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growth curve with general nonstationary error

process

K. Benhenni ∗ and M. Rachdi

Université de Grenoble, UFR SHS, BP. 47, F38040 Grenoble Cedex 09, France.

Abstract

The non-parametric estimation of the growth curve has been extensively studied in
both stationary and some nonstationary particular situations.
In this work, we consider the statistical problem of estimating the average growth
curve for a fixed design model with nonstationary error process. The nonstationarity
considered here is of a general form, and this note may be considered as an extension
of previous results. The optimal bandwidth is shown to depend on the singularity of
the autocovariance function of the error process along the diagonal. A Monte Carlo
study is conducted in order to assess the influence of the number of subjects and
the number of observations per subject on the estimation.
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1 Introduction

The growth curve model is useful especially for growths of animals and plants
and is applied extensively to biostatistics, medical research and epidemiology,
and was considered by many authors such as Geisser (1980) and Von Rosen
(1991). In pharmacokinetic research, it is a useful problem for the estimation
of the concentration-time curve based on the drug’s concentration at different
sites within the organism.
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In nonparametric regression, the correlation of the errors can have some impor-
tant consequences on the statistical properties of the curve function estimator
and on the selection of the smoothing parameter.

The nonparametric regression model with correlated errors was considered by
many authors. For instance, Severini and Staniswalis (1994), Zeger and Dig-
gle (1994), Wild and Yee (1996), Chiang and Hoover (1998), Lin and Carroll
(2000) among others. These authors considered different modifications of ker-
nel construction of the nonparametric regression estimator in order to improve
the efficiency over the standard kernel estimator when correlated observations
are introduced. In practical situations when we only have access to quantized
and correlated data, Benhenni and Rachdi (2005) constructed a consistent
estimator of the growth curve when repeated observations are available.

The focus of this paper is to look at the problem of estimating the mean func-
tion f(.) in the presence of correlation not that of estimating the correlation
function itself.

The emphasis of Zimmerman and Núñez-Antón (2001)’s paper is put in mod-
eling the covariance structure of growth curve data, where antedependence
models are considered, that is, a transformation of the time scale that can
produce nonstationary covariance. They also provide an overview of the non-
parametric regression literature that deals with the correlated errors case.

We consider the statistical problem of estimating the average growth curve for
a fixed design model. We consider m experimental units, each of them having
n measurements of the response:

Yj(xi) = f(xi) + εj(xi) where j = 1, . . . , m and i = 1, . . . , n

where f is the unknown average growth curve and (εj) is the error process.
The sampling points {xi, i = 1, . . . , n} are usually taken equally spaced in time
series data, but other type of sampling designs can also be considered such
as deterministic regular (non uniform) designs and random designs. Although
repeated measurements can naturally arise in practical situations, they can
make the estimators of the curve f asymptotically consistent, as was pointed
out by Hart and Wehrly (1986) and the comments of Härdle (1989).

In this paper, we estimate the growth curve using the kernel methods under
a very general nonstationary error process where the autocovariance function
does not have any specific form. This include, as a special case, processes with
stationary autocovariance function such as the Ornstein-Uhlenbeck process,
and some specific nonstationary class of parametric autocovariance struc-
ture considered by Ferreira et al. (1997) and introduced by Núñez-Antón and
Woodworth (1994) known as antedependance models. The popular brownian
motion is also an example of a nonstationary error process.
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We show that the asymptotic properties of the kernel regression estimators
and the optimal bandwidth are governed by the behavior of the autocovariance
function along the diagonal. This paper is organized as follows. In section 2,
we present the average growth curve estimation method for correlated obser-
vations with the autocovariance function satisfying the required assumptions
and then the corresponding results. Section 3 is devoted to the case when the
autocovariance function is smooth. Some examples and simulations are given
in Section 4 in order to verify the theoretical results of this paper. Finally,
Section 5 serves for the proofs of the results.

