and consider a sequence of random variables {Fn : n ≥ 1}, such that, for every n,

Fn = IXn

d (fn) , (26)
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for a certain fn ∈ H⊙d
n , and moreover

E
[
Fn | Fπn

tn (Xn)
]

= IXn

d

(
π⊗d
n,tnfn

) L2(P)→ 0 (27)

and
E
[
F 2
n | Fπn

tn (Xn)
]

P→ Y ∈ U∗. (28)

Then, the following hold:

1. for every n ≥ 1,

E
[
F 2
n | Fπn

tn (Xn)
]

= d! ‖fn‖2
H

⊗d
n

(29)

+
d−1∑

r=1

(d− r)!

(
d

r

)2

IXn

2r

[
π⊗2r
n,tn

(
fn ⊗πn,tn

d−r fn
)]

+ oP (1) ,

where oP (1) stands for a sequence of random variables converging to zero in probability;

2. if πn ∈ RAC (Hn) for every n ≥ 1 and, for every r = 1, ..., d− 1,

∥∥(π⊗2r
n,1 − π⊗2r

n,tn

) (
fn ⊗πn,tn

d−r fn
)∥∥2

H
⊗2r
n

→
n→+∞

0, (30)

then ∥∥proj
{
DXn

Fn | L2
πn

(Hn, Xn)
}∥∥2

Hn

P→
n→+∞

Y , (31)

and therefore

Fn →(s,U∗) Eµ (·) and E
[
exp (iλFn) | Fπn

tn (Xn)
] P→ exp

(
−λ

2

2
Y

)
, ∀λ ∈ R,

where µ̂ (λ) = exp
(
−λ2

2 Y
)
, ∀λ ∈ R.

Remarks – (a) Since, due to Lemma 3 and for any continuous π ∈ R (H), there exists a non decreasing
function φ such that π̃ , πφ(·) is absolutely continuous, Theorem 11 applies de facto to any sequence
πn ∈ R (Hn), n ≥ 1.

(b) Suppose that Xn (Hn) = X (H) for every n ≥ 1. Then, the random variables Fn, n ≥ 1, appearing
in (26) all belong to the same Wiener chaos, and, due to (29), the sequence E

[
F 2
n | Fπn

tn (Xn)
]
, n ≥ 1,

belongs to the same finite sum of d Wiener chaoses. Recall also that, on a finite sum of Wiener chaoses,
the topology induced by convergence in probability is equivalent to the Lp topology, for every p ≥ 1 (see
e.g. [27]). When (27) and (28) are verified, we therefore deduce from (29) that Y has necessarily the
form

Y = E (Y ) +

d−1∑

r=1

IX2r (gr) , (32)

for some gr ∈ H⊙r and r = 1, ..., d − 1. Moreover, (28) is equivalent to the condition: as n → +∞,

d! ‖fn‖2
H⊗d → E (Y ) and, for r = 1, ..., d− 1,

(d− r)!

(
d

r

)2

×
(
π⊗2r
n,tn

(
fn ⊗πn,tn

d−r fn
))
s
→ gr (33)

in H⊙2r. It follows that, for r = 1, ..., d − 1, the two operators fn ⊗∗
d−r fn and fn ⊗∗∗

d−r fn, from H to
H⊗2r, defined as

fn 7→ (d− r)!

(
d

r

)2 (
π⊗2r
n,tn

(
fn ⊗πn,tn

d−r fn
))
s

, fn ⊗∗
d−r fn (34)

fn 7→
(
π⊗2r
n,1 − π⊗2r

n,tn

) (
fn ⊗πn,tn

d−r fn
)

, fn ⊗∗∗
d−r fn, (35)
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solve the problem raised in the Introduction. Indeed, under (27) and the normalization condition

d! ‖fn‖2
H⊗d → E (Y ), due to Theorem 11 and (33), the asymptotic relation (1) implies that IXd (fn)

converges stably to
√
Y ×N , where N is a centered standard Gaussian random variable independent of

Y .

We now show that the conclusions of Theorem 11 may be strengthened in the case of a sequence of
double Wiener-Itô integrals, i.e. in the case d = 2. The proof of the next result is deferred to the Section
3.3.

Theorem 12 Under the assumptions and notation of Theorem 11 (in particular, (27) and (28) are in
order), suppose that d = 2 and that the following implication holds:

E
(
E
[
F 4
n | Fπn

tn (Xn)
]
− 3Y 2

)2 →
n→+∞

0 if, and only if, E
[
F 4
n | Fπn

tn (Xn)
] P→ 3Y 2. (36)

Then, the following are equivalent

(i)
∥∥proj

{
DXn

Fn | L2
πn

(Hn, Xn)
}∥∥2

Hn

P→
n→+∞

Y ;

(ii) E
[
exp (iλFn) | Fπn

tn (Xn)
] P→ exp

(
−λ2

2 Y
)
, ∀λ ∈ R;

(iii) E
[
F 4
n | Fπn

tn (Xn)
] P→ 3Y 2;

(iv)
∥∥(π⊗2

n,1 − π⊗2
n,tn

) (
fn ⊗πn,tn

1 fn
)∥∥2

H
⊙2
n

→
n→+∞

0.

Moreover, if either one of conditions (i)-(iv) is satisfied, Fn →(s,U∗) Eµ (·), where µ̂ (λ) = exp
(
−λ2

2 Y
)
.

Remark – (a) Due again to the equivalence of the L0 and L2 topology on a finite sum of Wiener
chaoses (see [27]), condition (36) is verified in the case Hn = H and Xn (H) = X (H), for every n ≥ 1.

(b) When d = 2, the second part of Theorem 11 corresponds to the implications (iv) =⇒ (i) =⇒ (ii)
of Theorem 12.

The next consequence of Theorem 11 is a central limit theorem, generalizing Theorem 1.

Corollary 13 Let Hn, Xn (Hn), n ≥ 1, be defined as above, and suppose that πn ∈ RAC (Hn) for each n.

For d ≥ 2, consider a sequence of multiple Wiener-Itô integrals
{
IXn

d (fn) : n ≥ 1
}

s.t. fn ∈ H⊙d
n , and

E

[
IXn

d (fn)
2
]

= d! ‖fn‖2
H

⊗d
n

→
n→+∞

1.

Then, the following are equivalent

(i)
∥∥∥proj

{
DXn

IXn

d (fn) | L2
πn

(Hn, Xn)
}∥∥∥

2

Hn

P→
n→+∞

1;

(ii) E

[
exp

(
iλIXn

d (fn)
)]

→
n→+∞

exp
(
−λ2

2

)
, ∀λ ∈ R, that is, IXn

d (fn)
law→ N (0, 1);

(iii) E

[
IXn

d (fn)
4
]

→
n→+∞

3;

(iv) ‖fn ⊗d−r fn‖2
H

⊙2r
n

→
n→+∞

0, ∀r = 1, ..., d− 1.

Proof. The equivalence of the three conditions (ii)-(iv) is the object of Theorem 1. That (i) implies
(ii) follows from Corollary 8, in the case tn = 0 for every n. Finally, (iv) implies (i) thanks to Theorem
11-2, again in the case tn = 0.
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3.2 Proof of Theorem 11

We start by proving an auxiliary analytic result. Let (A,A) be a measurable space. For m ≥ 1, let ξm
be shorthand for a vector ξm = ((a1, x1) ; ..., (am;xm)) ∈ (A× [0, 1])

m
and, for such ξm, note ξm the

maximum of ξm in the variables x1, ..., xm, i.e. ξm = ((a1, x1) ; ..., (am;xm)) = maxi=1,...,n (xi). In what
follows, l (dξ) stands for a σ-finite positive measure on A × [0, 1], such that, for every fixed x∗ ∈ [0, 1],
l {(a, x) : x = x∗} = 0 (note that this implies that l is non-atomic). For m ≥ 1, lm (dξm) is the canonical
product measure on (A× [0, 1])

m
(with l1 = l by convention).

