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The epidemic-type aftershock sequetBFAS) model is a simple stochastic process modeling seismicity,
based on the two best-established empirical laws, the Omoridawer-law decay- 1/t**? of seismicity after
an earthquakeand Gutenberg-Richter lagpower-law distribution of earthquake energida order to describe
also the space distribution of seismicity, we use in addition a power-law distributibn**# of distances
between triggered and triggering earthquakes. The ETAS model has been studied for the last two decades to
model real seismicity catalogs and to obtain short-term probabilistic forecasts. Here, we present a mapping
between the ETAS model and a class of CTRMWntinuous time random walknodels, based on the identi-
fication of their corresponding master equations. This mapping allows us to use the wealth of results previously
obtained on anomalous diffusion of CTRW. After translating into the relevant variable for the ETAS model, we
provide a classification of the different regimes of diffusion of seismic activity triggered by a mainshock.
Specifically, we derive the relation between the average distance between aftershocks and the mainshock as a
function of the time from the mainshock and of the joint probability distribution of the times and locations of
the aftershocks. The different regimes are fully characterized by the two expahantsu. Our predictions
are checked by careful numerical simulations. We stress the distinction between the “bare” Omori law de-
scribing the seismic rate activated directly by a mainshock and the “renormalized” Omori law taking into
account all possible cascades from mainshocks to aftershocks of aftershock of aftershock, and so on. In
particular, we predict that seismic diffusion or subdiffusion occurs and should be observable only when the
observed Omori exponent is less than 1, because this signals the operation of the renormalization of the bare
Omori law, also at the origin of seismic diffusion in the ETAS model. We present predictions and insights
provided by the ETAS to CTRW mapping which suggest different ways for studying seismic catalogs. Finally,
we discuss the present evidence for our predicted subdiffusion of seismicity triggered by a main shock,
stressing the caveats and limitations of previous empirical works.
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. INTRODUCTION the correspondenaa= (2/3)log,.E + const leads to a power
law ~ 1/E® with B~ 2/3.

The spatiotemporal complexity of earthquakes is often in-ratt(a")o :‘_Zva\(rtzl'; ?f;fgftlr?wé?é;féersgorﬁﬁ]sﬁfgﬁs dt:fetl tgewith
voked as an illustration of the phenomenon of critical self- q 99 y y

organization with scale-invariant propertigs-5]. This con- ngeor?:r?gng to an inverse powert®/of time with an

cept points to the importance of .developmg a system (iii) Law 3. The earthquakes are clustered in space along

are implemented in models proposing links between thejimension close to 2.8n three dimensiong 9].

physics of earthquakes and concepts of statistical physics, There are many other empirical “laws” but these three
such as critical points, self-organized criticality, spinodal deharacterize the very fundamentals of seismicity in size,
composition, critical depinning, etc., in order to explain thetime, and space.

most solidly established facts in the phenomenology of e should immediately point out that these three laws
earthquakes, of which we cite the three most important. ~ come with significant caveats.

(i) Law 1. The Gutenberg-Richer laj8] states that the (1) There have been ongoing controversies on the univer-
cumulative distribution of earthquake magnitudesampled  sality of the exponenB or b value of the Gutenberg-Richter
over broad regions and large time intervals is proportional tgaw [10,11].
10"°™ with ab valueb~1. Translating into energids with (2) The exponenp of Omori’s law exhibits a large vari-

ability from one aftershock sequence to another aftershock
sequence and is found typically in the range from 0.3 to 2.
*Email address: ahelmste@obs.ujf-grenoble.fr We note, however, that not all these values, especially the
"Email address: sornette@ess.ucla.edu extreme ones, automatically reflect a bona-fide power-law
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decay and one should exert caution in attributing too muclcertain kind. The question we investigate is whether it can be
confidence to them. used fruitfully to explain a larger variety of earthquake inter-

(3) The view that geological faults and earthquake hypo-actions beyond the class of observations that were used to
centers are fractal objects is now recognized to be a naivestablish it. In a series of papef&5-27, we find that
description of a much more complex reality in which a hier-Omori's law for aftershocks plus the constrain that after-
archy of scales occur with possibly different organizations ashocks are distributed according to the Gutenberg-Richter
different scale$8]. power law for earthquake size distributiomdependenthyof

In addition, a major difficulty for making progress in the magnitude of their progenitor is enough to derive many
modeling and predicting earthquakes is that these three araf the other empirical “laws,” as well the variability of the
other laws may be “explained” by a large variety of models, exponent. Here, we test the potential of this approach to ac-
with many different mechanisms. For instance, with respectount for and to quantify observations on aftershock diffu-
to the first two laws, we observe the following. sion.

(a) There are many mechanisms that create a power-law Aftershock diffusion refers to the phenomenon of expan-
distribution of earthquake sizésee, for instance, the list of sion or migration of aftershock zone with tifi28—34. Im-
mechanisms described in chapter 14 of R&P)). mediately after the mainshock occurrence, most aftershocks

(b) Omori's law is essentially a slowly decaying “propa- are located close to the rupture plane of the mainshock, then
gator” describing a long time memory of past events impact-aftershocks seem to migrate away from the mainshock, at
ing on the future seismic activity. Such slow power-law timevelocities ranging from 1 km/h to 1 km/ye§B6,37. Note
decay of the Omori propagator may result from several andhat this expansion is not universally observed, but is more
not necessarily exclusive mechanisiis@e[13] and refer- important in some areas than in othgd].
ences therein pore-pressure changes due to pore-fluid flows The diffusion of aftershocks is usually interpreted as a
coupled with stress variations, slow redistribution of stresgliffusion of the stress induced by the mainshock, either by a
by aseismic creep, rate-and-state dependent friction withiniscous relaxation proce§37], or due to fluid transfer in the
faults, coupling between the viscoelastic lower crust and therust[38,39,33. Another interpretation of the expansion of
brittle upper crust, stress-assisted microcrack corrosioaftershocks is given by Dieteridd0], who reproduces the
[14,15, slow tectonic driving of a hierarchical geometry Omori law decay of aftershocks and the expansion of the
with avalanche relaxation dynamif$6], etc. aftershock zone with time, using a rate and state friction law

The zeroth-order description of earthquakes is to consideand assuming that the rate of aftershocks is proportional to
a single isolated homogeneous fault on which earthquakete stress rate. In his model, the expansion of aftershock zone
are recurrent to accommodate the long-term slow tectoniarises from the nonuniform stress induced by the mainshock.
loading. But faults are not isolated and the most conspicuoudnother alternative explanation is that the diffusion of after-
observation is that earthquakes interact and influence eadhocks is mainly due to the occurrence of large aftershocks,
other on complex fault structures. Understanding these inteand to the localization of secondary aftershock close to the
actions is essential for understanding earthquakes and fau#rgest aftershocks, as observed by Oy&Hdi. The apparent
self-organization. However, the full impact of interactions diffusion of the seismicity may thus result from a cascade
between earthquakes is still far from being well understoodprocess; the mainshock triggers aftershocks that in turn trig-
The simplest and clearest observation of earthquake interager their own aftershocks, and thus lead to an expansion of
tion is provided by aftershocks whose phenomenology ishe aftershock zone.
captured by Omori’'s laviLaw 2). Indeed, aftershocks are the  In the present paper, we investigate the epidemic-time af-
most obvious and striking signature of the clustering of thetershock sequend&TAS) model, and show that the cascade
seismicity in time and space, and are observed after all largef secondary aftershocks can indeed explain the reported dif-
shallow earthquakes. Most aftershocks are triggered a feusion of aftershocks. The ETAS model was introduced by
hours or days after the mainshock. However, due to the veriagan and Knopoff41] (in a slightly different form than
slow power-law decay of the rate of aftershocks, known asised hergand Ogatd42] to describe the temporal and spa-
the Omori law[ 7], aftershocks can be triggered up to a hun-tial clustering of seismicity. This model provides a tool for
dred years after the mainsholk7]. Aftershocks often occur understanding the clustering of the seismic activity, without
near the rupture zone of the mainshock with a variety ofarbitrary distinction between aftershocks, foreshocks, and
focal mechanisms suggesting that they are actually on sepasainshocks. In this model, all earthquakes are assumed to be
rate structure$l18,19. They are also sometimes triggered atsimultaneously mainshocks, aftershocks, and possibly fore-
very large distances from the mainshd@0—24. As an ex- shocks. Each earthquake generates aftershocks that decay
ample, Hill et al. [20] observed aftershocks of the Landers with time according to Omori's law, which will in turn gen-
earthquake as far as 1250 km from the epicenter. Similarly terate their own aftershocks. The seismicity rate at any given
the temporal distribution of aftershocks, a power-law distri-time and location is given by the superposition of aftershock
bution seems to describe well the distribution of distancesequences of all events impacting that region at that time
between pairs of eventg22]. Since a power law decays according to space-time “propagators.” The additional ingre-
slowly, it describes a slow decay of the probability of observ-dient in the version of the ETAS model that we study is that
ing aftershocks at large distances to the mainshock. the number of aftershocks per earthquake increases exponen-

Thus, Omori’s law can be considered as the simplest antlally «10*™ with the magnitudem of the mainshocki.e., as
best-established description of earthquake interactions of a power lawx<E2* of the energy released by the main-
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shock, in agreement with the observatio3,44]. Since the quences. The ETAS model has been calibrated to real seis-
energy of an earthquake is a power law of its rupture lengthmicity catalogs to retrieve its parametdé?2,50—-54,45,4]
this law expresses the very reasonable idea that the numband to give short-term probabilistic forecast of seismic activ-
of events related to a given earthquake is proportional to &y by extrapolating past seismicity into the future via the use
power of its volume of influence. The value of the exponentof its space-time propagatp41,55,58.
a controls the nature of the seismic activity, that is, the rela- The ETAS model is a branching model that exhibits dif-
tive role of small compared to large earthquakes. Few studieferent regime$26] depending upon the value of the branch-
have measured in seismicity datg43,45,48. This param- ing ration, defined by the average number of primary after-
etera is often found close tb [43] or fixed arbitrarily equal  shocks per earthquake. The critical casel corresponds to
to b [41,47). In the case where is close to the Gutenberg- exactly one primary aftershock per earthquake, when averag-
Richterb value, this law also reproducf47] the self-similar  ing over all mainshock magnitudes larger than a threshold
empirical Bath’ s law[48], which states that the average M. Let us stress that is an average quantity that does not
differencemy, —m, in magnitude between a mainshock andreflect adequately the large variability of the number of af-
its largest aftershock is approximately 1.2 units, regardless dershocks per main shock, as a function of its magnitude.
the mainshock magnituden,=m,,—1.2. If a<b, small  Indeed, the number of aftershocks per mainshock increases
earthquakes, taken together, trigger more aftershocks thaxponentially fast as a function of the mainshock magnitude,
larger earthquakes. In contrast, large earthquakes dominage that large mainshocks will have significantly more than
earthquake triggering ik=b. This casex=b has been stud- aftershocks. Fore=0.5, a magnitude-7 earthquake gives
ied analytically in the framework of the ETAS model by Ref. typically ten times more direct aftershocks than a
[27] and has been shown to eventually lead to a finite timemagnitude-5, and 100 times more direct aftershocks than a
singularity of the seismicity rate. This explosive regime can-magnitude-3 earthquake. The increase in triggered seismic
not, however, describe a stationary seismic activity. activity with the magnitude of the mainshock is obviously
A natural way to tame this singular behavior is to intro- stronger for a larger value ak. Note that these numbers
duce an upper cutoff for the magnitude distribution at largerefer to aftershocks of the first generation; the total number
magnitudes, mirroring the cutoffn, used for the low- of triggered events is larger by the factor 14 h)~ 10 (for
magnitude range. The physical argument for introducing thi$i=~0.9 which is typical, due to the cascades of secondary
cutoff is based on the finiteness of the maximum earthquakaftershocks. Notwithstanding this large variability, the aver-
that the earth is capable of carrying. The specific way ofage numben of primary aftershocks per earthquake controls
introducing such a cutoffabrupt or smooth with a transition the global regime. Fon exactly equal to 1, seismicity is at
to a power law with larger exponent or to an exponentialthe border between death and growth. In the subcritical re-
tape) is not very important qualitatively because all thesegime n<1, since each earthquake triggers on average less
laws will regularize the singular behavior and make the avthat one aftershock, starting from a large event, the seismic-
erage branching ratio defined below finite. Such regularizaity will decrease with time and finally die out. The supercriti-

tion with a maximum upper magnitude then allows=b. cal regimen>1 corresponds to more that one primary after-
The special casee=b required for Bath's law to hold ex- shock per earthquake on average. Starting from a large
actly cannot therefore be excluded. earthquake, after a transient regime, the average seismicity

