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Abstract f-expansions and ultimately periodic
representations

par MICHEL RIGO et WOLFGANG STEINER

RESUME. Pour les systémes de numération abstraits construits
sur des langages réguliers exponentiels (comme par exemple, ceux
provenant des substitutions), nous montrons que Iensemble des
nombres réels possédant une représentation ultimement périodique
est Q(B) lorsque la valeur propre dominante 5 > 1 de 'automate
acceptant le langage est un nombre de Pisot. De plus, si 3 n’est
ni un nombre de Pisot, ni un nombre de Salem, alors il existe
des points de Q(f) n’ayant aucune représentation ultimement
périodique.

ABSTRACT. For abstract numeration systems built on exponen-
tial regular languages (including those coming from substitutions),
we show that the set of real numbers having an ultimately periodic
representation is Q(3) if the dominating eigenvalue 8 > 1 of the
automaton accepting the language is a Pisot number. Moreover,
if 3 is neither a Pisot nor a Salem number, then there exist points
in Q(6) which do not have any ultimately periodic representation.

1. Introduction

In [, abstract numeration systems on regular languages have been in-
troduced. They generalize in a natural way a large variety of classical
positional systems like the g-ary system or the Fibonacci system: each
nonnegative integer n is represented by the nth word of an ordered infinite
regular language L. For instance, considering the natural ordering of the
digits, the genealogical enumeration of the words belonging to the language
L={0}u{l,...,¢—1}{0,...,q—1}* (resp. L = {0,1}U{10}{10,0}*{A,1})
leads back to the g-ary (resp. the Fibonacci) system. Later on, this setting
has been extended to allow the representation of real numbers as well as of
integers.

Various notions appearing in number theory, in formal languages theory
or in the analysis of algorithms depend on how numbers are represented.
So these abstract systems have led to new nontrivial applications. To cite
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just a few: the characterization of the so-called recognizable sets of inte-
gers, the investigation of the dynamical and topological properties of the
“odometers” or the study of the asymptotic behavior of the corresponding
“sum-of-digits” function.

As we will see, it turns out that this way of representing real numbers is
a quite natural generalization of Rényi’s 3-expansions [[[1]. More precisely,
the primitive automata lead to the representations of real numbers based
on substitutions introduced by Dumont and Thomas [[f]. The nonprimitive
automata provide new numeration systems.

Real numbers having an ultimately periodic representation deserve a
special attention. Indeed, for the g-ary system, these numbers are exactly
the rational numbers. More generally, the set of ultimately periodic rep-
resentations is dense in the set of all the admissible representations and
therefore this rises number-theoretic questions like the approximation of
real numbers by numbers having ultimately periodic expansions.

On the one hand, for Rényi’s classical S-expansions it is well-known that
the set of real numbers with ultimately periodic representation is Q(0)
whenever 3 is a Pisot number [, [3]. On the other hand, for abstract
numeration systems, the algebraic structure of this set was unknown. A
first attempt to solve this problem is done in [B] where it is shown that a real
number has an ultimately periodic representation if it is the fixed point of
the composition of some affine functions depending only on the automaton
of the abstract system. Even if this latter result gives some insights about
those generalized [-expansions, the algebraic structure of the set was still
to determine.

To any regular language, is associated in a canonical way its minimal
automaton and consequently some adjacency matrix. We can therefore
speak of the eigenvalues of an automaton, the corresponding adjacency
matrix being considered. The present paper studies abstract numeration
systems having the following property: the dominating eigenvalue g > 1
of the minimal (trimmed) automaton of the regular language on which the
system is built, is a Pisot number. Thus we settle the problem of describing
the set of real numbers with ultimately periodic representation by obtaining
an analogue of a theorem found independently by Bertrand [fl] and Schmidt
(). Note that our result restricted to classical S-expansions gives back a
new short and intuitive proof for this case. Moreover, we show that if 3 is
neither a Pisot nor a Salem number then there exists at least one point in
Q(B) which does not have any ultimately periodic representation.

