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Abstract

We prove sufficient conditions, ensuring that a sequence of multiple Wiener-1t6 integrals (with
respect to a general Gaussian process) converges stably to a mixture of normal distributions. Our key
tool is an asymptotic decomposition of contraction kernels, realized by means of increasing families of
projection operators. We also use an infinite-dimensional Clark-Ocone formula, as well as a version
of the correspondence between “abstract” and “concrete” filtered Wiener spaces, in a spirit similar
to Ustiinel and Zakai (1997).
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Introduction

Let X be a centered Gaussian process and, for d > 2 and n > 1, let I (f,) be a multiple Wiener-1t6
stochastic integral, of order d, of some symmetric and square-integrable kernel f,, with respect to X.
The aim of this paper is to establish general sufficient conditions on the kernels f,, ensuring that the
sequence [, j( (fn) converges stably to a mixture of Gaussian probability laws. The reader is referred e.g.
to @, Chapter 4], [ and Section 2.3 below, for an exhaustive characterization of stable convergence.
Here, we shall recall that such a convergence is stronger than the convergence in law, and can be used in
particular to explain several non-central limit results for functionals of independently scattered random
measures; see for instance . Our starting point is the following Central Limit Theorem (CLT).

Theorem 1 (see [[Ld, Theorem 1 and Proposition 3]) If the variance of IX (f,) converges to 1 (n —
+00) the following three conditions are equivalent: (i) Ij( (fn) converges in law to a standard Gaussian

random wvariable N (0,1), (ii) E {Ij( (fn)4] — 3, (i) for every r = 1,...,d — 1, the contraction kernel
fn ®d—r fn converges to 0.

Although the implication (ii) = (i) is rather striking, several recent applications of Theorem [I| (see
B2, [, [l or [{ll) have shown that condition (iii) is easier to verify than (i), since in general there
is no manageable formula for the fourth moment of a non-trivial multiple Wiener-Itd integral. Also,
the implication (iii) = (i) (which can be regarded as a simplification of the method of diagrams—see
e.g. [@]) suggests that the asymptotic study of the contraction kernels associated to the sequence f,
may lead to more general convergence results. In particular, in this paper we address the following
problem. Let Y > 0 be a non-constant random variable having the (finite) chaotic representation Y =
1+ 55 (ga) + -+ - + I;fd_l) (g2(d_1)), let N ~ N(0,1) be independent of Y, and suppose that the

sequence 1 j{ (fn) satisfies adequate normalization conditions; is it possible to associate to each f, and
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each r =1,...,d — 1, two generalized contraction kernels, say f, ®_, fn and f, @4 fn, in such a way
that the two relations

fn ®2—7‘ fn n—>—-|)-oo 927‘ a'nd f”l ®2*—7‘ fn n—>_-‘,)-oo Oa vr:la"'ad_la (1)

imply that I (f,) converges stably to VY x N? This kind of non-central phenomena (convergence
towards non-trivial mixtures of Gaussian laws) appears regularly, for instance in the analysis of the
power variations of fractional processes (see e.g. [H]), or in the study of non linear functionals of stationary
Gaussian sequences (see e.g. [ﬂ, Theorems 7-9]). Although there exists a panoply of results characterizing
the stable convergence in a semi-martingale setting (see [[4], [ or [Ld, Ch. 4]), none of them can be
directly applied to the case of a Gaussian process for which there is no explicit (semi)martingale structure
(this is true, in particular, for fractional processes). In this paper, we aim at providing results in this
direction for multiple integrals with respect to general Gaussian processes, by using some ancillary devices
borrowed from continuous-time martingale calculus (in a spirit similar to , as well as a part of the
theory of filtrations on general Wiener spaces, as developed e.g. in [@] and [B(] (see also [@] for some
related results in a non-Gaussian framework).

Now let $) be a separable Hilbert space, and suppose that the process X = X () = {X (h) : h € $}
is a centered Gaussian measure (also called an isonormal Gaussian process) over $) (see e.g. [[4, Ch.
1], or Section 2.2 below). Then, f, is a symmetric element of H®? (i.e., the dth tensor product of §)
for every n, and f, ®q_r fn € H%?", Vr = 1,...,d — 1. In what follows (see Theorem @ and formulae
(@) and (@) below) we construct the two kernels f, ®%_,. fn and f, ®%*, f. appearing in (), by
using resolutions of the identity. These objects are defined as continuous and non-decreasing families
of orthogonal projections m = {m : ¢t € [0, 1]} over $, indexed by [0,1] and such that mp = 0 and m =
ID.. Each resolution 7 induces a time structure on the Gaussian field X (), and generates the canonical
filtration FJ = o{X (mh): he€ H}, t € [0,1] (note that FJ = o (X) for every w). In particular,
the infinite dimensional process ¢ +— {X (mh) : h € H} £ X (1) can be seen as an infinite collection
of possibly correlated Gaussian F['-martingales. As proved e.g. in [@] and [ in the framework of
abstract Wiener spaces, each o (X )-measurable and square integrable random variable (as Skorohod and
multiple Wiener-It6 integrals with respect to X) is therefore the terminal value of a FJ-martingale,
which is in turn a “generalized adapted stochastic integral” with respect to the infinite dimensional
process t — X (m;$). Since every real-valued FJ-martingale can be shown to be continuous, it follows
that the stable convergence of o (X )-measurable random variables can be studied by means of the theory
of stable convergence for continuous local martingales (see e.g. [[L(, Ch. 4]). In particular, our starting
point in the construction of the two contraction operators appearing in ([l]) is a stable convergence result,
proved in Proposition E below, involving the quadratic variation of continuous local martingales, as
well as a stochastic time-change result known as the Dambis-Dubins-Schwarz Theorem (DDS Theorem)
(see e.g. [R5, Ch. V]). Observe that our Proposition [] is reminiscent of the stable convergence results
proved by Feigin in [ﬂ} See [@} for similar results involving the stable convergence of multi-dimensional
martingales, and [@] for an alternative approach based on a decoupling technique, known as the “principle
of conditioning”.

We recall that the use of the DDS Theorem has already been crucial in the proof of Theorem m
and its generalizations, as stated in [@] and [@] However, we shall stress that the proofs of the main
results of the present paper (in particular, Theorem E‘ and Theorem below) are considerably more
complicated. Indeed, when no resolution of the identity is involved — as it is the case for Theorem ﬂ -
all infinite dimensional Gaussian spaces are trivially isomorphic. It follows that every relevant element
of the proof of Theorem [I| is contained in the case of X (£)) being the Gaussian space generated by
a standard one-dimensional Brownian motion on [0,1] (that is, $ = L2 ([0,1])), and the extension to
general Gaussian measures can be achieved by elementary considerations (see for instance [@, Section
2.2]). However, in the present paper the filtrations F" = o {X (m:h) : h € H} play a prominent role, and
the complexity of these objects may considerably vary, depending on the structure of the resolution 7



(in particular, depending on the rank of m—see Section 2.1 below). We shall therefore use a notion of
equivalence between pairs (§), ), where §) is a Hilbert space and 7 is a resolution, instead of the usual
notion of isomorphism between Hilbert spaces. The use of this equivalence relation implies that, if the
rank of 7 equals ¢ (¢ = 1,...,4+00), then F7 has roughly the structure of the filtration generated by a
g-dimensional Brownian motion. As a consequence, our first step will be the proof of our main results
in the framework of an infinite-dimensional Brownian motion, and the extension to the general case will
be realized by means of rather delicate arguments involving the previously described equivalence relation
(see Lemma E below). As will become clear later on, our techniques can be regarded as a ramification
of the theory of concrete representations for abstract Wiener spaces, a concept introduced in , Section
5]. The reader is also referred to [@] for some related results in a non-Gaussian context.

The remainder of the paper is organized as follows. In Section 2.1, we formally introduce the notion
of resolution of the identity and discuss some of its basic properties. In Section 2.2 some notions from
stochastic analysis and Skorohod integration are recalled. Sections 2.3-2.5 contain the statements and
the proofs of some useful stable convergence result for Skorohod integrals. Section 3 is devoted to the
proof of our main convergence results. We also discuss some relations with the theory of abstract Wiener
spaces. An Appendix contains the proof of a technical lemma.

2 Preliminary definitions and results

Throughout the paper, the following conventions are in order: all random objects are supposed to be

defined on the same probability space (2, F,P); all o-fields are assumed to be complete; the symbol LR
stands for convergence in probability; R is the set of real numbers.

2.1 Hilbert spaces and resolutions of the identity

Let $) be a real separable Hilbert space. The symbol (-, ")56 indicates the inner product on £, and

I-ls = (-, );/ ? as usual. The space §) is always endowed with the Borel o-field generated by the open
sets of the canonical distance associated to ||||5. As already done in R1], we first study the convergence
of Skorohod integrals by means of increasing families of orthogonal projections, known as resolutions of
the identity.

Definition I — A continuous resolution of the identity, is a family 7 = {m; : t € [0,1]} of orthogonal
projections satisfying:

(I-a) mo =0, and m; = ID.;
(I-b) YO <s<t <1, 79 Cm$H;
(I-c) Vto € [0, 1], Vh € 9, limg .y, [|(7 — 7,) bl = 0.

A subset F of § is said to be m-reproducing if the linear span of the set {m;f : f € F, t € [0,1]} is dense
in $. The rank of 7 is the smallest of the dimensions of all the subspaces generated by the w-reproducing
subsets of 9. A m-reproducing subset F' of $) is fully orthogonal if (71',5]‘,g)fJ = 0 for every t € [0,1] and
every f,g € F. The collection of all 7 verifying properties (I-a)-(I-c) is noted R ().

The reader is referred to [{] or [B4] for further properties and characterizations of the class R (). In
particular, we shall use the following consequence of [E, Lemma 23.2], that can be proved by a standard
Gram-Schmidt orthogonalization.

Lemma 2 Let 7 € R ($) and let F be a w-reproducing subset of ) such that dim (F) = rank (r), where

A stands for the closure of the vector space generated by a given set A. Then, there exists a m-reproducing
and fully orthogonal subset F’ of $), such that dim (F’) = dim (F).



We will sometimes need to work with elements of R (§)) that are not only continuous, but also
absolutely continuous.