However, based on a recent reanalysis of seismic catalogill finally increase exponentially with timg26], but there is
using the powerful collapse technique, one of[46] has still a finite probability for aftershock sequences to die out.
presented strong evidence thats strictly smaller tharb. In The numerical simulations reported below have been per-
this paper, we will therefore consider only the caseb and  formed witha=0.5. It is probable that a good fit to seismic
take a=0.5 specifically in our numerical simulations. In this data is obtained by using a value @f=0.8 larger that the
regimea<b, Bath’s law cannot be reproduced because thevalue 0.5, as reviewed and documented recently by one of us
average difference in size between a mainshock and its larg46]. We have checked that results similar to those presented
est aftershock increases with the mainshock magnitude. Fdrelow hold true qualitatively for larger values & <<1.
a<b, it is easy to show that Bath’s law is replaced iy ~ Such larger values o& lead, however, to stronger fluctua-
= (a/b)my,—const, wherem,, and m, are the magnitudes tions that are more difficult to handle numerically because
of the mainshock and of the largest aftershock. Tests of thihe variance of the numbegr(m) of direct triggered after-
prediction will be reported in a future publication but we shocks defined below in Eq3) becomes undefined fas
expect that distinguishing this modified Bath’s law from >0.5. A full understanding of this regime requires a special
Bath’s law will be a difficult task due to the limited range of treatment that will be reported elsewhere.
the studied magnitudes as well as the dependence of the dis- Sornette and Sornetf25] studied analytically a particular
tribution of my, —m, on the magnitude thresholds chosen forcase of this model, without magnitude and spatial depen-
the mainshocks and for the aftersho¢k9)]. dence, and they considered only the subcritical regime

We assume that the distribution of all earthquakes follow<1. Starting with one event at time=0 and considering
the Gutenberg-Richter distribution and take this distributionthat each earthquake generates an aftershock sequence with a
of aftershock sizes to be independent of the magnitude of thdocal” Omori exponentp=1+ 6, wheref>0, they studied
mainshock. Therefore, an earthquake can trigger a largehe decay law of the “global” aftershock sequence, com-
earthquake, albeit with a small probability. This model canposed of all secondary aftershock sequences, i.e., by taking
thus describea priori both aftershock and foreshock se- into account that the primary aftershocks can create second-
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ary aftershocks which themselves may trigger tertiary afterspace, time, and magnitude are decoupled in the earthquake
shocks and so on. They found that the global aftershock rateropagator. Our first result is to establish a correspondence
decays according to an Omori law with an exponentbetween the ETAS model and the CTRW model, first intro-
p=1—-60<1, up to a characteristic tine&5,26| duced by Montroll and Weisgs7] and used to model many
physical processes. We then build on this analogy to derive
1) the joint probability distribution of the times and locations of
aftershocks. We show analytically that, for sufficiently short
timest<t*, the average distance between a mainshock and
and then recovers the local Omori expongnt1+ ¢ for its aftershock increases subdiffusively Bs-t", where the
time larger thart*. Helmstetter and Sornetf@6] extended exponentH depends on the local Omori exponent # and
their analysis to the general ETAS model with magnitudeon the distribution of the distances between an earthquake
dependence, and considered both the subcritical and the sand its aftershocks. We also demonstrate that the local Omori
percritical regime, but still restricted the analysis to the temJaw is not universal, but varies as a function of the distance
poral distribution of the seismicity, without spatial depen-from the mainshock. Due to the diffusion of aftershocks with
dence. In the subcritical regime, they recovered the crossovéime, the decay of aftershock is faster close to the mainshock
found by Sornette and Sornefi5]. In addition, Helmstetter than at large distances. These nontrivial space-time couplings
and Sornett¢26] give the explicit mathematical formula for occur notwithstanding the decoupling between space, time,
the gradual transition between the Omori law with expo-and magnitude in the “bare” propagator, and are due to the
nent p=1—@ for t<t* to the Omori law with exponent existence of cascades of aftershocks.
p=1+ 6 for t>t*. This smooth transition can be observed A recent work of Krishnamurthet al. [58] substantiates
in Fig. 2 on the line calculated for* =10° days withn  the general modeling strategy used here of representing the
<1.t* can thus be viewed as the time where the apparerfipace-time dynamics of earthquakes by an effective stochas-
exponenp of the Omori law is approximately in between the tic processthe ETAS model entirely defined by two expo-
two asymptotic values 46 and 1+ 6. A more rigorous Nhents[corresponding to our andH(6,x) defined below,
mathematical definitioi26] is thatt* is the characteristic Where n is the exponent of the power-law distribution of
time scale such tha@t* is the dimensionless variable of the jumps between successive active sites &his the (sub)
Laplace transfornfwith variable 8) of the seismicity rate.  diffusion exponent. Indeed, Krishnamurtiey al. [58] show
In the supercritical regime, Helmstetter and Sorng2@§  that the Bak and Sneppen model and the Sneppen model of
found a novel transition between a power-law decay withextremal dynamicécorresponding to a certain class of self-
exponentp=1— ¢ at early times, similar to the subcritical Organized critical behavidi12]) can be completely charac-
regime, to an exponential increase of the seismicity at largéerized by a suitable stochastic process called “linear frac-
times. The regime where>b or equivalently 22/3>B has  tional stable motion.” Beyond recovering the scaling
been found to lead to a new kind of critical stochastic finite-€xponents of this model, the stochastic process strategy pre-
time_singu|arity[27], re|ying on the interp|ay between |Ong_ dicts the conditional prObabi”tieS of successive activations at
memory and extreme fluctuations. Recall that the number dfifferent sites and thus offers important insights. We note
aftershocks per earthquake increases as a power Bf¢’®  that this approach with the linear fractional stable motion is
of the energy released by the mainshock whereas the numb@xtrer_nely close in spirit as well as in form to our approach
of earthquakes of energg decreases as the Gutenberg-Mapping the ETAS model to the CTRW model. The ETAS
Richter law «1/EX*B. Intuitively, when 22/3>B, the in-  model can thus be taken to represent an effective stochastic
crease in the rate of creation of aftershocks with the mainProcess of the complex self-organization of seismicity.
shock energy more than compensates the decrease of the
probability to get a large mainshock when the mainshock Il. THE ETAS MODEL
energy increases. This theory based solely on the ETAS s . o
model has been found to account for the main observationé" Definitions and specific parametrization of the ETAS model
(power-law acceleration and discrete scale invariant struc- We assume that a given evd(iie “mother”) of magni-
ture) of critical rupture of heterogeneous materials, of thetyde m; occurring at timet; and positionr; gives birth to
largest sequence of starquakes ever attributed to a neutr@giher eventg“daughters” of any possible magnitude cho-
star as well as of some earthquake sequefZes sen with some independent Gutenberg-Richter distribution at

In the sequel, we extend the analytical study of the tem- I ; Lo .
. . rtim W ndt+ n int =dr to within
poral ETAS mode[25-27 to the spatio-temporal domain. ;Fa;tatt:e thZet eehandt+dt and at point = dr to wit

To model the spatial distribution of aftershocks, we assum
that the dis_tance between a _mains_hoqk a_nd e_ach of its direct b (t—t; T Fi)Zp(mi)‘I’(t—ti)‘I)(F— Fi)- ()
aftershock is drawn from a given distribution, independently '

of the magnitude of the mainshock and of the delay between ] .. o

the mainshock and its aftershocks. For illustration, but with-We will refer to ¢, (t—t;,r—r;) both as the seismic rate
out loss of generality, for the mapping to the continuous timenduced by a single mother or as the “bare propagator.” It is
random walk(CTRW) model discussed later, we shall take athe product of three independent contributions.

power-law distribution of distances between earthquakes. We (1) p(m;) gives the number of daughters born from a
take the simplest and most parsimonious hypothesis thahother with magnituden;. This term will, in general, be

nl(1—6)\Y

[1=n|

t*=c
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chosen to account for the fact that large earthquakes have We assume a distributioR(m) of earthquake sizes ex-
many more triggered events than have small earthquakepressed in magnitudem which follows the Gutenberg-
Specifically, we take Richter distribution

p(my) =K 107m—mo), 3) P(m)=bln(10)10~°(M~Mo), (6)

with a b value usually close to 1m; is a lower bound

which, as we said earlier, is justified by the power-law de-magnitude below which no daughter is triggered.
pendence of the volume of stress perturbation as a function

of the earthquake sizex quantifies how fast the average

number of daughters per mother increases with the magni- )
tude of the mother. A key parameter of the ETAS is the average nuntbef

(2) W(t—t,) is a normalized waiting time distribution giv- daughter earthquakes created per mother event, summed

ing the rate of daughters born at tirhe t; after the mother. ©OVer all possible magnitudes. As we shall see, it is also natu-
The normalization condition readsS g dtw (t)=1 ral to call it the “branching ratio.” To see this, consider the

W(t—t;)dt can thus be interpreted as the probability for aintegral of the seismic raté, (t—t;,r —r;) induced by one
daughter to be born betweéandt +dt from the mother that earthquake over all times aftér, over all spatial positions
was born at timd;. ¥ (t—t;) embodies Omori’s law: it is and over all magnitudes),=m,, which must give, by defi-

B. The branching ratio n

the “bare” or “direct” Omori law, nition, the average numberof direct (or primary) daughter
earthquakes created per mother event independently of its
oc? magnitude. Fow<b, and using Eqgs(2), (3), and(6), it is
W(t)= WH(U, (49 exactly given by

- +OC +OC - -
nzf drf dtf dmP(m;) ¢, (t—ti,r—r;)
g ) '

where #>0 andH (t) is the Heaviside function.
(3) ®(r—r,) is a normalized spatial “jump” distribution . Kb

from the mother to each of her daughters, quantifying the = dmP(m)p(m)=——o, 7)

probability for a daughter to be triggered at a distance Mg b—a

[r—ri| from the mother. Specifically, we take since the two integrals over time and space contribute each a

factor 1 by the normalization o and®. This result(7) is
<I>(F)= H (5) identical to that found in absence of spatial dependence of

Ir] L b (t—1;) with respect tor —r; due to the factorization of

d the ratep, time ¥, and spaceb dependence§26]. The
branching ratio has also been evaluated in the case where the

which has the form of arfisotropid elastic Green function Magnitude distribution follows a gamma distributigss].

dependence describing the stress transfer in an elastic upper We stress again thatis anaveragequantity that does not

crust. The exponent is left adjustable to account for het- reflect the large fluctuations in the number of aftershocks

erogeneity and the possible complex modes of stress tran§Om event to event. Indeed, large events with magnitddes

fers. The normalization condition readldr®(r)=1, where p\r/ocri::ce,w;tr;} grinernazl' dmrirEMmoreimafltersbhocks tha'r\1/| small

the integral is carried out over the whole space. S>e S M a% u t?] » S t'p?/d ecagsiﬁé )f
The physical justification for this decoupled mod2) in p(m) i m [see the exponential depende 0

- m) on the magnituden].
which ¢mi(t—ti ,F—r;) is the product of three independent p(m) g ]
distributions is that elastic waves propagate at kilometers per

second and thus almost instantaneously reset the stress field ) ) )
after a large main shock. In other words, there is a well- The ETAS model has been simulated numerically using
defined separation of time scales between the time of propdD€ algorithm described in Ref$9,52. Starting with a large
gation of seismic wave&seconds to minutgsvhich control ~ €vent of magnitudeM at timet=0, events are then simu-
the convergence to a new mechanical equilibrium after théated sequentially. At any given tintewe calculate the con-
main shock and the time scales involved in aftershock seditional seismic rate\(t) defined by

guenceshours, days, months, or many year§he spatial )

dependence in Eq2) reflects the stress redistribution. This A= K10¢m—mo) oc ®)

new stress field then relaxes slowly and more or less inde- fi=t (t—ti+c)1+0'

pendently from point to point leading to the local Omori law

W (t—t;). Notwithstanding this argument, the decoupling inwhereK=n(b— «)/b, andt; andm; are the times and mag-
Eqg. (2) between the local responses in magnitudes, spac@jtudes of all preceding events that occurred at tinset.