2 Estimation of the average growth curve with non-regular error

process

The estimator of f based on the observations {Yj(xi), i = 1, . . . , n, j =
1, . . . , m}, when the xi’s are known constants such that 0 ≤ x1 < x2 < · · · <
xn ≤ 1, with

max
i

|xi − xi−1| = O
(

1

n

)

is given for x ∈ [0, 1], by (see, Gasser and Müller (1984), Hart and Wehrly
(1986)):

f̂h(x) =
1

n

n∑

i=1

Wh,i(x) Ȳ (xi)

where

Ȳ (x) =
1

m

m∑

j=1

Yj(x) and Wh,i(x) = n

mi∫

mi−1

Kh(x − u) du

and the midpoints {mi, i = 0, . . . , n} are defined by

m0 = 0, mi = (xi + xi+1)/2, for i = 1, . . . , n − 1 and mn = 1

with Kh(x) = 1/h K(x/h), where the kernel K is a function satisfying the
following assumptions:

K is Hölder continuous, with support [−1, 1]

and h = h(n, m) is the bandwidth, such that: h ≥ 0 and limn,m→+∞ h = 0.

In the following theorem, we establish the asymptotic behavior of the estimator
f̂h through the mean squared error. Then, we derive the optimal asymptotic
bandwidth h∗. A global optimal bandwidth is also derived from the integrated
mean squared error.

Assumptions :
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(i) The autocovariance function ρ exits and is continuous on the square [0, 1]2.
(ii) ρ(x, y) has left and right first order derivatives at the diagonal x = y, that

is:

ρ(0,1)(x, x−) = lim
y↗x

∂ρ

∂y
(x, y) and ρ(0,1)(x, x+) = lim

y↘x

∂ρ

∂y
(x, y)

exist and are continuous.
The jump function along the diagonal α(x) = ρ(0,1)(x, x−) − ρ(0,1)(x, x+) is
assumed to be continuous and not identically equal to zero.

(iii) ρ(x, y) is assumed to have continuous mixed partial derivatives up to order
two off the diagonal x 6= y in the unit square and satisfies:

sup
0≤x6=y≤1

∣∣∣ρ(i,j)(x, y)
∣∣∣ < ∞ for all integers i, j such that 0 ≤ i + j ≤ 2.

(iv) The covariance function ρ has at least 2 continuous mixed partial derivatives
such that

ρ(i,j)(x, x) 6= 0, i + j = 2, ∀x ∈ [0, 1]

The assumptions (i), (ii) and (iii) (respectively assumption (iv)) are satisfied
by the error processes defined in (1), (2), (3) and (4) (respectively (5)).

Example 1

(1) The Wiener error process with covariance ρ(x, y) = σ2 min(x, y). The
jump function α(x) = σ2 > 0 and ρ(i,j)(x, y) = 0, for all integers i, j such
that i + j = 2 and x 6= y.

(2) The Ornstein-Uhlenbeck process with stationary covariance ρ(x, y) =
σ2 exp(−λ|x − y|/2) for σ > 0 and λ > 0. The jump function is con-
stant α(x) = 2σ2λ.

(3) A general class of covariance functions with non constant jump functions
can be found by considering the class of processes of the form:

ε(x) = θ(x)W (γ(x)), ∀x ∈ [0, 1]

where W (x) is a Wiener process, θ(x) is a continuously differentiable func-
tion on [0, 1] and γ(x) a continuously differentiable function and strictly
increasing on [0, 1]. Then, the covariance function of the error process
ε(x) is of the form:

ρ(x, y) = θ(x) min(γ(x), γ(y))θ(y)

and the corresponding jump function is α(x) = θ2(x)γ′(t). In particular,
when θ(x) = γ(x) = x, then ρ(x, y) = xy min(x, y) and α(x) = x2. When
θ(x) = 1 and γ(x) = x, then the error process has a Wiener covariance,
and when θ(x) = exp(−x) and γ(x) = exp(2x) then it has a Gauss-
Markov covariance function.
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(4) Consider a transformation of the time scale that can produce nonstation-
ary covariance of the form

ρ(x, y) = σ2ρ|xλ−yλ|/λ for (x, y) ∈ [0, 1]2, σ2 > 0, 0 < ρ < 1 and λ > 0

(see, Nuñez-Anton and Woodworth (1994) and Ferreira et al. (1997)).
In particular when λ = 1, we obtain a Ornstein-Uhlenbeck error process
with a stationary covariance function with α(x) = −2σ2 ln(ρ). When
λ 6= 1, then the covariance is nonstationary with jump function α(x) =
−2σ2 ln(ρ)xλ−1.

(5) Consider the error process with stationary covariance function:

ρ(x, y) = (1 + α|x − y|) exp(−α|x − y|), α > 0

and spectral density ϕ(λ) = 2α3

π(α2+λ2)2
.