This paper is organized as follows. In Section [}, we recall all the neces-
sary material about abstract numeration systems. In Section f, we state
precisely the results which are proved in Section [|. Finally, Section f is
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devoted to some examples which we hope could provide a better under-
standing of the key algorithm involved in the proof of our main result.

2. Preliminaries

Let (X,<) be a finite and totally ordered alphabet. We denote by ¥*
the free monoid generated by X for the concatenation product. The neutral
element is A and the length of a word w € ¥* is denoted |w|. Recall that
if u and v are two words over (X, <), then u is genealogically less than v if
either |u| < |v| or |u| = |v| and there exist p,u/,v" € 3*, s,t € ¥ such that
u = psu/, v = ptv’ and s < t. In this case, we write u <gen v or simply
u < v. In the literature, one also finds the term military ordering. This
ordering is naturally extended to the set X* of all the infinite words over
> by the lexicographical ordering.

Let L be an infinite regular language over (3, <). The words of L can
be enumerated by increasing genealogical ordering leading to a one-to-one
correspondence between N and L. We say that S = (L, X, <) is an abstract
numeration system. If w is the nth word of the genealogically ordered lan-
guage L for some n € N (positions inside L are counted from 0), then we
write val(w) = n and we say that w is the representation of n or that n is the
numerical value of w (the abstract numeration system .S being understood).
This way of representing nonnegative integers has been first introduced in
[ and generalizes classical numeration systems like the positional systems
built over linear recurrent sequences of integers whose characteristic poly-
nomial is the minimal polynomial of a Pisot number [J].

Under some natural assumptions on L, not only integers but also real
numbers can be represented using infinite words [§]. We briefly present
notation used throughout this paper. The minimal automaton of L is
M = (Q,q0, %, 7, F) where @Q is the set of states, ¢o € @ the initial
state, 7 : Q X ¥ — (@ the transition function and F' C () the set of final
states. The function 7 is naturally extended to @ x ¥* by 7(¢,A) = ¢ and
7(q, sw) = 7(7(q,8),w) where ¢ € Q, s € ¥ and w € X*. We refer the
reader to [fl] for more about automata theory. For ¢ € Q and n € N, we
denote by u,(n) the number of words of length n accepted from ¢ in M,
ie.,

u,(n) =#{we X" | 7(q,w) € F}

and by v4(n) the number of words of length at most n accepted from g,
vg(n) = D7 jug(i). Observe in particular that ug,(n) = #(L NX") is the
growth function of L.

In this paper, we assume that L has the following properties (again we
refer to [§] for details). There exist 3 > 1 and P € R[x] such that for all
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states ¢ € @), there exist some nonnegative real number a, such that

I pg =

Moreover, w.l.o.g., we assume that a4, =1 — % (indeed, if ag, differs from

1— % then we replace the polynomial P with 1(1_%1 P). Clearly 8 > 1 is the
]

dominant eigenvalue of the automaton My. (In order to relate 5 to the
growth of L, M is assumed to be trim, i.e., it is accessible and coaccessible,
and in particular 7 could possibly be a partial function). We denote by x 3
the minimal polynomial of 3,

xp(z) = 2% — bzt — a2 — ... —bg_yx — by € Zlz].

The set L is defined as the set of infinite words which are limit of
the converging sequences of words in L (we use the usual infinite product
topology on X¥). If (p;);j>0 € LY converges to an infinite word w € Lo
then it is well-known that the limit

lim 7\/&1(% )

300 Vo ([p;1)
exists. Its value will be denoted valy (w) and we say that w is a representa-
tion of vals (w) or conversely that vals(w) is the numerical value of w. In
this setting, we are able to represent all the numbers lying in the interval
[1/5,1]. Moreover, the representation of a real number z € [1/3,1] is not

necessarily unique; we denote by rep(x) the set of words in L, representing
x, i.e.,

rep(z) = {w € Lo | valoo(w) = z}.
Note that this situation even occurs for classical numeration systems. For
instance in base ten, rep(2/10) = {.2(0)*,.1(9)*}. Denote by W the set of

words of length ¢ which are prefix of an infinite number of words in L —
they are prefix of at least one element in L. If u € W, then we denote

Xy ={we Ly | v e w=uv}.