Definition II — A resolution 7 = {m : t € [0,1]} € R (%) is said to be absolutely continuous if, for
every f,g € 9, the function t — (mg, f)g, t € [0, 1], is absolutely continuous with respect to the Lebesgue
measure on [0, 1]. The class of absolutely continuous resolutions in R () is noted Rac (9).

The elements of R 4c (9) are used in , Section 5] to prove a remarkable bijection between abstract
and concrete filtered Wiener spaces. More details will be given in Section 3, were we establish a similar
result for isonormal Gaussian processes as a step to prove stable convergence criteria for multiple integrals.
With the next result we point out that, up to a “change of time”, every m € R ($)) can be represented in
terms of some element of Rac (9).

Lemma 3 For any 7 = {m, : t € [0,1]} € R(9), there exists a non decreasing function
b= {0 e 1)}

such that ¥ (0) = 0 and the monotone family of projections
T &y, te€0,1],

is an element of Rac (9).

Proof. Let ¢ = rank (7) (g is possibly infinite) and let Fr = {f; : 1 < j < ¢} be a w-reproducing
subset of $), normalized in such a way that 2321 I fj||; = 1. Define moreover the increasing function
o (t) = ?:1 HmfjH;, t €[0,1], and set ¢ (t) = inf {a : ¢ (a) = t}. Then, ¢ is non decreasing, ¥ (0) = 0,
and the family of projections

%téﬂ.w(t)a te [0,1],

is a resolution of the identity verifying >27_, ||%tfj||§J = t, for every t € [0,1]. Since Fy is also 7-

reproducing, we deduce from [ﬂ, Lemma 23.1] that 7 is absolutely continuous. m

2.2 Gaussian processes, Malliavin operators and representation theorems
Throughout the following, we write
X=X®)={X(f):fe9}

to indicate an isonormal Gaussian process, or a Gaussian measure, over the Hilbert space $). This means
that X is a centered Gaussian family, indexed by the elements of § and satisfying the isomorphic relation

EIX (/)X (9)]=(f9)y, forevery f,ge (2)

(the notation X () is adopted exclusively when the role of §) is relevant to the discussion).
As in B or [B{), to every m € R (£) we associate the collection of o-fields
FI(X)=0{X (mf): fen}, tel0,1], (3)

and we observe that, for every 7 € R (), t +— F7 (X) defines a continuous filtration (see [0, p. 14]).
Also, for every f € 9, the process t — X (m:f), t € [0,1], is a centered and continuous F; (X )-martingale
such that, for every n > 0, the increment X ((m¢4y, — m¢) f) = X (w440 f) — X (7 f) is independent of
FT (X) (see e.g. [B(, Corollary 2.1]).



As in [R1], we write L? (P, 9, X) = L?($, X) to indicate the set of o (X)-measurable and $-valued
random variables Y such that E [||Y|\;} < +00. The class L? ($), X) is a Hilbert space, with inner product

given by (Y,Z) 12 x) = E (Y, Z)g]. Following Bd), we associate to every m € R () the subspace
L2 (9, X) of m-adapted elements of L? ($), X), that is: Y € L2 (§, X) if, and only if, Y € L? (9, X) and,
for every t € [0,1] and every h € $,

(Y,mh)g € F (X). (4)

For any resolution m € R (9), L2 (£, X) is a closed subspace of L? (£, X). We may occasionally
write (u, z)L%(m instead of (u,z);2(s), when both u and z are in L2 (9, X). Now, for 7 € R (), define
Er (9, X) to be the space of elementary elements of L2 ($, X), that is, &, (£, X) is the collection of those
elements of L2 (), X) that are linear combinations of §-valued random variables of the type

h=®(t1) (m, —m,) f, (5)

where ty > ti, f € $ and ®(t;) is a F7 (X)-measurable, real-valued and square-integrable random
variable. A proof of the following useful result can be found in [R1], Lemma 3] or [Bd, Lemma 2.2].

Lemma 4 For every m € R(9), the span of the set £, (9, X) of adapted elementary elements is dense
in L2 (9, X).

In what follows, we shall apply to the Gaussian measure X some standard notions and results from
Malliavin calculus (the reader is again referred to [[L7] and for any unexplained notation or definition).
For instance, D = Dx and § = dx stand, respectively, for the usual Malliavin derivative and Skorohod
integral with respect to the Gaussian measure X (the dependence on X will be dropped, when there is
no risk of confusion); for k > 1, ]D)l;f is the space of k times differentiable functionals of X, endowed with
the norm [[-[|, , (see [[7, Chapter 1] for a definition of this norm); dom (§x) is the domain of the operator

dx. Note that Dx is an operator from ]D)];f to L2 (%, X), and also that dom (§x) C L?($€,X). For
every d > 1, we define H®? and H®? to be, respectively, the dth tensor product and the dth symmetric
tensor product of ). For d > 1 we will denote by I j( the isometry between $H°¢ equipped with the norm
V! |l gea and the dth Wiener chaos of X. Given g € H%¢, we note (g), the symmetrization of g, and

I3 (9) =15 ((9),)

Plainly, for f,g € $%, I (f+9) = I ((f), + (9),) = IF (f) + I (9). Recall that, when § =
L?(Z,Z,v), (Z,2) is a measurable space, and v is a o-finite measure with no atoms, then $®¢ =
L2 (Zz4,2%4,v%%) where L2 (2, 294,19 is the space of symmetric and square integrable functions on
Z%. Moreover, for f € H X (f) coincides with the multiple Wiener-Ité integral (of order d) of f with
respect to X, as defined e.g. in [@, Section 1.1.2].

To establish the announced stable convergence results, we use the elements of R (£)) to represent
random variables of the type dx (u), u € dom (dx ), in terms of continuous-time martingales. In particular,
we will use the fact that (i) for any 7 € R ($)), L2 (9, X) C dom (§x), and (ii) for any v € L2 (), X) the
random variable dx (u) can be regarded as the terminal value of a real-valued F/-martingale, where FJ
is given by (E) A proof of the following result can be found in [@, Lemme 1] and , Corollary 2.1]

Proposition 5 Let the assumptions of this section prevail. Then:
1. L2 (9,X) Cdom (0x), and for every hy,hs € L2 (9, X)

E[dx (h1)0x (k)] = (h1,h2) 2 (5 x) - (6)



2. If h € & (9, X) has the form h =3 | h;, where n > 1, and h; € Ex (9, X) is s.t.
h; = ®; x (7Tt(i) — Wt(i)) fi, fi€H, i=1,...,n,

with tgi) > tgi) and ®; square integrable and ]-"ZL-) (X)-measurable, then

ox (h) = i‘l’i X {X (ﬂ'téi)fi) -X (thnfi)] - (7)

3. For every u € L2 (9, X), the process
t—ox (mu), telo,1],

is a continuous FJ (X)-martingale initialized at zero, with quadratic variation equal to

{Hmng telo, 1]}.

In the terminology of [BJ], relation (f) implies that L2 ($, X) is a closed subspace of the isometric
subset of dom (dx), defined as the collection of those h € dom (§x) such that

E (0x (1)) = IlZ20.x) - ®)

Note that, in general, this isometric subset is not a vector space — see e.g. @, p. 170]. The next
result is partly a consequence of the continuity of 7. It is an abstract version of the Clark-Ocone formula
(see [L7), and can be proved along the lines of [B3, Théoréme 1, formula (2.4) and Théoréme 3]. Observe
that, in [@], such a result is proved in the context of abstract Wiener spaces. However, such a proof uses
exclusively isometric properties such as (E), and the role of the underlying probability space is immaterial.
It follows that the extension to general isonormal Gaussian processes is standard: see e.g. , Section
1.1]. The reader is also referred to [@] for a general Clark-Ocone formula concerning Banach space valued
Wiener functionals.

Proposition 6 (Abstract Clark-Ocone formula) Under the above notation and assumptions (in par-
ticular, m € R ($)), for every F € ID&’Q,

F=E(F)+3 (proj {DxF | L2 (%, X)}), 9)

where Dx F' is the Malliavin derivative of F', and proj { | L2 (9, X)} 18 the orthogonal projection operator
on L2 (9,X).

Remarks — (a) The right-hand side of (f]) is well defined, since Dx F € L? (), X) by definition, and
therefore
proj {DxF | L} (9,X)} € L2 (,X) C dom (6x),
where the last inclusion is stated in Proposition [
(b) Since DY is dense in L? (P) and dx (L2 (9, X)) is an isometry (due to (), formula ({) yields
that every F' € L? (P, 0 (X)) admits a unique “predictable representation” of the form

F=E(F)+dx (u), ueLi (9 X); (10)
see also [BZ, Remarque 2, p. 172].

In the next section, we present a general criterion (Theorem E), ensuring the stable convergence of a
sequence of Skorohod integrals towards a mixture of Gaussian distributions. The result has been proved in
[@], by using a general convergence criteria for functionals of independently scattered random measures.
Here we present an alternative proof (partly inspired by some arguments contained in [31]), which is
based on a time-change technique for continuous-time martingales.



2.3 Stable convergence of Skorohod integrals

We first present a standard definition of the classes M and M of random probability measures and
random fourier transform.

Definition III — Let B (R) denote the Borel o-field on R.

(III-a) A map 4 (-,-), from B (R) x Q to R is called a random probability (on R) if, for every C' € B (R),
w1 (C,-) is a random variable and, for P-a.e. w, the map C — p(C,w), C € B(R), defines a
probability measure on R. The class of all random probabilities is noted M, and, for u € M, we
write Eu () to indicate the (deterministic) probability measure

En(C) 2E[u(C,)], CeB®). (11)

(I1I-b) For a measurable map ¢ (-, -), from R x € to C, we write ¢ € M if there exists ;1 € M such that
dp(\w)=1(\)(w), VXER, for P-ae. w, (12)
where i (+) is defined as

—~ | [exp(idz) p(dz,w) if p(-,w) is a probability measure
0@ =1 st ARy

For every w € Q, i(\) (w) is of course a continuous function of A\, and the probability Eu (-) =
Jo (-, w) dP (w) defined in ([L1]) is often called a mizture of probability measures. The notion of stable
convergence, which is the content of the next definition, extends the usual notion of convergence in law.

