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We present a new kind of critical stochastic finite-time singularity, relying on the interplay between
long-memory and extreme fluctuations. We illustrate it on the well-established epidemic-type aftershock
model for aftershocks, based solely on the most solidly documented stylized facts of seismicity
(clustering in space and in time and power law Gutenberg-Richter distribution of earthquake energies).
This theory accounts for the main observations (power law acceleration and discrete scale invariant
structure) of critical rupture of heterogeneous materials, of the largest sequence of starquakes ever
attributed to a neutron star, as well as of earthquake sequences.
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form advantages of this discovery is to be able to account for
A large portion of the current work on rupture and
earthquake prediction is based on the search for precur-
sors to large events in the seismicity itself. Observations
of the acceleration of seismic moment leading up to large
events and ‘‘stress shadows’’ following them have been
interpreted as evidence that seismic cycles represent the
approach to and retreat from a critical state of a fault
network [1]. This ‘‘critical state’’ concept is fundamen-
tally different from the long-time view of the crust as
evolving spontaneously in a statistically stationary criti-
cal state, called self-organized criticality (SOC) [2]. In
the SOC view, all events belong to the same global
population and participate in shaping the self-organized
critical state. Large earthquakes are inherently unpredict-
able because a big earthquake is simply a small earth-
quake that did not stop. By contrast, in the critical point
view, a great earthquake plays a special role and signals
the end of a cycle on its fault network. The dynamical
organization is not statistically stationary but evolves as
the great earthquake becomes more probable. Pre-
dictability might then become possible by monitoring
the approach of the fault network towards the critical
state. This hypothesis, first proposed in [1], is the theo-
retical induction of a series of observations of accelerated
seismicity [3,4] which has been later strengthened by
several other observations [5–8]. Theoretical support
has also come from simple computer models of critical
rupture [9] and experiments of material rupture [10],
cellular automata, with [11] and without [12] long-range
interaction, and from granular simulators [13]. Models of
regional seismicity with more faithful fault geometry
have been developed that also show accelerating seismic-
ity before large model events [14–16].

There are at least five different mechanisms that are
known to lead to critical accelerated seismicity of the
0031-9007=02=89(15)=158501(4)$20.00 
N�t� / 1=�tc � t�m (1)

ending at the critical time tc, where N�t� is the seismicity
rate (or acoustic emission rate for material rupture). Such
finite-time singularities are quite common and have been
found in many well-established models of natural sys-
tems, either at special points in space such as in the Euler
equations of inviscid fluids, in vortex collapse of systems
of point vortices, in the equations of general relativity
coupled to a mass field leading to the formation of black
holes, in models of microorganisms aggregating to form
fruiting bodies, or in the more prosaic rotating coin
(Euler’s disk). They all involve some kind of positive
feedback, which in the rupture context can be the follow-
ing (see [17] for a review): subcritical crack growth [18],
geometrical feedback in creep rupture [19], feedback of
damage on the elastic coefficients with strain dependent
damage rate [16], feedback in a percolation model of
regional seismicity [17], feedback in a stress-shadow
model for regional seismicity [15,17].

While these mechanisms are plausible, their relevance
to the earth crust remains unproven. Here, we present a
novel mechanism leading to a new kind of critical sto-
chastic finite-time singularity in the seismicity rate, using
the well-established epidemic-type aftershock sequence
(ETAS) model for aftershocks, introduced by [20,21],
based solely on the most solidly documented stylized
facts of seismicity mentioned above. The adjective ‘‘sto-
chastic’’ emphasizes the fact that the critical time tc is
determined in large part by the specific sets of innova-
tions of the random process. We show that, in a finite
domain of its parameter space, the rate of seismic activity
in the ETAS model diverges in finite time according to (1).
The underlying mechanism relies on large deviations
occurring in an explosive branching process. One of the
2002 The American Physical Society 158501-1
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the observations of accelerated seismicity and acoustic
emission in material failure, without invoking any new
ingredient other than those already well established em-
pirically. We apply this insight to quantify the longest
available starquake sequence of a neutron star soft �-ray
repeaters.

