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ASYMPTOTIC OPTIMALITY OF THE BAYES ESTIMATOR ON

DIFFERENTIABLE IN QUADRATIC MEAN MODELS

ROUDOLF IASNOGORODSKI AND HUGO LHÉRITIER

Abstract. This paper deals with the study of the Bayes estimator’s asymp-
totic properties on Differentiable in Quadratic Mean (DQM) models in the case
of independent and identically distributed observations. The investigation is
led in order to define weak assumptions on the model under which this estima-
tor is asymptotically efficient, regular and asymptotically of minimal risk. The
results of the paper are applied to models based on a mixture distribution, the
Cauchy with location and scale parameter’s and the Weibull’s.

1. Introduction and notations

We consider independent and identically distributed observations on an Euclidian
space X, from an unknown probability distribution Pθ belonging to a parametric
family P = {Pθ : θ ∈ Θ} where Θ is an open subset of Rr. The models are supposed
to be identifiable, that is the application θ 7→ Pθ is a bijection from Θ to P , and
dominated by a σ-finite measure µ, equivalent to the familly P . Let fθ be the density
of Pθ with respect to µ. The distribution of a sample X1, · · · , Xn is denoted by Pn

θ

and the model associated is thus Mn = (Xn,B (Xn) , {Pn
θ : θ ∈ Θ}) where B (Xn) is

the Borel σ-field of X
n. We denote by M the model based on one observation, by

Eθ the expectation under the Pn
θ -distribution, and by Dθϕθ0 (X), the differential at

θ0, regarding to the variable θ, of the two variables map ϕ. We use on Rr the max-
norm, that is ‖a‖ = ‖(a1, · · · , ar)‖ = max {|a1| , . . . , |ar|}, where the associated
balls are cubes. The notation oP (1) designates a sequence of random vectors that
convergences to zero in P-probability and OP (1), a sequence that is bounded in
P-probability. A last, by convention we pose sup∅ ϕ = 0 for any non negative
function ϕ.

For statistical models generated by i.i.d. observations, as common as those with
scale and location ones, it is not always simple to study the asymptotic properties of
classical estimators such as the maximum likelihood’s or the Bayes’. The difficulty
is so much more important on general models, notably when the parameter space
Θ is multidimensionnal and/or not bounded. I.A. Ibragimov and R.Z. Has’Minskii
have introduced some conditions leading to the asymptotic optimality of the two
previous estimators (see [4]). More precisely, under an assumption of quadratic
mean continuity of the map θ 7→ Dθ

√
fθ, and supposing that the Fisher informa-

tion and his inverse are globally bounded on Θ, these authors notably show that
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some Bayes estimators relative to a loss function are regular and asymptotically ef-
ficient with respect to the same loss function. Although theorically important and
founding this approach doesn’t allow us to treat many models such as, for instance,
those based on the Cauchy with scale and location parameter’s distribution. The
principal reason is that the condition (3.1) of the chapter III in [4] is not satisfied
which means that the Fisher information is not globally bounded on Θ. This is due
to its explosive behaviour in a neighbourhood of the parameter space’s boundary.
In fact, most of the time, the problem is a finite distance one, as in the previous
Cauchy’s model for which the Fisher information is not bounded when the scale
parameter is in a neighbourhood of 0. Moreover, the weaker condition (N3) in the
same chapter fails too, which besides is a real difficulty in the study of the maximum
likelihood estimator. However, this problem can be overcome in the framework of
the Bayes estimator thanks to its “integral” character. This is the object of this
article.

Another way to study the asymptotic properties of the Bayes estimator on DQM
models consists in the utilization of the Bernstein-von Mises theorem, which is
based notably on the existence of a sequence of tests asymptotically uniformly
consistent, and shows that the posterior distribution is, for the total variation
norm, asymptotically normal with an optimal asymptotic variance (see [9]). As a
consequence of this theorem, it can be shown in particular that the Bayes estimators
relative to some sub-convex loss functions are asymptotically efficient. Here again,
the bad behaviour of the Fisher information is a cause of the non existence of such
a sequence of tests which makes this result inapplicable.

The author has proposed, for DQM models, some weak assumptions under which
the maximum likelihood estimator has optimal asymptotic properties, that is as-
ymptotic efficiency, regularity and asymptotic minimaxity (see [10]). This paper
proceeds to do a similar work on the Bayes estimator. We notably show that
modulo assumptions on the behaviour of the Fisher information, this estimator is
asymptotically efficient, regular, asymptotically of minimal risk and asymptotically
minimax. We conclude with an application of these results on three distributions :
a mixture one, the Cauchy with scale and location parameter’s and the Weibull’s.

The well known notion of local asymptotic normality, introduced originally by
L. Le Cam (see [5] and [6]), characterizes the models which have an asymptotic

behaviour close to the Gaussian’s, in a neighbourhood of θ of size O
(

1√
n

)
. More

precisely, the parameter θ is fixed and one wants to approximate, by a Gaussian
distribution, the absolutely continuous component of the measure Pn

θ+ 1√
n

t
with

respect to Pn
θ (where t ∈ Rr is the new parameter and θn,t = θ + 1√

n
t). Denote

by Ψθ,t the local likelihood ratio
∏n

i=1

fθn,t

fθ

(Xi), defined on {∏n
i=1 fθ (Xi) > 0}.