Definition IV (see e.g. @, Chapter 4]) — Let F* C F be a o-field, and let p € M. A sequence of
real valued r.v.’s {Z,, : n > 1} is said to converge F*-stably to Epu (), written X,, — (5 7+ Ep (+), if, for
every A,y € R and every F*-measurable r.v. Z,

lim Eexp (i7Z) x exp (iAX,)] = Elexp (ivZ) x @ (N)], (14)

n—-+o0o

fi € M is given by (3.

If X,, converges F*-stably, then the conditional distributions £ (X, | A) converge for any A € F* such
that P (A) > 0 (the reader is referred e.g. to [L], Proposition 5.33] for an exhaustive characterization of
stable convergence). By setting Z = 0, we obtain that if X,, —( 7+) Ex(-), then the law of the X,,’s
converges weakly to Eu (). Observe also that, if a sequence of random variables {U,, : n > 0} is such that
(Un—Zy) — 0 in L' (P) and X,, — (5 ) Ep (+), then Uy, — 5 7o) Epu (4).

In what follows, $,, n > 1, is a sequence of real separable Hilbert spaces, whereas, for each n > 1,
Xn = X0 (9,) = {X,(9) : g € H,}, is an isonormal Gaussian process over §). The following theorem
already appears in [R1], where it is proved by using a decoupling technique known as the “principle of
conditioning”. In Section 2.4 we shall present an alternative proof based exclusively on continuous-time
martingale arguments.

Theorem 7 Under the previous notation and assumptions, for n > 1, let m, = {m,¢:t€[0,1]} €
R ($n) and u, € L2 (9,,X,). Suppose that there exists a sequence {t, :n >1} C [0,1] and o-fields

{Uyp : n > 1}, such that

P
Tt unllg, = 0 (15)



and
Uy, CTUp+1 N f;:’ (X,). (16)

If
P
lunlly, = Y, (17)

for some Y € L?(P) such that Y #0,Y >0 and Y € U* £ V,U,, then, as n — +o0,
0x, (un) =(su-) Bp (),

where ;i € M verifies [i (A) = exp (—%Y).

Remark — Condition ), that already appears in the statement of the main results of [@], can be
seen as a weak version of the nesting condition used e.g. in [f] to establish sufficient conditions for the
stable convergence of semimartingales.

By using the Clark-Ocone formula stated in Proposition E, we deduce from Theorem ﬂ a criterion for
the stable convergence of (Malliavin) differentiable functionals. It is the key to prove the main results of
the paper.

Corollary 8 Let 9., X, (92), Tn, tn and Uy, n > 1, satisfy the assumptions of Theorem ﬂ and consider
a sequence of random variables {F,, : n > 1}, such that E(F,) =0 and F, € ID) for every n. Then, a
sufficient condition to have that

F, 7 (s,U*) EM ()

where U* £ VU, 11 (A )—exp( ) VAER, and Y > 0 is such that Y € U*,

Hﬂn,tnproj {DXnFn | Lin (ﬁn,Xn)}Hzn 20 and Hproj {DXnFn | L2 (9n, X }Hﬁn n_}_‘_oo

(18)

2.4 Martingale proof of Theorem [7]

In this section, we provide a proof of Theoremﬂ involving exclusively continuous martingale arguments.
It is based on the following general result.

Proposition 9 Fiz T < +oo. Forn > 1, let {W} :¢t€[0,T)} be a Brownian motion with respect to a
filtration H™ = {H} : t € [0, T)} of the space (0, F,P) (satisfying the usual conditions) and suppose that
there exists a sequence of random wvariables {1, : n > 1} such that 7, is a H™-stopping time with values

in[0,T) and 1, £ 0asn— +o0o. Set moreover, forn > 1, V;* =W, — W] t€[0,T). Then,

(l’ll)

1vn—wn
2. if there exists a sequence of o-fields {Uy, : n > 1} such that
un g un+1 N HZH

then for every random element X defined on (2, F,P), with values in some Polish space (S,S) and
measurable with respect to U* £ VU,

W™, X)W, X) and (V",X)% W,X) (19)

where W is a standard Brownian motion independent of X .



Proof. The proof is partly inspired by that of [@, Theorem 3.1]. Since 7, Lo by assumption, Point

1 in the statement is a direct consequence of the Continuous Mapping Theorem (see e.g. [EI]) Moreover,
(@) is proved, once it is shown that (V", X) lay (W, X). To do this, observe first that, for every n, V,,
is a standard Brownian motion, started from zero and independent of H? . We shall now show that, as
n — +oo, for every A € B(C'[0,T)) (B(C'[0,T)) is the Borel o-field of the class C'[0,T) of the continuous

functions on [0,T")) and every B € S,
P[V" e A, X € B|—P[W € AJP[X € B] — 0. (20)

As a matter of fact, since U, € H7 , and thanks to the martingale convergence theorem and the fact
that X € V,, U,

E|P[X € B|H! ] —1xen

IN

E[P[X € B|H] ] -P[X € B|U)|
+E|1xep —P[X € B | U]
< 2E[1xep—P[X €B|U,] — 0,

n—-+o0o

1
thus implying that P [X € B | H" | % 1xcp, and therefore

PV* €A XeB|-PWeAPXeB] = PV"€AXeB|—E[ly,caP[X € B|H! ]]
+E [1y,eaP [X € B|H} ]| -P[W € A]P[X € B]
= P[V"€AXeB]-E[1ly,eaP[X€B|H]] — O,

n—-+o0o

law

where the last equality follows from the independence of V;, and H7 . Since (Rd) implies that (V7 X) =
(W, X), with W and X independent, the proof is concluded. m

Proof of Theorem E — According to Proposition 5—3, for each n the process t — dx, (7n tup) is
a continuous square-integrable F;™ (X, )-martingale with quadratic variation ¢ — ||7Tn7tun|‘,27_)n £ 1y, (t),
t €[0,1]. Now define

Gr& Frn o s>0, where p, = inf{zc[0,1]: ¢, (x) > s},

Pn,s?

with inf @ = 1, and observe that the above definition is well given and also that, for every n > 1, every
t €[0,1] and s > 0, ¥y, (t) = H7rntun|\;2,j is a G"-stopping time and p, s is a F™"-stopping time. In
particular, for every z > 0 and ¢ € [0, 1],

{n (t) > 2} = {pne <t} € F.

According to the well known Dambis-Dubins-Schwarz Theorem (see e.g. [, Ch. V]), the underlying
probability space can be suitably enlarged in order to support a sequence of stochastic processes W" such
that, for each fixed n, W™ is a G"-Brownian motion started from zero, and also

O, (muun) = Wyl te[0.1]. (21)

Since, in general, p, 4 (1) > t, g;;n(t) D F[ for every t € [0,1]. It follows that, for the sequence ¢,
appearing in the statement of Theorem [f,

Up CUns1t NFH CUnia NGy 1y

Thus, all conditions of Proposition E are verified, with H" = G" and 7,, = ¥, (t,), and therefore, for
every U* = V,U,-measurable and real-valued random variable Z,

W™, 2) = W, 2),



where W is a Brownian motion independent of Z. Moreover, since ¢y, (1) = ||7rnlun||;2,j Sy eu by
assumption, we conclude that, for every Z € U*,

(W™, Z, 4, (1) 2 (W, Z,Y).

Now observe that dx, (u,) = W7}

o (1) by (@) and also that, thanks to a further application of the
Continuous Mapping Theorem,

n law
(Wi ) 2) = (x, (wn) . 2) = Wy, 2),
implying that, for every v, A € R,
E {emzei,\éxn (un):| N F I:ei’yzeikWy} —F {emze—k—;y} ’
which yields the desired conclusion. H

2.5 Further refinements

The following result is a refinement of Theorem ﬁ and Corollary E It will be used in the next section to
characterize the stable convergence of double Wiener-It6 integrals. It is proved in [Ell, Proposition 10,
Theorem 22 and formula (123)]. The setting is that of Theorem [J: $,,, n > 1, is a real separable Hilbert
space; X,, = X, (9,), n > 1, is an isonormal Gaussian process over §,,.

Theorem 10 Keep the assumptions of Theorem ﬂ (in particular, u, € L2 (90, Xp) for every n, and

{13), [1d) and (1) are verified). Then, as n — +oo,

)\2
E [exp (iAdx, (un)) | Fi™ (X,)] = exp (_?y) , VAER.

Moreover, if there exists a finite random variable C (w) > 0 such that, for some n > 0,
E[|0x, (un)]"| Fir] < C(w), Yn>1, as.-P,

then, there is a subsequence {n (k) : k > 1} such that, a.s. - P,

tn (k)

™ A2
E [exp (iN0x,, (un)) | F, "(k)} oo, XD <7Y) , YAeR.

3 Main results
Although Corollaryﬂ is quite general, the explicit computation of the projections
proj {Dx,Fn | LZ (9,X,)}, n>1,

may be rather difficult. In this section, we prove simpler sufficient conditions ensuring that the second
asymptotic relation in (E) is satisfied, when (F},) is a sequence of multiple Wiener-Ito integrals of a
fixed order. In particular, these conditions do not involve any projection on the spaces Lfrn (9, X,). The
techniques developed below can be suitably extended to study the joint convergence of vectors of multiple
Wiener-Ito integrals. This issue will be studied in a separate paper.