Lemma 14 Let m, r ≥ 1, C ⊆ [0, 1]
m

and D ⊆ [0, 1]
r
. Then, for every symmetric function f ∈

L2
s

(
(A× [0, 1])m+r

, lm+r
)

, L2
s (lm+r)

∫

A×C

∫

A×C

[∫

A×D

f (ξm, αr) f (γm, αr) l
r (dαr)

]2
lm (dξm) lm (dγm)

=

∫

A×C

∫

A×C

[∫

A×D

f (ξm, αr) f (γm, αr)1(αr<max(ξm,γm))l
r (dαr)

]2
lm (dξm) lm (dγm) (37)

+

∫

A×D

∫

A×D

[∫

A×C

f (ξm, αr) f (ξm, βr)1(ξm<max(αr,βr))
lm (dξm)

]2
lr (dαr) l

r (dβr) .

Proof. Start by writing

∫

A×C

∫

A×C

[∫

A×D

f (ξm, αr) f (γm, αr) l
r (dαr)

]2
lm (dξm) lm (dγm)

=

∫

A×C

∫

A×C

[∫

A×D

f (ξm, αr) f (γm, αr) × (38)

×
(
1(αr<max(ξm,γm)) + 1(αr>max(ξm,γm))

)
lr (dαr)

]2
lm (dξm) lm (dγm)

=

∫

A×C

∫

A×C

[∫

A×D

f (ξm, αr) f (γm, αr) 1(αr<max(ξm,γm))l
r (dαr)

]2
lm (dξm) lm (dγm)

+

∫

A×C

∫

A×C

[∫

A×D

f (ξm, αr) f (γm, αr)1(αr>max(ξm,γm))l
r (dαr)

]2
lm (dξm) lm (dγm)

+2

∫

A×C

∫

A×C

[∫

A×D

f (ξm, αr) f (γm, αr)1(αr<max(ξm,γm))l
r (dαr)

]
×

×
[∫

A×D

f (ξm, βr) f (γm, βr)1(βr>max(ξm,γm))l
r (dβr)

]
lm (dξm) lm (dγm)

, L (1) + L (2) + L (3)

(note that the equality (38) holds because of the assumption: l {(a, x) : x = x∗} = 0, ∀x∗). Now, by using
a standard Fubini theorem,

L (2) =

∫

A×D

∫

A×D

[∫

A×C

f (γm, αr) f (γm, βr)1(γm<min(αr ,βr))
lm (dγm)

]2
lr (dαr) l

r (dβr) ,

14



and also

L (3) =

∫

A×C

∫

A×C

[∫

A×D

f (ξm, αr) f (γm, αr)1(min(αr,βr)<max(ξm,γm))l
r (dαr)

]
×

×
[∫

A×D

f (ξm, βr) f (γm, βr)1(max(αr,βr)>max(ξm,γm))l
r (dβr)

]
lm (dξm) lm (dγm)

=

∫

A×D

∫

A×D

[∫

A×C

f (ξm, αr) f (ξm, βr) ×

× 1(min(αr ,βr)<ξm<max(αr,βr))
lm (dξm)

]2
lr (dαr) l

r (dβr) +

+2

∫

A×D

∫

A×D

[∫

A×C

f (ξm, αr) f (ξm, βr)1(min(αr ,βr)<ξm<max(αr ,βr))
lm (dξm)

]
×

[∫

A×C

f (γm, αr) f (γm, βr)1(γm<min(αr ,βr))
lm (dγm)

]
lr (dαr) l

r (dβr) .

The last relation implies that

L (2) + L (3) =

∫

A×D

∫

A×D

[∫

A×C

f (ξm, αr) f (ξm, βr)1(ξm<max(αr,βr))
lm (dξm)

]2
lr (dαr) l

r (dβr) ,

hence proving (37).

Remark – With the notation of Lemma 14, suppose that the sequence fn ∈ L2
s (lm+r), n ≥ 1, is such

that
{
‖fn‖L2

s(ζm+r) : n ≥ 1
}

is bounded and, as n→ +∞,

∫

A×C

∫

A×C

[∫

A×D

fn (ξm, αr) fn (γm, αr) l
r (dαr)

]2
lm (dξm) lm (dγm)

=

∫

A×D

∫

A×D

[∫

A×C

fn (ξm, αr) fn (ξm, βr) l
m (dξm)

]2
lr (dαr) l

r (dβr) (39)

→ 0

(note that the equality in (39) derives from a standard Fubini theorem). Then, by (38) and (37), Lemma
14 implies that the sequence Qi (n), defined for i = 1, 2, 3, 4 by

Q1 (n) =

∫

A×C

∫

A×C

[∫

A×D

f (ξm, αr) f (γm, αr)1(αr<max(ξm,γm))l
r (dαr)

]2
lm (dξm) lm (dγm) ,

Q2 (n) =

∫

A×D

∫

A×D

[∫

A×C

f (ξm, αr) f (ξm, βr)1(ξm<max(αr,βr))
lm (dξm)

]2
lr (dαr) l

r (dβr) ,

Q3 (n) =

∫

A×C

∫

A×C

[∫

A×D

f (ξm, αr) f (γm, αr)1(αr>max(ξm,γm))l
r (dαr)

]2
lm (dξm) lm (dγm)

=

∫

A×D

∫

A×D

[∫

A×C

f (ξm, αr) f (ξm, βr)1(ξm<min(αr ,βr))
lm (dξm)

]2
lr (dαr) l

r (dβr) ,

Q4 (n) =

∫

A×D

∫

A×D

[∫

A×C

f (ξm, αr) f (ξm, βr)1(ξm>max(αr,βr))
lm (dξm)

]2
lr (dαr) l

r (dβr)

=

∫

A×C

∫

A×C

[∫

A×D

f (ξm, αr) f (γm, αr)1(αr<min(ξm,γm))l
r (dαr)

]2
lm (dξm) lm (dγm)

(the equalities after the definitions of Q3 (n) and Q4 (n) are again a consequence of the Fubini theorem)
converges to 0 as n→ +∞. This fact will be used in the proof of Theorem 11-2.
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(Proof of Theorem 11-1 ) By using a standard multiplication formula for multiple stochastic integrals
(see e.g. [17, Proposition 1.5.1]), we obtain that

F 2
n = d! ‖fn‖2

H
⊗d
n

+
d∑

r=1

(d− r)!

(
d

r

)2

IXn

2r [fn ⊗d−r fn] , n ≥ 1,

and consequently, for n ≥ 1,

E
[
F 2
n | Fπn

tn (Xn)
]

= d! ‖fn‖2
H

⊗d
n

(40)

+
d∑

r=1

(d− r)!

(
d

r

)2

IXn

2r

[
π⊗2r
n,tn (fn ⊗d−r fn)

]
.

Now observe that, for r = 1, ..., d,

IXn

2r

[
π⊗2r
n,tn (fn ⊗d−r fn)

]
= IXn

2r

[
π⊗2r
n,tn

(
fn ⊗πn,tn

d−r fn
)]

(41)

+IXn

2r

[(
π⊗d
n,tnfn

)
⊗d−r

(
π⊗d
n,tnfn

)]

and, in particular, for r = d

IXn

2d

[
π⊗2d
n,tn (fn ⊗0 fn)

]
= IXn

2d

[(
π⊗d
n,tnfn

)
⊗0

(
π⊗d
n,tnfn

)]
. (42)

It follows from formulae (40), (41) and (42), that Theorem 11-1 is proved, once it is shown that
IXn

2r

[(
π⊗d
n,tnfn

)
⊗d−r

(
π⊗d
n,tnfn

)]
→ 0, in L2 (P), for every r = 1, ..., d. But

E

{
IXn

2r

[(
π⊗d
n,tnfn

)
⊗d−r

(
π⊗d
n,tnfn

)]2} ≤ (d− r)!
∥∥π⊗d

n,tnfn
∥∥4

H⊗d →
n→+∞

0

due to assumption (27), hence yielding the desired conclusion.

(Proof of Theorem 11-2 ) For m ≥ 1, we write xm to indicate a vector xm = (x1, ..., xm) ∈ [0, 1]
m

, and
also x̂m = maxi=1,...,n (xi). Moreover, dxm indicates the restriction of the Lebesgue measure to [0, 1]m.
We first prove Theorem 11-2 when the following assumptions (a) and (b) are verified: (a) for every n ≥ 1,

Hn = L2 (An × [0, 1] , µn,An ⊗ B ([0, 1])) , (43)

where (An,An) is a measurable space, νn is a σ-finite (positive) measure on (An,An), and

µn (da, dx) = kn (a, x) {νn (da) ⊗ dx} , (44)

where kn ∈ L1 (An × [0, 1] , νn,An ⊗ B ([0, 1])) and kn ≥ 0; (b) for every n, for every (a, x) ∈ An × [0, 1]
and for every h ∈ Hn,

πn,th (a, x) = h (a, x)1[0,t] (x) , ∀t ∈ [0, 1] . (45)

Note that µn is non-atomic, and also that, in this setting, H⊗d
n = L2

(
(An × [0, 1])d , µ⊗d

n

)
for every

d ≥ 2 and

H
⊙d
n = L2

s

(
(An × [0, 1])d , µ⊗d

n

)
.