and time is mostly performed because of its simplicity. ItNote that we use the bare propagator because the sum in Eq.
constitutes an approximation that should be checked and ré8) is performed exhaustively on the complete catalog of past
laxed in future studies. events. The time of the following event is then determined

d +1

C. Numerical simulation of the spatial ETAS model
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FIG. 1. Maps of seismicity generated by the ETAS model with
parameters b=1, #=0.2, u=1, d=1 km, «=0.5, ¢=0.001 102
day, and a branching ratio= 1. The mainshock occurs at the origin 25
of space with magnitud® =7. The minimum magnitude is fixed ) ) .
atmy=0. The distances between mainshock and aftershocks follow w0 10° 10 1™ 10™ 10™
a power law with parametgr=1 and the localor bare Omori’s tima {days)

law is «1/t** . According to the theory developed in the text, the L
average distance between the first mainshock and the aftershocks is FIG. 2. Seismicity rateN(t) for the temporal ETAS mOdﬂ g:al-
thus expected to grow &&~tH with H=0.2 [Eq. (58)]. The two culgted _for0=0.3 andc_=_0.0(?1 qlay._ The chal laveb (t) o« 1A~"7,
plots are for different time periods of the same numerical simuIa-Wh'C_h gIves the pro_bablllty d|str|bupon of times between an event
tion, such that the same number of earthquakes3000 is ob- and its(first-generatiop aftershocks is shown as a dashed line. The

tained for each grapha) Time between 0 and 0.3 dayty) time global lawN(t), which includes all secondary and successive after-

between 30 and 70 yr. Real aftershock sequences are indeed oﬂlOCks _ger_lerated by all the aft_ershocks of the first event, is shown
served to last decades up to a century. Large black dots indicaf’és_t_a S|°|'d !|ne fo_rltheththree_ reng%<tl,fanl, andn>1. IT. thz
large aftershocks around which other secondary aftershocks clust tcai regimen=21, the seismicily rate foflows a renormalized or

. D . o
The mainshock is shown by a black star. At early times, aftershock ressed Omori laws=1A" for t>c with an exponenip=1-9,

are localized close to the mainshock, and then diffuse and clustt—éﬁ'm‘?l”er than the exponent of the local law . In the S“f":{,'“ca'
around the largest aftershocks. regime (<1), there is a crossover from an Omori lavt~1/” for

t<t* to 1417 for t>t*. In the supercritical regimen(>1), there

according to the nonstationary Poisson process of conditiond & crossover from an Omori lawti/ ” for t<t* to an exponential
intensity A (t), and its magnitude is chosen according to thelncreaseN(t) ~exp/t) for t>t*. We have chosen on purpose
Gutenberg-Richter distribution with parameterTo deter- ~ values oin=0.9997<1 andn=1.0003-1 very close to 1 such that
mine the position in space of this new event, we first choosd1€ crossover time*=10° days given by Eq(1) is very large. In
its mother randomly among all preceding events with a prob_real data, such larg& would be undistinguishable from an infinite

. . h . value corresponding to the critical regime= 1. This representation
ability proportional to their rate of aﬁerShOCksmi(t t) is chosen for pedagogical purpose to make clear the different re-

evaluated at the time of the new event. Once the mother hagimes occurring at times smaller and larger than In reality, we
been chosen, we generate the distandgetween the new can expech to be significantly smaller or larger than 1, such that
earthquake and its mother according to the power-law distrit* becomes maybe of the order of months, years, or decades and the
butiond)(F) given by Eq.(5). The location of the new event observed Omori law will thus lie in the crossover regime, given an
is determined by assuming an isotropic distribution of after-apparent Omori exponent anywhere from & to 1+ 6.
shocks. By this rule, it is clear that new events tend to be
close, in general, to the last large earthquakes, leading taftershocks starting from a mainshock of magnitidie: 7,
space clustering. with the following parameters#=0.2, b=1, a=0.5, n
Note that this two-steps procedure is equivalent to but=1, and u=1. At early times, aftershocks are localized
more convenient for a numerical implementation than theclose to the mainshock, and then diffuse and cluster close to
one-step method, consisting of calculating at each point on ehe largest aftershocks. ThigubJdiffusion is extremely
fine space-covering grid the seismic rate, equal to the sumslow, as we shall quantify in the sequel. Our purpose is to
over all preceding mothers weighted by the bare sga® provide a theory for this process based on the ETAS model.
and timeW (t) propagators given by Eq¢5) and (4); after ~ This theory will be tested by numerical simulations.
normalizing, these rates then provide to each grid point a The different regimes are illustrated in Fig. 2, which
probability for the event to occur on that point. The equiva-shows the seismicity ratd(t) for the temporal ETAS model
lence between our two-step procedure and the direct calcgtudied in Refs[25,26 obtained by summing the seismic
lation of the seismic rates is based on the law of conditionafictivity over all space for the three cases 1 (subcritica),
probabilities:[probability of next eventA)]=[probability of = n=1 (critical), andn>1 (supercritical. The subcritical re-
next event conditioned on its moth@ventB)X[probability  gime is characterized by the existence of the time stale
of choosing the mothéri.e., P(A,B)=P(A|B)P(B). given by Eq.(1). There is no difference between the critical
Figure 1 shows the result of a numerical simulation of thecasen=1 and the subcritical case faxt* (see Fig. 2
ETAS model which exhibits a diffusion of the seismic activ- Indeed, the difference between the subcritical regime and the
ity. We simulate a sequence of aftershocks and secondauwyitical regime can be observed only fort* . A simple way
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10° , , , D. Relationship with the space-independent ETAS model
— The spatial ETAS model reduces to the space-independent
107 1 ETAS model solved in Ref26] by integrating the dressed
propagator obtained below over all space. In the Fourier rep-
107 resentatiorfsee expressiof26)] this corresponds to putting
the wave numbek to zero. Indeed, fok=0, the Fourier
107 transform amounts to performing a simple integration over
= all space. Sincé (k=0)=1, expressiori26) derived below
w0 reduces to the form studied at length in R&6]. Therefore,
all results reported previously hold also for the version of the
107 space-dependent ETAS model studied here, when averaging
over the whole space. This is an important property that all
1075t the solutions discussed below must obey.
P — - - Ill. MAPPING OF THE ETAS MODEL ON THE CTRW
10 r1[ Em ; 10 MODEL

In order to study the space-time properties of the ETAS
FIG. 3. Plot of the correlation function of the 3000 epicenterSmodeL itis very useful to use a Correspondence between the
generated in the time intervg80, 70 yrs and shown in the right ETAS model and the CTRW that we establish here. In this
panel of Fig. 1, (_:alculated foI_Iowing Grassb(_erge_r-Procaccia’s algoway, we can adapt and use the wealth of results previously
rithm, as a function of scalg in double-logarithmic scales. derived for the CTRW. But first, let us demonstrate the cor-
respondence between the ETAS and CTRW models. For this,
to see this is to realize that the critical regime-1 gives our strategy is to derive the master equations for both models
t* =+, meaning that, in the critical regime, one is alwaysand show that they are identical.
in the situationt<<t*.
It is interesting to note that the spatial distribution of epi- A. The master equation of the ETAS model
centers shown in the right pan_el of F!g._ L has_ the visual The ETAS model can be rephrased by defining the rate
appearance of a fractal set of points. This is confirmed by the - . , . .,
calculation of the correlation dimension of this set Nf ¢ma—>m(t_ti ,F—ri) at which a given eventthe motherﬁ)
=3000 points generated in the time intery80, 70 yrs, of magnitudem;=m, occurring at timet; and positionr;
which is found approximately equal ©,=1.5+0.05 over gives birth to other event§'daughters”) of specified mag-
more than two decades in spatial scales, as shown in Fig. 8itudem at a later time betweetandt+dt and at poinf to
If we use instead all 30000 events of the simulation peryyithin an infinitesimal volumddr|. Note that the only dif-
formed up to timet=70 yr, we findD,=1.85=0.05 while  ference with respect to the previous definiti@ is that we
the correlation dimension of the geometrical set made of th@ow specify also the magnituden of the daughter.
epicenters of the 10000 last eveutisne interval(7, 70 yr) 4 (t—t, r—r,) is given by
is D=1.7+0.05, also over more than two decades in scale.
These _values are similar to those reported for two- b m(t—t F=1)=p(m—m)¥(t—t)D(r—r,), (9)
dimensional maps of active fault systepg®—62,8, and are '
in good agreement with, values in the ranggl.65,1.95 .
measured for aftershocks epicentgg8]. The fractal cluster- Where W (t—t;) and ®(r—r;) are the same as previously
ing of the earthquake epicenters, according to the ETASVhile
model, occurs because of a self-similar process taking place
on many different scales. However, the description of this p(mj—m)=P(m)p(m;). (10)
multiscale process solely in terms of a single fractal dimen-
sion fails to fully embody the complex spatial superpositionWith the parametrizationg3) and (6), this reads
of local “singularities” associated with each aftershock on
the one hand and finite-size effe¢ssemming from the finite p(m—m)=nIn(10)(b— «)10*(M~Mo) 10~ P(M=Mo)
lifetime of each aftershock sequemcen the other hand. (11
Each event indeed creates its cloud of direct aftershocks
which can be characterized by its singular exponengdfor Let us consider the case where there is an origin of time
pu<1l and 0O for u>1, defined by the scaling =0 at which we start recording the rate of earthquakes, as-
ocfgrdr/r“”oc R # of the “mass” of the cloud with its suming that a large earthquake has just occurred-&t and
radiusR. Finite-size effects and randomness have been docisomehow reset the clock. In the following calculation, we
mented to generate realistic but sometimes spurious fractatill forget about the effect of events at times priortte 0
signatureg64—67. This problem requires a special study and count all aftershocks that are created only by this main
which is left for another work. shock.
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Let us call N (t,r)dtdmdr the number of earthquakes stems from the fact Ehat the waiting tim(t) distribution
occurring betweem andt+dt of magnitude betweemand  (4) and jump sized(r) distribution (5) are independent of
m+dm inside a box of volumedr| centered at point. the magnitudes and that fluctuations in the seismicity rate are
Nm(t,F) is the solution of a self-consistency equation that"ot too wild for@<b/2. Note that, in a more complex model

formalizes mathematically the following process: an earth!" Which time, space, and magnitudes' are interd_ependent,
pression14) would become a mean-field approximation,

guake may trigger aftershocks; these aftershocks may trigg&X : ; .

their own aftershocks, and so on. The rate of seismicity at which the fluct_uatlons of _the rates induced by the fluctu_a-
. . = . tions of the realized magnitudes of the daughters factorize

given timet and positionr is the result of this cascade pro- from the process

cess. The self-consistency equation that sums up this CascadePutting Eq (14') in Eq. (12), for t>0 when the source

reads term S(t,F, m) is identically zero, one can simplify big(m)
- - - (= and obtain
Nn(t,r)=S(t,r,m)+ [ dr’' | dm’
mo N N t N N N
: N(t,r):f dr’f drop(t—7,r—r")N(rr'"), t>0,
N N 0
><fodr(ﬁmr_,m(t—T,r—r’)Nmr(T,r’). (12 (15)

- . - where
The rateN,,(t,r) at timet and positiorr is the sum over all

induced rates from all earthquakes of all possible magnitudes RN R , e

that occurred at all previous times and locations propagated p(t=rr—r’)= modm P(M") gy (t=7,r =1").

to the present timé and to the position? of observation by (16
the corresponding bare propagator. The induced rate of ) ] ) ] o
events per earthquake that occurred at an earlier irmed ~ Equation(15) is nothing but the expectatiofor statistical
positionF’ is equal to¢mfﬂm(t—q-,r*— F’). The source term 2Verage, i.e., average over an ensemble of realizatioins

S(t,F) is the main shock plus the background seismicity, ifexpression(S), with the definition N(t,r)=E[A()®(r)].

any. In absence of background seismicity, a main earthqua herefore, the master equation obtained here gives us only
o , LT kt e first moment of the space-time dynamics of seismicity. It
that occurs at the origin of time=0 at positionr =0 with

) , is not difficult to derive the equations for the variance and
magnitudeM gives covariance of the seismic rate as well as higher moments.
- . The value of the source term &t 0 that should be incor-
S(t,r,m)=4(t) 6(m—M)5(r), (13 porated in Eq(15) requires more care. Indeed, a naive treat-
. . o . ment would give a source terri(t) 5(m—M)5(F)/P(M)
where § is the Dirac distribution. Other arbitrary source obtained by simply dividing byP(m), expressed am=M

functions can be chosen. . . . .due to the Dirac distributiond(m—M). However, this
The source term corresponding to a single mainshock is

indeed thes function (13) rather than the direct Omori law source term S‘.t'" depends_ om via the Dirac distribution
X . A . : S(m— M) and is thus unsuitable as a source term of (E§)
created by this mainshock in direct lineage. To see this, no-

. ; : . which is independent ah. In order to circumvent this diffi-
tice that the direct Omori law is recovered from E#j2) by culty, one f?as to get rid of the Dirac distribution

replacingNy, (7,r") in the integral byS(t,r,m) given by Eq.  5(m—M). The corresponding procedure has been described
(13). This shows that the difference between the renormaly, getails in Ref[26] and consists in applying the integral

ized and the direct Omori laws comes from taking into ac- o Al s Ao

count the secondary, tertiary, etc., cascades of aftershocks.Oper"itorfmod m¢(ﬂ,r). to Eq. (12), where 9{?('8’” 'Sf the
As we have seen, a key assumption of the ETAS model igaplfilce transform with respect to the time variable of

that the daughters born from a given mother have their mage(t,r). In this way, the Dirac distributio@(m— M) is regu-

nitude drawn independently of the magnitude of the mothetarized. Identifying with the results of Ref26], we obtain

and of the process that give them birth, with a probabilitythat N(t,r) is the solution of Eq(15) with a source term
given by the Gutenberg-Richter distributié®). The conse-

quences of relaxing this hypothesis will be reported else- Su(t,r)=8(r)8(t)p(M)/n, (17)
where. Keeping this assumption, it can be shqé@] that,
for a<b/2, an ensemble of realizations will obey wherep(M) is defined in Eq(3) andn is given by Eq.(7).