Then for all θ ∈ Θ and t ∈ √
n (Θ − θ), Pn

θn,t
= Ψθ,tP

n
θ + 1{Q

n
i=1 fθ(Xi)=0}Pn

θn,t

and Ψθ,t is defined Pn
θ -almost everywhere. A model is called locally asymptotically

normal (LAN) at θ ∈ Θ if there exists a random vector Sn,θ on (Xn,B (Xn) ,Pn
θ ),

which takes his values in Rr, and a non singular (r, r) matrix M (θ) such that for
all t ∈ Rr

log Ψθ,t = t′Sn,θ −
1

2
t′M (θ) t+Rθ,t
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where Sn,θ converges in Pn
θ -distribution to N (0,M (θ)) and Rθ,t = oPn

θ
(1). Le

Cam has proposed (see [7]) sufficient assumptions of local asymptotic normality,
using an argument of differentiability in quadratic mean. More precisely, a model
is called differentiable in quadratic mean (DQM) at θ ∈ Θ if there exists a map
Dθ

√
fθ : X → Rr such that, as h→ 0,

(1.1)

∥∥∥∥
√
fθ+h −

√
fθ −

1

2
h′
(
Dθ

√
fθ

)√
fθ

∥∥∥∥
L2(µ)

= o
(
‖h‖2

)

where L2 (µ) denotes the space of measurable maps ψ : X → R satisfying ‖ψ‖L2(µ) :=
∫

X
[ψ (x)]

2
dµ (x) < ∞. Le Cam has shown (see [7]) that if a model is DQM

at θ ∈ Θ, it is LAN at θ. When the model is DQM, then for µ-almost ev-
ery x in {x ∈ X : fθ (x) = 0}, Dθ

√
fθ (x) = 0. It is thus possible, by analogy

with the natural definition of the differential of the log function, to define µ-
almost everywhere Dθ log fθ = 2√

fθ
Dθ

√
fθ (with the convention 0

0 = 0). There-

fore, Sn,θ = 1√
n

∑n
i=1Dθ log fθ (Xi), Pn

θ -almost everywhere and M (θ) = I (θ) =

Eθ (Dθ log fθ (X))
⊗2

is the Fisher information of the model M.

Recall that the Hellinger distance on M, denoted by d, is defined as

d (θ1, θ2) =
∥∥∥
√
fθ1 −

√
fθ2

∥∥∥
L2(µ)

, ∀ (θ1, θ2) ∈ Θ2

Since M is identifiable, d is a distance on Θ, bounded above by
√

2. This distance
is called Lipschitz on Θ (resp. locally Lipschitz at θ ∈ Θ) if the map u 7→ √

fu is
Lipschitz on Θ (resp. locally Lipschitz at θ) according to the L2 (µ)-norm. Notice
that if the Hellinger distance is locally Lipschitz, it is Lipschitz on all the compacts.
We can remark otherwise that if M is a DQM model and I is locally bounded then
d is locally Lipschitz at any θ ∈ Θ. More precisely, by the mean value theorem, for
all (θ1, θ2) ∈ Θ2 such that [θ1, θ2] ⊂ Θ

(1.2) d (θ1, θ2) ≤
1

2
sup

u∈]θ1,θ2[

√
‖I (u)‖ ‖θ1 − θ2‖

To deal with the Bayes estimator, we consider on Θ a σ-finite measure ν that pos-
sesses an absolutely continuous and positive density π with respect to the restriction
of the Lebesgue measure on Θ. It is well known that if ν is a probability measure
(the case in our study), then the Bayes estimator relative to the quadratic loss func-

tion is Pn
θ -almost everywhere of the form θ̂n = E (∆| (X1, · · · , Xn)) where ∆ is a

random vector of probability distribution ν and for all θ ∈ Θ, P(X1,··· ,Xn)|∆=θ = Pθ.
Since there is no confusion on the loss function, we call this estimator simply, the
Bayes estimator.

2. Asymptotic optimality

The asymptotic efficiency is studied here in the Fisher’s sense. More precisely,
if the model M is DQM, an asymptotically Gaussian estimator δn on Mn of the
parameter is called asymptotically efficient if for all θ ∈ Θ, its asymptotic variance,
that is the variance of the limit distribution of

√
n (δn − θ), equals the Rao-Cramér

bound, I−1 (θ). Recall that this characteristic cannot be considered as asymptot-
ically optimal if we don’t restrict the study to the regular estimators. This term
defines an estimator δn such that for all θ ∈ Θ and t ∈ Rr,

√
n (δn − θn,t) converges
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in Pn
θn,t

-distribution to a random vector of distribution depending on θ but not

on t. In the regular class, the asymptotically efficient estimators have a minimal
asymptotic variance.

The following proposition, which is a consequence of the Hájek-Le Cam’s convo-
lution theorem (see [3] and [8]), gives the exact expression with a precision of order
1√
n
, of asymptotically efficient and regular estimators in the DQM’s context.

Proposition 1. Let M be a DQM model such that I is nonsingular. An estimator
δn on Mn is asymptotically efficient and regular iff

(2.1)
√
n (δn − θ) − I−1 (θ)Sn,θ = oPn

θ
(1) , ∀θ ∈ Θ

Proof. See [8] or [10]. �

According to Hájek’s terminology in [2], an estimator which satisfies the property
(2.1) is called best regular. On DQM models this term is equivalent to asymptotic
efficiency and regularity.