If [t| =1, i.e., if t is a letter in W, then the set of real numbers having a
representation starting with ¢ is

(2.1)  valoo(Xy) = —+ 3 T(qu Ly S Grlwe) | . p,

z<t,zE€W1 B z<t,zeW1 ﬂ
which is an interval of length a, /3. Note that

n) - Zur(q,t) (n - 1)

tex
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(where the sum runs over those t for which 7(q,t) exists) and therefore

(2.2) 4= %

tes,
(¢,t)edom T
When looking at the real numbers represented by a word which has a prefix
in W, starting with the letter ¢, the interval I; is then divided into smaller
intervals: one interval for each letter s such that ts € W,. This procedure
of dividing intervals is repeated and one can obtain the numerical value of
an infinite word w = (w;);j>1 € L as

oo
(2.3) valso (w) = % + Z Z ageq 377
J=1qeqQ
with
(2.4) €qj ‘= #{S < wj ‘ T(Qo,wl s wj_ls) = q}.
A detailed proof of this formula can be found in [}, Corollary 7] (where the
notation is slightly different and ag, is assumed to be 1).
The longer the known prefix of a representation of a real number is, the

more accurate the approximation of this number is. Precisely, if u is a word
of length ¢ > 1 then it can be shown that val,(X,) is equal to

1 a 1 a
(2.5) 5+ - % 5+ % — 1,
z<u,zEWy z<u,zEWp

since, for u = uy - - - uy € Wy, we have

‘
Or(qo,2) _ Ar(go,u1-uj_1t)
z<u,Zz;W4 ﬂg jzl tgi, ﬂ]

up-uj_1teEW;

Finally, if M C 3“ we denote by uper(M) the set of words in M which
are ultimately periodic. This means that w € uper(M) if and only if there
exist u,v € ¥*, v # X such that w = u(v)*.

As usual, we denote by Q(8) the smallest field containing Q and f.
Since 3 is algebraic and of degree d, we have Q(5) = Q[f] and every
element of Q(/3) can be decomposed as = = 25:1 z; 37" with z; € Q. We
write £ = .x1...x4. We assume that the reader is familiar with classical
[-expansions, see for instance [, [[d, [d]]. Note that we always refer to
the f-expansions computed through the greedy algorithm. Recall that the
greedy (-expansion of a number is the maximal one for the lexicographical
order. In this way, if § is a Pisot number, then the usual §-expansions can
be seen as a special case of the more abstract representations considered
here (see [f], Section 9])
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We denote by Lg the set of infinite words which are the (-expansions
of the real numbers in [0,1), therefore uper(Lg) is the set of real numbers
with ultimately periodic G-expansion.

3. Results
In this paper, we will show the following results.

Proposition 3.1. Let S = (L,X,<) be an abstract numeration system
satisfying the assumptions given in Section }. For every w € uper(Lo), we
have

valoo (w) € Q(B) N [1/5,1].
The converse holds when (3 is a Pisot number.

Theorem 3.1. Let S = (L, X, <) be an abstract numeration system sat-
isfying the assumptions given in Section [3. If 8 is a Pisot number, then
every x € Q(B)N[1/8,1] is the numerical value of some ultimately periodic
word w, i.e.,

rep(z) Nuper(Ls) # 0 for all x € Q(B)N[1/3,1].
In particular, the lexicographically maximal word w € rep(z) is ultimately
periodic.
Proposition 3.2. Let S = (L,X,<) be an abstract numeration system
satisfying the assumptions given in Section [3. If B is neither a Pisot nor

a Salem number, then we have some x in Q(B) N [1/5,1] with rep(z) N
uper(Lo) = 0.
For classical S-numeration systems, we have the following.