Thus, the complete master equation for the nunhlierf) of
events at positionf at timet of any possible magnitude is
which makes explicit the separation of the magnitude fronsolution of

the time and space variabIeN(t,F) is the number of events . R g . R

at positionr at timet of any possible magnitude. Expression N(t,r)=SM(t,r)+J dr’Jodrgb(t—r,r—r’)N(q-,r’),

(14) means that the Gutenberg-Richter distribution is pre-

served at all times. That E¢L4) holds for the ETAS model t>0, (18

Ny(t,r)=P(m)N(t,r) for t>0, (14)
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N(t,F) is the “dressed” or “renormalized” propagator, ob- /€ coupled, a jump of a certain length involves a time cost

tained by summing the bare Omori propagator over all pos©" ViCe versa in a given time span the walker can only travel
. - a maximum distance. With these definitions, a CTRW pro-
sible aftershock cascadeBl(t,r) can also be called the

renormalized Omori lav25] cess can be des_,cribed through a master_ equéﬂ;iem Refs.
The essential assumptidn used to derive @@) is that [73—73_ for a review and_ referenc_:eg ther_)awhlch turns out
the fluctuations of the earthquake magnitudes in a given sé[E) be_glven by an equation that is identical to Et).
guence can be considered to be decoupled from those of t This connection between the ET.AS mo<_jel of earthquakes
seismic rate. This approximation can be shown to be vali ind a model of rand_o m walks pr_owdes an important advance
for a<b/2 [68] for which the random variable(m;) has a or the understandlng of spatiotemporal earthquake pro-
finite variance’ In this case, any coupling betwelen the ﬂucpesses, asit allows one to borrow the deep knowledge aceu-
) ' . mulated in past decades on random walks. In the same spirit,
B?)Iymer physics acquired its status as a fundamental physi-
Yeal problem from its previous status of an applied field of
research in chemistry when Flory, Edwards, de Gennes, des
Cloizeaux, and others showed how to formulate problems in

power |aV]\{2W.Ith exponenlb/al<2. In this casea(';hg mzlaster polymer physics in the language of random walks and how
equation(12) is not completely correct as an additional term to extract novel results. In the sequel of this paper, we use

must be included to account for the effect of the dependenq:;“S analogy to provide a wealth of predictions as well as

petween the fluct.uat!ons of earthquake magnitudes and tnﬁmortant guestions for earthquake aftershocks.
instantaneous seismic rate. Our results are presented below\ 1o context of the CTRW, we have the following cor-
for «=0.5, which belongs to the first regime<b/2. For respondence.

a>b/2, Ref.[68] has shown that the renormalization of the - . .
bare propagator into the dressed propagator is weaker than (@ N(t.1) is the PDF for the random walker to just arrive
for a<b/2, all the more so as—b. Preliminary numerical at positionr at timet. )

simulations fora>b/2 shows that our results presented be- (b) The source tern§y(t,r) given by Eq.(17) denotes
low hold qualitatively but with a reduction of the observed the initial condition of the random walk, here chosen to be at
spatial diffusion exponent compared to the value predictedhe origin of space at time=0. The constanp(M)/n adds
from the master equation approach developed here. This réhe possibility via the parametéf to have more than one
gime a>b/2 is probably relevant to the real seismicity initial walker at the origin.

[43,45,48, even if a precise estimation af is very difficult. (c) In the CTRW context, the master equatid®) states

that the PDFN(t,r) of just having arrived at position at
timet comes from all possible paths in numbda(rr,F’) hav-

W q wrate that th i stent . I(iiir:g crossed a positioﬁ’ at an earlier timer, weighted by a
e now demonstrate that the self-consistent mean fie . - - .

equation(18) is identical to the master equation of a CTRW. ansfer 9r propagator functiof(t—r.r—r’) dgscnbmgﬁall
Random walks underlie many physical processes and are of’€ Possible steps of the random walker fronr() to (t,r).

ten the basis of first-order description of natural processes. It is important to stress thal(t,r) defined above is dif-
The CTRW model, which is a generalization of the naiveferent from the standard quantiw(t,r) usually studied in
model of a random walker that jumps kyl spatial step on random walk problems, defined as the probability to find the
a discrete lattice at each time step, was introduced by Refandom walk at position at timet. The relationship between
[57] and investigated by many other worké&9—-73. The N(t F) andW(t F) is

CTRW considers a continuous distribution of spatial steps as "’ '

well as time stepg$which can be seen either as waiting times . t 1 .
between steps or as durations of the stefhe CTRW W(t,r)=f dt’[l—f dt”\If(t”)}N(t’,r). (19
model is thus based on the idea that the length of a given 0 0

jump, as well as the waiting time;=t;—t; _; elapsing be-
tween two successive jumps are drawn from a joint probabil-

. . . " o The term 1—f},"'dt”\lf(t”) in bracket is the probability for
ity density function(PDF) ¢(r,t), which is usually referred the walker not to jump in the time intervét’,t] and the

to as the jump PDF. From a mathematical point of view, a : oy .
CTRW is a process subordinated to random walks under tﬁ]gtegra! _|n the E'ght hand side of EqL9) means tha_t _tbe
operational time defined by the procdsg. probability W(t,r) for the random walker to be at position

From ¢(F,t), the jump length PDRI)(F)sz“’dth(F,t) at timet is the sum over all possible scenarios in which the

o - walker just arrives at at an earlier time¢’ and then does not
and the waiting time PD® (t) = fdr ¢(r,t) can be deduced. ]

- ” . * jump until timet. In the context of earthquake aftershocks,
Thus,®(r)dr produces the probability for a jump length in W(t,r) is the probability that an event athas occurred at a

the interval €,r +dr) andW (t)dt the probability for a wait-  timet’<t and that the whole system has remained quiescent
ing time in the interval (,t+dt). When the jump length and fromt’ to t.

Waltlng time are independent random Variables, this corre- In the Fourier_Lap|ace domai(see be|ow expression
sponds to the decoupled forga(r,t)=¥(t)®(r). If both (19 reads

seismic rate provides only subdominant corrections to E
(12). For a>b/2, the variance op(m;) is mathematically
infinite or undefined agp(m;) is distributed according to a

B. A master equation of the CTRW model
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TABLE 1. Correspondence between the ETA®pidemic-type aftershock sequejpcand CTRW
(continuous-time random walknodels. “PDF” stands for probability density function.

ETAS CTRW
W (t) PDF for a “daughter” to be born at time PDF of waiting times
from the mother that was born at time 0
d(r) PDF for a d%ughter to be triggered PDF of jump sizes
at a distance from its mother
m Earthquake magnitude Tag associated with each jump
p(m) Number of daughters Local branching ratio
per mother of magnituden
n Average number of daughters created per mother Control parameter of the random
summed over all possible magnitudes walk survival (branching ratip
n<l Subcritical aftershock regime Subcritical “birth and death”
n=1 Critical aftershock regime The standard CTRW
n>1 Supercritical exponentially Explosive regime of the
growing regime “birth and death” CTRW
N(t,F) Number of e\ients of any possible PDF of ju§t having
magnitude at at timet arrived atr at timet
W(t,r) PDF that an event at has occurred at a timg<t  PDF of being ar at timet

and that no event occurred anywhere fronto t

. R 1_@,([3) . R Omori's law for earthquake aftershocks in the ETAS model.
W(,B,k):TN(,B,k). (20 In the semiconductor context, the finitenesstdf results
from the existence of a force applied to the holes while in the

In general, the CTRW model models transport phenomena if TAS model it results from a finite distance-h to the
any heterogeneous media. It has, for instance, been used s@éitical pointn=1 in the subcritical regime. When the force
cessfully for describing the behavior of chemical species a§0€s to zero on—1, t* — +o.

they migrate through porous media6,77). In insight, it is A similar transition has been recently proposed to model
rather natural that it can be applied to the “transport oflong-term time series measurements of chloride, a natural
stress” through the heterogeneous crust and thus to the deassive tracer, in rainfall and runoff in catchmefit8]. The

scription of the anomalous diffusion of seismic activity. ~ quantity analogous to the dressed Omori propagator is the
Table | synthesizes the correspondence between the ETAgSfective travel time distributioh(t) which governs the glo-
and CTRW models and then draws its consequences. bal lag time between injection of the tracer through rainfall

and outflow to the streanh(t) has been shown to have a
power-law formh(t)~ 1/t~ ™ with m between—0.3 and 0.2
for different time serie$80]. This variability may be due to
the transition between an exponent & at short times to
1+ 6 at long timeq79], whered is the exponent of the bare

C. Experimental verifications of the crossover between the two
power-law Omori decays in photoconductivity in
amorphous semiconductors and in fractal stream chemistry
using the correspondence between the ETAS and

CTRW models distribution of individual transition times.
The crossover from an Omori lawt17 ¢ for t<t* to
14179 for t>t* found in Refs[25,26 with t* given by Eq. D. General and formal solution of the spatial ETAS model
(1) has actually a counterpart in the CTRW. This behavior
was first studied by Scher and MontrbTIO] in a CTRW with Let us solve Eq(lg) for the numben\](t,r_)) of events at

absorbing boundary condition to model photoconductivity in
amorphous semiconductors /& and an organic com-
pound findingd~ 0.5 andd=0.8, respectively. In a semicon-

positionF at timet of any possible magnitude. Recall that
N(t, F) can also be interpreted as the dressed Omori propa-
ductor experiment, electric holes are injected near a positlvgatOr Extending Ref.26] to the spatial domain and also in

electrode and then transported to a negative electrode whe?@alogy with the standard approach to solve the CTRW, the
they are absorbed. The transient current follows exactly théaplace-in-time  Fourier-in-space transforri(3,k) ~ of
transition 141 ¢ for t<t* to 1A'*? for t>t* found for  N(t,r) is given by

061104-10
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Su(B.K) d[l(1-w)]", 0<u<1
— =, (21) _
1-n¥(B)D(K) o= dm 1oy (25
pl(p—Dsin(zpl2) ~F

For a distributionW(t) of waiting times of the form of a

local Omori law(4) with exponentd<1, ¥(B) can be ex-
panded for smalpB as

N(B,k) =

where éM(B,E) is the Laplace-Fourier transform of the
sourceSy(t,r) given by Eq.(17) and ¥'(B)[® (k)] is the
Laplace(Fouriep transforms of¥(t) [®(r)]. For a main-
shock of magnitudéM occurring at timet=0 and position

r=0, the source term is thLSw(ﬁ,E)=p(M)/n. The only ‘if(,B)=1—(Bc’)‘9+ O(B°) with =1, (26
difference between expressioll) and the Laplace-Fourier

transform of the PDF of the CTRW of just having arrived atwhere ¢’ is proportional toc up to a numerical constant
r at time t occurs when the branching ratiois different ¢’'=c(I'(1—6))"? in the case#<1.