Then this covariance satisfies the above assumption with

ρ(i,j)(x, x) = ρ′′(0) = −α2 6= 0, for i + j = 2.

Theorem 2 If the covariance function ρ satisfies Assumptions (i), (ii) and
(iii), and f is a twice differentiable continuous function on [0, 1] with f ′′(x) 6= 0
for 0 < x < 1, and m/n = O(1), then as n, m → +∞

IE
(
f̂h(x) − f(x)

)2
=

1

m

(
ρ(x, x) −

1

2
α(x)CKh

)
+

h4

4
d2

K(f ′′(x))2

+O

(
1

mn
+

h2

n

)
+ o

(
h4 +

h

m

)

where

CK =

1∫

−1

1∫

−1

|u−v|K(u)K(v)du dv = 2

1∫

−1

1∫

u

(v−u)K(u)K(v)du dv and dK =
∫

u2K(u) du

The asymptotic mean squared error is minimized by taking the bandwidth as
in the following corollary.

Corollary 3 Under the hypotheses of Theorem 2, if m/n = O(1) as n, m →
+∞, then the asymptotic mean squared error is minimized by taking the band-
width

h∗
x =

(
α(x)CK

2d2
K(f ′′(x))2

)1/3

m−1/3

Remark 4

5



(1) In example 1 of a Wiener error process with nonstationary covariance
ρ(x, y) = σ2 min(x, y), the asymptotic optimal bandwidth

h∗
x =

(
σ2CK

2d2
K(f ′′(x))2

)1/3

m−1/3

And the global optimal bandwidth is then:

h∗ =

(
CK

∫ 1
0 α(x) dx

2d2
K

∫ 1
0 (f ′′(x))2 dx

)1/3

m−1/3

(2) For a stationary error process with covariance ρ(x, y) = ρ(x − y) such as
the Ornstein-Uhlenbeck process, the jump function

α(x) = ρ(1)(0−) − ρ(1)(0+) = 2ρ(1)(0−)

is constant. Then

h∗
x =

(
ρ(1)(0−)CK

d2
K(f ′′(x))2

)1/3

m−1/3

which corresponds to the bandwidth given by Hart and Wehrly (1986).
(3) For the nonstationary covariance function ρ(x, y) = σ2ρ|xλ−yλ|/λ, where

the jump function α(x) = −2 ln(ρ), the optimal bandwidth is

h∗
x =

(
−

xλ−1 ln(ρ)CKσ2

d2
K(f ′′(x))2

)1/3

m−1/3

which corresponds to the bandwidth obtained by Ferreira et al. (1997).

It can be seen from the Corollary that the optimal bandwidth h∗ depends
on the covariance function along the diagonal through its derivative whereas
for the stationary error process, h∗ depends only on a single parameter which
represents the behavior of the derivative of the covariance function at the
origin. Therefore if the covariance is unknown or misspecified the effect on the
value of the optimal bandwidth would be more significant in the nonstationary
case than in the stationary case.

The asymptotic global bandwidth can be obtained by using a global error
measure of estimation such as the integrated mean squared error:

IMSE =

1∫

0

IE
(
f̂h(x) − f(x)

)2
dx
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Likewise, The asymptotic IMSE is minimized for:

h∗ =

(
CK

∫ 1
0 α(x)dx

2d2
K

∫ 1
0 (f ′′(x))2dx

)1/3

m−1/3

3 Smooth nonstationary error process

In this case the jump function α(x) = 0, ∀x ∈ [0, 1] The following theorem
gives the asymptotic expression for the mean squared error for smoother error
process.

Theorem 5 Assume that ρ satisfies the above assumption and f is a twice
differentiable continuous function on [0, 1] with f ′′(x) 6= 0, for 0 < x < 1, then
as n, m → +∞

IE
(
f̂h(x) − f(x)

)2
=

1

m

(
ρ(x, x) − ρ(0,2)(x, x) dKh2

)
+

h4

4
d2

K(f ′′(x))2

+O

(
1

mn
+

h2

n

)
+ o

(
h4 +

h2

m

)

The asymptotic optimal bandwidth is given by the following corollary.