Corollary 3.1 (Bertrand [fl], Schmidt [[J]). If 8 > 1 is a Pisot number,
then

wper(Lg) = Q(8) N [0,1).
If B is neither a Pisot nor a Salem number, then

Q(B) N[0,1) Z uper(Lg).
Remark. In Corollary B.1, the interval is different from [%, 1], in order
to state the result in the usual way. Indeed, the (-expansion of =z €
[3~™~1,37™) for some m > 1 is obtained by placing m zeroes in front
of the expansion of /™« (and the (-expansion of 0 is .0¥).

Similarly, we can represent each number € R in our system by shifting
the representations of [1/3,1]. For instance, we can define

Valgo(’l,U1 C Wi Wi 1 Wimt2 * * ) = ﬁm Valoo(wlw2 N )

and
Valgo(omwle e ) = /B_m Valoo(wlw2 e )7

where, in case 0 is a letter of the alphabet, 0 must not be accepted from gq.
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4. Proofs of the results
We will need a small lemma.
Lemma 4.1. We have a; € Q(B) for all g € Q.

Proof. Applying (R-2) for all ¢ € @ provides a system of linear equations for
the a,’s. It is easily seen that the solutions of this system are exactly the
eigenvectors of the automaton M, to the eigenvalue 3. If the eigenspace for
B has dimension 1, then the solution is entirely determined by aq, =1 — %
and has clearly elements in Q(f3).

If the eigenspace has larger dimension, then observe that the number of
paths from ¢ to ¢’ of length n, my y(n), is the element (¢,¢") of A™, where
A denotes the adjacency matrix of the automaton. Hence m o, (n) satisfies
a linear recurrence with characteristic polynomial equal to that of A and
is therefore of the form mg o (n) = P,y (n)B" + --- for some polynomial
P,y € Q(8)[x] (indeed, since my o (n) € Z, one can easily show using some
reasoning about generating functions that P, , € Q(f5)[x]). We clearly have

. Zq’EF Mg,q(N) . 1 Zq’eF Pyg(n)+---
=lim = ——— " = lim (1-—= ,
n—oo P(n)p" n—00 B Zq/EF P (n) + -

where the other terms can be neglected even if we have other eigenvalues of
modulus (8 because we have assumed that this limit exists. Hence we have

aq € Q(B). O
Proof of Propositiontefpper. Let w = (wj);>1 € uper(Ls). By (R.3), we

have
JR :
valoo (w) = 3 + Z Z aqeq, ;077
J=1qeqQ
with ultimately periodic sequences (€4,;);>1 and, with Lemma [.1], the first
statement is proved. More details on the periodicity of (e4;);>1 are given

in [f]. O

Proof of Theoremtefmt. The sketch of the proof is the following.

Qq

(A) We show that representing a real number in an abstract system can
be viewed as a generalization of the classical S-transformation.

(B) We derive an algorithm to compute the representation of a given real
number.

(C) Using this algorithm, we obtain the expected result. Note that we
use the fact that 3 is a Pisot number only in this last part. The first
two parts are independent of the algebraic properties of (.

(A) Let z € Q(B) N [1/5,1] and w = (w;);>1 be the lexicographically
maximal word in rep(x).



8 Michel R1co, Wolfgang STEINER

For g € Q and t € X, set

ag(t) :=>_ (ag-#{s <t|7(q,5) =q})
9'eQ
Then from (R.3), (.4) and the definition of the oy (t)’s and €, s, we have

o0
(4.1) valoo (w) = (1 + gy (w1)) B + ) (oo ;1) (W) B

j=2
Remark. Let us make a small digression about the classical S-numeration
systems. If the -expansion of 1 is finite or ultimately periodic (which in
particular is true when 3 is a Pisot number) then the $-shift is sofic. The
set of factors appearing in Lg is a regular language and the deterministic
finite automaton M g recognizing this language has a very special form and
is depicted in Figure [l:

Let ty -ty or t1 - ty—p(tm—pt1---tm)* be the expansion of 1. Then
the set of states of Mg is {1,...,m}, 1 is the initial state, all states are
final and the alphabet of digits is ¥ = {0,..., |3]}. Forevery j, 1 <j <m,
we have t; edges j — 1 labelled by 0,...,¢; — 1 and, for j < m, one edge
Jj — j + 1labelled by ¢;. If the expansion of 1 is ultimately periodic, then we
have an additional edge m — m — p + 1 labelled by t,,,. (See for instance

B

O byper 1

FIGURE 1. The automaton Mg in the ultimately periodic case.