We don’t use the previous form of the result but a version where we replace
Sn,θ, by the bounded statistic Skn

n,θ = Sn,θ1{‖Sn,θ‖<kn} (where (kn)n is an increasing

sequence of natural numbers tending to the infinity). Since Sn,θ − Skn

n,θ converges

in Pn
θ -probability to zero, instead of showing the assertion (2.1) we may prove the

following one

(2.2)
√
n (δn − θ) − I−1 (θ)Skn

n,θ = oPn
θ

(1) , ∀θ ∈ Θ

The introduction of Skn

n,θ is inspired by Le Cam’s works on the local approximation
of experiments by exponential ones. This author shows notably that there exists
an increasing sequence of natural numbers (kn)n tending to the infinity such that
for all θ ∈ Θ and t ∈ Rr

(2.3) lim
n→∞

Eθ |Ψθ,t − Ckn,θ,tΦkn,θ,t| = 0

where Φkn,θ,t = exp
(
t′Skn

n,θ − 1
2 t

′I (θ) t
)

and Ckn,θ,t is the normalisation’s constant

of the density Ckn,θ,tΦkn,θ,t of a probability distribution Qkn,θ,t, with respect to Pn
θ .

In other words, the models based on the two families{
Pn

θn,t
, t ∈ √

n (Θ − θ)
}

and {Qkn,θ,t, t ∈
√
n (Θ − θ)} are asymptotically equiva-

lent according to the total variation norm.

The two asymptotic characteristics which are asymptotic efficiency and regular-
ity, although of practical interest in the research of good estimators, are not totally
satisfactory. Indeed, they are only based on the asymptotic expectation and vari-
ance. To appreciate the asymptotic quality of an estimator, an approach using a
loss function1 is clearly more precise.

In this article we limit us to the loss functions ℓn on Mn of the form

ℓn (d, θ) = ℓ
(√
n (d− θ)

)

where ℓ is belonging to G, the set of functions which are non negative, even and
sub-convex (that is the Aα = {x ∈ Rr : ℓ (x) < α} is convex for all α > 0). We

1non negative measurable function wn, defined on Θ2 such that for all θ ∈ Θ, wn (θ, θ) = 0.
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denote in this context by Gq (q > 0) the subset of G containing the functions ℓ for

which there exists q̃ ∈ ]0, q[ such that ℓ (x) = O
(
‖x‖eq

)
, and by G̃ the set

⋃
q>0 Gq.

In this framework we define the notion of asymptotically of minimal risk esti-
mator, which can be considered as an optimal asymptotic property in the class of
regular estimators.

Definition 1. Let ℓ be a function belonging to G. We say that δn, a regular
estimator of the parameter on a model Mn, is ℓ-asymptotically of minimal risk if

for any regular estimator δ̃n of the parameter on Mn

lim sup
n→∞

Eθℓ
(√
n (δn − θ)

)
≤ lim inf

n→∞
Eθℓ

(√
n
(
δ̃n − θ

))
, ∀θ ∈ Θ

It can be noticed that if δn is a ℓ-asymptotically of minimal risk estimator then
Eθℓ (

√
n (δn − θ)) admits a limit when n tends to the infinity. Furthermore, if

an estimator δn is ℓ-asymptotically of minimal risk for all ℓ ∈ Gq, then all the
moments of

√
n (δn − θ) whose order is lower than q converge to the moments of

his asymptotic distribution.

The following result characterizes the ℓ-asymptotically of minimal risk estimators
in the regular class.

Proposition 2. Let M be a DQM model such that I is nonsingular, δn a regular
estimator on Mn and ℓ belonging to G.

Then, for all θ ∈ Θ

(2.4) lim inf
n→∞

Eθℓ
(√
n (δn − θ)

)
≥ Eℓ (Zθ)

where the distribution of Zθ is N
(
0, I−1 (θ)

)
.

If for all θ ∈ Θ

(2.5) lim inf
n→∞

Eθℓ
(√
n (δn − θ)

)
= Eℓ (Zθ)

then δn is asymptotically efficient and ℓ-asymptotically of minimal risk.
Moreover, any estimator which is ℓ-asymptotically of minimal risk satisfies (2.5).

Proof. See [10] �

The asymptotic minimaxity is another way, including the notion of loss function,
to characterize the asymptotic optimality of an estimator.

Definition 2. Let ℓ be a function belonging to G. We say that δn, an estimator of

the parameter on a model Mn, is ℓ-asymptotically minimax if for any estimator δ̃n
of the parameter on Mn

lim
τ→+∞

lim sup
n→+∞

sup
u∈B

“
θ, τ√

n

” Euℓ
(√
n (δn − u)

)

≤ lim
τ→+∞

lim inf
n→+∞

sup
u∈B

“
θ, τ√

n

” Euℓ
(√

n
(
δ̃n − u

))
, ∀θ ∈ Θ

Notice that the asymptotic minimaxity is an optimal property in the class of all
the estimators and not only in the class of regular ones.

By the proposition 1, if one defines some assumptions under which an estimator
satisfies (2.2), the latter is in particular regular. To show that it is ℓ-asymptotically
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of minimal risk, it hence sufficies to verify that it satisfies (2.5). This is the approach
that we follow to define a class of models on which the Bayes estimator possesses
this property. Actually it is ℓ-asymptotically minimax under the same assumptions.
It’s mainly due to the fact that there exists a version of the proposition 2, in the
framework of the asymptotic minimaxity, inspired by the Hájek’s theorem (see
theorem 2.6 in [10]).