Corollary 6 Under the hypotheses of Theorem 5, if m/n = O(1) as n, m →
+∞, then the asymptotic mean squared error is minimized by taking the band-
width

h∗
x =

(
2ρ(0,2)(x, x)

dK(f ′′(x))2

)1/2

m−1/2

In particular for a stationary error process ρ(0,2)(x, x) = −ρ′′(0), then

h∗
x =

(
−2ρ′′(0)

dK(f ′′(x))2

)1/2

m−1/2

The asymptotic optimal global bandwidth using the integrated mean square
criteria is:

h∗ =

(
2
∫ 1
0 ρ(0,2)(x, x)dx

dK

∫ 1
0 (f ′′(x))2dx

)1/2

m−1/2
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4 Simulation study

The data are generated from three different growth curves for different values
of the sample size n, the number of replications m, with 100 simulations for
each case.

• Linear growth curve: f(x) = 10(1 + x), 0 < x < 1.
• Cubic growth curve: f(x) = 10x3 − 15x4 + 6x5, 0 < x < 1.
• The growth curve studied by Ferreira et al. (1997): f(x) = x−0.5 exp(−80(x−

0.5)2), 0 < x < 1.

where the sampling points are taken to be xi = i/(n + 1), i = 1, . . . , n in the
interval [0, 1].

We consider the stationary error process with covariance function

ρ(t, s) = exp(−λ|t − s|), forλ > 0

The data are generated from the function f and the noise is a brownian motion
with unit variance and with variance equal 2.

The Epanechnikov kernel is used and is defined by:

K(u) = 0.75 (1 − u2) 1[−1,1](u)

First we study the performance of the estimator f̂h by considering the mean
and the median of all the estimations obtained from these 100 simulations for
estimating the three growth curves with different values of (n, m). For space
reasons, we only show the results for the median estimator. However, the same
conclusions are also true for the mean estimator.
The cross-validation procedure is used in each case in order to generate the
optimal bandwidth h, as explained in Remarks ?? and ??.
It can be seen in figures ??, 10, ?? that where there are no replications (m = 1),
the estimator has a very poor performance even for a sample size n = 100.
When there are sufficient number of replications available (m = 10, m =
50), the estimator has a better performance in estimating the three curves
f . Indeed, when the number of replications m increases, they become more
consistent, as shown in Theorems 2 and 5.

It should be noticed that this estimator suffers from boundary effects. To avoid
this, one can use for instance local polynomials, see Fan (1992) and Fan and
Gijbels (1996) instead of the ordinary kernel type of estimators.
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Fig. 1. Linear growth curve f is in plain line, the estimator f̂h is in dashed line for
n = 100, m ∈ {1, 10, 50} with unit variance of the error process
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Fig. 2. Linear growth curve f is in plain line, the estimator f̂h is in dashed line for
n = 100, m ∈ {1, 10, 50} with 2 as the variance of the error process
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Fig. 3. Quadratic growth curve f is in plain line, the estimator f̂h is in dashed line
for n = 100, m ∈ {1, 10, 50} with unit variance of the error process
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Fig. 4. Quadratic growth curve f is in plain line, the estimator f̂h is in dashed line
for n = 100, m ∈ {1, 10, 50} with 2 as the variance of the error process
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Fig. 5. Cubic growth curve f is in plain line, the estimator f̂h is in dashed line for
n = 100, m ∈ {1, 10, 50} with unit variance of the error process
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Fig. 6. Cubic growth curve f is in plain line, the estimator f̂h is in dashed line for
n = 100, m ∈ {1, 10, 50} with 2 as the unit variance of the error process
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Fig. 7. Linear growth curve f is in plain line, the estimator f̂h is in dashed line for
n = 100, m ∈ {1, 10, 50} with fractional brownian error process
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Fig. 8. Quadratic growth curve f is in plain line, the estimator f̂h is in dashed line
for n = 100, m ∈ {1, 10, 50} with fractional brownian error process
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Fig. 9. Cubic growth curve f is in plain line, the estimator f̂h is in dashed line for
n = 100, m ∈ {1, 10, 50} with fractional brownian error process

5 Proofs

Proof of Theorem 2

The mean squared error can be decomposed as usual in a bias term and a
variance term:

IE
(
f̂h(x) − f(x)

)2
= Bias2(f̂h(x)) + var(f̂h(x)). (1)

First, we study the asymptotic behaviour of the bias term. For this, we have
that

IE(f̂h(x)) =
1

n

n∑

i=1

Wh,i(x) IE(Ȳ (xi))
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where

IE(Ȳ (xi)) =
1

m

m∑

i=1

IE(Yj(xi)) = f(xi)