Since, for abstract systems, leading zeroes may change the value of the
words in the language (indeed for the genealogical ordering v < 0"v and
therefore these two words lead to different numerical values), we need an
automaton MIB which differs slightly from Mg by adding a state go which
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is dedicated to be the initial state of this new automaton and forbids the
reading of an initial zero. More precisely, we add ¢; — 1 edges g9 — 1
labelled by 1,...,#; — 1 and one edge gy — 2 labelled by ;. (See [g] and
Example [{.)

For the automaton M%, we have ¢, ; = 0 for all ¢ # 1 and a3 = 1. So
(£.1)) has the form

T = (1 + 6171)ﬂ_1 + Zel’jﬂ_j'

j=2
The digits €1 ; are obtained by the 3-transformation
Ty :[0,1) = [0,1) : y — By — | By].
We have €1 ; = LﬁTéfl(:v — Y] for all j > 1.

Now, we go back to the general case. Let £ > 0. If v € Wy, the interval
I, given in (R.5) can be split into intervals I,¢, t € 3. Clearly, if |I| denotes
the length of I then |ly|/|l] = ar(g9vt)/(Bar(g)). Roughly speaking,
this is the reason why we will multiply all quantities by 5. Therefore if a
real number has a representation beginning with v then it is quite easy to
determine the next letter ¢ in the representation by determining to which
interval I, it belongs. To that end, we compare with the a,(g)’s, t € X,
after multiplication by §. In a more precise way, to obtain a generalization
of the p-transformation, we set

[yl = max{ag(s) | s € 5, aq(s) <y}

and

Tsq: [0,a4] — [0,max{ay | ¢ =7(q,s),s € B} : y— By — |Bylq.

(B) For z € Q(f), we have

x x
x:.xl...xd:—l—l—---—i——dwithxke@.

g g

Starting with this expansion of x, we will calculate iteratively the sequence
(wj)j>1. During those computations we denote by ¢; the state of Mg
obtained at the jth step of the procedure: ¢; = 7(gj—1,w;). For j =1, we
start with the initial state qo.
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As a first step, we set xgd) = xl,wgd_l) = Zo,... ,x&l) = x4. Then let
inductively for j > 1,
x§d+1) = x§d) + 25
(d) (d-1) _
Tjt1 = T Zj,1
,I(d_l) o x(d—Z) .
@  _
x{fsdfl = Tirg1— Fhd-1
Tivd = TZjd
with
d
=18 =1 — (@ = 1) = 211210 € Q(B),
wi; = max{s € ¥ | ag(s) = xgdﬂ) -1}
and for j > 2

d d—1 1 d
2= o\l ) =2l = g € Q)

(d+1)y

(4.3) w; = max{s € ¥ | ag;_,(s) = z;

It is easy to check that

d 1) d) 1
§J21"'x§‘+d_ quj—l('xE "'xﬁd*l)

T
Indeed, as explained earlier, we have first to multiply .x§d) e ﬁ) de1
(which determines the position of x in the interval l,..o;_,) by B and

therefore we consider xg»d).xg(_ﬁl) e xglﬁ 4—1- In order to retrieve the next
letter w; in the representation, this latter quantity has to be compared with
the oy, (t)’s, t € . Since we are looking for the lexicographically maximal
word in rep(z), we consider (£.J).