10



3.1 Statements

To start, fix a real separable Hilbert space $) and let {ej : kK > 1} be a complete orthonormal system in
$. For every d > 1, every p = 0, ...,d and f € $°?, we define the contraction of f of order p to be the
element of H®2(4=P) given by

oo

fepf= Z <f’€i1®'”®eip>f)®z7®<f’ei1®”'®eip>f_)®p’ (22)

i1yenip=1

and we denote by (f ®, f), its symmetrization. As shown in [E] and [@], the asymptotic behavior of
the contractions f ®, f, p=1,...,n —1, plays a crucial role in the proof of CLT's for multiple Wiener-Itd
integrals. To obtain analogous results in the case of stable convergence, we need to define a further class
of contraction operators, constructed by means of resolutions of the identity. To this end, fix 7 € R (9),
t€[0,1] and d > 1, and define 7%¢ : §®¢ - 8¢ to be the nth tensor product of 7, that is, 72% is the
projection operator, from $H%? to itself, given by

ﬂ?d:m@m@---@m. (23)

d times

For every d > 1, p = 0,...,n, t € [0,1] and f € H9¢ we write f @7t f to indicate the element of
$H®2(d=p) given by

o0

f®g7tf: Z <f’ (Wi@piﬂ?p)eil®“'®eip>f_)®p®<f’ (Wi@piﬂ?p)eil®.“®eip>f)®p7 (24)

Vlyenny ipzl

and, as before, we denote by (f ®g’t f) its symmetrization. We define f ®g’t f to be the generalized

S

contraction kernel of order p, associated to m and t. For instance, for f € $©¢,

Fertf=re,f, fortf=0, and f&f'f=@P!—78) f|[se.- (25)

Remark — When § = L? (Z, Z,v), where v is o-finite and non-atomic, and = € R ($)) has the form

mf(2)=f(2)1g, (2), z€Z,

where Z; is an increasing sequence in Z such that Zy = @ and Z; = Z, we have the following elementary
relation: for every d >1,p=0,...,d, t € [0,1] and f € §O¢ = L2 (2% Z®4d @)

F Pt f (21, 22d—p)) =/ F (21, oy 2dpy Xp) [ (Zd=pt1s - Z2(d—p)» Xp) VEP (dxp)

zr\Zz¥

since, for every h € L2 (Z%P, Z%P y&P),

(m07 =7 ) b (xp) = (Lz0 (xp) = L2 (%p)) h (%) = Loy 77 (%) B (%p).-

The next result, which is the main achievement of the paper, generalizes the crucial part of the CLT
stated in [@, Theorem 1] to the case of the stable convergence. Its proof is postponed to the next section.

Theorem 11 Let 9, X, (92), mn, tn and U, n > 1, satisfy the assumptions of Corollary B Fizd > 2,
and consider a sequence of random variables {F,, : n > 1}, such that, for every n,

11



for a certain f, € 999, and moreover

E [ | 7 (X)) = 15 (8 ) 0 (27)
and
E[F? | Fm (X,)] &Y e, (28)
Then, the following hold:
1. for everyn > 1,
E[FR|Fir(Xa)] = dfallfee (29)

= d ? X 2 71' t
w2 () e R et )] e ()

where op (1) stands for a sequence of random variables converging to zero in probability;

2. if mp € Rac (9n) for every n > 1 and, for everyr =1,...,d — 1,

(753 = 7&20) (fo @520 fa)llpeor = O, (30)

n—-+4oo

then

|lproj {Dx, Fu | L2 (0, X }Hﬁn ntee ¥

and therefore

)\2
Fp —un Eu(s)  and  Elexp (iAF,) | FI (Xn)] 5 exp <?Y> , VAeR,

where i (\) = exp ( ) YA eR.

Remarks — (a) Since, due to Lemma [J and for any continuous € R (£)), there exists a non decreasing
function ¢ such that 7 = Tg(.) is absolutely continuous, Theorem applies de facto to any sequence
Tn € R(Hn), n > 1.

(b) Suppose that X,, (9,) = X (9) for every n > 1. Then, the random variables F,,, n > 1, appearing
in (Pg) all belong to the same Wiener chaos, and, due to (B9), the sequence E [F? | F/™™ (X,,)], n > 1,
belongs to the same finite sum of d Wiener chaoses. Recall also that, on a finite sum of Wiener chaoses,
the topology induced by convergence in probability is equivalent to the LP topology, for every p > 1 (see
e.g. [ﬁ When E) and (@) are verified, we therefore deduce from (E) that Y has necessarily the

form
d—1
Y)+ > I (gr), (32)
r=1

for some g, € H°" and r = 1,...,d — 1. Moreover, @) is equivalent to the condition: as n — +oo,
d! || foll5ea — E(Y) and, for r =1,...,d — 1,

(d - T>! (i) X (W;?%: (fn ®dn7_n fn)) — Gr (33)

in HO?. It follows that, for r = 1,...,d — 1, the two operators f, ®% . f, and f, ®%*  f,, from $ to
H®2" defined as

2
b a=0i(0) G (et 1), 2 fa @i (54)

fo = (T2 = 1S (fa @5 fo) 2 fu @5 fus (35)

12



solve the problem raised in the Introduction. Indeed, under (P7) and the normalization condition
d! an||?5®d — E(Y), due to Theorem [L] and (B3), the asymptotic relation (f]) implies that IX (fa)

converges stably to 'Y x N, where N is a centered standard Gaussian random variable independent of
Y.

We now show that the conclusions of Theorem EI may be strengthened in the case of a sequence of
double Wiener-It6 integrals, i.e. in the case d = 2. The proof of the next result is deferred to the Section
3.3.

Theorem 12 Under the assumptions and notation of Theorem (in particular, and (@) are im
order), suppose that d = 2 and that the following implication holds:

E(E[FY ] Fi (X)) —=3Y2)° — 0 if, and only if, E[F|Fr (X,)] = 3Y2 (36)

n—-+4oo

Then, the following are equivalent

@) [lproj {Dx, Fu | L2, (9, X}l = V5

— 400

(i) E [exp (iIAF,) | F7m (X0)] 2 exp (J;Y) , VAER;
(iif) E[F| 7 (X,)] = 372

@) [[(73 = 73,) (fa @7 fu)llges = 0.

n—-+o0o

Moreover, if either one of conditions (i)-(iv) is satisfied, F, — (s 1+ Ep (-), where i () = exp (—%ZY).

Remark — (a) Due again to the equivalence of the L° and L? topology on a finite sum of Wiener
chaoses (see [27]), condition (Bg) is verified in the case §,, = $ and X, () = X (9), for every n > 1.

(b) When d = 2, the second part of Theorem [[1] corresponds to the implications (iv) = (i) => (i)
of Theorem .

The next consequence of Theorem [L1] is a central limit theorem, generalizing Theorem El

Corollary 13 Let 9, X, (95), n > 1, be defined as above, and suppose that m, € Rac (Hn) for each n.
For d > 2, consider a sequence of multiple Wiener-1t6 integrals {Ij(" (fn):n> 1} s.t. fn €99 and
E 13" (fa)?] = a1 ful 1.
2" (fn) Ilf H@S?d njroo
Then, the following are equivalent

@ |

2
proj {Dx, 13" (£) | L2, (9ns X} 25 1

9, n—+oo

(i) E [exp (mjfn (fn))} — exp (—%) VA € R, that is, IX* (f,) Y N (0,1);

n—-+o0o

(iii) E |13 (£)"] =35

n——+oo
(V) |Ifn @ar fallioer — 0,¥r=1,.,d—1.
" n—-+oo

Proof. The equivalence of the three conditions (ii)-(iv) is the object of Theorem []. That (i) implies
i) follows from Corollary { in the case t,, = 0 for every n. Finally, (iv) implies (i) thanks to Theorem
-2, again in the case t, =0. ®m

13



3.2 Proof of Theorem [

We start by proving an auxiliary analytic result. Let (A,.A) be a measurable space. For m > 1, let &,
be shorthand for a vector &, = ((a1,21); ..., (@m;2m)) € (A x [0,1))™ and, for such &,,, note &, the
maximum of &,, in the variables x1, ..., Z,, i.e. Em = ((a1,21) ;s (@m; Tm)) = max;=1, ., (z;). In what
follows, I (d€) stands for a o-finite positive measure on A x [0, 1], such that, for every fixed z* € [0, 1],
[{(a,z) : x = 2*} = 0 (note that this implies that [ is non-atomic). For m > 1, I" (d¢,,) is the canonical
product measure on (A x [0,1])™ (with I* = [ by convention).

L? ((A x [0,1))™7, lm*’“) L p2 (gmry

Lemma 14 Let m,r > 1, C C [0,1]™ and D C [0,1]". Then, for every symmetric function f €

2

Joo fuo L[ emend rmant dan] 7 a7 )

N /Axc /Axc UAD F(Emrar) f (s ) 1, <amax(e,, 7,0)) ! (d%«)r ™ (d€m) U™ (dym) (37

+/M/M [/Axcf (&ms r) J (&m Br)1(E,, <max(, 5,)) " <d€m>rV (dov) U7 (d,)

Proof. Start by writing

L el 7t romair aen] o @ i
foctc wa(&m’o"“)f(%“” . (38)

L@, <max(z,, 7)) T L(@ >max(Z,. 70 I" (dov) i 1" (d&m) "™ (dym)
( ( ) ( )
/A><C /A><C |:/A><D f (Em; ar) / (’Ym, aT) 1(ET<maX(Emﬁm))lT (daT):| . (dgm) " (d’Ym)

+/Axc/m [/Mf (€&ms0r) £ (s 00) 1, (@, 7,)) ! “‘“”Tlm (dm) 1 (dm)

02U T 6000 T ) s 5, 0]
X { /A . J&ns Be) | (s Br) 13, s max(E, 7.0)) (dﬁr)} 1™ (dé) 1™ (dyim)

£ L()+L(©2)+L(@3)

(note that the equality (BY) holds because of the assumption: [ {(a,z) : x = 2*} = 0, Vz*). Now, by using
a standard Fubini theorem,

L= [ [ [ O £ om0 s e )™ )] 1 (G 3,
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and also

L0) = [ oo Lo 6o 1 0me Y. 5.) oe 7) 00)] »

8 |:/A><D f (§m7 57“) f (’Ym, BT) 1(max(arvBT)>maX(gmﬁm))lr (dﬂr):| " (dé’m) m (d’Ym)

_ /Aw/m [/Axcf(ém,ozr)f(ém,ﬂr)x

2
X 1(min(ET,BT)<Em<max(Er,BT))lm (dgm):| r (dar) rr (dﬂr) +

I /A><D /A><D |:/A><C f (gm, Oé,_) f (gm’ ﬁr) 1(min(a B, )<§m<max(a B lm (dfm)]
|:/ f('Ymaar)f(q/maﬁr) (7, <min (@, d’ym :| daT dﬁT .
AxC