from 1. In general, solutions of CTRW models are expressed Putting the leading terms of the expansionsdek) for
for nz% and for the variabl®V(t,r) which is simply related small |12| and ofxif(/g) for small B in Eq. (21) gives

to N(t,r) according to Eq(19). Using Egs.(19) and (21) R _
leads to Sm(B,k)
1-n+n(Bc’)?+noHkH

N(B.K)= 27
1= SuBk)

W( B,k — .
W(B.k) B 1-n¥(B)D(K)

22 o
@2 The correspondiniV(3,k) is obtained from Eq(22) by

(,8)0_1C/0
1-n+n(Bc’)?+notk”

In the following, we exploit Eq.(22) to obtain analytical A L .
solutions of the spatial ETAS model in different regimes, that W(B,k)=Su(B:k)
provide specific predictions on the conditions necessary for

observing aftershock diffusion. In addition, we provide spe-Tphe critical regimen=1 gets rid of the constant term-In
cific predictions on the exponeri of the diffusion law j, the denominator of Eq€27) and (29). This case is ana-

(28)

R~t" that are tested by numerical simulations. lyzed in details below.
The regimen# 1 introduces a characteristic tinie given
IV. CRITICAL REGIME n=1 by Eq.(1). In the subcritical regime, Eq27) can be rewrit-

A. Classification of the different regimes ten as

Numerous works on the CTRW have investigated many éM(/;,E) 1

1-—n

possible forms for¥ (t) and <I>(F) and have provided the N(B.k) = 1—n 1+(,8t*)9+(kr*)“’ (29)
asymptotic long time and large scale dependence/(f, F)

(see Refs[73-75,71 and references therginHere, we re- wherer* is defined by

strict our discussiqn to thg cases where b#tt) andd)(F) Un

have power-law tails as given by Edd) and(5). The long- r* :U( n ) (30)

time and large scale behavior of the ETAS and CTRW are

controlled by the behavior of the Laplace-Fourier transforms o
for small 8 and small IZ| Fort<t* andr<r*, the dressed propagator is given by the

Two cases must be distinguished depending on the exp same expression as for the criticgl case and aII.our results
i trolling th iaht of the tail ofb (F elow hold. For large timed>t* and large distances
nentu controfing gwelg 1 ot the tai (_r). ) ) r>r*, we can factorize Eq29) as a product of a function
For u>2, the variancd (r)?)=o? of the jump size dis- of time and a function of space,
tribution exists. To leading order ik=|k|, ®(k) can be

expanded as Su(B.k) 1 1

1= 14+ (Bt (1+(kr)*

N(B,K)= (31)

d(K)=1-022+0(k°) with 0>2. (23)
Thus, there is no diffusion in the subcritical regime for

For u<2, the variance((r)?) is infinite. This regime of {~* andr>r*. We shall not analyze further this trivial
long jumps” leads to so-called ey flights. In this case, to regime n<1 and t>t* and will only analyze the case

leading order irk=|k|, ®(k) can be expanded as t<t*. If there is the need, the crossover can be calculated
. explicitly using Eq.(27).
®(k)=1—o"k"+O(K?), In order to get the leading behavior K{t,r) from that of

where 0<p<2 with 0> u, (24) W(t,r), we see Afromﬁ Eqgs.(21) ancjl (221 that N(B,k)
={BIN1-V(B)}W(B,K)~B %"~ *W(B,k). The inverse
whereo is a characteristic distance defined by Laplace transform of 8% is 1[I'(6)t*~?]. Using the fact
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that the Laplace transform aff/dt is 8 times the Laplace Dt%?

transform off(t) minusf(0), we getN(t,F) as the deriva- z= |F|
tive of a convolution

(36)

andD=g/c' 2,
Expression(35) and many others below involve the
function of negative arguments. We recall that the function
(32 I'(u) can be analytically continued to the whole complex
plane, except for the simple polas=0,—1,—2,—3,....
In Eqg. (32), we have dropped the Dirac function coming Thus,I'(u) is defined everywhere but at these poles. In order
from the inverse Laplace transform of the constant termo get the expression of thE function for negative argu-
f(0), which provides a contribution only at the origin of ments, one can use two formulasE'(1—u)XxT(u)

N(t,r)= =c'y DI OW(t,r).

c' ¢ dft S W(tr)
o (t—t)t?

() dt

time t=0. Note that the operator [1'(6)] = n/sin(mu) andl'(1+u)=ul'(u). Both these formulas are
x(d/dt)fgdt’[W(t’,r)/(t—t’)l“’] is nothing but the so- valid for all points with the possible exception of the
called fractional Riemann-Liouville derivative operator of arguments at poles ©,1,—2,.... Forinstance,['(—6)
order 1- 6 applied to the functionV(t,r) of imet and is =1 (1= 0)/(—6)=—[=/0sin(@0)]/I'(), for 0<H<1.
usually denoted)Dtl’ ”W(t,F). Expression35) can be rewritten as a Fox functig82],

B. The standard diffusi 0>1 and p>2 11 gl|-0262)

. t > > —_— _~ nil9Zz

e standard diffusion case and u W(t,z) ) te/zHlv 2100 , (37

The standard diffusion process is recoveredéarl (for
which the average waiting time is finjtand foru=2 (for  whose asymptotic dependence for lamyeobtained from a
which the variance of the jump length is finitén this case, standard theorem of the Fox functigiq. (1.6.3 of Ref.
N(B,K)=Su(B.K)/(Bc’ +a?k?). For an impulsive source [82]],
leading toSy(3,k) = const, this is the Laplace-Fourier trans-

form of the standard diffusion propagator W(t.2)~ 1 1
(t,2) D02 7(1-0)/(2=0)
- 1 -
N(t,r)c ———exg — (r)%/Dt] where D=d?/c’, 0\ [ g\ 020
oo™ (33) . exp[ - ( - 5) (5) 20 @9

whered is here the space dimension. This solution is validis in agreement with the result of Roman and Alem§s§]

for |r|//Dt not too large. For larger values, large deviationsa@nd Barkaket al.[81] for a space dimensiod =1, including

lead to corrections with the power-law tail of the input jump t_h‘? dep_(rarr]ldence in the Pol\Ner éaW prgfactorv;t/(() th)e exponen-
e - - o tial. e  exponentia ependence W(t,r)~exp

distribution ®(r)~1/r|**# defined in Eq.(5), along the 22— )7 . . :

lines presented, for instance, in REL2] (Sec. 3.5. This L _constf/Dt™) 1 in Eq. (3§) holds in arbitrary di-

regime is not relevant to the aftershock problem for whichMensionsds, the only mod|f|cz_at|on occurring In the. prefac-
usually 0< §<1. tor whose power of change with the space dimensidpas

[83,81]

C. Long waiting times (#<1) and finite variance

of the jump sizes(u>2) Wy (t,2) ~ ! !
f Dt?/2 70i(1-6)/(2—6)

Putting the leading terms of the expansionsixﬂ?) (23 /
and of ¥ (8) (26) in Eq. (21) gives Xex;{—(l— f) 6\ "=

2)\2

z2’<2—">) . (39

1

N(B.k)= (Bc) '+ (ok)2 (34 The expression dii(t,r) can be obtained fro(t,r) using
the fractional Riemann-Liouville derivatiof32) of order
The expressioii34) can be inverted with respect to the Fou- [1— #]. Inserting expressiof35) in Eq. (32) and using the
rier transform, and then inverted with respect to the Laplac&xpression of the fractional Riemann-Liouville derivative
transform using Fox function$75,81. The solution for operator,D; applied to an arbitrary powar, i.e., oD{t*
W(t,r) in one dimension is given, for instance, in REf5] = [I'(1+w)/I'(1+p—a)]t*", we obtain

in terms of an infinite sum

. ¢’ -0 * (_ 1)ka
118 (—Dfk NLO= s om & kifa—wez A0
W(t’r):ﬁt%kzo KTi—ok+nz O )
Expression(40) can be used to evalual(t,r) for small z,
where but the numerical evaluation of E¢40) is impossible for
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largez In order to obtain the asymptotic behaviorN)(ft,F), il ' : @
expression(40) can be rewritten as a Fox functi¢82], ] [ T ]

N(t,r)= c’ Hi -
( J)—W 115

(612,0/2)
(0,9

@ 2

107 F =10 T =

Employing again the standard theorem of the Fox function {%1{; T
[Eq. (1.6.3 of Ref.[82]), the asymptotic behavior M(t,r) 107 i _ .
10°

for large distances such thatr >Dt?? is given by 107° 10° 10" 10"
time (days)
N ¢/ ||:’| (1-6)/(2-6)
(t,r) Dt17(0/2) Dtﬁ/z _t=1n_5 " " (b)
a o 4
0\ 6 0l(2— 0) |F| 2/(2— 6) 1
<o (15l o s
z
(42)
The exponential dependence  N(t,r)~exp 10
[—constf/Dt??)2/2=%] in Eq. (42) holds in arbitrary dimen-

sions.

This expression becomes incorrect for very large dis-
tances because it would predict an exponential or slightly
superexponential decay with This cannot be true as the
global law cannot decay faster than the local Iédy. The
reason for Eq(42) to become incorrect at large distances is

that the expansion dfi(3,k) for small |k| (large distances
given by Eq.(34) has been truncated at the ord€r There
is, however, a subdominant termk* that describes the
power-law tail of the local law5) and also of the global law
asymptotically. A similar situation occurs in the application
of the central limit theorem for sums &f random variables
with power-law distributions with exponengs>2 [12]: the
distribution of the sumS is a Gaussian in its bulk for
|S|<NInN and crosses over to a power law with tail ex-
ponentu for larger S In a similar way, the crossover of
N(t,r) to the asympt,OtiC chal power la%), can be re.cov- 0=0.2, u>2, ¢c'=1 day, ando=1 km, evaluated from expres-
ered by an analysis including the subleading correctift  gi55(40) and(42), plotted as a function of the tinfe) for different

to the expansiori34). values of the distancebetween the mainshock and its aftershocks,

Expression(40) shows that the global rate of seismicity and (b),(c) as a function ofr [logarithmic scale forr in (b) and
cannot be factorized as a product of a distribution of timesjinear scale for in (c)] for different values of the time between the
and a distribution of distances. This space-time coupling immainshock and its aftershocks. The temporal decay of seismicity
plies that the seismic activity diffuses with time, and that thewith time is characterized by a power-law dedsgr,t)~1/t*~#2
decay of the rate of aftershocks depends on the distance fropiose to the mainshock epicenter or at large times fobt?2. For
the first mainshock. This coupling of space and time stemsarge distances>Dt%?, there is a truncation of the power-law
from the cascade of aftershocks, from the primary afterdecay at early times”?<r/D, because the seismicity has not yet
shocks to the secondary aftershocks to the tertiary aftediffused up to the distanae Although the distribution of distances
shocks, and so on. between a mainshock and its direct aftershodkg) follows a

Figure 4 presents the decay of the seismic actiMigy,t) ~ Power-law distribution with exponent-x, the log-linear graph
obtained using expressio@0) for small z and expression (c) shows that the global rate of aftershodkér,t) decreases ap-
(42) for largez, as a function of the time from the mainshock proximately exponentially as a function of the distance from the
and as a function of the distancesClose to the mainshock mainshock, with a characteristic distance that increases with time.
epicenter, expressiof@0) predicts that the global seismicity This is in agreement with expressid#2) that predictsN(t,r)
rate decays with time as the renormalized Omori law ~exd (r|/Dt"2) =97, i.e., N(t,r)~exdC(t)|r|] with an expo-

nentq=2/(2— 6) close to 1 within the exponential. The same re-
1 mark as for Fig. 2 applies: the representation of our predictions for
N(t,0)~ —=. (43 very large times is made for pedagogical purpose to illustrate
{102 clearly the different regimes.

(c)

Nit,r)

=10
——

0 100 200 300 400 500

FIG. 4. Rate of seismiciti(t,r) in the critical regimen=1 for
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exponenp. In reality, this range op values are seen to result
from the complex spatiotemporal organization of the after-
shock seismicity of the ETAS model. These results should
lead us to be cautious when analyzing real catalogs with
respect to the conditions and regimes under which the analy-
sis is performed.