We use the example of earthquakes but the model
applies similarly to microcracking in materials. The
ETAS model is a generalization of the modified Omori
law, in that it takes into account the secondary aftershock
sequences triggered by all events. The modified Omori’s
law states that the occurrence rate of the direct aftershock
daughters from an earthquake decreases with the time
from the mainshock according to the ‘‘bare propagator’’
K=�t� c�p. In the ETAS model, all earthquakes are si-
multaneously mainshocks, aftershocks, and possibly
foreshocks. Contrary to the usual definition of after-
shocks, the ETAS model does not impose an aftershock
to have an energy smaller than the mainshock. This way,
the same law describes foreshocks, aftershocks, and
mainshocks. An observed ‘‘aftershock’’ sequence of a
given earthquake (starting the clock) is the result of the
activity of all events triggering events triggering them-
selves other events, and so on, taken together. The corre-
sponding seismicity rate (the ‘‘dressed propagator’’),
which is given by the superposition of the aftershock
sequences of all events, is the quantity we derive here.

Each earthquake (the ‘‘mother’’) of energy Ei � E0

occurring at time ti gives birth to other events (‘‘daugh-
ters’’) of any possible energy, chosen with the Gutenberg-
Richter density distribution P�E� � �=�E=E0�

1�� with
exponent � ’ 2=3, at a later time between t and t� dt
at the rate

�Ei
�t� ti� � ��Ei���t� ti�: (2)

��Ei� � K�Ei=E0�
a gives the number of daughters born

from a mother with energy Ei, with the same exponent a
for all earthquakes. This term accounts for the fact that
large mothers have many more daughters than small
mothers because the larger spatial extension of their
rupture triggers a larger domain. E0 is a lower bound
energy below which no daughter is triggered. ��t� ti� �

�c�

�t�ti�c�1�� is the normalized waiting time distribution
(local Omori’s law or ‘‘bare propagator’’) giving the
rate of daughters born a time t� ti after the mother.

The ETAS model is fundamentally a ‘‘branching’’
model [22] with no ‘‘loops,’’ i.e., each event has a unique
‘‘mother mainshock’’ and not several. This ‘‘mean-field’’
or random phase approximation allows us to simplify the
analysis while still keeping the essential physics in a
qualitative way. The problem is to calculate the ‘‘dressed’’
or ‘‘renormalized’’ propagator (rate of seismic activity)
that includes the whole cascade of secondary sequences
[23]. The key parameter is the average number n (or
‘‘branching ratio’’) of daughter earthquakes created per
mother event, summed over all possible energies. n is
equal to the integral of �Ei

�t� ti� over all times after ti
158501-2
and over all energies Ei � E0. This integral converges to a
finite value n <1 for � > 0 (local Omori’s law decay
faster than 1=t) and for a < � (not too large a growth of
the number of daughters as a function of the energy of the
mother). The resulting average rate N�t� of seismicity is
the solution of the master equation [24]

N�t� �
Z t

0
d�N���

Z Emax�t�

E0

dE0P�E0��E0 �t� ��; (3)

giving the number N�t�dt of events occurring between t
and t� dt of any possible energy. We have made explicit
the upper bound Emax�t� equal to the typical maximum
earthquake energy sampled up to time t. For a <�, this
upper bound has no impact on the results and can be
replaced by �1 [24]. There may be a source term S�t�
to add to the right-hand side of (3), corresponding to
either a constant background seismicity or to a large
triggering earthquake. In this last case, the rate N�t�
solution of (3) is the dressed propagator giving the renor-
malized Omori’s law. A rich behavior, which has been
fully classified by a complete analytical treatment [24],
has been found: subcriticality n < 1 [23] and supercriti-
cality n > 1 [24], where n depends on the control pa-
rameters �, a, �, K, and c. With a single value of the
exponent 1� � of the bare propagator ��t� � 1=t1��, we
obtain a continuum of apparent exponents for the global
rate of aftershocks [24] which may account for the ob-
served variability of Omori’s exponent p around p � 1
reported by many workers.