The last relation implies that

L(2)+L(3) :/AXD/AXD [/Axcf(fm’o‘r)f(fm’ﬂr)1(£m<max(ar,ﬁr))lm (dgm)} I (do) 1" (dBy) ,

hence proving (B7). m

Remark — With the notation of Lemma @, suppose that the sequence f,, € L2 (I™*"), n > 1, is such
that {||fn||L2(<m+r) in 2> 1} is bounded and, as n — +o0,

/Axc/Axc VAfo" (&, ae) f (o, @) (danrl’” (d&m) U™ (dm)

/M/Aw [/Axcf" (msar) fo (&m, B) T <d€m>rlr (do) I (dB,) (39)

— 0

(note that the equality in (BY) derives from a standard Fubini theorem). Then, by (Bg) and (B7), Lemma
@ implies that the sequence Q; (n), defined for i = 1,2,3,4 by

@t = [ [ e £ (a1, o) (dar>rl’" () I™ (din)
|

|: gm, Oér (§m7 ﬂr) l(gm<max(aT,ET))lm (dfm) I (dozr) r (dﬁr) 7
“c [ e (G @r) G @) Y (g, 3,)) (do‘”] " () 1™ ()

|:/ §m7ar (5’!7175’)“) (f <m1n(a B, ))lm (dém):| I (dozr) I (dﬁr)7
D [/Ac R “’fm)} 1" (do) " (dB)

B /Axc/AXc [/Mf (&m, ) (s @) 1z, <min e, 7,0)) " (dawrlm (d6) I™ (dn)

(the equalities after the definitions of Q3 (n) and Q4 (n) are again a consequence of the Fubini theorem)
converges to 0 as n — 4-o00. This fact will be used in the proof of Theorem @»2.
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(Proof of Theorem —1) By using a standard multiplication formula for multiple stochastic integrals
(see e.g. [, Proposition 1.5.1]), we obtain that

d 2
d
F2 =l ||fn||;§d+2(d—r)!(r) L [fn ®acr ], n > 1,
r=1

and consequently, for n > 1,

E[F2 | 7 (X)) = e (40)
d d 2 " )
w3 (7) B R s ]

Now observe that, for r =1, ...,d,

L (723 (fo @ar fu)] = T [x30 (fa @750 fn)] (41)
+12)in [( ntnfn) Qd— 7‘( ntnfn)}

and, in particular, for r = d

L [y (fa @0 fu)] = Lg [(m304, n) @0 (w320, fa)] - (42)

It follows from formulae (i), (1)) and (f), that Theorem [} is proved, once it is shown that
12{"' [( fio tnfn) Rd—r ( S‘ann)} — 0, in L? (P), for every r = 1,...,d. But

E{1 (w58, £a) @amr (708, £a)] | < (@ =0V |28, fullgos =20

n—-+o0o

due to assumption @), hence yielding the desired conclusion.

(Pmof of Theorem [1]-2) For m > 1, we write x,, to indicate a vector X, = (21, ...,7,,,) € [0,1]™, and
also X, = max;—1,. . (x;). Moreover, dx,, indicates the restriction of the Lebesgue measure to [0,1]™
We first prove Theorem [L1}-2 when the following assumptions (a) and (b) are verified: (a) for every n > 1,

where (A4, A,) is a measurable space, v, is a o-finite (positive) measure on (4,,.4,), and
tn (da,dx) = ky (a,z) {v, (da) ® dz}, (44)
where k, € L (A, x [0,1],vp, A, ® B([0,1])) and k,, > 0; (b) for every n, for every (a,z) € A, x [0,1]
and for every h € 9,
Tpth (a, ) = h(a,z) 1 (z), Vte0,1]. (45)

Note that p,, is non-atomic, and also that, in this setting, H&¢ = L2 ((An x [0, 1])d,M§d) for every
d > 2 and
691 = 12 (40 x [0,1))", 557

It follows that every f € §9¢ can be identified with a (square integrable) function

f (al, vy g5 X1, ...,xd) =f (ad;xd), ag € Ai, X4 € [0, 1]d,
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which is symmetric in the variables (a1, 1), ..., (a4, 2q4). Moreover, by using the notation introduced in
formulae (R3)-(R9), for every f € $2¢ and every ¢ € [0, 1],

Tt f (asxa) = f(aa;xa) 1 4pa (xq) and (46)
(mif = md) f(aaixa) = f (agixa) g a0 (xa) . aa € Aj, xq € [0, 1] (47)
Finally, we observe that (by using the notation introduced before the statement of Lemma E), for

every m > 1, every X, = (T1,...,om) € [0,1]" and every &, € (A4, x [0,1]))™ with the form &,, =
((ala xl) PREEED) (a’ma :Em));

_ —

&= ((a1,21) ooy (Qmy Tm)) = (X1, ooy T ) = Xy (48)

For ), and 7, € R (9,) (n > 1) as in (3, (f4) and ([15), consider the sequence of isonormal Gaussian
processes X, = X, (9,,), n > 1, appearing in the statement of Theorem . Since, according to (@),
F, = If" (fn), we obtain immediately that, for n > 1,

Dx, Fy (a,2) = d x I (fa(a,52,-)) (49)
where, for every fixed (a,2) € A x [0,1], fn (a,-;2,-) stands for the (symmetric) function, from (A x

0,1))*" to R,
(A1y ey Q4—15T1,5 ey Tg—1) > fr (@, Q1,4 00ey a1, T1, ooy Td—1) -

In this framework, the sequence proj {DXn F, | L,an (Hn, Xn)}, n > 1, can be easily made explicit by
means of the following result.

Lemma 15 If 9,, and 7, € R (), n > 1, satisfy relations (@), @) and @, for every u =u (a,z) €
L2 (ﬁann); P'a-s';

proj{ul Lz, (99, Xa)} (a,2) = E[u(a,2) | F* (Xa)], (50)
for pm-a.e. (a,x), where the filtration F™ (X,), x € [0,1], is defined according to (3).

Proof. Denote by u* the process appearing on the right hand side of (@) To show that u* is an
element of L,an (9, X)) we need to show that it is a m,-adapted element of L? (),,, X,,) . Since u belongs
to L2 (9, X,), so does u*. Moreover, u* is m,-adapted because, for every h € $,, and every t € [0, 1],

(u*, ﬂnyth)ﬁn = /A o u* (a,z) mpth (a, ) iy, (da, dx)
= / Efu(a,z) | 7" (Xn)] h(a, z) pn (da, dz) € F (Xq),
A, %[0,

by (f). Now consider an element of &, (95, X,,) with the form g = ® (t1) (Tn,4, — Tne,) f Where t2 > t1,
f €9y and @ (t1) € Fi " (X,) is square-integrable. Then,

(Uag)p(gmxn) = E/ATLX[OJ]u(a,t)g(a,l’),un(da,dx)
= / E(® (t1)u(a,z) f (a,z)) pn (da, dz)
Ay X (t1,t2]
= [ BEEO)ED@) |F X0 () i )

- (u*’g)LZ(ﬁn,XTL)’
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where we have used a Fubini theorem and the fact that ® (t1) € 77" (X,). Since &, (Hn, Xy) is total
in Lin (9, Xn), we deduce that (u,g)Lz(ﬁmxn) = (“*;Q)LZ(fJn,XTL)’ for every g € Lfrn ($n, X»), hence

u* =proj{u| L2 ($n,Xn)} as required. m

In particular, thanks to the classic properties of multiple Wiener-Ito integral and conditional expec-
tations (see e.g. [LI]), we deduce from ([4q) and (id) that, for F,, = I (fy) as in (Bd) and 2 € [0, 1],

proj {DXn,Fn | Lin (ﬁnaXn)} (a,z) = dE [If—nl (fn(a,z,2) | For (Xn)} (51)
E (f 5 L (0)
and consequently

2
|lproj {Dx, Fn | L%, (ﬁn,Xn)}H;n:dQ/ ) (fn (a,.;z,.)1Az71X[OJ}H) pn (da,dx) . (52)

Ap x[0,1]

Now note that, thanks to (), ({J) and the fact that E (F,) =0,

E ||proj {Dx, Fu | L2, (9. Xu)}[5, = E [6 (proj {Dx, F | L2, (m,Xm})ﬂ
= E[F]=d|/ull5ea-

Moreover, the chaotic expansion of the right hand side of (@) can be made explicit thanks to the
standard multiplication formula (see again [L], Proposition 1.5.1])

d—1 2
2 2 d—1
I (97 = (d = 1! gl 300 + Zq!( ) By 09,
q=0
applied to g = f,, (a,;x,-) 1ya-1 (0 47d1 (for every fixed (a,x)), from which we obtain

2
d? / [fj’l (fn (a, s x, ) ]_AZ—IX[O’m]d—l) Ln, (da, dl‘)
Anx[0,1]

d—2 d—1 2
= @l e e

q=0

X/ Igig—l—q) </ fn (a,aq,-;z,xq,~) X
Anx[0,1] (An x[0,2])

X fn (a’ g, "3 Ty Xgq, ) 1(An><[0,x])2('1*1*‘1) ('; ) ’u%q (daqa qu) ) Hn (da’ dx)
d—1 d 2
= d!|fallZea +Z(dr)!<r> (d—r) x (53)
r=1

XI5 / / fr(@,ag—1—r, 2, Xq—1—-r,) X
Apx[0,1] J (A, x[0,z])27 1T

X fn (a7 ad—1—r, 3T, Xd—1—r, ) l(Anx[O,z])2T ('5 ) ’u%dflf"" (dad,1,7«7 dxd*lf’l“) Hn (da; dﬂf) )

where the last term is obtained by putting r = d — ¢ — 1, and by using the identity

dzq’<dfqi1)2 =d’ (d—l—r)!<drl)2= (d—r)!(i)Q(d—T),
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and where we also applied, to obtain (@), a standard stochastic Fubini theorem (which is a con-
sequence of the linearity of multiple stochastic integrals—see e.g. [E, Chapter 1]). We shall now
use the symmetry of the function f,, in its first d — r variables, as well as the relation [0, l]dfr =4
Ui=t,....d—r {(a1, ... @a—r) 1 @; > a;, VYj # i}, where the union is disjoint, and the symbol 2’ means
that the equality is true up to sets of zero Lebesgue measure. Thus, for r =1,....,d — 1, and for any pair
(br,z,), (br,2) € (A x [0,1])"