3. Preamble

First, we set up some assumptions allowing us to the asymptotic efficiency and

the regularity of the Bayes estimator, denoted by θ̂n. Recall that this estimator
is a version of the conditional expectation E (∆| (X1, · · · , Xn)). Thus, using the
notations of the section 2, we can write Pn

θ -almost everywhere

(3.1)
√
n
(
θ̂n − θ

)
− I−1 (θ)Skn

n,θ =

∫
√

n(Θ−θ)

(
t− I−1 (θ)Skn

n,θ

)
Ψθ,tπ (θn,t) dt

∫
√

n(Θ−θ)
Ψθ,tπ (θn,t) dt

To show that θ̂n satisfies the assertion (2.2), it is therefore sufficient to state that
in the right side the numerator is oPn

θ
(1), and the inverse of the denominator is

OPn
θ

(1). Recall first the following result that presents the narrow link that exists

between the Lipschitz property, according to L2 (Pn
θ )-norm, of the local likelihood

ratio’s square root, and the fact that the Fisher information is bounded.

Lemma 1. Let M be a DQM model and θ ∈ Θ. If I is bounded in a convex neigh-

bourhood Θ̃ of θ, included in Θ, then the map t 7→
√

Ψθ,t is Lipschitz on
√
n
(
Θ̃ − θ

)

according to L2 (Pn
θ )-norm, with the Lipschitz constant 1

2 sup
u∈eΘ

√
‖I (u)‖.

Proof. It suffices to remark that for all θ ∈ Θ and (t1, t2) ∈ √
n (Θ − θ),∥∥√Ψθ,t1 −

√
Ψθ,t2

∥∥
L2(Pn

θ ) ≤ √
nd (θn,t1 , θn,t2), and to use (1.2). �

As we have already written, the main problems occur when the Fisher informa-
tion of the model is not globally bounded. On the other hand, I is generally locally
bounded. This leads us to propose the following general framework :

(A1) The model M is DQM and the Fisher information I is locally bounded.

(A2) The Fisher information is non singular.

The previous assumption is actually only useful to study the asymptotic prop-
erties of the estimator and particularly the asymptotic efficiency.

The following proposition precises the behaviour of the denominator and of a
part of the numerator.

Proposition 3. Assume that (A1) and (A2) hold.
Then, for all θ ∈ Θ

(3.2)

(∫
√

n(Θ−θ)

Ψθ,tπ (θn,t) dt

)−1

= OPn
θ

(1)
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and there exists an increasing sequence of non negative real numbers (αn)n tend-
ing to the infinity such that

(3.3)

∫

B(0,αn)∩√
n(Θ−θ)

(
t− I−1 (θ)Skn

n,θ

)
Ψθ,tπ (θn,t) dt = oPn

θ
(1)

We now have to study the numerator of the right side of (3.1), when the integral
is calculed on the exterior of a ball B (0, αn). For this, we take of interest the asymp-

totic behaviour of the more general expression Eθ

qR
B(0,αn)c∩

√
n(Θ−θ)

‖t‖p Ψθ,tπ (θn,t) dt.

4. Technical results and assumptions

Let Θ be a Borel subset of Rr, C (a, γ) = a+[0, γ[
r

the semi-open cube of Rr with
the vertex a and the length’s edge γ. If m ∈ N∗, it’s therefore possible to partition
the cube C (a, γ) in mr small semi-open cubes with length’s edge γ

m
in order to have

C (a, γ) =
⋃

i∈Γm
C
(
ai,

γ
m

)
where Γm = {1, . . . ,mr} and a1 = a. Denote by im (θ)

the indice of the cube in the partition that contains θ, that is θ ∈ C
(
aim(θ),

γ
m

)
.

Define χm, a map from Θ to Θ such that for all θ ∈ Θ, χm (θ) ∈ C
(
aim(θ),

γ
m

)
, and

for each i ∈ Γm, χm is constant on C
(
ai,

γ
m

)
∩Θ. This constant is denoted by χi,m.

Proposition 4. Let p ≥ 1 and ϕ be a non negative and measurable function defined
on Θ × X, such that

• there exists t ≥ 1 and A > 0 such that

(4.1) sup
θ∈C(a,γ)∩Θ

‖ϕθ‖Lt(P) ≤ A

• there exists α ∈ ]0, 1] and K > 0 such that for all m ∈ N∗

(4.2)

∫

C(a,γ)∩Θ

∥∥ϕθ − ϕχm(θ)

∥∥
Lp(P)

dν (θ) ≤ K

mα

Then, for all s ∈
[
1, 1 + t

(
1 − 1

p

)]
, there exists ω ∈ ]0, 1[ and C > 0 such that

E

(∫

C(a,γ)∩Θ

ϕs
θdν (θ)

) 1
s

≤ C

(
sup

θ∈C(a,γ)∩Θ

‖ϕθ‖L1(P)

)ω

Remark 1. If the map θ 7→ ϕθ is Lipschitz on C (a, γ) ∩ Θ according to Lp (P)-

norm, with the Lipschitz constant K̃, then it satisfies the assertion (4.2) with α = 1

and K = K̃γν (C (a, γ) ∩ Θ). If we add the assertion (4.1), then by construction,

C = Cν (C (a, γ) ∩ Θ)
1
s ≤ Cγ

r
s sup

u∈C(a,γ)∩Θ

π
1
s (u) where C is a constant which de-

pends only on A and K̃.

To simplify the notation, the sets of the form E ∩Θ (where E is a subset of Rr)
are now denoted by E.