It follows that every f ∈ H⊙d
n can be identified with a (square integrable) function

f (a1, ..., ad;x1, ..., xd) = f (ad;xd) , ad ∈ Adn, xd ∈ [0, 1]
d
,
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which is symmetric in the variables (a1, x1) , ..., (ad, xd). Moreover, by using the notation introduced in
formulae (23)-(25), for every f ∈ H⊗d

n and every t ∈ [0, 1],

π⊗d
n,tf (ad;xd) = f (ad;xd)1[0,t]d (xd) and (46)

(
π⊗d
n,1 − π⊗d

n,t

)
f (ad;xd) = f (ad;xd)1[0,1]d\[0,t]d (xd) , ad ∈ Adn, xd ∈ [0, 1]

d
. (47)

Finally, we observe that (by using the notation introduced before the statement of Lemma 14), for
every m ≥ 1, every xm = (x1, ..., xm) ∈ [0, 1]

m
and every ξm ∈ (An × [0, 1])

m
with the form ξm =

((a1, x1) , ..., (am, xm)),

ξm = ((a1, x1) , ..., (am, xm)) = ̂(x1, ..., xm) = x̂m. (48)

For Hn and πn ∈ R (Hn) (n ≥ 1) as in (43), (44) and (45), consider the sequence of isonormal Gaussian
processes Xn = Xn (Hn), n ≥ 1, appearing in the statement of Theorem 11. Since, according to (26),
Fn = IXn

d (fn), we obtain immediately that, for n ≥ 1,

DXn
Fn (a, x) = d× IXn

d−1 (fn (a, ·;x, ·)) , (49)

where, for every fixed (a, x) ∈ A × [0, 1], fn (a, ·;x, ·) stands for the (symmetric) function, from (A ×
[0, 1])d−1 to R,

(a1, ..., ad−1;x1, ..., xd−1) 7→ fn (a, a1, ..., ad−1;x, x1, ..., xd−1) .

In this framework, the sequence proj
{
DXn

Fn | L2
πn

(Hn, Xn)
}
, n ≥ 1, can be easily made explicit by

means of the following result.

Lemma 15 If Hn and πn ∈ R (Hn), n ≥ 1, satisfy relations (43), (44) and (45), for every u = u (a, x) ∈
L2 (Hn, Xn), P-a.s.,

proj
{
u | L2

πn
(Hn, Xn)

}
(a, x) = E [u (a, x) | Fπn

x (Xn)] , (50)

for µn-a.e. (a, x), where the filtration Fπn
x (Xn), x ∈ [0, 1], is defined according to (3).

Proof. Denote by u∗ the process appearing on the right hand side of (50). To show that u∗ is an
element of L2

πn
(Hn, Xn) we need to show that it is a πn-adapted element of L2 (Hn, Xn) . Since u belongs

to L2 (Hn, Xn), so does u∗. Moreover, u∗ is πn-adapted because, for every h ∈ Hn and every t ∈ [0, 1],

(u∗, πn,th)Hn
=

∫

An×[0,1]

u∗ (a, x) πn,th (a, x)µn (da, dx)

=

∫

An×[0,t]

E [u (a, x) | Fπn
x (Xn)]h (a, x)µn (da, dx) ∈ Fπn

t (Xn) ,

by (45). Now consider an element of Eπn
(Hn, Xn) with the form g = Φ (t1) (πn,t2 − πn,t1) f where t2 > t1,

f ∈ Hn and Φ (t1) ∈ Fπn

t1 (Xn) is square-integrable. Then,

(u, g)L2(Hn,Xn) = E

∫

An×[0,1]

u (a, t) g (a, x)µn (da, dx)

=

∫

An×(t1,t2]

E (Φ (t1)u (a, x) f (a, x))µn (da, dx)

=

∫

An×(t1,t2]

E (Φ (t1) E [u (a, x) | Fπn
x (Xn)]) f (a, x)µn (da, dx)

= (u∗, g)L2(Hn,Xn) ,
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where we have used a Fubini theorem and the fact that Φ (t1) ∈ Fπn

t1 (Xn). Since Eπn
(Hn, Xn) is total

in L2
πn

(Hn, Xn), we deduce that (u, g)L2(Hn,Xn) = (u∗, g)L2(Hn,Xn), for every g ∈ L2
πn

(Hn, Xn), hence

u∗ = proj
{
u | L2

πn
(Hn, Xn)

}
as required.

In particular, thanks to the classic properties of multiple Wiener-Itô integral and conditional expec-
tations (see e.g. [18]), we deduce from (46) and (49) that, for Fn = IXn

d (fn) as in (26) and x ∈ [0, 1],

proj
{
DXn

Fn | L2
πn

(Hn, Xn)
}

(a, x) = dE
[
IXn

d−1 (fn (a, ·;x, ·)) | Fπn
x (Xn)

]
(51)

= dIXn

d−1

(
fn (a, ·;x, ·)1Ad−1

n ×[0,x]d−1 (·, ·)
)
,

and consequently

∥∥proj
{
DXn

Fn | L2
πn

(Hn, Xn)
}∥∥2

Hn
= d2

∫

An×[0,1]

IXn

d−1

(
fn (a, ·;x, ·)1Ad−1

n ×[0,x]d−1

)2

µn (da, dx) . (52)

Now note that, thanks to (6), (9) and the fact that E (Fn) = 0,

E
∥∥proj

{
DXn

Fn | L2
πn

(Hn, Xn)
}∥∥2

Hn
= E

[
δ
(
proj

{
DXn

Fn | L2
πn

(Hn, Xn)
})2]

= E
[
F 2
n

]
= d! ‖fn‖2

H
⊗d
n
.

Moreover, the chaotic expansion of the right hand side of (52) can be made explicit thanks to the
standard multiplication formula (see again [17, Proposition 1.5.1])

IXn

d−1 (g)2 = (d− 1)! ‖g‖2
H⊗d−1 +

d−1∑

q=0

q!

(
d− 1

q

)2

IXn

2(d−1−q) (g ⊗q g) ,

applied to g = fn (a, ·;x, ·) 1Ad−1
n ×[0,x]d−1 (for every fixed (a, x)), from which we obtain

d2

∫

An×[0,1]

IXn

d−1

(
fn (a, ·;x, ·)1Ad−1

n ×[0,x]d−1

)2

µn (da, dx)

= d! ‖fn‖2
H

⊗d
n

+ d2
d−2∑

q=0

q!

(
d− 1

q

)2

×

×
∫

An×[0,1]

IXn

2(d−1−q)

(∫

(An×[0,x])q

fn (a,aq, ·;x,xq , ·) ×

× fn (a,aq, ··;x,xq, ··) 1(An×[0,x])2(d−1−q) (·; ··)µ⊗q
n (daq, dxq)

)
µn (da, dx)

= d! ‖fn‖2
H

⊗d
n

+

d−1∑

r=1

(d− r)!

(
d

r

)2

(d− r) × (53)

×IXn

2r

(∫

An×[0,1]

∫

(An×[0,x])d−1−r

fn (a,ad−1−r, ·;x,xd−1−r, ·) ×

× fn (a,ad−1−r, ··;x,xd−1−r, ··)1(An×[0,x])2r (·, ··)µ⊗d−1−r
n (dad−1−r, dxd−1−r)µn (da, dx)

)

where the last term is obtained by putting r = d− q − 1, and by using the identity

d2q!

(
d− 1

d− q − 1

)2

= d2 (d− 1 − r)!

(
d− 1

r

)2

= (d− r)!

(
d

r

)2

(d− r) ,

18



and where we also applied, to obtain (53), a standard stochastic Fubini theorem (which is a con-
sequence of the linearity of multiple stochastic integrals–see e.g. [17, Chapter 1]). We shall now

use the symmetry of the function fn in its first d − r variables, as well as the relation [0, 1]
d−r a.s.