(d—?")/ / fn (aaad—l—r;br;xaxd—l—razr)fn (aaad—l—r;b;‘;xaxd—l—razi‘) X
Apx[0,1] J (A, x[0,2])47 177

XL, x(0.2])" (BrsZr) Lia, x[0,2))" (Ph,Z0) 2417 (dag_1—r, dX4—1-r) pin (da, dz)

= /(A [ ])d fn (ad—TabT;Xd—r,ZT) fn (ad_’,‘,b’/,‘;xd_r,z’/r) %
nx[0,1])¢7"

XL, x[0.xa )" (PrsZ) La, x0za_ )" (BrZ0) pS4" (dag—r, dxq—r)

= /( 0.4 fn (adf’lﬁ b, xq_r, zr) fn (adfra b;«, Xd—r Z:«) l{max(/z\r,ﬁ;)gid,,ﬁ}ﬂ%d_r (dadfrv dxdfr) ;
A, x[0,1])4""

(recall that X4—, = max;—1,... 4—r ;). Observe that the last integral would be the contraction f, ®q_r fn,
if there was no indicator functions inside the integral. Now denote by

/ Fr (@d—ry %53 Xa—ry 1) fro (@d—ry %505 Kdory ¥) a3y <za it " (dag—rp, dxa—,)
(Anx[0,1])4T
the application, from (A, x [0,2])" x (4, x [0,z])" to R, given by

((bT,ZT),(b;,Z;)) — fn (ad—’l‘7b7‘;xd—7')z7‘) X
(A, x[0,1])4" "
X frn (Bd—p, BLs Xa—r, 2) Vimax(@, 21 ) <xa_pHe® " (dag—r, dXa—r) .

Relation (@) and the preceding computation imply that

. 2
fpr0d (D o | B2 (50 X}
d—1 d\2
= d ||fn||2 od + (d— r)!( ) I)i"' / fr (Ad—r, 50 Ty Xg—py kp) X (54)
o ; r) (Anx[0,1)?~"

/. / ®d—
X fn (ad*h k. Xd—rs *r) l{max(iﬁr,;;)gid,T}un " (dad*h dxd*T) ) .

Now, forr =1,...,d —1 and ¢ € [0,1],
/ o @d—ry %503 Xa s 1) fro (Qd—ry %505 Kd—ry ¥) a3y <za it " (dag—p, dxa_,)
(Anx[0,1)*"
= / o @d—ry %503 Xa s 1) fro (Qd—ry %505 Kd—ry ¥1) a3y <za it " (dag—p, dxa_,)
(Anx [0, 7
+/ fn (adf’l“ﬂ**T;deTv*T) X
AR x([0,1]47T\[0,4]477)
X [ (@ #55 Xd—ry ¥1) Lnax(z, 30) <za_r a0 (dad—p, dXg—r)
= GL () +GLL(2),
(plainly, Gy, , (1), G}, (2) € H5?") and observe that, by bounding the indicator function by 1 and using
the Cauchy-Schwarz inequality,
i 2 T
B[ (G, )] = @0t |(6h, ),

2 4

faljg ya

oo S (27)! ]

) LEL
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Now, if ¢,, is the sequence in the statement of Theorem @, one has

’ =K (I(f" (W;?gnfn)2) — 0.

d! ’ fnl[O,tn]d

d
9y

Thus, (R7) implies

lim E{I;& G, (1))2} < (2r)! lim

n—-+4+oo n—-+oo

4
fnl[o,tn]d’ 584 =

We now deal with G7, ; (2). For every t € [0, 1], we may write
Gt (2) = Gt (2) Lazeqoz + Gt (2) Lz (jo,1727\0,1127) = Hy o, (1) +Hy oy (2). (55)

Consider first Hy, ; (1). Because of the presence of the indicator function 142, 42, the indicator
function in the integral defining G7, , (2) is always equal to 1, and one gets, for every r = 1,...,d — 1,

Hy (1)

{/d fn (ad—ra *kp ) Xd—r *7‘) X
AaTx([0,147\[0,4)77 )

X [ (Bd—ry %% Xa—r, %;.) M%dir (dag—r, dxa—r) ¢ X 1 420 [0 42
2 x[0,t]

= a2 (fu @G5 fu) S

which appears in (R9). Then, in view of £g), () and (54), we have that

d—1 2
d
Jroi (D, Fu | 2, (9w X M3, = 00+ 3 (@ =t (1) 5 (217, (2).

r=1

where H;, (2) € H%?" is defined by (§§). We shall now show that (B() implies H}; , (2) — 0in H2?", for
every 7 = 1,...,d — 1. Now observe that, because of (), (4) and (i3), condition (BJ) can be rewritten
as follows: for every r = 1,...,d — 1, the sequence Z, (n) € H?", n > 1, defined as

Ly (n) = / fn (adfr; *kpl Xd—ry *r) X (56)
Anmmx (10,1147 7\[0,£,]97T)

X [ (Qd—r, *%0; Xg—p, *..) Mffd*r (dag_,,dxq_) ) IA%TX([OJ]QT\[O%}QT).

is such that )
ngr}rloo 12 (n)HfJgZT =0. (57)

As a consequence, in this case the statement is proved once it is shown that, for r = 1,...,d — 1, (@)
implies necessarily that lim, o || H} (2)";@9” = 0 (recall that H', (2) is given by (54)). To this
end, introduce the notation: for every ¢ > 1, every p =0, ...,q and ¢ € [0, 1]

T} (¢,p) = {(a,,%4) € AL x [0,1]?: there are exactly p indices i such that z; < t}

and note that, for ¢ > 1, up to sets of zero u,, — measure,

Sila) 2 AL (0.0\[0,4") = |J Th (a.), (58)
p=0
Si(2q) = A2 (PN.) = | Ti@p) < Th(a,9), (59)
p,s>0

20



where the unions are disjoint. With this notation, by @)7 (@) and the fact that pu, is non-atomic (so
that we can write < instead of < in the indicator function defining Hy, ; (2)), we therefore obtain that,
for each n,

1570, @[ ggor

= / / fn (ad—’!‘ab’!‘;xd—’l‘az’l‘) fn (ad—r;b;«;xd—razi) X
A2 x([0,1]27\[0,,]27) AR ([0,1]477\[0,£,]977)

2
x 1{max(imz’)<xd T}M;?d " (dag—r,dxq—r) ) ®2T (dby., dz,.) piy, gar (db;,dz;) (60)

d—r—1
Z /Ttn( Tt” (r,s) < Z /” (d—mr,q) ad T,br,xd T’ZT) X (61>

p,5>0, pAs<r—1

2
X fn (ad—ra b;, Xd—r; Z;) 1{max(zr Z/)<Xq_ T},U/;e;d " (dad—m dXd—T) ) ®2T (dbra dzr) gar (db;, dz:«)

To prove that HHsz,tn (Q)Hi)mr — 0, it is therefore sufficient to show that, for every r = 1,...,d — 1,
q=0,...,d—r—1and every p,s > 0 with p A s <r — 1, the sequence

/ / / fn (ad—’l‘ab’!‘;xd—’l‘)z’!‘) fn (ad—hb;‘;xd—mz;‘) (62)
T3 (rp) JTa" (r,5) \J Ta™ (d=7,q)

2
X 1{max(ir,z’ )<Xq— T}M;?d " (dad—ra dxd—r) ) ®2T (dbra dzr) ©2r (db;a dZ;«)

converges to zero, as n — +o0o. To prove this result, write (forn > 1 and r =1,...,d — 1) ||Z, (n)||%®zr

by means of (5f), decompose the set Si» (2r) according to (59), and apply a standard Fubini argument
to obtain that (p7) implies that, for every r =1,...,d — 1 and ¢ = 0, ...,r — 1, the quantity

/ / [/ In (arabd—r;xrazd—T) (63)
St (d—r) JSEr (d—r) | JTE™ (ryq)

2
X fn (aT?bd ’I"XT’Zd r) %T (daTade)] M®d T(dbd vy dZa— T) wa- T(dbd T’dzfi—’l‘)

1d—
- Z Z / / / In (ahbdfr;xrvzdfr) (64)
p=0  5=0 Tin (d—r,p) J T (d—r,s) | ST (r,q)

X fn (ahb:i—ﬁxﬂzfi—r) U%T (dar,dxr)} ®d "(dba—r, dzq—r) iy, pa-r (dbd T,dz:i_T)
— 0, asmn — +oo, (65)

where the equality (f4) is a consequence of (§9). Now fix p € {0,...,d —r — 1} and ¢ € {0, ...,7 — 1}. For
every n > 1, we can apply Lemma @ in the case A = A, | = pin, fn=f, m=d—r and C C [0, 1]d7T
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and D C [0,1]" such that A, x C =Tt (d —r,p) and A,, x D =T!" (r,q) to obtain that

/ / / In (aTabd—T;X’l‘aZd—T) (66)
o (d—r,p) ST (d—r.p) | J T3 (r,9)

2
X fn (ar, by, %, Zf;l—r) U%T (day., dxr)} U%dir (dbg—, dza—r) U%dir (dbfi—ra dz:i—r)

= / / / In (arabd—T;XTaZd—T) In (arab:j—r;xrazfj—r) (67)
T (d—r,p) J Ty (d—r,p) [ T0™ (rq)

2
X 1(§T<max(gdw%ﬂ))u§r (day, dxr)} N%dir (dba—r, dza—r) U%dir (dbfi—rv dz:i—r)

+/ / / fn (a’!‘)bd—’!‘;x’l‘azd—r)fn (a;,bd_r;x’r,zd_T)
T (rq) JTE (rq) |/ T (d—r,p)

2
X Lz, <max(z,x) e (dDd—r, dzd_r)} p2" (da,., dx,) %" (dal., dx.) .

Now observe that the sequence {|| fullgea :n > 1} is bounded by assumption (indeed, relation (g)

holds). We can therefore argue as in the remark following the proof of Lemma @, and deduce that, since
for every p € {0,...,d —r — 1} and ¢ € {0, ...,r — 1} the sequence in (5d) converges to 0 (by (BJ)), then
the sequence in g) converges to 0 for every r = 1,...,d—1, wheneverp=s <r—1land ¢ =0,...,d—r—1.
To prove that (69) converges to 0 for every r = 1,....d—1, ¢ = 0,...,d — r — 1 and every p,s > 0 such
that p A s < r — 1, thus concluding the proof of Theorem ﬁ in this special setting, observe that, due to
the Fubini theorem, the quantity

/ / / fn (ad—rabﬂxd—r;zr)fn (ad—r;b;;xd—razi)
Ty (rop) ST (r,5) \J T (d=r.q)

2
X 1{max(z, ) <xa_r T (dad—radxd—r)) " (dby, dz,) p3>" (dby, dz,.)

can be rewritten as

/ / / In (ad—’!‘;b’l‘;xd—’l‘az’l‘) In (aiifrab;xiifrazr)
T (d—r,q) J Ti™ (d—r,q) T (r,p)

Qr
X 1{2T<min(5\cd77‘7§;,r)}un (dbr, dZT) > X

</t ( )fn (adfrvbr;xdfrazr)fn (a/dfrvb;xldfr;z) X
Ty™ (r,s

r Rd—r Rd—r
X 1{ET<min(§cd,r,3\c&7T)}lu’n (de’ dZT) ) M (dad—T’ dxd—T) M (daldfra dxldfr) )

so that the conclusion is obtained by a further application of (@), as well as a standard version of the
Cauchy-Schwarz inequality.