There is another observable that characterizes how an af-
tershock sequence invades space as a function of time. Ex-
pression(40) indeed predicts a subdiffusion process quanti-
fied by

(Ir|3)~t2", (45)

with H= 6/2 since the natural variable zgiven by Eq.(36).
Indeed, expressio0) tells us that, up to a global rescaling
function of time, the rate of aftershocks is identical for a

, i ) _fixed value ofz. Thus, any aftershock structure diffuses ac-
FIG. 5. Average distance between the first mainshock and S ordi

ftershock function of the time from the mainshock, f ording to Eq,(45).
attershocks as a function ot the ime from the mainshock, 1or U= ;5" yrediction is checked in Fig. 5 by numerical simula-
merical simulations of the ETAS model in the critical regime .. . .

- ) - - tions. 1000 synthetic catalogs have been generated with
n=1, generated with the parametets 0.2, d=1 km, =3, and -3 9=02 dn=1. Th dist bet th
c=10"2 day. The theoretical prediction for the diffusion exponent%‘.’“_ ' __h' ,Ifm g__ : ¢ € ﬁvelr(age |sfance_ e\:cvehen ne
is thusH=60/2=0.1. We observe a crossover from a larger expo- Irst mains ock an Its aftershocks as a function of the time
nent at early times when the mean distance is close to the charag;om the mainshock ha? bee.n ayeraged over these 1000
teristic scaled=1 km of the distribution of distances between an Simulations. The theoretical diffusion exponentHs= /2
aftershock and its progenitor, to a subdiffusion with an exponent=0.1, in good agreement with the asymptotic behavior ob-
close to the theoretical prediction at large times. The solid line is eS(?r\_/eq in the numerical S|mu_lat|0n. In DF?ICFICG‘, in order to
fit of the numerical data for times>10 days, which gives an ex- Mminimize the effect of fluctuations and optimize the speed of
ponentH =0.12 slightly larger than the predicted valbie=0.1. convergence, we estimate numerically [ghpr|)] which is

. also expected to scale as gftp|r])]~t?? due to the simple
The same decay is found at any fixed pomtor times  scaling form of Eq(41).
t>(|r|/D)?. At all times, the same decayti’ ?? is also This problem has also been solved exactly in R&4] in
obtained by measuring the aftershock seismicity in a locathe context of the so-called fractional Fokker-Planck equa-
box at a distance from the main shock Origin increasing With;ion’ which amounts to replacing the distributidﬂ(f)) of
time asr~t%2 [this is nothing but putting=const in Eq.  jumps (5) by a Gaussian function. This fractional Fokker-
(40)]. At large distances>Dt?? the global decay law is Planck equation allows one to introduce the possibility of
different from a power-law decay. Figure 4 shows that thepjas or drift in the CTRW and therefore in the aftershock
rate of aftershocks presents a truncation at early times, whickequence.
increases as the distancéncreases. At large times, the rate
of aftershocks recovers thetl7 %2 power-law decay43).
We stress that a fit of the global laM(r,t) over the whole
time interval by an Omori law would yield an apparent ex-
ponentp<1-— 6/2 that decreases with

Integrating Eg.(40) over the whole one-dimensional

space, we recover the global Omori law,

D. Exponential waiting time distribution and long jump size
Lévy distribution (u<2)

This case with an exponential distribution

P(t)=re M (46)

of waiting times with a Ley distribution®(r)=L,,(|r|) of
jump sizes with tail exponent<2 has been investigated by

1
N(t):J drN(t,r)~——; (44)
t Buddeet al. [85]. One finds

found in Refs.[25,26]. Thus, we have found an additional
source of variability of the exponemptof the Omori law: if
measured over the whole catalog, we should measure
p=1—46 in the critical regimen=1 while p=1-6/2 is  corresponding to a superdiffusion regime with Hurst expo-
slightly larger when measured in certain time and spacenentH = 1/u>1/2. The full distribution functioW(t,r) cor-

WindOWS, as described abOVQ. ThUS, in this I’egime, pruningesponding to the critical regim: 1 is known for)\t>1,
of catalogs may lead to continuous change from the value

(r|3¥e~ i, (47

1-6 to 1-6/2. In addition, as we have mentioned, the |F|
crossover in time may lead to still smaller apparent expo- W(t,r)e —L, - ) (48)
nents, thus enhancing the impression of variability of the (At)~# (At)~#
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The correspondingN(t,F) is obtained from Eq(20). The
Laplace transform of the exponential distributiof6) is

W (B)=M(B+\). We thus get

N(B.K)=(B+NW(B.K), (49
and thus
L OW(L,r) .
N(t,r)= o +FANW(t,r). (50

Expression(50) together with Eq.(48) predicts a diffusion
law r ~t™ with H=1/u which is in good agreement with our
simulations. At large time$r|<(\t)¥*, N(t,r)~\W(t,r)
~1/itY», giving an apparent local Omori exponefit=1

—1/u. This offers a different mechanism for generating

Omori’s law for aftershocks from purely exponential local

relaxation but with a heavy distribution of jump sizes. This
power-law decay should be observed only at a fixed distanc
r or over a limited domain from the mainshock in the regime

of large times.
Integrating over the whole spacfdrW(t,r)=1, which

gives N(t)=&(t) +\ equal to a constant seismic rate. This

results from an initial mainshock a0 leading to the cas-

cade of aftershocks adjusting delicately to this constant ratg;

for the critical valuen=1 of the branching parameter. In the
subcritical regimen<1, the Omori law integrated over
space gives insteal(t)cexd —(1—n)At], showing that the
characteristic decay time 1/(An)A of the dressed Omori
propagator N(t) becomes much largedmuch longer
memory that the decay time 1/of the bare Omori propa-
gator.

For u>2, we recover the standard diffusion correspond
ing to 6>1 andu>2 discussed in Sec. IV B.

E. Long waiting times (#<1) and long jump sizes
(Lévy flight regime for p=<2)

Putting the leading terms of the expansionsixk) and
of W(B) in Eq. (21) gives

N(B,K)=5y(B8,k) ———.
N(B! ) SM(B! )(BC,)e-f—(O'k)'u (51)
The correspondinng(,B,IZ) is given by
6—1~16
W0 =SB —LL_° (52

(Bc") '+ (ak)*

PHYSICAL REVIEW E6, 061104 (2002

approximation(52) by solving the exact CTRW problem for
the case when the waiting time distributidn(t) is a one-
sided stable ey law of index 6 with the same tail as E¢4)

and the distributioer(F) of jumps is a symmetric stable
Levy of index u with the same tail as E@5). Their Laplace
and Fourier transforms that appear in the denominator of Eq.

(22) are, respectively¥(B)=exd 8% and &(k)=exp
[—|K“/2]. Note that the long wavelengtik| -0 and long
time B—0 approximation gives +exd—(c’B)’lexp
[—|ok“]=(c’' B)?+|oK*, which recovers Eq(51). By com-
paring the exact solution of Eq21) for ¥ (t) and®(r) of

the above Ley form with that of the long Wavelengttﬂ

—0 and long timeB—0 approximation(52), Barkai[87]
finds that certain solutions of E¢62) diverge on the origin,

a behavior not found for the corresponding solutions of Eq.
(21). In addition, certain solutions of the full equati¢®l)
converge only very slowly fopr<<1 to the solutions of the
long-time approximatiori52). These results validate our use
of the asymptotic long time behavior with respect to the
scaling laws but provide a note of caution if one needs more
precise nonasymptotic information. In this case, such infor-
mation can be obtained by a suitable analysis of the full
equation(21).

Using power counting, expressiab?) predicts a diffu-

n proces$45) with exponent

(53

This prediction is checked by numerical simulation of the
ETAS model in the critical regim&=1, with 6=0.2, u
=0.9, shown in Fig. 6. The average distance between the
first mainshock and its aftershocks as a function of the time
from the mainshock indeed increases according to(E5).
with an exponenH in very good agreement with the predic-
tion H=6/u=0.2. As the form of the denominator in Eq.
(52) is independent of the space dimension, the prediction
(53) is valid in any space dimension.

The natural variable for the expansions given below al-

lowing to computeN(t,r) is

Dt~
Z: - L]
1]

(54)

whereD=o/c’?# andc’ =c['(1— 6)]".

1. z expansion of the solution

W(t,r) can be obtained as the following suf&q. (5.10

Equation(52) has been studied extensively in the context ofof Ref.[88]]

the CTRW model as a long wavelengij— 0 and long time

B— 0 approximation to investigate the long time behavior of

the CTRW. Kotulski86] has developed a rigorous approach

1 ; : . mlr]
based on limit theorems, to classify the asymptotic behaviors

1 Fmp+1)

2, U gD

m=0

W(t,r)=

a
COo E(m,u +1)
(59

of different type of CTRWSs and justifies the approximation

(52) for the long time behavior. Bark@B7] has studied the
quality of the long wavelength?|—>0 and long timeB—0

Applying Eq. (32) to Eg. (55) term by term in the sum, we
get
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+ o

. c’ o em, T(Mut1)
NO= 5 & V™ T mr D)
o
XCO{E(m,uA- 1)|. (56)
The asymptotics

T(mp+p+1)T(MO+1) T(mu+p+1)T(m+1)6)

L(mo+ o+ (mu+1)  T(m+2)0)(mu+1)
~m~—0 (57)

show that the serig®5) and(56) exist only foru<6. It can
be shown that these series exist for alh this case. This
series converges very slowly for largebut the Padesum-

mation method89] can be used to improve the convergence X| puz
of Eq. (56) in the caseu< 6, and can also be used to esti-

mate Eq(56) in the caseu> @ for which the series diverges.

The space integralfdrN(t,r) over the whole one-
dimensional volumé&/, with N(t,r) given by Eq.(56), recov-
ers the global Omori law

1
LdrN(t,r)~tl—ﬁ. (58)

PHYSICAL REVIEW B6, 061104 (2002

. C/—t?
N(t.r)= Mml—awm
(U, ), (1,0
XR| H}3 zd ™2 ,
’ (L, Up), (61— 6+ 1,6/ )

(60)

whereR(2z) indicates the real part af

The 1£ expansion ofN(t,r) can be obtained using the
dual expansion of the Fox functiai®0) [expression3.7.2
of Ref.[82]]

-0

- c
N(U)Zm E (="

I'A—(m+1)u)sin((m+21) wm/2)
I'(—meo)

1-p—mu

z " 7 cog mmr/2)
T S (mt Dl @ T (0— (m+ 1) 6l )|
(61

This expansion exists only fox> 6 [conditions of p. 71
below Eq.(3.7.2 of Ref.[82]]. This is easily checked by the
behavior of an asymptotics similar to E&.7). Note that the
series(61) is not defined in the special cage=1 due to the

Note the nontrivial phenomenon in which the superpositiorPresence of the ill-defined ratib(0)/I'(0) and a different

of all aftershock activities transforms the local Omori law or @pproach is required, such as the integral representation of
“pbare propagator”(4) W (t)~ 141" ? into the global Omori W(t,r) developed in Ref[88]. The global Omori law ob-
law or “dressed propagator” 13~ . This effect was pre- tained by integrating over the whole spa(®l) is again
dicted in Refs.[25,26 in the version of the ETAS model N(t)~1/'"? as expected from the analysis of the ETAS
without space dependence. These results are consistent witlodel without space depender@&s].

the claim of Sec. Il D, according to which all results reported Keeping only the largest term of E(61) for largez, we
previously for the version of the ETAS model without spaceobtain the asymptotic behavior for small distances
dependence hold also for the version of the space-dependent Dt?#,

ETAS model studied here, when averaging over the whole

space. F'(1—-2u)sin(m7w)sin(70) I'(1+6) 1

The asymptotic behavior fgr|>Dt?* (i.e., z<1) and N(t,r)= o' o2 (rlo)t=2# (t/c')t+o
u<0 is obtained by keeping only the first nonzero term
(m=1) in Eqg.(56) which is convergent for alt in the case for ©<0.5,
n<6,
N(t ) C/*H 1
1r =
sinl T ’W ¢ opl (60— 0l w)sin(m/ w) (t/c')t o+ on
N(t,r) Law ,)l A for 0.5<u<2 62
)= —= or 0. <2.
oc'm 1'(20) \'t Ir] H €2
. o Note that forr <Dt?* and 0.5< u< 2, the leading behavior
for |r|>Dt”~, (59

of N(t,r) is independent of.
R R Equation(62) thus predicts an apparent exponent
At fixed large|r| and fort<|r/D|*'?, this predicts a local

Omori law with exponenp=1-26. for

p=1+6 ©<0.5,

p=1—-60+6/u for 0.5<u<2, (63

2. 1/z expansion of the solution
for small distances<Dt?*. This prediction is valid only in
the caseu> 6 for which the serie$61) is convergent. How-
ever, the same asymptotic results are also obtained by differ-

We use the theory of Fox functiofi82] to obtainN(t,r)
as an infinite series in 4/ For this, we first rewrite expres-
sion (56) as a Fox functiori82],
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=01 {a)

mean distance (km)
3,

(]
10 ; 4 , time (days
107 i 10° 10° 10 (days)

time [days)

FIG. 6. Average distance between the first mainshock and its § ! : )
aftershocks as a function of the time from the mainshock, for a (b}
numerical simulation of the ETAS model in the critical regime “*tf.?f_
=1, with #=0.2, x=0.9,¢’ =1 day, andd=1 km. The solid line 10° P10
is a fit of the data which gives an exponéht=0.25 in good agree- T
ment with the predicted valud =0.22.

ent methods in the cage< 6, for instance, expressio63) =
is recovered for allu<2 using the integral representation of T
Ref.[88]. The numerical evaluation of E¢56), which con-
verges foru< 6, also recovers the asymptotic resulé).