=

∪i=1,...,d−r {(a1, ..., ad−r) : ai > aj , ∀j 6= i}, where the union is disjoint, and the symbol ‘
a.s.
= ’ means

that the equality is true up to sets of zero Lebesgue measure. Thus, for r = 1, ..., d− 1, and for any pair
(br, zr) , (b

′
r, z

′
r) ∈ (An × [0, 1])

r

(d− r)

∫

An×[0,1]

∫

(An×[0,x])d−1−r

fn (a,ad−1−r,br;x,xd−1−r, zr) fn (a,ad−1−r,b
′
r;x,xd−1−r, z

′
r) ×

×1(An×[0,x])r (br, zr)1(An×[0,x])r (b′
r, z

′
r)µ

⊗d−1−r
n (dad−1−r, dxd−1−r)µn (da, dx)

=

∫

(An×[0,1])d−r

fn (ad−r,br;xd−r, zr) fn (ad−r,b
′
r;xd−r, z

′
r) ×

×1(An×[0,x̂d−r])r (br, zr)1(An×[0,x̂d−r])r (b′
r, z

′
r)µ

⊗d−r
n (dad−r, dxd−r)

=

∫

(An×[0,1])d−r

fn (ad−r,br;xd−r, zr) fn (ad−r,b
′
r;xd−r, z

′
r)1{max(ẑr ,ẑ′

r)≤x̂d−r}µ
⊗d−r
n (dad−r, dxd−r) ;

(recall that x̂d−r = maxi=1,...,d−r xi). Observe that the last integral would be the contraction fn⊗d−r fn,
if there was no indicator functions inside the integral. Now denote by
∫

(An×[0,1])d−r

fn (ad−r, ∗∗r;xd−r, ∗r) fn (ad−r, ∗∗′r;xd−r, ∗′r) 1{max(∗̂r,∗̂
′
r)≤x̂d−r}µ

⊗d−r
n (dad−r, dxd−r)

the application, from (An × [0, x])
r × (An × [0, x])

r
to R, given by

((br, zr) , (b
′
r, z

′
r)) 7→

∫

(An×[0,1])d−r

fn (ad−r,br;xd−r, zr) ×

×fn (ad−r,b
′
r;xd−r, z

′
r)1{max(ẑr ,ẑ′

r)≤x̂d−r}µ
⊗d−r
n (dad−r, dxd−r) .

Relation (52) and the preceding computation imply that

∥∥proj
{
DXn

Fn | L2
π(n) (Hn, Xn)

}∥∥2

Hn

= d! ‖fn‖2
H

⊙d
n

+
d−1∑

r=1

(d− r)!

(
d

r

)2

IXn

2r

(∫

(An×[0,1])d−r

fn (ad−r, ∗∗r;x,xd−r, ∗r) × (54)

× fn (ad−r, ∗∗′r;xd−r, ∗′r)1{max(∗̂r ,∗̂
′
r)≤x̂d−r}µ

⊗d−r
n (dad−r, dxd−r)

)
.

Now, for r = 1, ..., d− 1 and t ∈ [0, 1],
∫

(An×[0,1])d−r

fn (ad−r, ∗∗r;xd−r, ∗r) fn (ad−r, ∗∗′r;xd−r, ∗′r)1{max(∗̂r ,∗̂
′
r)≤x̂d−r}µ

⊗d−r
n (dad−r, dxd−r)

=

∫

(An×[0,t])d−r

fn (ad−r, ∗∗r;xd−r, ∗r) fn (ad−r, ∗∗′r;xd−r, ∗′r)1{max(∗̂r ,∗̂
′
r)≤x̂d−r}µ

⊗d−r
n (dad−r, dxd−r)

+

∫

Ad−r
n ×([0,1]d−r\[0,t]d−r)

fn (ad−r, ∗∗r;xd−r, ∗r) ×

× fn (ad−r, ∗∗′r;xd−r, ∗′r)1{max(∗̂r,∗̂
′
r)≤x̂d−r}µ

⊗d−r
n (dad−r, dxd−r)

, Grn,t (1) +Grn,t (2) ,

(plainly, Grn,t (1) , Grn,t (2) ∈ H⊗2r
n ) and observe that, by bounding the indicator function by 1 and using

the Cauchy-Schwarz inequality,

E

[
IXn

2r

(
Grn,t (1)

)2]
= (2r)!

∥∥∥
(
Grn,t (1)

)
s

∥∥∥
2

H
⊗2r
n

≤ (2r)!
∥∥∥fn1[0,t]d

∥∥∥
4

H
⊗d
n

.
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Now, if tn is the sequence in the statement of Theorem 11, one has

d!
∥∥∥fn1[0,tn]d

∥∥∥
2

H
⊗d
n

= E

(
IXn

d

(
π⊗d
n,tnfn

)2)→ 0.

Thus, (27) implies

lim
n→+∞

E

[
IXn

2r

(
Grn,t (1)

)2] ≤ (2r)! lim
n→+∞

∥∥∥fn1[0,tn]d

∥∥∥
4

H
⊗d
n

= 0.

We now deal with Grn,t (2). For every t ∈ [0, 1], we may write

Grn,t (2) = Grn,t (2)1A2r
n ×[0,t]2r +Grn,t (2)1A2r

n ×([0,1]2r\[0,t]2r) , Hr
n,t (1) +Hr

n,t (2) . (55)

Consider first Hr
n,t (1). Because of the presence of the indicator function 1A2r

n ×[0,t]2r , the indicator

function in the integral defining Grn,t (2) is always equal to 1, and one gets, for every r = 1, ..., d− 1,

Hr
n,t (1) =

{∫

Ad−r
n ×([0,1]d−r\[0,t]d−r)

fn (ad−r, ∗∗r;xd−r, ∗r)×

× fn (ad−r, ∗∗′r;xd−r, ∗′r)µ⊗d−r
n (dad−r, dxd−r)

}
× 1A2r

n ×[0,t]2r

= π⊗2r
n,tn

(
fn ⊗πn,tn

d−r fn
)
,

which appears in (29). Then, in view of (28), (29) and (54), we have that

∥∥proj
{
DXn

Fn | L2
πn

(Hn, Xn)
}∥∥2

Hn
= Y + oP (1) +

d−1∑

r=1

(d− r)!

(
d

r

)2

IXn

2r

(
Hr
n,tn (2)

)
,

where Hr
n,tn (2) ∈ H⊗2r

n is defined by (55). We shall now show that (30) implies Hr
n,tn (2) → 0 in H⊗2r

n , for
every r = 1, ..., d− 1. Now observe that, because of (43), (44) and (45), condition (30) can be rewritten
as follows: for every r = 1, ..., d− 1, the sequence Zr (n) ∈ H⊗2r

n , n ≥ 1, defined as

Zr (n) =

(∫

Ad−r
n ×([0,1]d−r\[0,tn]d−r)

fn (ad−r, ∗∗r;xd−r, ∗r) × (56)

× fn (ad−r, ∗∗′r;xd−r, ∗′r)µ⊗d−r
n (dad−r, dxd−r)

)
1A2r

n ×([0,1]2r\[0,tn]2r).

is such that
lim

n→+∞
‖Zr (n)‖2

H
⊗2r
n

= 0. (57)

As a consequence, in this case the statement is proved once it is shown that, for r = 1, ..., d− 1, (57)

implies necessarily that limn→+∞

∥∥Hr
n,tn (2)

∥∥2

H
⊗2r
n

= 0 (recall that Hr
n,tn (2) is given by (55)). To this

end, introduce the notation: for every q ≥ 1, every p = 0, ..., q and t ∈ [0, 1]

T tn (q, p) , {(aq,xq) ∈ Aqn × [0, 1]
q

: there are exactly p indices i such that xi ≤ t}

and note that, for q ≥ 1, up to sets of zero µn – measure,

Stn (q) , Aqn × ([0, 1]
q \ [0, t]

q
) =

q−1⋃

p=0

T tn (q, p) , (58)

Stn (2q) = A2q
n ×

(
[0, 1]

2q \ [0, t]
2q
)