To prove Theorem @ in the general case, we start by showing that, for every real separable Hilbert
space $), and for every absolutely continuous resolution of the identity 7 = {m : t € [0,1]} € Rac (9),
there exists a Hilbert space $f with the form (£J) and ({#4) (the dependence on n has been momentarily

dropped), and a resolution 7# = {ﬂf :t e o, 1]} on Hf as in (@), such that the following property is
verified: there exists a unitary transformation

T:9— 9, (68)
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from $H* onto 9, such that, for every ¢ € [0, 1],
T = Trb. (69)

In the language of [Bd, Definition 5.1], (9) implies that the two pairs (£, 7) and (9%, %) are equivalent.

Note that (f9) holds if, and only if, the following condition is verified: for every t € [0,1], 7 = TWET*.
Moreover, since T is a unitary transformaton, T~ = T*. To prove the existence of such a T, let 7 be
absolutely continuous on ), set ¢ = rank (), and consider a fully orthogonal w-reproducing subset

S={g;:1<j<q}CH (70)

Note that the full orthogonality of S implies that, for every s,¢ € [0,1] and for every i # j,
(TsGi, T1g5) 5 = 0. Moreover, since 7 is absolutely continuous, for every j > 1 there exists a function
m; (t), t € [0,1], such that m; (-) > 0, and

Imegs I = / my (@) de, t € [0,1]. (71)

Note that (71]) implies that m; () € L' ([0,1],dx), and that we can always define the set S in (Fd) to

be such that . .
S llally = [ mi @) do < oc. (7
j=1 j=1"0

Now define A = N ={1,2,...}, set v equal to the counting measure on A, and u equal to the measure on
A x [0,1] given by p(da,dz) = k (a,z) {v (da) ® dz}, where

x) = Zl{j} (@)m; (z), (a,z)€ Ax][0,1],

14;, stands for the indicator of the singleton {j}, and dx is once again Lebesgue measure. Finally, we
define

9" = L2(Ax[0,1],,A®B[0,1]) (73)
7r,'3hLi (a,x) = h¥ (a,2)1jgyq (z),

for every hf € §%, every t € [0,1], and every (a,z) € A x [0,1]. We now introduce a transformation T
defined on a dense subset of $¥: for every ht € ! with the form

chl{k } 110,u,] () (74)

((a,z) € Ax[0,1]), where M, k; > 1, u; € [0,1] and ¢; € R (j = 1,..., M),

M
Thﬁ = Z CjTu; Gk,

j=1
where the gj’s are the elements of the full orthogonal set S, as defined in (7d). By using the relation,

(Thﬁ,Thﬁ)55 = (hﬁ,hﬁ)m ,

which is verified for every h! as in (@), one immediately sees that T’ can be extended by density to a
unitary transformation, from $H* onto $, and moreover, since, for every ¢ € [0, 1],

M
ﬁtThu = chﬂujmgkj = Twﬁhﬂ,
j=1
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condition (@) is verified. We note again T this extended isomorphism, and, for d > 2, we write 7% £ T®4,
and also 7' £ T®! = T. Observe that 7% is an isomorphism from (f_)ﬂ)(gd onto H%4, (Tﬁl)d = (Td)_l.
Also, for t € [0,1] and due to (p9),

T (w§)®d = (Tﬂf)®d = (mT)? = 7P, (75)

Now, for an absolutely continuous resolution 7 on §, and for hf and $? as in (@), we define X =
{X (f): f € H} to be an isonormal Gaussian process over £, and set

Xt = Xr (9%) = {X7 (h¥) : b* € 9}, (76)

where Xr (hﬁ) £ X (Thﬁ), VhE € §%. Tt is clear that, due to the isometric property of T, X7 is an
isonormal Gaussian process over $%. The proof of the following useful lemma is deferred to the Appendix.

Lemma 16 Under the above notation,
1. For everyd > 1, f € 9%, IX (f) = Ij(T ((Td)_l f) ;
2. ]D)i(’2 = ]D)i(’i, and, for every F € D;Q,
DxF =T (Dx, F); (77)
3. For every t € [0,1],
Fr(X) =0 {X (mf): f € 9} = o {Xp (nfn?) : 0¥ € 9%} = 77" (Xn) 5
4. For every u € L? (f_)ﬁ,XT), u € Liu (ﬁn,XT) if, and only if, Tu € L2 (9, X);
5. For every F' € D;Q, a.s.-IP,

proj {DxF | L7 (%, X)}

Toproj{Dx,F | L2, (9" Xr)} (78)
= Toproj{T 'DxF| L2 (% Xr)}; (79)

6. For every d > 2, f € %9 (therefore, f need not be a symmetric tensor), r = 1,....,d — 1 and
te€0,1],

(w72 = 7227) (F 93 )| geer (80)

= ()T =) (@ ey ™)

(3%

Now adopt the assumptions and notation of Theorem @ If 7, is absolutely continuous on $),, for
every n > 1 there exists an isomorphism 7},, from $),, onto some space §, endowed with a resolution
7 as in (73) and such that properties (69) and (F4) (with T}, substituting T') are verified. We also
note X, (hﬂ) =X, (Tn%, for every hf € ﬁ,ﬁz. It follows from Lemma E—G above that, if for every

)

r=1,..,d— 1, relation (B() is verified, then
®2r ®2r 1 ot 1
(7)™ = (7)) (@) et @7 1)

Moreover, thanks to Points 1 and 3 of Lemma E,

f RK2r 77,—>_-|)-(X) 0
(9%)

B[ ()7 1) | 72 ()] = B[R | 7 (X)) £ 0

24



and
_ 2
E [Ian (" 1) 170 (XTn)} —E[F?| FI (X,)] SV € 7,

from which, by using the first part of the proof, we deduce that

2
Joroi {1 2, (52 x0) 1, 2 7 &

The proof of Theorem @ is now concluded by using (@) and Theoremﬂ since, due to Lemma E—5 above
and the fact that T is an isomorphism,

2 2
[prod {Dxr, B 122, (92, x5 }|| ., = [T oprod { Dy, B 22, (95,1, |

= ||p7"0j {DXFn | L721'n, (ﬁan)}H;n :

n

Remark (Concrete realizations of Wiener spaces) — For the sake of completeness, we establish some
connections between the unitary transformation 7 : % — § used in the last part of the preceding
proof (see (6§)) and the concept of concrete (filtered) Wiener space introduced in [Bd, Section 5]. In
particular, we point out that every “filtered” isonormal Gaussian process such as the pair (XT (f_)ﬁ) ,ﬂn)
introduced in (73) and (ff), is equivalent (in a sense analogous to [B(], Definition 5.1]) to a concrete
Wiener space whose dimension equals the rank of 7#. To do this, fix ¢ € {1,2,...,+00} and define
Co ([0, 1]) to be set of continuous functions on [0, 1] that are initialized at zero. We define W, to be the
set of all g-dimensional vectors of the type w4 = (w1, w2, ...,w,) (plainly, if ¢ = +00, w(, is an infinite
sequence) where Vi, w; € Co ([0,1]). The set W, is endowed with the norm ||w(q)H(q) = sup; <, |wil,
where |w;| = supyeo 1) [w; (t)]. Under [|-||,), W(q) is a Banach space. Now consider an Hilbert space
9, as well as a resolution m € Rac (9) such that rank (7) = g. We define S = {g; : 1 <j < ¢} to be
the fully orthogonal m-reproducing subset of § appearing in formula ([()), and associate to each g; € S
the function m; € L' ([0, 1], dz) satisfying (1)), in such a way that (fJ) is verified. To the pair ($, )
we associate the Hilbert space H(,) and a resolution of the identity 7@ = {ﬂgq) 1 s €0, 1]} eR (H(q))
defined as follows: (i) Hg is the collection of all vectors of the kind h(,;y = (h1, h2..., hy), where, for each

J < q, hj is a function of the form h; (t) = fot W () dz, for some b € L*([0,1],m; (x) dz), and also

Z /0 (W) (z))Qmj (z) dz < +00; (82)

(ii) Hg) is endowed with the inner product

(oK) = 2 [ 15 @) @)m (2) (83)

j=1

whereas |-[,) = (-, )2{;)2 is the corresponding norm; (iii) for every s € [0, 1] and every hg) = (h1, ha..., hy) €

Hg),

tAs
mh = (b, ..., h3), where A (t) = /O Wy (z) da. (84)

Note that H,) C W, and therefore Wz‘q) C Hz‘q) = H(g). Moreover, from relation (82) it follows
that the restriction of [|-||,) to Hy, is a measurable seminorm, in the sense of [[3, Definition 4.4].
Also, W, is the completion of H, with respect to ||~H(q), and W’("q) is dense in H,) with respect
to the norm |- ,). As a consequence (see again 13, Theorem 4.1)), there exists a canonical Gaussian

measure fi(g) on (W(q),B(W(q))), such that, for every (1y,...,1,) € (qu)) , the mapping w(, —
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g\ll (I\g(q)) s ey Iy (w(q))) defines a centered Gaussian vector such that, for every j = 1,...,m and every
ek,

. . A2
By, [exp (idl)] = / exp (iAl; (W(q))) diq) (W(g)) = exp (—3 |1j|?q>) : (85)

s

()
Following [Bd, p. 26], the triple (W(q),H(g): i(q)) (endowed with the resolution 7(9) defined in (§4)) is
called a concrete Wiener space of dimension ¢q. Note that, since qu) is dense in H,), there exists a

unique collection of centered Gaussian random variables defined on (W(q) ,B (W(q))), denoted

X(g) = X(g) (Hg)) = {Xg) (b)) : hg) € Hig) }, (86)

such that X, (1) (w(q)) =1(w(y) ) foreveryl € Wi, andE, lexp (iAX(q) (h(g)))] =exp (—)‘72 |h) ’?q)),
Vh,) € Hg). In particular, X, (H(q)) is an isonormal Gaussian process over H,. Now consider the
Hilbert space $? and the resolution 7f defined in (@), and define the application T, : H — Hg) as
follows: for every hf (a,z) € HF,

T,ht = (/O h* (1, 2) d:c,...,/o‘h'i (q,2) d:c) .