We clearly have

X

= .xgd) . --x&l) = .wgdﬂ)mgd) . ..ngzl — ...
= .x§d+1) . x§d+1)x§?1 . xﬁd — = .x§d+1)x§d+1) e
With
Z; :Lxg-d).xﬁ_ll) e xﬁ)d_lj — x§d)
BT N IR
and

Aq(y) = lylg = Lyl = - Aga(y) - Agaly) € QD)
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the z;;’s are given by

B B A N o o SR B

Za = (Lo iy Tt
(4.4)
bi (d-1) bi (@) (d-1)
A ot Bd—1"%j+d-1 " {o; iy J+d 1}bi

d d—1 1
gyl el ),

where we have used y = .(yb1) - - - (ybg) in the first line and |y| = y — {y}
in the second one.

Remark. In the special case of classical g-numeration systems, we have
ly]q = ly], hence Ay(y) = 0, the z;’s are rational numbers and z;; = z;b;.

(C) Thus from (f.9) and ({.4), we get

2@ 0 1-% % - g4 2
]+
CS) _b _ by . : (d 1)
]+2 0 8 1 52 ’ L1
: = : : _ b‘f[Q :
: : . . G :
(2) : . (2
ij(rfgfl : : 1= g‘ffll xﬁ)diz
Litd 0 —%d e e 62 Titrd—1
d d—1 1
b1 Aq];hl(xg‘ )'x§'+1 ). $§-+)d,1)
(d) (d-1) . .
+{z; 7w ]+d gl - :
(d) .(d—1) (1)
ba Agyyal@; @iy owly )
i.e., the xg»i)’s satisfy a linear recurrence up to two terms which are bounded
befa)us? | Aq(y) takes only finitely many values and
d—1
{xj Tjp1 - ]+d <1

Denote the above matrix by M. We claim that its eigenvalues are 0 and
the conjugates of 3, which we denote by (s, ..., 4. To prove this, we show
that vi = (1,0,...,0)" and

= (B b2 4 0BT 4 by, ba1 BT+ b B b2,

2 <1 < d, are right eigenvectors.
For vy, this is obvious. For 2 < i < d, note that the 3;’s are roots of

(4.5) 9;6_(366) :xd_l—i—(ﬁ—bl) d-2 (ﬁd 1 5d_2—'--—bd71)-
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The k-th element of Mv;, 2 <i <d, is given by

b b
N

+ (be B bdﬂf‘l)-

Since 1 = .by ...bg, we have %+-- + /3d o =p1 B2 — e — by,
2 </{<d, and
(Mv;), = — bk((ﬁ —b)B R4 (B T bd71)>

b1 BT 4 baBE
And finally, since (3; is a root of ([L.§), we have
(Mvi)e = b3 + b1 B2+ + 0B85 = Bi(vide

Now, if § is a Pisot number, then the eigenvalues 3; have modulus smaller
than some p < 1. We clearly have

d
z) 24 by
j i d—1
=M +Z{ §c+1)" k+d MR
(1) 1)
j+d xgl bd
(d) , (d-1) (1)
J ' Agalmy @y’ iy q) d
-yt : DR
k=1 =1

d—1 1
A%‘flvd(xl(c : wgcﬂ . EcJZd 1)

with |y1,;] < ¢ for j > 1 and some constant ¢ and

1
I—p

il < ol Bl + (1B ™!+ +1) < ci— +e
for 2 < ¢ < d, some constants ¢; and all j > J(¢). These bounds are
obtained by considering the decomposition as sum of v;’s of the various
vectors appearing in the above formula.

Hence (xg»c_?l, e ,xﬁ:d) is bounded. By the first line of (f£4), we see that

the z;;’s are rational numbers and the denominator of z;; divides the least

common multiple of the denominator of xg.d) and that of all Ay ;(y)’s (which
are only finitely many). So we get inductively that the z;;’s and the xg.i)’s
with ¢ < d are rational numbers with bounded denominator. Thus we have
only finitely many possibilities for (565»021, ey 52 4> 4j—1) and this sequence
is ultimately periodic. Since w; is determined by this vector (see formula

([£.3)), the sequence (w;);>1 is ultimately periodic too. O
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Remark. In the statement of Theorem B.1], the lexicographically maximal
word w € rep(x) is said to be ultimately periodic. Note that we have more
than one representation of z if and only if z is in Loy oy w; and Ly _ys
for some j and s < w;. This means that x is the left boundary of Ly oy w;
and the right boundary of Iy;,....;;_;s. It is easy to see that the lexicographi-
cally minimal representation of each boundary point is ultimately periodic.
Hence the lexicographically lexicographically minimal word in w € rep(z)
is ultimately periodic too.