Then, from the Mean Value Theorem, and by a Taylor expansion of f around
x up to order 2

IE(f̂h(x)) =
1

n

n∑

i=1

Wh,i(x) f(xi)

=h−1
n∑

i=1

mi∫

mi−1

K
(

x − u

h

)
du f(xi)

=h−1
n∑

i=1

K

(
x − ξi

h

)
∆mi f(xi) where ∆mi = mi − mi−1

=h−1
∫

K
(

x − u

h

)
f(u) du + O

(
1

n

)

=
∫

K (v) f(x − hv) dv + O
(

1

n

)

= f(x)
∫

K (v) dv − h f ′(x)
∫

v K(v) dv

+
h2

2
f ′′(x)

∫
v2 K(v) dv + o(h2) + O

(
1

n

)

= f(x) +
h2

2
f ′′(x) dK + o(h2) + O

(
1

n

)

Thus

Bias(f̂h(x), f(x)) =
h2

2
f ′′(x) dK + O(h2) +

(
1

n

)

For the variance term, from the hypothesis that Yl are uncorrelated with the
same autocovariance, we have that

var(f̂h(x)) =
1

n2m2

n∑

i,j=1

Wh,i(x)Wh,j(x)
m∑

k,l=1

cov (Yk(xi), Yl(xj))

=
1

n2m2

n∑

i,j=1

Wh,i(x)Wh,j(x)
m∑

k=1

cov (Yk(xi), Yk(xj))

=
1

n2m

n∑

i,j=1

Wh,i(x)Wh,j(x)ρ (xi, xj)

=h−2n2(n2m)−1
n∑

i,j=1

mi∫

mi−1

mj∫

mj−1

K
(

x − u

h

)
K
(

x − v

h

)
du dv ρ (xi, xj)

= (mh2)−1
n∑

i,j=1

mi∫

mi−1

mj∫

mj−1

K
(

x − u

h

)
K
(

x − v

h

)
du dv ρ (xi, xj)
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In another hand, we have that

1∫

−1

1∫

−1

ρ(x − hu, x − hv) K(u) K(v) du dv

=h−2
n∑

i,j=1

mi∫

mi−1

mj∫

mj−1

K
(

x − u

h

)
K
(

x − v

h

)
ρ(u, v) du dv

For n sufficiently large, we obtain that

∣∣∣∣∣∣
var(f̂h(x)) − m−1

1∫

−1

1∫

−1

ρ(x − hu, x − hv) K(u) K(v) du dv

∣∣∣∣∣∣
(2)

≤ (mh2)−1
n∑

i,j=1

mi∫

mi−1

mj∫

mj−1

|ρ(xi, xj) − ρ(u, v)|K
(

x − u

h

)
K
(

x − v

h

)
du dv

We decompose the double summation as follows:

n∑

i,j=1

mi∫

mi−1

mj∫

mj−1

|ρ(xi, xj) − ρ(u, v)|K
(

x − u

h

)
K
(

x − v

h

)
(3)

=
n∑

i=1

mi∫

mi−1

mi∫

mi−1

|ρ(xi, xi) − ρ(u, v)|K
(

x − u

h

)
K
(

x − v

h

)
(4)

+
n∑

i,j=1

i6=j

mi∫

mi−1

mj∫

mj−1

|ρ(xi, xj) − ρ(u, v)|K
(

x − u

h

)
K
(

x − v

h

)
(5)

Concentrating first on the diagonal term (4), we have

(4) =
n∑

i=1




mi∫

mi−1

v∫

mi−1

+

mi∫

mi−1

mi∫

v


 |ρ(xi, xi) − ρ(u, v)|K

(
x − u

h

)
K
(

x − v

h

)

For mi−1 < u < v < mi, the Taylor expansion of the covariance function ρ
around (xi, xi) up to order 1 gives:

ρ(u, v) = ρ(xi, xi) + (v − xi)ρ
(0,1)(xi, ηi) + (u − xi)ρ

(1,0)(ξi, v)

where the intermediate points ξi, ηi are between xi, u and xi, v respectively.
Then

|ρ(xi, xi) − ρ(u, v)|≤ (|u − xi| + |v − xi|) sup
u6=v

∣∣∣ρ(0,1)(u, v)
∣∣∣

13



≤ sup
k

(∆mk) sup
u6=v

∣∣∣ρ(0,1)(u, v)
∣∣∣

≤
C

n

for some positive constant C.
Likewise for mi−1 < v < u < mi, we have

|ρ(xi, xi) − ρ(u, v)|≤
C

n

For the off-diagonal term (5), we use the Taylor expansion of the covariance
ρ around (xi, xj), i 6= j up to order two since ρ(u, v) is assumed to have twice
continuous derivatives for u 6= v.