It is easily seen that T, is a unitary transformation such that Toﬂf = ﬂgq)To for every t, thus implying that

the two pairs (ﬁn, ﬂn) and (H(q), W(Q)), and hence the two filtered isonormal processes (X(q) (H(q)) ,7r(‘1))
and (XT (ﬁﬁ) ,ﬂﬁ), are equivalent in the sense of , Definition 5.1].

3.3 Proof of Theorem [2

The implications (i) = (ii) and (iv) = (i) (in which assumption (@) is immaterial) are consequences,
respectively, of Theorem ] and Theorem [[1l Now suppose (ii) is verified. Since E [F2| F (Xn)] Sy

by assumption, we may use the second part of Theorem E to deduce that for every sequence n (k), there
exists a subsequence n (k,), r > 1, s.t., a.s.-P,

™ A2
E [exp (iMFuun) | 700 (Xuan)] | 2 exp (—?Y) , VAER.
Moreover, since the usual properties of multiple Wiener-It6 integrals (see e.g. [@, Chapter VI]) imply
that, a.s.-P and due to (g),

‘]\/f | T (ky)

by (Xn(kr))} < +oo, VM >1,

supE “Fn(kr)
r>1

we conclude that, a.s.-PP,
4 | e (Xn(kr)):| ~ 3y?

t"(kr) r——400

E [ (Fuge)

and therefore that (iii) holds. To conclude, assume that the two conditions (iii) and (B€) are verified, and
write

Fn = 12xn (W;?%nfn) + 212Xn (Wn,tn ® (7rn,1 - 7rn,tn) fn) + 12xn ((Wn,l - 7Tn,tn)®2 fn) é Fn,O + Fn,l + Fn,?-
(87)
Due to (E), F,0— 0in L?. Also, for every n > 1, F,, 5 is independent of Fim (Xy) and, conditionally

on F/" (Xy), F1 is a centered Gaussian random variable. Moreover

E[(F)” | F (X)| = E[(Fuo)® + (Fan) + (Fa2)” | 77 (X))
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By writing A,, ~ B, to indicate that A4, — B, LA 0, we have therefore
E|(F)' | 7o ()]~ E[(Fa)* | 7 (Xa)| +E [(Fa2)* | 7 (X))
+OE | (Fu1Fo2)” | FT (X))
2
= 3E[(F)’ | 7t (Xa)| +E [(Faa)']

+6E [(1«11,117”7”2 | F (Xn)} .

By reasoning as in [E, pp. 182-183], and noting f0 = (71 — ﬂ'n,tn)®2 fn € 992,

E[(Fo2)'] = 3lfnl

4 2
$HO2 + 48 an,O ®1 fn,0H5®2
2

2 2 2 ®2 Tt
3E [(Fn2)” | FL7 (X0)] 448 | (m =m0, fu O o

H92

Standard calculations yield finally that, since (R7) and (2g) hold, there exist constants ¢1, ¢z > 0 such
that

IE[(]E [(Fn)4|f;n (Xn)}swﬂ = o

2
®2 nyln
(o = ) fu @7 fa|

+ca H(Wn,l - 7Tn,tn) Q T t,, (fn ®71rn,tn fn) Hfﬁ@)? )

and, since (B{) is verified and

>®2 ®2 ®2

(7rn,1 — Tn,t, + (7rn,1 - 7Tn,tn> Q Tnt, + Tn,t, & (7rn,1 - 7Tn,tn> =Tn1 ™ ity

we obtain immediately the desired implication (iii)=(iv).H
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4 Appendix

Proof of Lemma [L — (Point 1) Let {e; : j > 1} be an orthonormal basis of $, and define, for d > 1,
Ald] to be the set of sequences (a1, az,...) with values in N, and such that } .., a; = d (note that this
implies that there are only finitely many a; that are different from zero). Then, a total set in $°9 is
given by

oo

Ag = (®ej?“j)s (a1, az,...) €Ald] p,

where e®? = 1 by definition, and (-), indicates symmetrization. Moreover, a classic characterization of
multiple stochastic integrals (see [[], Ch. 1]) as well as the fact that X (e;) = X (TT te;) = Xr (T te;)
by definition, imply the following relations: for every (a1, as,...) € Ald],

¥ (®e§“1‘)s = d!HHaj(X(ej)):d!HHaj (X7 (T7'e)))

L@ 1) ) | = 17 [ (@7 (@ (e)*). |

Jj=1 Jj=1

where {H, : a > 1} is the family of Hermite polynomials defined e.g. in [L, p. 4]. It is therefore clear
that IX (f) = I(‘iXT ((Td)f1 f) is true for every f that is a linear combination of elements of A4, and the

general result is achieved by a standard density argument. (Point 2) For m > 1, let Cp° (R™) denote the
class of bounded and infinitely differentiable functions on R™, whose derivatives are also bounded. We
start by observing that, since T is a one-to-one unitary transformation, random variables of the type

F=f(XM), X (hn)=f(Xr (T7'h) . X7 (T b)) (88)

(the equality is again a consequence of the relation X (h;) = X (TT_lez-) =Xr (T‘lhi)), where m > 1,
fe e (R™) and h, ..., hm € Cp° (R™), are dense both in ]D)ié2 and ]D);QT To conclude, use a density
argument, as well as the fact that, for F' as in (BY),

DxF = FX (h1), oy X (hn)) b

AMS
Q)‘Q_;

1 9%

<
Il

f(Xp (T7'h) oty Xp (T han)) TT ™ hy = T D, F,

Lj

<
Il
—_

Il
AMS
Qv‘Qj
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hence proving (F7). (Point 3) This is a consequence of the relations X (mh) = Xp (T 'mh) =
Xr (T7'mTT'h) = Xr (ﬂgT’lh), that are verified for every t € [0,1], since T mT = «f, due to
(B9). (Point 4) Suppose u € L2, (9%, Xr). Then, since T is an isometry, E [||Tu||%} =E {HUHEJ < +o0,
and therefore Tu € L2 (), X). To prove that Tu is also m-adapted, use the fact that, since T' is an
isometry and (B9) holds, for every ¢ € [0,1] and every h € §,

(Tu,mh)y = (Tu,TTflﬂth) :(u,Tflmh)

) Ht

= (wmiTh) € F(Xr) = 7 (X)),
due to Point 3, thus yielding u € L2 ($, X). The opposite implication is obtained analogously. (Point 5)
Consider first an elementary random variable n* € £ (%, Xr) with the form n* = ® (t) (7T§+s — 7T§) R,
where ® (¢t) € ffﬁ (X7) (= FF (X)), h* € $* and s,¢ > 0. Then, due to (), Tn* =@ (t) T (7r§+s - ﬂ?) h¥
= ®(t) (mss — m) ThE, and therefore Th* € &, ($,X). Now, for F € ]D);fT, observe that a variable

P e L2, (9% Xr) is equal to proj { Dx, F | L2, (9%, Xr)} if, and only if, for every n* € £ (9%, Xr1) as
before

E|(Pof)] =E|(Dxi Fof) .| - (89)
But, since T is an isometry, (@) and (@) imply also that
E|(TP.T0),| =E |[(TDx, F.Tw), | = E [(DxF.Tof) |
Hence, since TP € L2 ($, X) due to Point 4,
TP =Toproj{Dx,F | L2 (9" Xr)} =proj {DxF | L%, ($*, X7)},
thus proving (fg). To prove ([[9), just observe that ([77) implies that Dx,.F = T~'DxF. (Point 6) Let
again {e; : j > 1} be an ONB of ). Note first that, for every d > 2, f € §%¢ r =1,...d — 1, t € [0,1],

and 41, ..., tg—p > 1

(89 — 729" fren ® - @ eidﬁ)ﬁmﬂ

—rm\ 1 —-r -7 — —
= ((Td ) (ﬂ-i@d - ﬂ.z(?d ) faT 161’1 - T 167:d—7‘)(‘6ﬁ)®d77‘

(<(F§)®dr B (ﬂ_g)®dr) (Td—'r)_l f’T_1€i1 Q- -® T_leidr)

Thanks to (P4), it follows that

(sme

(1) fept f

oo

> <((T"l)_1 1), ((W?)@” - (w?)&”) Tl @ ® T_leidr>

()@

<((Td)_ 1) ((wﬁ)mr - (wf)mr) T e, ®--- ®T_1eidr>

()" ros ) g)

i1,eelg—r=1

(59)@r
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As a consequence, by using (@) and the fact that T¢ and (Td)7

<(7T§)®2r B (ﬂf)m?«) ((Td)_l f ®§i,: (Td)—l f)

which proves (B0). W

()

(>
(mi

®2r

1 . .
are 1sometries,

(ﬁﬁ)®2r
®27‘

®2T _
> (1) feyt, f
) f @it 1|

) (F @iy Dllgoar

(ﬁu)®2r
( ®27‘
(5152
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