Here we explore the regime a � �, for which n is
infinite. This signals the impact of large earthquake en-
ergies, suggesting the relevance of the upper bound
Emax�t� in (3). This case is actually observed in real
seismicity by [25], who obtained a > � for some after-
shock sequences in Greece, and by [26], who found a > �
for 13 out of 34 aftershock sequences in Japan. This case
a > � also characterizes the seismic activity preceding
the 1984 M � 6:8 Nagano Prefecture earthquake [27].
After the mainshock, the seismicity returned in the sub-
critical regime � > 0, a <�, and n < 1.

This case a � � is similar to that found underlying
various situations of anomalous transport [28]: in this
regime of large fluctuations, the integral over earthquake
energies is dominated by the upper bound. The maximum
energy Emax�t� sampled by N�t��t earthquakes is given by
the standard condition N�t��t

REmax�t�
E0

dE0P�E0� � 1. This
yields the robust median estimate Emax�t� � 
N�t��t�1=�.
Actually, Emax�t� is itself distributed according to the
Gutenberg-Richter distribution and thus exhibits large
fluctuations from realization to realization, as we can
see in Fig. 1. Putting this estimation of Emax�t� in (3),
we get

N�t� /
Z t

0
d�

N���

�t� �� c�1�� 
N�������a���=�: (4)

Let us note the appearance of the new term

N�������a���=� resulting from the contribution of the
158501-2
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FIG. 1 (color online). Cumulative number of events (scale on
the left) as a function of the time from the critical point tc for
the starquake sequence (solid black line) and one typical
simulation of the ETAS model (solid thin line) generated
with � � �0:2, a=� � 1:5, and c � 0:001 days. For the star-
quakes, tc is the time of the strongest observed starquake in the
sequence. The dashed line shows the theoretical exponent m�
1 � 0:4 (5) for tc � t > c. The crosses � joined by straight
segments give the time evolution of Emax�t� (scale on the right).
The inset gives the distribution of exponent measured for
500 numerical simulations. The median (vertical line) of the
distribution of m values is equal to the theoretical exponent
m � 1:4 [formula (5)].
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upper bound in the integral
R
dE0P�E0�. This term repla-

ces the constant found for the case a <�. Equation (4)
shows that the exploration of larger and larger events
in the tail in the Gutenberg-Richer distribution trans-
forms the linear master equation (3) into a nonlinear
equation: the nonlinearity expresses a positive feedback
according to which the larger is the rate N�t� of seismicity,
the larger is the maximum sampled earthquake, and the
larger is the number of daughters resulting from these
extreme events. This process self-amplifies and leads to
the announced finite-time singularity (1). However, to
complete the derivation, we need to determine the yet
unspecified time increment ��. If N��� obeys (1), �� is
not a constant that can be factorized away: it is deter-
mined by the condition that, over ��, N��� does not
change ‘‘significantly’’ in the interval 
�; �� ���, i.e.,
no more than by a constant factor. Using the assumed
power law solution (1), this gives �� / tc � �. Using this
and inserting (1) into (4), we get

m �
a=�

�a=�� � 1
; tc � t � c;

m �
�a=�� � 1� �H����

�a=�� � 1
; tc � t � c;

(5)

where H is the Heaviside function. Note that (5) predicts
an exponent m > 1 which is independent of � close to the
critical time tc. This is due to the fact that the time decay
of the Omori’s kernel is not felt for tc � t � c, where c
158501-3
acts as an ultraviolet cutoff. It is also interesting to find
that m � 1 independently of a and � in the regime � > 0
(with, of course, a > �) for which Omori’s kernel
�1=t1�� decays sufficiently fast at long times that the
predominant contributions to the present seismic rate
come from events in the immediate past of the present
time of observation. In contrast, the case � < 0 is analo-
gous to the anomalous long-time memory regime [28]
which keeps forever the impact of past events on
future rates.