If ay # 0 for all ¢ € @, then the lexicographically minimal and maximal
words are the only elements in rep(z). If a; = 0 for some ¢ € @, then we
may have uncountably many representations of z and some of them can be
aperiodic.

Proof of Proposition [3.3. We use the same notation as in the proof of The-
orem B.I]. Since 3 is neither Pisot nor Salem, let, w.l.o.g., |B2] > 1. We
have to find some x such that v 1 satisfies

V21| < |y2,1lB2] — 2,

because this implies |y22| > 72,1/, hence |y22| < |[y2,2]|82| — ¢2 and, induc-
tively,
2.1l < haal <lysl <

e ©

Then the sequence ( PSPy ’ijrd) is aperiodic and the sequence (w;);>1 as
well. Furthermore, (xﬁ)l, . ,xﬁ)d) # 0 for all j > 0 implies that (w;);>1

is the only representation of z. Indeed, by Remark [}, = is the left boundary
point of an interval I, ...,; for some j > 1 if x has more than one represen-

tation, but this implies .a:g.c_?l e xglﬁd = 0 and thus (xg.c_?l, e ,xﬁ:d) =0.

To show that an z with sufficiently large 721 exists, we observe first

that, if we change the value of xgd), then we only change 71,1, but not

the other 7;;. Clearly we have for every choice of (xgd_l),...,a:g)) an

xgd) € Q such that .xgd) . --xél) € [1/6,1]. Finally, since the vi,...,vy
(respectively the real and imaginary parts) form a basis of R?, we have

points (xgd), . ,xg)) € Q7 with arbitrarily large V2,1 O

5. Examples

In this section, we consider two examples. The first one shows a run
of the algorithm introduced in the proof of Theorem B.1] for a numeration
system built upon an arbitrary regular language. In the second one, we
just present the Fibonacci system in this general setting.

Example. Consider the alphabet {a < b < ¢} and the language accepted
by the automaton depicted in Fig. fl. The states are denoted 1, 2 and 3.
The initial state is 1 and the set of final states is {2, 3}.
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FIGURE 2. A trim minimal automaton.

The adjacency matrix of My, is

— =N
O O =
O = O

and we denote by (3 its dominating eigenvalue which is the real root of
xp(z) = 23 — 222 — 2 — 1 and a Pisot number (3 ~ 2.5468). By definition,
we have a3 =1 —1/4 (~0.6074) and it is easy to see that

11
a3:%—6 G (= 02385),
az = al;% - % —% (~ 0.3321).

The interval [1/3,1] is split into three intervals I,, I, and I, of respective

lengths a1 /8, az/B and a1 /B. Let = 2/3— 8/8% — 2/3% (~ 0.4975). We
denote by (w;);>1 the maximal representation of z. Since

(0.3926 ~) % <z < — 3 + E (~0.6311),

we have wy = a and ¢; = 1. The interval I, is divided into .4, I, and I,
of length respectively a; /32, a2/62 and a1/52 Since

1 a1+ az
0.4863 - + ————= (~0.5375),
( ~) 3 ﬁQ <3 52 ( )
we have wo = b and qo = 2. Now, I, = I,p, U I, and these latter intervals
are of length a3 /3% and al/ﬂg. Here

1 as
0.4863 <z < +—+— 0.5007
(04863 ) 4 55 <2 < 4 g + g5 (= 0.5007),
thus ws = a and g3 = 3. Since there is only one edge from state 3, we have
Iaba = labac, W4 = C and qa = 1. As a last step, Iabac = abacaUIabachIabacc
and the corresponding lengths are a1/3°, a2/3° and a;/B3° respectively.
Here,