=
⋃

p,s≥0
p∧s≤q−1

T tn (q, p) × T tn (q, s) , (59)
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where the unions are disjoint. With this notation, by (58), (59) and the fact that µn is non-atomic (so
that we can write < instead of ≤ in the indicator function defining Hr

n,tn (2)), we therefore obtain that,
for each n,

∥∥Hr
n,tn (2)

∥∥2

H
⊗2r
n

=

∫

A2r
n ×([0,1]2r\[0,tn]2r)

(∫

Ad−r
n ×([0,1]d−r\[0,tn]d−r)

fn (ad−r,br;xd−r, zr) fn (ad−r,b
′
r;xd−r, z

′
r) ×

× 1{max(ẑr ,ẑ′
r)<x̂d−r}µ

⊗d−r
n (dad−r, dxd−r)

)2

µ⊗2r
n (dbr, dzr)µ

⊗2r
n (db′

r, dz
′
r) (60)

=
∑

p,s≥0, p∧s≤r−1

∫

T tn
n (r,p)×T tn

n (r,s)

(
d−r−1∑

q=0

∫

T tn
n (d−r,q)

fn (ad−r,br;xd−r, zr) × (61)

× fn (ad−r,b
′
r;xd−r, z

′
r) 1{max(ẑr ,ẑ′

r)<x̂d−r}µ
⊗d−r
n (dad−r, dxd−r)

)2

µ⊗2r
n (dbr, dzr)µ

⊗2r
n (db′

r, dz
′
r)

To prove that
∥∥Hr

n,tn (2)
∥∥2

H
⊗2r
n

→ 0, it is therefore sufficient to show that, for every r = 1, ..., d − 1,

q = 0, ..., d− r − 1 and every p, s ≥ 0 with p ∧ s ≤ r − 1, the sequence

∫

T tn
n (r,p)

∫

T tn
n (r,s)

(∫

T tn
n (d−r,q)

fn (ad−r,br;xd−r, zr) fn (ad−r,b
′
r;xd−r, z

′
r) (62)

× 1{max(ẑr ,ẑ′
r)<x̂d−r}µ

⊗d−r
n (dad−r, dxd−r)

)2

µ⊗2r
n (dbr, dzr)µ

⊗2r
n (db′

r, dz
′
r)

converges to zero, as n → +∞. To prove this result, write (for n ≥ 1 and r = 1, ..., d− 1) ‖Zr (n)‖2
H

⊗2r
n

by means of (56), decompose the set Stnn (2r) according to (59), and apply a standard Fubini argument
to obtain that (57) implies that, for every r = 1, ..., d− 1 and q = 0, ..., r − 1, the quantity

∫

Stn
n (d−r)

∫

Stn
n (d−r)

[∫

T tn
n (r,q)

fn (ar ,bd−r;xr, zd−r) (63)

× fn
(
ar,b

′
d−r;xr, z

′
d−r

)
µ⊗r
n (dar , dxr)

]2
µ⊗d−r
n (dbd−r, dzd−r)µ

⊗d−r
n

(
db′

d−r, dz
′
d−r

)

=

d−r−1∑

p=0

d−r−1∑

s=0

∫

T tn
n (d−r,p)

∫

T tn
n (d−r,s)

[∫

T tn
n (r,q)

fn (ar ,bd−r;xr, zd−r) (64)

× fn
(
ar,b

′
d−r;xr, z

′
d−r

)
µ⊗r
n (dar , dxr)

]2
µ⊗d−r
n (dbd−r, dzd−r)µ

⊗d−r
n

(
db′

d−r, dz
′
d−r

)

→ 0, as n→ +∞, (65)

where the equality (64) is a consequence of (59). Now fix p ∈ {0, ..., d− r − 1} and q ∈ {0, ..., r − 1}. For

every n ≥ 1, we can apply Lemma 14 in the case A = An, l = µn, fn = f , m = d − r and C ⊆ [0, 1]d−r

21



and D ⊆ [0, 1]
r

such that An × C = T tnn (d− r, p) and An ×D = T tnn (r, q) to obtain that

∫

T tn
n (d−r,p)

∫

T tn
n (d−r,p)

[∫

T tn
n (r,q)

fn (ar ,bd−r;xr, zd−r) (66)

× fn
(
ar ,b

′
d−r;xr, z

′
d−r

)
µ⊗r
n (dar, dxr)

]2
µ⊗d−r
n (dbd−r, dzd−r)µ

⊗d−r
n

(
db′

d−r, dz
′
d−r

)

=

∫

T tn
n (d−r,p)

∫

T tn
n (d−r,p)

[∫

T tn
n (r,q)

fn (ar ,bd−r;xr, zd−r) fn
(
ar,b

′
d−r;xr, z

′
d−r

)
(67)

× 1(x̂r<max(ẑd−r,ẑ′
d−r))

µ⊗r
n (dar , dxr)

]2
µ⊗d−r
n (dbd−r, dzd−r)µ

⊗d−r
n

(
db′

d−r, dz
′
d−r

)

+

∫

T tn
n (r,q)

∫

T tn
n (r,q)

[∫

T tn
n (d−r,p)

fn (ar,bd−r;xr, zd−r) fn (a′
r,bd−r;x

′
r, zd−r)

× 1(ẑd−r<max(x̂r,x̂′
r))µ

⊗r
n (dbd−r, dzd−r)

]2
µ⊗r
n (dar, dxr)µ

⊗r
n (da′

r , dx
′
r) .

Now observe that the sequence
{
‖fn‖H

⊗d
n

: n ≥ 1
}

is bounded by assumption (indeed, relation (28)

holds). We can therefore argue as in the remark following the proof of Lemma 14, and deduce that, since
for every p ∈ {0, ..., d− r − 1} and q ∈ {0, ..., r − 1} the sequence in (66) converges to 0 (by (65)), then
the sequence in (62) converges to 0 for every r = 1, ..., d−1, whenever p = s ≤ r−1 and q = 0, ..., d−r−1.
To prove that (62) converges to 0 for every r = 1, ..., d − 1, q = 0, ..., d − r − 1 and every p, s ≥ 0 such
that p ∧ s ≤ r − 1, thus concluding the proof of Theorem 7 in this special setting, observe that, due to
the Fubini theorem, the quantity

∫

T tn
n (r,p)

∫

T tn
n (r,s)

(∫

T tn
n (d−r,q)

fn (ad−r,br;xd−r, zr) fn (ad−r,b
′
r;xd−r, z

′
r)

× 1{max(ẑr ,ẑ′
r)<x̂d−r}µ

⊗d−r
n (dad−r, dxd−r)

)2

µ⊗2r
n (dbr, dzr)µ

⊗2r
n (db′

r, dz
′
r)

can be rewritten as

∫

T tn
n (d−r,q)

∫

T tn
n (d−r,q)

(∫

T tn
n (r,p)

fn (ad−r,br;xd−r, zr) fn
(
a′
d−r,b;x′

d−r, zr
)

× 1{ẑr<min(x̂d−r,x̂′
d−r)}µ

⊗r
n (dbr, dzr)

)
×

(∫

T tn
n (r,s)

fn (ad−r,br;xd−r, zr) fn
(
a′
d−r,b;x′

d−r, z
)
×

× 1{ẑr<min(x̂d−r,x̂′
d−r)}µ

⊗r
n (dbr, dzr)

)
µ⊗d−r
n (dad−r, dxd−r)µ

⊗d−r
n

(
da′

d−r, dx
′
d−r

)
,

so that the conclusion is obtained by a further application of (67), as well as a standard version of the
Cauchy-Schwarz inequality.

To prove Theorem 11 in the general case, we start by showing that, for every real separable Hilbert
space H, and for every absolutely continuous resolution of the identity π = {πt : t ∈ [0, 1]} ∈ RAC (H),
there exists a Hilbert space H♯ with the form (43) and (44) (the dependence on n has been momentarily

dropped), and a resolution π♯ =
{
π
♯
t : t ∈ [0, 1]

}
on H♯ as in (45), such that the following property is

verified: there exists a unitary transformation

T : H
♯ 7→ H, (68)
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from H♯ onto H, such that, for every t ∈ [0, 1],

πtT = Tπ
♯
t . (69)

In the language of [30, Definition 5.1], (69) implies that the two pairs (H, π) and
(
H♯, π♯

)
are equivalent.