This prediction, based on the careful analysis of the
integral in (4), has been verified by direct numerical
evaluation of Eq. (4).We have also checked that numerical
Monte Carlo simulations of the ETAS model generates
catalogs of events following this prediction, in an en-
semble or median sense. Figure 1 shows the cumulative
number N �t� �

R
t
0 d�N��� of events for a typical real-

ization of the ETAS model and compares it with Emax�t� to
illustrate that N �t� is mostly controlled by the sampling
of Emax�t�, as discussed in the derivation of expression (4)
leading to the finite-time singularity (1). For the value
� � 1 chosen here, Emax�t� follows the same power law as
the cumulative number, as observed. The dashed line is
the power law prediction (1) with (5) for a=� � 1:5 and
� � �0:2 with slope m� 1 � 0:4. We have also gener-
ated 500 such catalogs and report in the inset the distri-
bution p�m� of exponents m obtained by a best fit of N �t�
for each of the 500 catalogs to a power law 1=�tc � t�m�1.
The median of p�m� is exactly equal to the prediction
shown by the vertical thin line while the mode is within
10% from it. Note, however, a rather large dispersion
which is expected from the highly intermittent dynamics
characteristic of this extreme-dominated dynamics. We
now report a few comparisons between the prediction (5)
and the median value of the exponent m obtained from
500 simulations for the following parameters: � � �0:2,
a � 1:1, � � 1, predicted m � 3:0, median m � 1:9;
� � �0:2, a � 1:3, � � 1, predicted m � 1:67, median
m � 1:61; � � �0:1, a � 1:5, � � 1, predicted m �
1:20, median m � 1:29; � � �0:3, a � 1:5, � � 1, pre-
dicted m � 1:60, median m � 1:62; � � �0:2, a � 1:7,
� � 1, predicted m � 1:29, median m � 1:37. For a >
1:8� and for � > 0, the fluctuations are so large that a
reliable determination of m becomes questionable.

Figure 1 shows that the power law singularities are
decorated by quite strong steps or oscillations, approxi-
mately equidistant in the variable ln�tc � t�. This log-
periodicity has been previously proposed as a possibly
important signature of rupture and earthquake sequences
approaching a critical point [1,10]. Here, we present a
simple novel mechanism for this observation, based on a
refinement of the previous argument leading to Emax�t��

N�t��t�1=�. Indeed, the most probable value for the en-
ergy En of the nth largest earthquake ranked from the
largest E1 � Emax to the smallest one is given by En�t� �
f
N �t��� 1�=
n�� 1�g1=� [29], where N �t� �R
t
0 N�t0�dt0. Let us assume that the last new record was
158501-3
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broken at time t1 leading to E1�t1� � f
N �t1���
1�=
�� 1�g1=�. The next record will occur at a time t2 >
t1 whose typical value is such that E2�t2� � E1�t1� [the
last record E1�t1� becomes the second largest event E2�t2�
when a new record E1�t2� occurs]. For large N �t�, this
gives N �t2�

N �t1�
� �2�� 1�=��� 1�. The preferred scaling

ratio of the average log-periodicity is � � �tc � t1�=�tc �
t2� � 
�2�� 1�=��� 1��1=�m�1�. For � � 1, a � 1:5,
� � �0:2, m � 1:4 corresponding to Fig. 1, we obtain
� � 2:3, which is compatible with the data.

The prediction (5) rationalizes the ‘‘inverse’’ Omori’s
law close to 1=�tc � t� that has been documented for
earthquake foreshocks [30]. The prediction (5) as well
as the log-periodicity offers a general framework to ra-
tionalize several previous experimental reports of precur-
sory acoustic emission rates prior to global failures [10].
In this case, the energy release rate e�t� is found to follow
a power law finite-time singularity. According to our
theory, e�t� / N�t�Emax�t� / 1=�tc � t�m��m�1�=�.

Finally, we also show that this could explain starquake
catalogs. Starquakes are assumed to be ruptures of a
superdense 1-km thick crust made of heavy nuclei
stressed by superstrong stellar magnetic field. They are
observed through the associated flashes of soft � rays
radiated during the rupture. Starquakes exhibit all the
main stylized facts of their earthly siblings [31]. The
thick line in Fig. 1 shows the cumulative number of star-
quakes of the SGR1806-20 sequence, which is the longest
sequence (of 111 events) ever attributed to the same
neutron star, as a function of the logarithm of the time
tc � t to failure. The starquake data is compatible with
� � 1 [31], a � 1:5, and � � �0:2, leading to m � 1:4.

We are grateful to V. Keilis-Borok and V. Kossobokov
for sharing the starquake data with us and W.-X. Zhou for
discussions and help in a preliminary analysis of the data.
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