The proposition 4 plays a central role in the study of the expression

Eθ

√∫
B(0,αn)c ‖t‖p

Ψθ,tπ (θn,t) dt. The idea consists in partitioning the set B (0, αn)
c

in cubes with length’s edge 1, and then, in defining the assumptions under which
this proposition can be applied with for ϕ, the square root of the local likelihood
ratio and for s, p and t the number 2. Let us precise that by the definition of the
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map t 7→ Ψθ,t, for all t ∈ √
n (Θ − θ),

∥∥√Ψθ,t

∥∥
L2(Pn

θ ) ≤ 1. The assertion (4.1) is

therefore satisfied with A = 1. The difficulty is in fact concentrated in the ver-
ification of the assertion (4.2). Actually, if I is globally bounded on Θ, then by
the lemma 1 and the remark 1, the latter is fulfilled. On the other hand, if I is
not globally bounded on Θ but only locally bounded (like for Cauchy or Weibull
distributions), the proposition 4 cannot be applied, except in a neighbourhood of
any θ ∈ Θ, thanks to the lemma 1. We therefore propose to impose an additional
assumption on the boundary of Θ.

(B1) The space Θ is convex and there exists k elements θ1, ..., θk

belonging to ∂Θ, the boundary of Θ, and k convex neighbourhoods
Vθ1 , · · · ,Vθk

respectively of θ1, · · · , θk such that ∂Θ ⊂ ∪k
i=1Vθi

.

Moreover, for each i = 1, · · · , k there exists a r-uplet εi =
(
ε
(1)
i , · · · , ε(r)

i

)

of elements belonging to [0, 2[ such that
∑r

j=1

(
ε
(j)
i − 1

)+

< 1 and there

exists a positive continue function C̃θi
defined on Vθi

∩ Θ such that
for all u ∈ Vθi

∩ Θ

‖I (u)‖ ≤ C̃θi
(u) |u− θi|−2εi = C̃θi

(u)

r∏

j=1

∣∣∣u(j) − θ
(j)
i

∣∣∣
−2ε

(j)
i

It is now possible to treat the part of the integral corresponding to a set of the
form B (0, α)

c ∩ B (0, A
√
n).

Proposition 5. Assume that (A1) and (B1) hold.
Then, for all θ ∈ Θ, A > 0, p ≥ 0, and s > 0

sup
n

Eθ

√∫

B(0,α)c∩B(0,A
√

n)
‖t‖p

Ψθ,tπ (θn,t) dt = O
(
α−s

)

As a consequence, for all sequence of non negative real numbers (αn)n tending
to the infinity, we have

(4.3) lim
n→∞

Eθ

√∫

B(0,αn)c∩B(0,A
√

n)
‖t‖p

Ψθ,tπ (θn,t) dt = 0

Eventually, there remains the part of the integral corresponding to the set
B (0, A

√
n)

c
to be studied. It is obviously useful only if Θ is not bounded. In

this case we impose additional assumptions on the asymptotic behaviour of the

functions C̃θi
, of the Fisher information and of the density π.

(B2) There exists p̃0 ≥ 0 and p̃i ≥ 0, i = 1, · · · , k such that

for all u ∈
(
∪k

i=1Vθi

)c
, ‖I (u)‖ = O

(
‖u‖ep0

)
and for all u ∈ Vθi

,

C̃θi
(u) = O

(
‖u‖epi

)
.

(B3) For all θ ∈ Θ, lim inf‖u‖→∞ d (θ, θ + u) > 0.

(B4) There exists m > 2r + z + 1 such that π (u) = O
(
‖u‖−m

)
where

z = maxi=0,··· ,k
(

epi(1−ωi)
2

)
, ωi = αi

r+αi
, αi = 1 − ∑r

j=1

(
ε
(j)
i − 1

)+

,

i = 1, · · · , k and α0 = 1.
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Proposition 6. Assume that (A1), (B1), (B2), (B3) and (B4) hold.
Then, for all θ ∈ Θ there exists A > 0 such that for all s ≥ 0, and p < m−2r−z,

supn

√
n

s
Eθ

√∫
B(0,A

√
n)

c ‖t‖p
Ψθ,tπ (θn,t) dt is finite.

Actually, a stronger result is stated, that is

lim
A→∞

sup
n

√
n

s
Eθ

√∫

B(0,A
√

n)c
‖t‖p

Ψθ,tπ (θn,t) dt = 0

In the framework of this paper, the previous proposition must notably be used
with p = 1. That’s why we impose in the assumption (B4), m to be strictly above
2r + z + 1, and not only strictly above 2r + z.

5. Main results

To show that an asymptotically efficient and regular estimator δn is ℓ-asymptotically
of minimal risk for any ℓ belonging to Gq, it sufficies to verify that the sequence(
Eθ ‖

√
n (δn − θ)‖q)

n
is bounded for n sufficiently large. It is a consequence of the

theorem 22 of the chapter II in [1]. Similar arguments are used to prove that δn is
ℓ-asymptotically minimax.

In fact, when Θ is bounded, the assumptions we propose to state that the Bayes
estimator is best regular are sufficient to state that it’s ℓ-asymptotically of minimal
risk and ℓ-asymptotically minimax.

Theorem 1. Assume that Θ is bounded and that (A1), (A2), (B1) hold.
Then, the Bayes estimator on Mn relative to the quadratic loss function ex-

ists, is asymptotically efficient, regular, ℓ-asymptotically of minimal risk and ℓ-

asymptotically minimax, for any ℓ belonging to G̃.

If Θ is not bounded, we must add the assumptions (B2), (B3) and (B4).

Theorem 2. Assume that (A1), (A2), (B1), (B2), (B3) and (B4) hold.
Then, the Bayes estimator on Mn relative to the quadratic loss function exists,

is asymptotically efficient and regular.
Moreover, if the assumption (B4) holds with m > 3 (r + 1) + z then this esti-

mator is ℓ-asymptotically of minimal risk and ℓ-asymptotically minimax, for any ℓ
belonging to Gm−3(r+1)−z

r+3

.