Note that (69) holds if, and only if, the following condition is verified: for every t ∈ [0, 1], πt = Tπ
♯
tT

−1.
Moreover, since T is a unitary transformaton, T−1 = T ∗. To prove the existence of such a T , let π be
absolutely continuous on H, set q = rank (π), and consider a fully orthogonal π-reproducing subset

S = {gj : 1 ≤ j ≤ q} ⊆ H. (70)

Note that the full orthogonality of S implies that, for every s, t ∈ [0, 1] and for every i 6= j,
(πsgi, πtgj)H

= 0. Moreover, since π is absolutely continuous, for every j ≥ 1 there exists a function
mj (t), t ∈ [0, 1], such that mj (·) ≥ 0, and

‖πtgj‖2
H

=

∫ t

0

mj (x) dx, t ∈ [0, 1] . (71)

Note that (71) implies that mj (·) ∈ L1 ([0, 1] , dx), and that we can always define the set S in (70) to
be such that

q∑

j=1

‖gj‖2
H

=

q∑

j=1

∫ 1

0

mj (x) dx < +∞. (72)

Now define A = N = {1, 2, ...}, set ν equal to the counting measure on A, and µ equal to the measure on
A× [0, 1] given by µ (da, dx) = k (a, x) {ν (da) ⊗ dx}, where

k (a, x) =

q∑

j=1

1{j} (a)mj (x) , (a, x) ∈ A× [0, 1] ,

1{j} stands for the indicator of the singleton {j}, and dx is once again Lebesgue measure. Finally, we
define

H
♯ = L2 (A× [0, 1] , µ,A⊗ B [0, 1]) (73)

π
♯
th
♯ (a, x) = h♯ (a, x) 1[0,t] (x) ,

for every h♯ ∈ H♯, every t ∈ [0, 1], and every (a, x) ∈ A × [0, 1]. We now introduce a transformation T

defined on a dense subset of H♯: for every h♯ ∈ H♯ with the form

h♯ (a, x) =
M∑

j=1

cj1{kj} (a)1[0,uj ] (x) (74)

((a, x) ∈ A× [0, 1]), where M,kj ≥ 1, uj ∈ [0, 1] and cj ∈ R (j = 1, ...,M),

Th♯ =

M∑

j=1

cjπuj
gkj

,

where the gk’s are the elements of the full orthogonal set S, as defined in (70). By using the relation,
(
Th♯, Th♯

)
H

=
(
h♯, h♯

)
H♯ ,

which is verified for every h♯ as in (74), one immediately sees that T can be extended by density to a
unitary transformation, from H♯ onto H, and moreover, since, for every t ∈ [0, 1],

πtTh
♯ =

M∑

j=1

cjπuj∧tgkj
= Tπ

♯
th
♯,
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condition (69) is verified. We note again T this extended isomorphism, and, for d ≥ 2, we write T d , T⊗d,

and also T 1 , T⊗1 = T . Observe that T d is an isomorphism from
(
H♯
)⊗d

onto H⊗d,
(
T−1

)d
=
(
T d
)−1

.
Also, for t ∈ [0, 1] and due to (69),

T d
(
π
♯
t

)⊗d
=
(
Tπ

♯
t

)⊗d
= (πtT )

⊗d
= π⊗d

t T d. (75)

Now, for an absolutely continuous resolution π on H, and for h♯ and H♯ as in (73), we define X =
{X (f) : f ∈ H} to be an isonormal Gaussian process over H, and set

XT = XT

(
H
♯
)

=
{
XT

(
h♯
)

: h♯ ∈ H
♯
}

, (76)

where XT

(
h♯
)

, X
(
Th♯

)
, ∀h♯ ∈ H♯. It is clear that, due to the isometric property of T , XT is an

isonormal Gaussian process over H♯. The proof of the following useful lemma is deferred to the Appendix.

Lemma 16 Under the above notation,

1. For every d ≥ 1, f ∈ H⊗d, IXd (f) = IXT

d

((
T d
)−1

f
)

;

2. D
1,2
X = D

1,2
XT

, and, for every F ∈ D
1,2
X ,

DXF = T (DXT
F ) ; (77)

3. For every t ∈ [0, 1],

Fπ
t (X) = σ {X (πtf) : f ∈ H} = σ

{
XT

(
π
♯
th
♯
)

: h♯ ∈ H
♯
}

= Fπ♯

t (XT ) ;

4. For every u ∈ L2
(
H♯, XT

)
, u ∈ L2

π♯

(
H♯, XT

)
if, and only if, Tu ∈ L2

π (H, X);

5. For every F ∈ D
1,2
X , a.s.-P,

proj
{
DXF | L2

π (H, X)
}

= T ◦ proj
{
DXT

F | L2
π♯

(
H
♯, XT

)}
(78)

= T ◦ proj
{
T−1DXF | L2

π♯

(
H
♯, XT

)}
; (79)

6. For every d ≥ 2, f ∈ H⊗d (therefore, f need not be a symmetric tensor), r = 1, ..., d − 1 and
t ∈ [0, 1],

∥∥(π⊗2r
1 − π⊗2r

t

) (
f ⊗π,td−r f

)∥∥
H⊗2r (80)

=

∥∥∥∥
((

π
♯
1

)⊗2r

−
(
π
♯
t

)⊗2r
)((

T d
)−1

f ⊗π
♯,t
d−r

(
T d
)−1

f
)∥∥∥∥

(H♯)⊗2r

.

Now adopt the assumptions and notation of Theorem 11. If πn is absolutely continuous on Hn, for
every n ≥ 1 there exists an isomorphism Tn, from Hn onto some space H♯n, endowed with a resolution
π♯n as in (73) and such that properties (69) and (75) (with Tn substituting T ) are verified. We also
note XTn

(
h♯
)

= Xn

(
Tnh

♯
)
, for every h♯ ∈ H♯n. It follows from Lemma 16-6 above that, if for every

r = 1, ..., d− 1, relation (30) is verified, then
∥∥∥∥
((

π
♯
n,1

)⊗2r

−
(
π
♯
n,t

)⊗2r
)((

T dn
)−1

fn ⊗π
♯
n,t
d−r

(
T dn
)−1

fn

)∥∥∥∥
(H

♯
n)

⊗2r
→

n→+∞
0.

Moreover, thanks to Points 1 and 3 of Lemma 16,

E

[
I
XTn

d

((
T dn
)−1

fn

)
| Fπ♯

n

tn (XTn
)
]

= E
[
Fn | Fπn

tn (Xn)
] P→ 0
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and

E

[
I
XTn

d

((
T dn
)−1

fn

)2

| Fπ♯
n

tn (XTn
)

]
= E

[
F 2
n | Fπn

tn (Xn)
] P→ Y ∈ F∗,

from which, by using the first part of the proof, we deduce that

∥∥∥proj
{
DXTn

Fn | L2
π♯

n

(
H
♯
n, XTn

)}∥∥∥
2

H
♯
n

P→
n→+∞

Y . (81)

The proof of Theorem 11 is now concluded by using (81) and Theorem 7 since, due to Lemma 16-5 above
and the fact that T is an isomorphism,

∥∥∥proj
{
DXTn

Fn | L2
π♯

n

(
H
♯
n, XTn

)}∥∥∥
2

H
♯
n

=
∥∥∥Tn ◦ proj

{
DXTn

Fn | L2
π♯

n

(
H
♯
n, XTn

)}∥∥∥
2

Hn

=
∥∥proj

{
DXFn | L2

πn
(Hn, Xn)

}∥∥2

Hn
.