The two regimesu<0.5 and 0.5 u<2 are illustrated in 10 e

Figs. 7 and 8, respectively. The seismicity ralét,r) is %

evaluated from expressigb6) for smallz and from expres- 10 ' . . :

sion (61) for largez 107° 10" ;;::5] 10" 10"
r{km

We also performed numerical simulations of the ETAS
and CTRW models and the results are in good agreement s 7 Rate of seismicitN(t,r) for 6=0.2, u=0.2, ¢'=1

with expressions(56) and (61) for N(r,t) for t>c and day, ando=1 km, evaluated from expressiofB6) and (62), plot-

r>d. For very small time$<c, or for very small distances ted as a function of the timg) for different values of the distance
r<d, expressiong56) and (61) are not valid because they r between the mainshock and its aftershocks, @mds a function

are based on a long Wavelengtﬁ|H0 and long time of r for different values of the time between the mainshock and its
B—0 approximation. Numerical simulations of the ETAS aﬁershoc!(s. We stress again that the time sgales shown here do not
model in the cas@=0.2 andu.=0.9 are presented in Fig. 9, necessarily correspond to real obse_rvable time scales bu_t are pre-
and are in good agreement with the analytical solutics sented tq demqnstrate clea_rly the exnstenc_e of the two regimes. The
and (61) shown in Fig. 8 for the same parameters, excep{j.aShed lines give the predicted asymptotic dependence in each re-

from the truncation ofN(t,r) for timest<c and distances gime.
r<d that are not reproduced by the analytical solution. 1
O (|r—r;|/Dt)= exp(—|r—r;|%Dt). (65
F. A simple nonseparable joint distribution of waiting times and \/ﬁ
jump sizes: coupled spatial diffusion and long waiting The spatial diffusion of seismic activity is now coupled to
time distribution the waiting time distribution. Expressioi®5) captures the

effect that, in order for aftershocks to spread over large dis-

Consider the choice fod’mi(t_ti ,r=1i) replacing Eq. tances by the underlying physical process, they need time. In

(2) by fact, returning to the discussion in the Introduction on the
I - - various proposed mechanisms for aftershocks, expression
b (=157 =) =p(M) W (t—t))D(|r = r;|/ VDY), (65) embodies a microscopic diffusion process.
(64) In this case, Eq(21) must be replaced by
wherep(m,) and ¥ (t) are again given by Eq$3) and (4) Sop o oMmBK)
. i ; N(B.K)=—=—=, (66)
while Eq. (5) is changed into 1-n¢(B.k)
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_r=0.01 ' ' a) |
|_r=1 ._—.:_:'"“-H- - _ 1408
_\_‘_‘_'_“'“-_ e B
ot L e
s r=1 Eld', _h_-_“__"‘————-._._,_ iz

10 10" 10
time (days)

10 t=1 (b}

t=0.1 (© |

r {km) 1 {km}

FIG. 8. Rate of seismicit\N(t,r) for §=0.2, ©=0.9, c'=1 FIG. 9. Rate of seismicityN(t,r) obtained from numerical
day, ando=1 km, evaluated from expressiofts) and(62), plot-  simulations of the ETAS model generated with the same parameters
ted as a function of the time) for different values of the distance zg in Fig. 8 ¢=0.2, »=0.9, ¢’ =1 day, andd=1 km). N(r,t) is
r between the mainshock and its aftershocks, @ds a function  computed by averaging over 500 numerical realizations of the
of r for different values of the time between the mainshock and itsETAS model.(a) Aftershock rate as a function of the time from the
aftershocks. The dashed lines give the predicted asymptotic depeﬂiainshock for several distancb@, ranging from 0.01 to 10km.
dence in each regime. (b) Apparent Omori exponent measured for timies10 as a func-

o tion of the distance from the mainshock. The aftershock decay rate
where ¢(8,k) is the Laplace-Fourier transform of the prod- (with time) is larger close to the mainshock epicenter than at large

uct‘I’(t)q)(|F|/ IDt). For large times and long distances for distances from the mainshock. The asymptotic values for small and

cient. and fom=1. we obtain <Dt?* and(59) for r>Dt”#, which are shown as the horizontal

dashed lines(c) Rate of seismicityN(t,r) as a function of the
distance between aftershocks and mainshock for various times. The

<Af>(ﬂ E) o« M (67) theoretical prediction for large distances is shown as the dashed line
" (B+DKY)? with slope—(1+u).
The inverse Laplace-Fourier transform of E§6) is as 1t~ % The diffusion of aftershocks is normal with the
standard diffusion exponeit=1/2.
- 1 1 -
N(t,r)~ a0 mexp(—MZ/Dt). (68) V. NEW QUESTIONS ON AFTERSHOCKS DERIVED

FROM THE CTRW ANALOGY

As expected, expressiof68) recovers the dressed Omori  We list a series of comments and questions suggested
propagator in the case of absence of space depenfi2élce from the analogy between the ETAS model and the CTRW
At finite r and long times, the dressed Omori law also decaymodel. In particular, we discuss the possibility of defining
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new observables for earthquake aftershocks, which could be E. Probability for the cumulative number of aftershocks
worthwhile to investigate in future empirical studies of earth- | ot ;s define a basic quantity in the CTRW formalism,
quake aftershocks. namely the probabilityy(t) to make exactlym steps up to
time t. In the earthquake context,,(t) is the probability to
have exactlym aftershocks after the main shock. In the case
in which the spatial transition probabili@(F) between dif-
ferent positions is independent of the waiting tinjesrre-

A quantity often inv:astigated in studies of random walkssponding to factorizingpy, (t—t; r—r;) as in Eq.(2)], the
is the probabilityW(t,0) to find the random walker at its  o1apility densityw(t,r) to find the walker at position at
starting point(the origin at timet. In the earthquake frame- et can be written
work, this is the seismic aftershock rate close to the main
shock.

A. Recurrence of aftershock activity in the proximity
of the main shock

+ oo

W)= 2 Wn(F) (), (69)
B. First-passage times -

The first-passage time of a random walk is the first arrivalvhereW,(r) is the probability to reach from 0 in m steps.

time of the random walk at a given point In the earthquake In the earthquake contextV,,(r) is the probability that there
context, this translates into the study of the waiting time forhas been exactlyn events in the time intervdl0,t] and that

a given region to have its own first aftershock after the mainhe |ast one occurred at. Equation (69) states that the
shock occurs. The distribution of such first passage waitingC TRW is a random process subordinated to simple random
times gives the distribution of times with no nearby seismicy, 51ks described me(F) under the operational time given
activity. See, for instance, Rdi84] in the case of a power- by the x.(t) distribution[91,92.
law distribution of waiting times and Gaussian distribution
of jump sizes. Margolin and Berkowif{Z6] give the distri- I
bution of first-passage times in the case where the jump disE' Random walk ’.“0‘?'9.'3 with birth "fmd death and background
o " L : seismicity from localized sources
tribution is narrow and the waiting distribution is long tailed
~14*? They analyze the three different regimes:1, Benderet al. [93] have studied models of random walks
1<0<2, and=2. in which walkers are born in proportion to the population at
one specific sitgfor instance, the originwith probability
a—1 (with a>1) and die at all other sites with probability
1—n (with n=<1). In the earthquake context, this consists in
Weiss and Calabre$80] have studied the total amount of assuming that the aftershock activity is fed by a localized
time spent by a lattice CTRW on a subset of points. In theregion in space, which is itself activated by the aftershocks
seismic language, this amounts to studying the probabilityeturning to this region, furthering the overall activity. This
distribution of the durations of aftershock sequences that armay be considered to describe the seismic activity close to a
localized in a specific subset of the space. In other wordgplate boundary, in which the plate boundary is the constant
how probable are aftershock sequences that are found ongelf-consistent source of a seismic activity which may spread
within a given spatial subset over a certain duration? over a significant region away from the boundary. The ex-
cursion of the random walkers quantify the spread of the
seismic activity away from the main fault structure. The rate

) o ~of death of the walkers correspond exactly to the distance
Another question that has been studied in some details if _ , from the critical valuen=1. Benderet al. [93] find a

the CTRW framework is whether random walks are transienbhase diagram in thea- 1,1—n) parameter space in which

or recurrent. A transient random walk visits any poinat  a boundary separates two possible asymptotic regimes.
most a finite number of times before escaping to infinity. For (1) For smalla—1 and large * n, the seismic activity at
earthquakes, the transient regime corresponds to the activehe origin and everywhere eventually dies off.

tion of at most a finite number of aftershocks in any given (2) For largea—1 and small +n, the average seismic
point r. In contrast, a recurrent random walk may return aactivity at the origin approaches a positive constant at long
growing number of times to all or a subset of points at timetimes. In this regime, there is a transition as 1 is de-
increases. In the aftershock language, this means that theseeased or as 4n is increased, between a case where the
points will have a never-ending@lecaying aftershock activ- global seismic activity outside the origin goes to zero and a
ity. We stress here the difference between the global Omoigase where it diverges at long times. On the boundary be-
law giving a never-ending power-law decay of the aftershockween these two regimes in thex{1,1—n) parameter
activity (in the subcritical regimaen<<1) and its spatial de- space, the distribution of seismic activity approaches a
pendence which must exhibit important variations. In par-steady state at long times. There is a critical pdiot space
ticular, in the recurrent regime, an Omori law can be docu-dimensions different from 2) at a certain value.{ 1,1
mented by counting aftershocks in those limited regions of-n;), for which the long-time seismic activity away from
space which are activated again and again. the source is given by-(a—a;)” wherewv is a critical ex-

C. Occupation time of seismic activity

D. Transience and recurrence of seismic activity
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ponent equal to 2 in three dimensions. Y ) .
Note that the results of Reffo3] are obtained for random superdiffusion Brownian

walks on a lattice. This can easily be converted into a CTRW diffusion

by the fact that a CTRW is nothing by a process subordinated R~tum R~tos

to discrete random walks under the operational time defined

by the proces$t;} of the time of just arrival to a given site, 1

as given by Eq(69). superdifiusion | subdiffusion

or subdiffusion
VI. DISCUSSION
R~ton R~to2

Using the analogy between the ETAS model and the
CTRW model established here, we have derived the relation
between the average distance between aftershocks and the 0 2
mainshock as a function of the time from the mainshock, and g|G, 10. Classification of the different regime of the diffusion of
the joint probability distribution of the times and locations of aftershocks in space as a function of time from the main shock. The
aftershocks. bare Omori law for aftershocks decay with time as*lf. The

We have assumed that each earthquake triggers afteump size distribution between the earthquake “mother” and its
shocks at a distangeand timet according to the bare propa- “daughters”is proportional to **#. R(t) is the average distance
gator ¢(r,t), which can be factorized a¥ (t)®(r). This between all aftershocks triggered up to titnafter the mainshock.
means that the distributio® (r) of the distances between an
event and its direct aftershocks is decoupled from the distriasymptotic values of the Omori exponent in the different
bution ¥ (t) of waiting time. Hence, the direct aftershocks regimes are summarized in Table II. In the regime 2, we
triggered by a single mainshock do not diffuse in space witfPbserve a transition from an Omori law decay with an expo-
time. Notwithstanding this decoupling in space and time ofientp=_1—24 at early timest"<r/D to a larger exponent
the bare propagatab(r,t), we have shown that the g|0ba| at Iarge times. This provides another mechanism to explain
law or dressed propagatN(t,F) defined as the global rate the observed variability of the Omori exponent. In the re-

) s ) . gime u>2, a power-law decay of the seismicity with time is
of eve.nts. at t.'me and at p_osnprl, cannot be factgnzed |nt0. observed only at large tima§'>r/D. At early times, or at
two distributions of waiting times and space jumps. This

joint distribution of waiting times and positions of the whole large distances>Dt", the seismicity rate is very small
J 9 and p X .~ ~.because the seismicity has not yet diffused up to the distance
sequence of aftershocks cascading from a mainshock is dif-

ferent from the product of the bare time and space propaga-
tors.