ρ(u, v)= ρ(xi, xj) + (u − xi)ρ
(1,0)(xi, xj) + (u − xi)(v − xj)ρ

(1,1)(xi, ηj)

+
1

2
(u − xi)

2ρ(2,0)(ξi, v)

where the intermediate points ξi, ηi are between (xi, u) and (xj, v) respectively.
Then

|ρ(xi, xj) − ρ(u, v)|≤ |u − xi|A
(1,0) + |u − xi||v − xj|A

(1,1) +
1

2
(u − xi)

2A(2,0)

where
A(i,j) = sup

u6=v

∣∣∣ρ(i,j)(u, v)
∣∣∣ , 0 ≤ i + j ≤ 2.

Let B = max0≤i+j≤2 A(i,j), then

|ρ(xi, xj) − ρ(u, v)|≤B

(
1

2
sup

k
(∆mk) +

3

8
sup

k
(∆mk)

2

)

≤C
(

1

n
+ o

(
1

n

))

It follows from the diagonal and the off-diagonal terms that

(3)≤
C

n
(mh2)−1

n∑

i=1

n∑

j=1

mi∫

mi−1

mj∫

mj−1

K
(

x − u

h

)
K
(

x − v

h

)
du dv

≤
C

mn


h−1

1∫

0

K
(

x − u

h

)
du




2

= O
(

1

mn

)
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D1

D2

D3

−1

+1

−1 +1 u

v

Fig. 10.

Therefore

var(f̂h(x)) =m−1

1∫

−1

1∫

−1

ρ(x − hu, x − hv)K(u)K(v)dudv + O
(

1

mn

)

=2m−1

1∫

−1

1∫

u

ρ(x − hu, x − hv)K(u)K(v)dudv + O
(

1

mn

)

=2m−1
3∑

i=1

∫ ∫

Di

ρ(x − hu, x − hv)K(u)K(v)dudv + O
(

1

mn

)

where

D1 = {1 > v > 0 > u}, D2 = {1 > v > u > 0} and D3 = {0 > v > u > −1}

as shown in the figure

We expand the covariance function ρ along the diagonal (x, x) in each area
Di, i = 1, 2, 3.

• When (u, v) ∈ D1, we have:

ρ(x − hu, x − hv) = ρ(x, x) − huρ(1,0)(ηx, x) − hvρ(0,1)(x − hu, ξx)

15



when the intermediate points are such that: x < ηx < x− hu and x− hv <
ξx < x − hu. Moreover, using the assumptions on ρ, we have:

ρ(0,1)(x − hu, ξx) = ρ(0,1)(x, ξx) − huρ(1,1)(ξ′x, ξx)

where x − hv < ξx < x < ξ′x < x − hu, so that

ρ(x−hu, x−hv) = ρ(x, x)−huρ(0,1)(x, ηx)−hvρ(0,1)(x, ξx)+huvρ(1,1)(ξ′x, ξx)

Therefore as h → 0

ρ(x − hu, x − hv) − ρ(x, x)

h
= −uρ(0,1)(x, ηx) − vρ(0,1)(x, ξx) + uvρ(1,1)(ξ′x, ξx)

→−uρ(0,1)(x, x+) − vρ(0,1)(x, x−)

Using that A(1,1) = supu6=v

∣∣∣ρ(1,1)(u, v)
∣∣∣ < ∞

• When (u, v) ∈ D2: using appropriate expansions of ρ and skipping the de-
tails, we obtain:

ρ(x − hu, x − hv) = ρ(x, x) − huρ(0,1)(x, ηx) − hvρ(0,1)(x, ξx + hv)

+h2uv
[
ρ(1,1)(ξx + hv, η′

x) + ρ(2,0)(ξ′x, x − hv)
]

→−uρ(0,1)(x, x+) − vρ(0,1)(x, x−)

where the intermediate points satisfy:

x − hv < ξx < ξ′x < ξx + hv and x − hv < η′
x < x < ηx + hv.