Remark (Concrete realizations of Wiener spaces) – For the sake of completeness, we establish some
connections between the unitary transformation T : H♯ 7→ H used in the last part of the preceding
proof (see (68)) and the concept of concrete (filtered) Wiener space introduced in [30, Section 5]. In
particular, we point out that every “filtered” isonormal Gaussian process such as the pair

(
XT

(
H♯
)
, π♯
)

introduced in (73) and (76), is equivalent (in a sense analogous to [30, Definition 5.1]) to a concrete
Wiener space whose dimension equals the rank of π♯. To do this, fix q ∈ {1, 2, ...,+∞} and define
C0 ([0, 1]) to be set of continuous functions on [0, 1] that are initialized at zero. We define W(q) to be the
set of all q-dimensional vectors of the type w(q) = (w1, w2, ..., wq) (plainly, if q = +∞, w(q) is an infinite

sequence) where ∀i, wi ∈ C0 ([0, 1]). The set W(q) is endowed with the norm
∥∥w(q)

∥∥
(q)

= supi≤q |wi|,
where |wi| = supt∈[0,1] |wi (t)|. Under ‖·‖(q), W(q) is a Banach space. Now consider an Hilbert space

H, as well as a resolution π ∈ RAC (H) such that rank (π) = q. We define S = {gj : 1 ≤ j ≤ q} to be
the fully orthogonal π-reproducing subset of H appearing in formula (70), and associate to each gj ∈ S

the function mj ∈ L1 ([0, 1] , dx) satisfying (71), in such a way that (72) is verified. To the pair (H, π)

we associate the Hilbert space H(q) and a resolution of the identity π(q) =
{
π

(q)
s : s ∈ [0, 1]

}
∈ R

(
H(q)

)

defined as follows: (i) H(q) is the collection of all vectors of the kind h(q) = (h1, h2..., hq), where, for each

j ≤ q, hj is a function of the form hj (t) =
∫ t
0
h′j (x) dx, for some h′j ∈ L2 ([0, 1] ,mj (x) dx), and also

q∑

j=1

∫ 1

0

(
h′j (x)

)2
mj (x) dx < +∞; (82)

(ii) H(q) is endowed with the inner product

(
h(q),k(q)

)
(q)

=

q∑

j=1

∫ 1

0

h′j (x) k′j (x)mj (x) dx, (83)

whereas |·|(q) = (·, ·)1/2(q) is the corresponding norm; (iii) for every s ∈ [0, 1] and every h(q) = (h1, h2..., hq) ∈
H(q),

π(q)
s h(q) =

(
hs1, ..., h

s
q

)
, where hsj (t) ,

∫ t∧s

0

h′j (x) dx. (84)

Note that H(q) ⊂ W(q), and therefore W∗
(q) ⊂ H∗

(q) = H(q). Moreover, from relation (82) it follows

that the restriction of ‖·‖(q) to H(q) is a measurable seminorm, in the sense of [13, Definition 4.4].

Also, W(q) is the completion of H(q) with respect to ‖·‖(q), and W∗
(q) is dense in H(q) with respect

to the norm |·|(q). As a consequence (see again [13, Theorem 4.1]), there exists a canonical Gaussian

measure µ(q) on
(
W(q),B

(
W(q)

))
, such that, for every (l1, ..., lm) ∈

(
W∗

(q)

)m
, the mapping w(q) 7→
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(
l1
(
w(q)

)
, ..., lm

(
w(q)

))
defines a centered Gaussian vector such that, for every j = 1, ...,m and every

λ ∈ R,

Eµ(q)
[exp (iλlj)] ,

∫

W∗
(q)

exp
(
iλlj

(
w(q)

))
dµ(q)

(
w(q)

)
= exp

(
−λ

2

2
|lj |2(q)

)
. (85)

Following [30, p. 26], the triple
(
W(q),H(q), µ(q)

)
(endowed with the resolution π(q) defined in (84)) is

called a concrete Wiener space of dimension q. Note that, since W∗
(q) is dense in H(q), there exists a

unique collection of centered Gaussian random variables defined on
(
W(q),B

(
W(q)

))
, denoted

X(q) = X(q)

(
H(q)

)
=
{
X(q)

(
h(q)

)
: h(q) ∈ H(q)

}
, (86)

such thatX(q) (l)
(
w(q)

)
= l
(
w(q)

)
for every l ∈ W∗

(q) and Eµ(q)

[
exp

(
iλX(q)

(
h(q)

))]
= exp

(
−λ2

2

∣∣h(q)

∣∣2
(q)

)
,

∀h(q) ∈ H(q). In particular, X(q)

(
H(q)

)
is an isonormal Gaussian process over H(q). Now consider the

Hilbert space H♯ and the resolution π♯ defined in (73), and define the application T◦ : H♯ 7→ H(q) as

follows: for every h♯ (a, x) ∈ H♯,

T◦h
♯ =

(∫ ·

0

h♯ (1, x) dx, ...,

∫ ·

0

h♯ (q, x) dx

)
.

It is easily seen that T◦ is a unitary transformation such that T◦π
♯
t = π

(q)
t T◦ for every t, thus implying that

the two pairs
(
H♯, π♯

)
and

(
H(q), π

(q)
)
, and hence the two filtered isonormal processes

(
X(q)

(
H(q)

)
, π(q)

)

and
(
XT

(
H♯
)
, π♯
)
, are equivalent in the sense of [30, Definition 5.1].

3.3 Proof of Theorem 12

The implications (i) =⇒ (ii) and (iv) =⇒ (i) (in which assumption (36) is immaterial) are consequences,

respectively, of Theorem 7 and Theorem 11. Now suppose (ii) is verified. Since E
[
F 2
n | Fπn

tn (Xn)
] P→ Y

by assumption, we may use the second part of Theorem 10 to deduce that for every sequence n (k), there
exists a subsequence n (kr), r ≥ 1, s.t., a.s.-P,

E

[
exp

(
iλFn(kr)

)
| Fπn(kr)

tn(kr)

(
Xn(kr)

)]
→

r→+∞
exp

(
−λ

2

2
Y

)
, ∀λ ∈ R.

Moreover, since the usual properties of multiple Wiener-Itô integrals (see e.g. [12, Chapter VI]) imply
that, a.s.-P and due to (28),

sup
r≥1

E

[∣∣Fn(kr)

∣∣M | Fπn(kr)

tn(kr)

(
Xn(kr)

)]
< +∞, ∀M ≥ 1,

we conclude that, a.s.-P,

E

[(
Fn(kr)

)4 | Fπn(kr)

tn(kr)

(
Xn(kr)

)]
→

r→+∞
3Y 2,

and therefore that (iii) holds. To conclude, assume that the two conditions (iii) and (36) are verified, and
write

Fn = IXn

2

(
π⊗2
n,tnfn

)
+ 2IXn

2 (πn,tn ⊗ (πn,1 − πn,tn) fn) + IXn

2

(
(πn,1 − πn,tn)⊗2

fn

)
, Fn,0 + Fn,1 + Fn,2.

(87)
Due to (27), Fn,0 → 0 in L2. Also, for every n ≥ 1, Fn,2 is independent of Fπn

tn (Xn) and, conditionally
on Fπn

tn (Xn), Fn,1 is a centered Gaussian random variable. Moreover

E

[
(Fn)

2 | Fπn

tn (Xn)
]

= E

[
(Fn,0)

2
+ (Fn,1)

2
+ (Fn,2)

2 | Fπn

tn (Xn)
]
.
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By writing An ∼ Bn to indicate that An −Bn
P→ 0, we have therefore

E

[
(Fn)4 | Fπn

tn (Xn)
]

∼ E

[
(Fn,1)

4 | Fπn

tn (Xn)
]

+ E

[
(Fn,2)

4 | Fπn

tn (Xn)
]

+6E

[
(Fn,1Fn,2)

2 | Fπn

tn (Xn)
]

= 3E

[
(Fn,1)

2 | Fπn

tn (Xn)
]2

+ E

[
(Fn,2)

4
]

+6E

[
(Fn,1Fn,2)

2 | Fπn

tn (Xn)
]
.

By reasoning as in [19, pp. 182-183], and noting fn,0 = (πn,1 − πn,tn)
⊗2
fn ∈ H⊙2,

E

[
(Fn,2)

4
]

= 3 ‖fn,0‖4
H⊙2 + 48 ‖fn,0 ⊗1 fn,0‖2

H⊗2

= 3E

[
(Fn,2)

2 | Fπn

tn (Xn)
]2

+ 48
∥∥∥(πn,1 − πn,tn)

⊗2
fn ⊗πn,tn

1 fn

∥∥∥
2

H⊗2
.