6. Applications

Example 1 (Bounded case). Let f1 and f2 be two densities with respect to a σ-
finite measure µ such that µ (f1 6= f2) > 0. Suppose X1, · · · , Xn are a sample from
a mixture distribution of density θf1 + (1 − θ) f2 with respect to µ. The parameter
we want to estimate is θ ∈ ]0, 1[.

It is not difficult to show that the model is DQM and that for all θ ∈ ]0, 1[,
I (θ) ≤ 1

θ2 ∨ 1
(1−θ)2

. Thus, I is locally bounded on ]0, 1[. Moreover the assumption

(B1) is fullfilled with for instance, θ1 = 0, θ2 = 1, Vθ1 = ]−α0, α0[ (where α0 ∈]
0, 1

2

[
), Vθ2 = ]β0, 1 + β0[ (where β0 ∈

]
1
2 , 1
[
), ε1 = ε2 = 1 and C̃θ1 = C̃θ2 ≡ 1.

Let ν be a probability measure on ]0, 1[ with a continuous and positive density
with respect to the restriction of the Lebesgue measure on ]0, 1[. By the theorem 1,
the Bayes estimator relative to the quadratic loss function exists, is asymptotically
efficient, regular, ℓ-asymptotically of minimal risk and ℓ-asymptotically minimax
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for any ℓ belonging to G̃. Notice that it can be shown (see [10]) that the maximum
likelihood estimator possesses the same properties.

Example 2 (Non bounded case). Suppose X1, · · · , Xn are a sample from the
Cauchy distribution with a scale and location parameter (α, β) ∈ R∗

+ × R. The
density with respect to the Lebesgue measure on R is

f(α,β) (x) =
α

π
(
α2 + (x− β)2

)

It is not difficult to show that the model is DQM and that for all (α, β) ∈ R∗
+×R,

I (α, β) = 1
2α2

(
1 0
0 1

)
. Thus, I is locally bounded (because continuous) on R∗

+×R

and the assumption (B1) is fullfilled with θ1 = (0, 0), Vθ1 = ]−α0, α0[ × R (where

α0 ∈ R∗
+), ε = (1, 0) and for all u ∈ [0, α0[ × R, C̃θ1 (u) = 1. Hence, p̃1 = 0 is

convenient and since ‖I (α, β)‖ ≤ 1
2α2

0
for all (α, β) ∈ ]α0,∞[ × R, we can choose

p̃0 = 0 and z = 0.
Remark that (B3) is equivalent to

(6.1) lim sup
‖u‖→∞

Eθ

√
fu

fθ

(X1) < 1, ∀θ ∈ Θ

Even if we use a change of variable, assume that θ = (1, 0).

Letting φ (α, β) = E(1,0)

√
f(α,β)

f(1,0)
(X1) on R∗

+×R, we extend this function by continu-

ity on R+ × R with φ (0, β) = 0. Remark that φ (α, β) ≤ 1 and that

φ (α, β) = 1 iff (α, β) = (1, 0). If we note ϕ (α, β) =
(

1
α
,− β

α

)
, it can easily be

checked that φ = φ ◦ ϕ. Furthermore, the function φ (α, ·) is even. Hence it can be
supposed that β ≥ 0.
Consider the case where β < α. Then we have for all a > 1

sup
(α,β)∈]a,∞[×[0,∞[,β<α

φ (α, β) = sup
(α,β)∈ϕ(]a,∞[×[0,∞[,β<α)

φ (α, β)

≤ sup
(α,β)∈]0, 1

a ]×[0,1]

φ (α, β)

< 1 using the continuity of φ

hence lim sup‖(α,β)‖→∞,β<α φ (α, β) < 1.
In the case where β ≥ α, we have

φ (α, β) ≤ 1

π

∫
1√

2
√
|x− β|

√
1 + x2

dx

≤ 1

π

(
2√
3

∫

[0, 1
2 ]

√
β√

1 + β2x2
dx +

∫

[− 1
2 , 12 ]

c

1√
2
√
|x− 1|√β |x|

dx

)

The first integral in the right member of the inequality is an O
(

ln(β)√
β

)
, hence it

tends to zero when β tends to the infinity. The conclusion is the same for the

second integral which is an O
(

1√
β

)
hence lim sup‖(α,β)‖→∞,β≥α φ (α, β) = 0.

Finally the assertion (6.1) is checked.
Choosing for the prior distribution ν on Θ, any distribution with a continuous

and positive density satisfying (B4) the Bayes estimator relative to the quadratic
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loss function exists, is asymptotically efficient and regular. Moreover, if (B4) is
fullfilled with m > 9 then this estimator is ℓ-asymptotically of minimal risk and
ℓ-asymptotically minimax for any ℓ belonging to Gm−9

5
. Actually, for this particular

model, it can be proved that the assumptions imposed on the asymptotic comport-
ment of π are not essential, and hence this estimator possesses the two precedent

properties for any ℓ belonging to G̃. Once again, it can be shown that the maximum

likelihood estimator possesses the same properties with also ℓ belonging to G̃ (see
[10]).

The approach used to treat the model associated to the Cauchy distribution can
be easily extended to a large class of distributions with scale and location parameter.
Indeed, most of the assumptions we impose are on the Fisher information which
does not depend on the location parameter. Actually, the assumption that really
imposes constraints on the density of the studied distribution is (B3).