1 1
(04951 ~) — + D T2 2, 4, mFdata

Sttt 5+ > ~ 0.5007),
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so ws = ¢ and g5 = 1. To show the periodicity of the representation of =z,
one has to observe that ¢; = ¢5 and the relative position of x inside I, is
the same as the position of x inside I pgec:

t—1/8 x—-1/8—-a1/8%— (a1 +a2)/3°
a1/ ay /@
Hence x = valy(a(bacc)?).
Now we consider the algorithm and notation of the proof of Theorem B.1:
d =3, (b1,b2,b3) = (2,1,1), x = .z170203 = .%(—g)(—%). First, by defini-
tion of the a,(t)’s, we have

az(a) =0, a1(b) = a1, a1(c) = a1+az, az(a) =0, az(b) = asz, ag(c) =0.
As initialization step we set xgs) = %,azg) = —g,xgl) = —% and gg = 1.

For j =1, we have

a= e =1 - G — ) = arf@) -5 =5 = (—S) (%) (‘%)

because of 0 = a1 (a) < fzr —1 < ay(b) = f — 1 and the first step gives

@w_9_ 4_ w__06.8_ 2 o 2 4 2 o_1
1S5 5T 5755 78 5T5=5 T Ty
wy =aand ¢ =7(1,a) = 1.
For j = 2, we have
3) (2) (1 3 2 3 1 133

s = Lo a i el = ea ) - £ =5 - 5 = 555
because of 1 — 1/ = a1(b) < x;?’).ng)xil) = %%% < ai(c) =1-1/8,
hence
@w_2,3 1_ o _2_1_1 o 4 3 1 o__3
R A A A S 5’

we =band ¢ = 7(1,b) = 2.
For j = 3, we have

1 1 2 1 1
2 = 2§ a2 |2 —af) = az(0) - - = 2 =. (‘5) (‘3) (‘5)

3) (2) (1
§ 2Pl = L1(-2) < az(b) =1/8— 1/5* and
@ 1 1 @ 1 2 3 (9 3 1 2 o 1
- - — - = 0 = - —- = — = —— —_ = g
T TETE 0T T T 575 5% T
wg =a and q3 = 7(2,a) = 3.
For j = 4, we only have the possibility w4 = ¢, g4 = 1, because of g3 = 3.

Thus 25 =~ = ~2 = (=2)(~$)(-3) and

because of 0 = az(a) < =z

4 3 2 6 4 2
xi)ZO, xé):—g—i—g:g, xé):



16 Michel R1co, Wolfgang STEINER
Finally for j = 5, we have

25 = Lo g2t |2 — of) = () -

Ol o~
|
o] =
|
F =
I
(G20 )
| =
/T\
[GA TN
~_

because of 1 —1/3% = as(c) < xég).xg)xgl) =222 <Bay =p—1and
@ 4 1 1 @ 4 2 2 @9 3 1 2 @ 4
BTETE E M TEE TR T 5Ty T

ws =cand g5 =7(1,¢) = 1.
Hence we have (xgg),xi(f),xfll)) = (xég),xg),xél)) and ¢; = ¢5. This
clearly implies that the sequence is ultimately periodic, wiws - - - = a(bacc)®

and x = .1(a100(a1 + a2))v.

Example. Here we consider the classical Fibonacci system. If g is the

golden ratio 1+T\/§, then we get the automaton depicted in Fig. B This

QL -t ®

FicURE 3. The automaton MIB

automaton has two parts: an initial state gg where the digit 0 is not accepted
and the usual automaton given by the states 1 and 2 where the factor 11
is not accepted. In this setting, ag, =1 —1/8 = 1/3% implies

1
az = g8 = —

B

a1:a2ﬁzl

The reader can check that the usual Rényi’s B-expansion of a real number
x € [1/0,1) coincides with the representation computed by the algorithm
given in the proof of Theorem B.1.
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