Standard calculations yield finally that, since (27) and (28) hold, there exist constants c1, c2 > 0 such
that

E

[(
E

[
(Fn)

4 | Fπn

tn (Xn)
]
− 3Y 2

)2
]

= c1

∥∥∥(πn,1 − πn,tn)
⊗2
fn ⊗πn,tn

1 fn

∥∥∥
2

H⊗2

+c2
∥∥(πn,1 − πn,tn) ⊗ πn,tn

(
fn ⊗πn,tn

1 fn
)∥∥2

H⊗2 ,

and, since (36) is verified and

(πn,1 − πn,tn)
⊗2

+ (πn,1 − πn,tn) ⊗ πn,tn + πn,tn ⊗ (πn,1 − πn,tn) = π⊗2
n,1 − π⊗2

n,tn ,

we obtain immediately the desired implication (iii)=⇒(iv).�

References

[1] Billingsley P. (1969). Convergence of probability measures. Birkhäuser.
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[17] Nualart D. (1995). The Malliavin Calculus and related topics. Springer Verlag.

[18] Nualart D. (1998). Analysis on Wiener space and anticipating stochastic calculus. In: Lectures
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4 Appendix

Proof of Lemma 16 – (Point 1 ) Let {ej : j ≥ 1} be an orthonormal basis of H, and define, for d ≥ 1,
A [d] to be the set of sequences (a1, a2, ...) with values in N, and such that

∑
j≥1 aj = d (note that this

implies that there are only finitely many aj that are different from zero). Then, a total set in H⊙d is
given by

Ad =



(

∞⊗

j=1

e
⊗aj

j )s : (a1, a2, ...) ∈ A [d]



 ,

where e⊗0 = 1 by definition, and (·)s indicates symmetrization. Moreover, a classic characterization of
multiple stochastic integrals (see [17, Ch. 1]) as well as the fact that X (ei) = X

(
TT−1ei

)
= XT

(
T−1ei

)

by definition, imply the following relations: for every (a1, a2, ...) ∈ A [d],

IXd



(
∞⊗

j=1

e
⊗aj

j )s



 = d!
∞∏

j=1

Haj
(X (ej)) = d!

∞∏

j=1

Haj

(
XT

(
T−1ej

))

= IXT

d


(

∞⊗

j=1

(
T−1ej

)⊗aj
)s


 = IXT

d


(T d

)−1
(

∞⊗

j=1

(ej)
⊗aj )s


 ,

where {Ha : a ≥ 1} is the family of Hermite polynomials defined e.g. in [17, p. 4]. It is therefore clear

that IXd (f) = IXT

d

((
T d
)−1

f
)

is true for every f that is a linear combination of elements of Ad, and the

general result is achieved by a standard density argument. (Point 2 ) For m ≥ 1, let C∞
b (Rm) denote the

class of bounded and infinitely differentiable functions on Rm, whose derivatives are also bounded. We
start by observing that, since T is a one-to-one unitary transformation, random variables of the type

F = f (X (h1) , ..., X (hm)) = f
(
XT

(
T−1h1

)
, ..., XT

(
T−1hm

))
(88)

(the equality is again a consequence of the relation X (hi) = X
(
TT−1ei

)
= XT

(
T−1hi

)
), where m ≥ 1,

f ∈ C∞
b (Rm) and h1, ..., hm ∈ C∞

b (Rm), are dense both in D
1,2
X and D

1,2
XT

. To conclude, use a density
argument, as well as the fact that, for F as in (88),

DXF =

m∑

j=1

∂

∂xj
f (X (h1) , ..., X (hm))hj

=

m∑

j=1

∂

∂xj
f
(
XT

(
T−1h1

)
, ..., XT

(
T−1hm

))
TT−1hj = TDXT

F,
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hence proving (77). (Point 3 ) This is a consequence of the relations X (πth) = XT

(
T−1πth

)
=

XT

(
T−1πtTT

−1h
)

= XT

(
π
♯
tT

−1h
)
, that are verified for every t ∈ [0, 1], since T−1πtT = π

♯
t , due to

(69). (Point 4 ) Suppose u ∈ L2
π♯

(
H♯, XT

)
. Then, since T is an isometry, E

[
‖Tu‖2

H

]
= E

[
‖u‖2

H♯

]
< +∞,

and therefore Tu ∈ L2
π (H, X). To prove that Tu is also π-adapted, use the fact that, since T is an

isometry and (69) holds, for every t ∈ [0, 1] and every h ∈ H,

(Tu, πth)H
=

(
Tu, TT−1πth

)
H

=
(
u, T−1πth

)
H♯

=
(
u, π

♯
tT

−1h
)

H♯
∈ Fπ♯

t (XT ) = Fπ
t (X) ,

due to Point 3, thus yielding u ∈ L2
π (H, X). The opposite implication is obtained analogously. (Point 5 )

Consider first an elementary random variable η♯ ∈ Eπ♯

(
H♯, XT

)
with the form η♯ = Φ (t)

(
π
♯
t+s − π

♯
t

)
h♯,

where Φ (t) ∈ Fπ♯

t (XT ) (= Fπ
t (X)), h♯ ∈ H♯ and s, t ≥ 0. Then, due to (69), Tη♯ = Φ (t)T

(
π
♯
t+s − π

♯
t

)
h♯

= Φ (t) (πt+s − πt) Th
♯, and therefore Th♯ ∈ Eπ (H, X). Now, for F ∈ D

1,2
XT

, observe that a variable

P ∈ L2
π♯

(
H♯, XT

)
is equal to proj

{
DXT

F | L2
π♯

(
H♯, XT

)}
if, and only if, for every η♯ ∈ Eπ♯

(
H♯, XT

)
as

before
E

[(
P, η♯

)
H♯

]
= E

[(
DXT

F, η♯
)

H♯

]
. (89)

But, since T is an isometry, (89) and (77) imply also that

E

[(
TP, Tη♯

)
H

]
= E

[(
TDXT

F, Tη♯
)
H

]
= E

[(
DXF, Tη

♯
)
H

]
.

Hence, since TP ∈ L2
π (H, X) due to Point 4,

TP = T ◦ proj
{
DXT

F | L2
π♯

(
H
♯, XT

)}
= proj

{
DXF | L2

π♯

(
H
♯, XT

)}
,

thus proving (78). To prove (79), just observe that (77) implies that DXT
F = T−1DXF . (Point 6 ) Let

again {ej : j ≥ 1} be an ONB of H. Note first that, for every d ≥ 2, f ∈ H⊗d, r = 1, ..., d− 1, t ∈ [0, 1],
and i1, ..., id−r ≥ 1

((
π⊗d−r

1 − π⊗d−r
t

)
f, ei1 ⊗ · · · ⊗ eid−r

)
H⊗d−r

=
((
T d−r

)−1 (
π⊗d−r

1 − π⊗d−r
t

)
f, T−1ei1 ⊗ · · · ⊗ T−1eid−r

)

(H♯)⊗d−r

=

(((
π
♯
1

)⊗d−r
−
(
π
♯
t

)⊗d−r)(
T d−r

)−1
f, T−1ei1 ⊗ · · · ⊗ T−1eid−r

)

(H♯)⊗d−r

.

Thanks to (24), it follows that

(
T 2r
)−1

f ⊗π,td−r f

=

∞∑

i1,...,id−r=1

〈((
T d
)−1

f
)
,

((
π
♯
1

)⊗d−r
−
(
π
♯
t

)⊗d−r)
T−1ei1 ⊗ · · · ⊗ T−1eid−r

〉

(H♯)⊗d−r

〈((
T d
)−1

f
)
,

((
π
♯
1

)⊗d−r
−
(
π
♯
t

)⊗d−r)
T−1ei1 ⊗ · · · ⊗ T−1eid−r

〉

(H♯)⊗d−r

=
((
T d
)−1

f ⊗π
♯,t
d−r

(
T d
)−1

f
)
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As a consequence, by using (75) and the fact that T d and
(
T d
)−1

are isometries,

∥∥∥∥
((

π
♯
1

)⊗2r

−
(
π
♯
t

)⊗2r
)((

T d
)−1

f ⊗π
♯,t
d−r

(
T d
)−1

f
)∥∥∥∥

(H♯)⊗2r

=

∥∥∥∥
((

π
♯
1

)⊗2r

−
(
π
♯
t

)⊗2r
)(

T 2r
)−1

f ⊗π,td−r f
∥∥∥∥

(H♯)⊗2r

=
∥∥∥
(
T 2r
)−1 (

π⊗2r
1 − π⊗2r

t

)
f ⊗π,td−r f

∥∥∥
(H♯)⊗2r

=
∥∥(π⊗2r

1 − π⊗2r
t

) (
f ⊗π,td−r f

)∥∥
H⊗2r

,

which proves (80). �
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