Example 3 (Non bounded case). Suppose X1, · · · , Xn are a sample from the
Weibull with parameter (α, λ) ∈ Θ = R∗

+ × R∗
+. The density with respect to the

Lebesgue measure on R∗
+ is

f(α,λ) (x) = αλxα−1 exp (−λxα)

First, it is not difficult to show that the model is DQM.
As can easily be checked, there exists three constants D1, D2 and D3 such that for

all (α, λ) ∈ Θ, ‖I (α, λ)‖ ≤ trace (I (α, λ)) ≤ 1
α2D1 + |log λ|

α2 D2 + 1
λ2D3.

Given a > 1, ã < 1 we can choose the three neighbourhoods Vθ1 = ]−a, a[ × ]a,∞[,
Vθ2 = ]a,∞[ × ]−ã, ã[ and Vθ3 = ]−a, a[ × ]−a, a[ to recover the boundary of Θ.
Denote Ei = Vθi

∩ Θ (i = 1, 2, 3) and E0 = [a,∞[ × [ã,∞[.
We now show that using the neighbourhoods defined before, the assumption (B1) is
fullfilled.

• Let θ1 = (0, λ0) belonging to {0} × ]a,∞[. It is clear that for all

(α, λ) ∈ E1, ‖I (α, λ)‖ ≤ C̃θ1 (α, λ) 1
α2 where C̃θ1 (α, λ) = O (|logλ|).

We can therefore take ε1 = (1, 0) and any positive real number for p̃1.
• Let θ2 = (α0, 0) belonging to ]a,∞[ × {0}. It is clear that for all

(α, λ) ∈ E2, ‖I (α, λ)‖ ≤ C̃θ2 (α, λ) 1
λ2 where C̃θ2 = O (1).

We can therefore take ε2 = (0, 1) and p̃2 = 0.
• Let θ3 = (0, 0). It is clear that for all (α, λ) ∈ E3,

‖I (α, λ)‖ ≤ C̃θ3 (α, λ) 1
α2λ2 where C̃θ3 = O (1).

We can therefore take ε3 = (1, 1) and p̃3 = 0.

For all (α, λ) ∈ E0, ‖I (α, λ)‖ ≤ a1 + a2 |logλ|. Thus, any positive real number is
convenient for p̃0 and finally, any positive real number is convenient for z.

In order to prove (B3) it suffices to verify that there exists a > 1 such that

sup
u∈B(0,a)c

Eθ

√
fθ+u

fθ

(X1) < 1

Even if we use a change of variable, assume that (α, λ) = (1, 1) and let us prove

that sup(α,λ)∈B(0,a)c E(1,1)

√
f(α,λ)

f(1,1)
(X1) < 1 where a is fixed in the interval ]1,∞[.

Letting φ (α, λ) = E(1,1)

√
f(α,λ)

f(1,1)
(X1) on R∗

+×R∗
+, we extend this function by conti-

nuity on R+ ×R+ with φ (0, λ) = 0 and φ (α, 0) = 0. Remark that φ (α, λ) ≤ 1 and
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φ (α, λ) = 1 iff (α, λ) = (1, 1). Furthermore, supB(0,a)c φ (α, λ) equals to the max of
the sup on each of the three sets E0, E1 and E2 defined before.

If we note ϕ (α, λ) =
(
α−1, λ−

1
α

)
it can easily be checked that φ = φ ◦ ϕ. Thus

sup
(α,λ)∈E0

φ (α, λ) = sup
(α,λ)∈ϕ(E0)

φ (α, λ)

≤ sup
(α,λ)∈[0, 1

a ]×
h
0,ea− 1

a

iφ (α, λ)

< 1 using the continuity of φ

and likewise

sup
(α,λ)∈E2

φ (α, λ) ≤ sup
(α,λ)∈[0, 1

a ]×]1,∞[

φ (α, λ)

= max


 sup

(α,λ)∈[0, 1
a ]×[1,a[

φ (α, λ) , sup
(α,λ)∈[0, 1

a ]×[a,∞[

φ (α, λ)




≤ max


 sup

(α,λ)∈[0, 1
a ]×[1,a[

φ (α, λ) , sup
(α,λ)∈E1

φ (α, λ)




We now have to show that sup(α,λ)∈E1
φ (α, λ) < 1. Regarding the configuration of

the set E1, if sup(α,λ)∈E1
φ (α, λ) = 1, then using the continuity of φ, there exists a

sequence (αn, λn)n of elements belonging to E1, of limit (α0,∞) (where α0 ∈ [0, a])
such that sup(α,λ)∈E1

φ (α, λ) = limn→∞ φ (αn, λn).
Remark that

φ (α, λ) ≤ √
α sup

u∈R+

u exp

(
−u

2

2

)∫ ∞

0

x−
1
2 exp

(
−x

2

)
dx

This implies in particulary that limα→0+ φ (α, λ) = 0 uniformly with respect to
λ. Therefore, α0 is obviously different from zero. Thus, using once again the
transformation ϕ, sup(α,λ)∈E1

φ (α, λ) is reached for an element belonging to the
interior of E1. We conclude thanks to the continuity of φ.

The conclusion is then strictly the same as the one in the precedent example.
It can be shown that the maximum likelihood estimator is asymptotically efficient
and regular. On the other hand, the regularity’s assumptions proposed by Ibragimov
and Has’Minskii (see [4]) or Lhéritier ([10]) don’t allow us to affirm that it is ℓ-
asymptotically of minimal risk, nor ℓ-asymptotically minimax.

7. Proofs

In this section we present the proofs of the results stated in the previous sections.