=Y

We should emphasize that our theoretical analysis of af-
tershock diffusion predicts the behavior of the ensemble av-

sh(-)rc?kes n:r?gﬂ d?;]StaQ:c?oEggv:ez?té?seh;ncallgs?n%(iz;l(js I\t/ii t‘;’:ﬂteé'rage of aftershock sequences. Individual sequences may de-
' 9 Y ’ art from this ensemble average, especially for sequences

time from the mainshock, due to the cascade process of ag
n

tershocks tri . frershocks tri ; ftershock vith few earthquakes and limited durations. For long se-
Ershocks 1riggering attersnocks iriggering aftershocks, a uenceg20 000 events saywe have verified that the expo-
so on. In the critical case=1, this diffusion takes the form

f | latiorR—t" of th distance nentH measured on individual sequences does not deviate
of a power-law refation of the average distanc from the ensemble average value by more than about 20%.
Ks already discussed, the impact of fluctuations becomes,

t|m_et from the mainshock. If the local Qmorl law is qharac- however, more effective as the parameteincreases above
terized by an exponent<06<1, and if the space jumps b/2

follow a power lawd (r)~1/(r +d)**#, the diffusion expo-
nent is given byH= 6/ u in the caseu<<2 andH = /2 in the
caseu>2. Depending on th& and x values, we can thus
observe either subdiffusion H<1/2) or superdiffusion
(H>1/2), as summarized in Fig. 10. In the subcritical
(n<1) and supercriticalr(>>1) regimes, this relation is still

TABLE II. Asymptotic values of thgrenormalizedl Omori ex-
ponent (of the dressed propagajoin the different regimes for
z<1 andz>1, wherez=Dt"/r.

. S . Largez Smallz
valid up to the characteristic timé& given by Eq.(1) and for (r<DtH) (r>Dt")
distances smaller than*«Dt*" given by Eq.(30). For
t>t* andr>r* in the subcritical regime, the global distri- ©#<0.5 p=1+4 p=1-26
butions of times and distances between the mainshock and its5< u <2 p=1—-0+6lu p=1-26
aftershocks are decoupled and there is therefore no diffusio<u p=1-6/2 Not defined?

In the supercritical regime, the aftershock rate increases ex=
ponentially fort>t* and the aftershocks diffuses more rap- *The Omori exponent is not defined in this case because the depen-
idly than beforet*. dence ofN(t,r) with respect to time given by expressi¢42) and

In the critical regime, the cascade of secondary afterrepresented in Fig. 4 has a contribution from the exponential as-
shocks introduces a variation of the apparent Omori expoymptotics which is different from a power law for large distances
nent as a function of the distance from the mainshock. Thes>Dt".
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The diffusion of the seismicity also renormalizes the spa+tesults in an expansion of the aftershock zone with time. This
tial distribution of the seismicity, which is very different expansion does not take the form of a diffusion law as ob-
from the local distributionD (r) of distances between a trig- served in the ETAS model, the relation between the charac-
gering event and its direct aftershocks. In the regpme2,  teristic size of the aftershock zone does not grow as a power

the global seismicity ratél(t,r) decays exponentially with law of the time from the mainshodkg. (22) and Fig. 6 of
the distance from the mainshock, whereas the local distribuRef. [40]].

tion of distancesb(r) is a power-law distribution. In the ~ Marsanet al.[95,9¢ and Marsan and Bedi97] studied
regime u<2, the local lawd(r)~r 1 # is recovered at several catalogs at different scales, from the scale of a deep
large distances, but a slower decay for0&6<2 or a con- mine to th_e world-wide seismicity, and obser_ved that the
stant rate for u<0.5 is observed at small distances average dlstance. between two earthquakes increases as a
r<Dt". These predictions on the decrease of the Omori exPOWe! law of the time between them, with an exponent often
close to 0.2, indicative of a subdiffusion process. They inter-

ponent withr have nqt yet been observed in earthquake cat preted their results as a mechanism of stress diffusion, that
logs, but an expansion of the aftershock zone has been r

. i nay be due to fluid transfer with heterogeneous permeabilit
ported in many studieg28-36G. However, very few studies y g b y

o S X leading to subdiffusion. Their analysis is quite different from
have quantified the diffusion law. Noet al. [35] show that  {hqqe used in other studies, because they consider all pairs of
the earthquake Dobi sequenteentral Afar, August 1989  gyents, without distinction between aftershocks and main-

composed of 2M>4.6 earthquakes presented a migrationsnocks. This analysis can, however, lead to spurious diffu-
that was in agreement with a diffusion process due to fluidsion, and in some cases this method does not detect diffusion
transfer in the crust, characterized by a normal diffusion proin a synthetic data set with genuine diffusion. We have tested
cess with exponenti=0.5. Tajima and Kanamofi31,32  their analysis on a synthetic catalog generated by superpos-
studied several aftershock sequences in subduction zone affl) a background seismicity with uniform spatial and tempo-
observed a much slower logarithmic diffusion, which is com-ral distribution, and ten mainshocks with Poissonian distri-
patible with a low exponenki close to 0.1. In some cases, bution in time and space, and with a power-law distribution
the aftershock sequence displays no expansion with time. F@f energies. Each of these mainshocks generatesdirdgt
instance, Sha}94] studied several aftershock sequences inaftershocks, without secondary cascades of aftershocks, and
California and concluded that the distribution of distanceshe number of aftershocks increases exponentially with the
between the mainshock and its aftershocks is independent @iagnitude of the mainshock. This way, we generate a syn-
time. This can be explained by the fact that the Omori expothetic catalog without any physical process of diffusion, and
nent measured in Reff94] is very close to 1, thug is very  which includes all the other well-established characteristics
small and our prediction is that the exponéhtshould be of real seismicity: clustering in space and time superposed to
very small. a seismicity background. Applying the analysis of RE#&—

In fact, the ETAS model predicts that diffusion should be97] to this synthetic data set leads to an apparent diffusion
observed only for aftershock sequences with a measurgstocess with a well-defined exponetit=0.5. However, this
Omori exponentp significantly smaller than 1, which can apparent diffusion does not reflect a genuine diffusion but
only occur according to our model when the bare Omorisimply describes the crossover from the characteristic size of
propagator with exponent 46 is renormalized into the an aftershock zone at early times to the larger average dis-
dressed propagator with global exponent & We have tance between uncorrelated events at large times. In plain
shown that this renormalization of the exponent only occursvords, the apparent power laRectt is nothing but a cross-
at times less thatt, while for longer times in the subcritical over and is not real. Furthermore, applying this analysis to a
regime n<1 the dressed Omori propagator recovers thesynthetic catalog generated using the ETAS model, without
value of the bare exponenttl9>1 (see Fig. 2 Therefore, seismicity background, and with a theoretical diffusion ex-
identifying an empirical observation gf<<1 with our pre- ponentH=0.2, the method yieldsi =0.01 if we use all the
diction p=1— @ indicates that the aftershock sequence fallsevents of the catalog. If we select only events up to a maxi-
in the “good” time windowt<t* in which the renormaliza- mum distance ., to apply the same procedure as in Refs.
tion operates. We have also shown that the dressed propad®5-97], we obtain larger values dfl which are more in
tor gives a diffusion only fot<<t*. We can thus conclude agreement with the theoretical exponetit=0.2 but with
that, according to the ETAS model, the observation of arlarge fluctuations that are function of,,,. Therefore, it is
empirical Omori exponent larger than 1 is indicative of theprobable that the diffusion reported in Ref85-97 is not
large timet>t* behavior in the subcritical regime<1, for  real and results from a crossover between two characteristic
which there is no diffusion. This provides a possible expla-scales of the spatial earthquake distribution. It may be attrib-
nation for why many sequences studied in R€84,32,94  uted to the analyzing methodology which mixes up uncorre-
do not show a diffusion of the aftershock epicenters. Reciptated events. We are thus reluctant to compare the results of
rocally, a prerequisite for observing diffusion in a given af- Marsanet al.[95—97 with the predictions obtained with the
tershock sequence is that the empirjgakalue be less than 1 ETAS model.
in order to qualify the regime<t*. One can similarly question the results on anomalous dif-

An alternative model has been discussed by Dietdd€h  fusion of seismicity obtained by Sotolongo-Costeal. [98],
who showed that the spatial variability of the stress inducedvho considered 7500 microearthquakes recorded by a local
by a mainshock, coupled with a rate and state friction lawSpanish network from 1985 to 1995. They interpret the se-
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guence of earthquakes as a random walk process, in whiainodel, the seismicity rate is the result of the whole cascade
the walker jumps from an earthquake epicenter to the next inf direct and secondary aftershocks.
a sequential order. The time between two successive events We have first established an exact correspondence be-
is seen as a waiting time between two jumps and the distandeieen the ETAS model and the CTRW model. We have then
between these events is taken to correspond to the jump sizesed this analogy to derive the joint probability of times and
Since the distributions of time intervals and of distances bedistances of the seismicity following a large earthquake and
tween successive earthquakes are both heavy f@fmatoxi-  we have characterized the different regimes of diffusion.
mately power lawg their model is a CTRW. We cannot We have shown that the diffusion of the seismicity should
stress enough that their CTRW model of seismicity has nothbe observed only for times<t*, wheret* is a characteristic
ing to do with our results on the mapping of the ETAS modeltime depending on the model parameters, corresponding to
onto a CTRW. Their procedure is ad hoc and their resultan observed Omori exponent smaller than one. Most after-
depend obviously strongly on the space domain of the analyshock sequences have an observed Omori exponent larger
sis since distant earthquakes that are completely unrelateéblan one, corresponding to the subcritical regime of the
can be almost simultaneous. We also stress that our mappi§TAS model, for which there is no diffusion. The diffusion
of the ETAS model onto the CTRW model does not corre-of the seismicity produces a decrease of the Omori exponent
spond to identifying an earthquake sequence am@lere-  as a function of the distance from the mainshock, the decay
alization of a CTRW, as assumed arbitrarily by Sotolongo-of aftershocks being faster close to the mainshock than at
Costaet al.[98]. large distances. The spatial distribution of seismicity is also
Our predictions obtained here are thus difficult to test orrenormalized by the cascade process, so that the observed
seismicity data, due to the small number of events availablédistribution of distances between the mainshock and its af-
and the restricted time periods and distance ranges, and beershocks can be fundamentally different from the bare
cause the seismicity background can strongly affect the repropagatord (r) which gives the distribution of the distances
sults. New methods should hence be developed to investigatetween triggered and triggering earthquakes. We have also
if there is a real physical process of diffusion in seismicnoted that the ETAS model generates apparent but realistic
activity and to compare the observations of real seismicityfractal spatial patterns.
with the quantitative predictions of the ETAS model. Pre- Assuming that the distances between triggering and trig-
liminary study of aftershock sequences in California leads tgered events are independent of the time between them, this
the conclusion that most aftershock sequences are charactenodel generates a diffusion of the whole sequence of after-
ized by an Omori exponemi>1, indicative of the subcriti- shocks with the time from the mainshock, which is induced
cal regime witht>t*. As expected from our predictions in by the cascade of aftershocks triggering aftershocks, and so
this regime, we do not observe an expansion of the afteren. Our results thus provides a simple explanation of the
shock zone. However, a few sequences give a valgd  diffusion of aftershock sequences reported by several studies,
and also exhibit an increase of the average distance betwearhich was often interpreted as a mechanism of anomalous
the mainshock and its aftershocks consistent with our predicstress diffusion. We see that no such “anomalous stress dif-
tions. A detailed report of this analysis will be reported else-fusion” is needed and our theory provides a parsimonious
where. account of aftershock diffusion resulting from the minimum
physical ingredients of the ETAS model. As Einstein once
VII. CONCLUSION said: “A theory is more impressive the greater the simplicity
of its premises, the more different the kinds of things it re-

We have studied analytically and numerically the ETAS|ates and the more extended its range of applicability.”
model, which is a simple stochastic process modeling seis-

micity, based on the two best-established e.mp_|r|_cal laws for ACKNOWLEDGMENTS
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