And thus using A(i,j) = supu6=v

∣∣∣ρ(i,j)(u, v)
∣∣∣ < ∞, we have as h → 0

ρ(x − hu, x − hv) − ρ(x, x)

h
→−vρ(0,1)(x, x−) − uρ(0,1)(x, x+)

• Finally, when (u, v) ∈ D3, we obtain:

ρ(x − hu, x − hv) = ρ(x, x) − huρ(0,1)(x, ηx) − hvρ(0,1)(x, ξx + hu)

+huv
[
ρ(1,1)(ξ′x, ξx + hu) + ρ(0,2)(x − hu, ξ′x)

]

→−uρ(0,1)(x, x+) − vρ(0,1)(x, x−)

and thus, as h → 0

ρ(x − hu, x − hv) − ρ(x, x)

h
→−vρ(0,1)(x, x−) − uρ(0,1)(x, x+)

where the intermediate points are such that:

ξx + hu < x < ξ′x < ξx < x − hu and x + hu < x < η′
x < x − hu.
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Therefore

1∫

−1

1∫

u

ρ(x − hu, x − hv)K(u)K(v)dudv

= h

1∫

−1

1∫

u

ρ(x − hu, x − hv) − ρ(x, x)

h
K(u)K(v)dudv

= −ρ(0,1)(x, x−)
3∑

i=1

∫ ∫

Di

vK(u)K(v)dudv − ρ(0,1)(x, x+)
3∑

i=1

∫ ∫

Di

uK(u)K(v)dudv + o(h)

= −ρ(0,1)(x, x−)A− − ρ(0,1)(x, x+)A+ + o(h)

Lemma 7

A− = −A+ =
1

4
CK

where

Ck =

1∫

−1

1∫

−1

|u − v|K(u)K(v)dudv

From the Lemma, we obtain:

1∫

−1

1∫

u

ρ(x − hu, x − hv)K(u)K(v)dudv

=
1

2
ρ(x, x) − h

(
ρ(0,1)(x, x−) − ρ(0,1)(x, x+)

) 1

4
CK + o(h)

and thus

var(f̂h(x)) =
1

m

(
ρ(x, x) −

1

2
α(x)CKh

)
+ o

(
h

m

)
+ O

(
1

mn

)

and the result of Theorem 2 is established from the decomposition (3).

Proof of Theorem 5

The covariance function ρ is assumed to have at least twice continuous mixed
partial derivatives with ρ(i,j)(x, x) 6= 0, i + j = 2. Then we can expand ρ
around (x, x) up to order 2 as follows:

ρ(x − hu, x − hv) = ρ(x, x) − huρ(1,0)(x, x) − hvρ(0,1)(x, x)
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+h2uvρ(1,1)(ξ1
x, x) +

1

2
h2u2ρ(2,0)(ξ2

x, x)

+
1

2
h2v2ρ(0,2)(x − hu, ηx)

when the intermediate points ξ1
x, ξ2

x are between x and x − hu, and ηx is be-
tween x and x − hv.
Since supu6=v

∣∣∣ρ(i,j)(u, v)
∣∣∣ < ∞, i + j = 2, we have from the dominated conver-

gence Theorem that:

1∫

−1

1∫

−1

ρ(x − hu, x − hv)K(u)K(v)dudv

= ρ(x, x) − 2hρ(0,1)(x, x)

1∫

−1

1∫

−1

uK(u)K(v)dudv

+h2ρ(1,1)(x, x)

1∫

−1

1∫

−1

uvK(u)K(v)dudv

+
1

2
h2ρ(2,0)(x, x)

1∫

−1

1∫

−1

u2K(u)K(v)dudv

+
1

2
h2ρ(0,2)(x, x)

1∫

−1

1∫

−1

v2K(u)K(v)dudv + o(h2)

Since the kernel K is symmetric around 0, we obtain

1∫

−1

1∫

−1

ρ(x − hu, x − hv)K(u)K(v)dudv = ρ(x, x) + h2ρ(0,2)(x, x)dK + o(h2)

Therefore we have

var
(
f̂h(x)

)
=

1

m

(
ρ(x, x) + h2ρ(0,2)(x, x)dK

)
+ o

(
h2

m

)
+ O

(
1

mn

)

and the result of Theorem 5 follows from the decomposition (3).
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