Proof. (of the proposition 3).
Fix θ ∈ Θ and ε > 0. We suppose n sufficiently large for the ball B (0, ε) to be

included in
√
n (Θ − θ) and we note Yn =

∫
B(0,ε) Ψθ,tπ (θn,t) dt.

In order to show (3.2), it sufficies to prove that 1
Yn

= OPn
θ

(1), that is

lim
β→0

lim sup
n→∞

Pn
θ ({Yn ≤ β}) = 0
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Remark first that if the model is DQM, then for all t ∈ Rr,
EθΨθ,t = 1 − εn (t) where εn (t) ∈ [0, 1[ and limn→∞ εn (t) = 0. Thus, denot-
ing βn (ε) = 1

2

∫
B(0,ε) EθΨθ,tπ (θn,t) dt we have βn (ε) = 1

2

∫
B(0,ε) π (θn,t) dt − ε̃n

where ε̃n =
∫
B(0,ε)

π (θn,t) εn (t) dt. Let us precise that ε̃n is positive and that

lim supn→∞ ε̃n = 0 because π is locally bounded. This implies that lim infn→∞ βn (ε) =
1
2π (θ) εr and that for n sufficiently large

Pn
θ

({
Yn ≤ 1

2
lim inf
n→∞

βn (ε)

})
≤ Pn

θ ({Yn ≤ βn (ε)})

It can then be noticed that by the Cauchy-Schwarz’s inequality and the lemma 1, for
all t ∈ B (0, ε), Eθ |Ψθ,t − 1| ≤ 2

√
nd (θ, θn,t) ≤ sup

u∈B
“

θ, ε√
n

”
√
‖I (u)‖ ‖ε‖. Thus,

using the Chebychev inequality

P
n
θ ({Yn ≤ βn (ε)}) ≤ P

n
θ

 ˛̨
˛̨
˛

Z

B(0,ε)

(Ψθ,t − 1) π (θn,t) dt

˛̨
˛̨
˛ ≥

1

2

Z

B(0,ε)

π (θn,t) dt + εn

!

≤
Eθ

˛̨
˛
R
B(0,ε)

(Ψθ,t − 1) π (θn,t) dt
˛̨
˛

1
2

R
B(0,ε)

π (θn,t) dt + εn

≤ 2ε sup
u∈B

“
θ, ε√

n

”

p
‖I (u)‖

≤ 2ε sup
u∈B(θ,ε)

p
‖I (u)‖

The assertion (3.2) is then stated when ε tends to zero.
For the study of (3.3), the radius α is fixed in R∗

+ and we suppose n sufficiently
large for the ball B (0, α) to be included in

√
n (Θ − θ).

Let us decompose Ψθ,t in the form

Ψθ,t = (Ψθ,t − Φkn,θ,t) + Φkn,θ,t

• Considering the first term, for all α > 0
∫

B(0,α)

∥∥∥
(
t− I−1 (θ)Skn

n,θ

)
(Ψθ,t − Φkn,θ,t)

∥∥∥π (θn,t) dt

≤ sup
t∈B(0,α)

π (θn,t)
(
α+

∥∥∥I−1 (θ)Skn

n,θ

∥∥∥
) ∫

B(0,α)

|Ψθ,t − Φkn,θ,t| dt

= oPn
θ

(1)

Indeed, on the one hand I−1 (θ)Skn

n,θ = OPn
θ

(1) (because it converges in

Pn
θ -distribution) and on the other hand

Eθ |Ψθ,t − Φkn,θ,t| ≤ Eθ |Ψθ,t − Ckn,θ,tΦkn,θ,t| +
∣∣∣∣1 − 1

Ckn,θ,t

∣∣∣∣

thus using (2.3), and noticing that t 7→ 1
Ckn,θ,t

is bounded on every compact

and that lim
n→∞

Ckn,θ,t = 1, by the Lebesgue theorem, for all t ∈ Rr

∫

B(0,α)

|Ψθ,t − Φkn,θ,t| dt
L1(Pn

θ )→ 0
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Therefore, for all α > 0, the diagonal method allows us to affirm that there
exists an increasing sequence of positive real numbers (αn)n tending to the
infinity, along which the convergence occurs.

• Considering the second term, let us note that π (u) = 0 if u /∈ Θ. Thus, for
all α > 0

Z

B(0,αn)

“
t − I

−1 (θ) S
kn

n,θ

”
Φkn,θ,tπ (θn,t) dt

= exp

„
1

2

D
S

kn
n,θ, S

kn
n,θ

E
I−1(θ)

«Z

B
“
−I−1(θ)S

kn
n,θ

,αn

” t exp

„
−1

2
〈t, t〉I(θ)

«
π

„
θ

n,t+S
kn
n,θ

«
dt

Remark then that exp

(
1
2

〈
Skn

n,θ, S
kn

n,θ

〉

I−1(θ)

)
= OPn

θ
(1) (because Skn

n,θ con-

verges in Pn
θ -distribution) and passing to the limit in the integral (that is

possible because π is continuous and bounded), we have∫
Rr t exp

(
− 1

2 〈t, t〉I(θ)

)
dt = 0.

Finally the assertion (3.3) is stated. �

Proof. (of the proposition 4).

Suppose s to be fixed in the interval
[
1, 1 + t

q

]
where q = 1

1− 1
p

.

We first show that

(7.1)

∫

C(a,γ)∩Θ

∥∥∥ϕs
θ − ϕs

χm(θ)

∥∥∥
L1(P)

dν (θ) ≤ 2sAs−1 K

mα

Using the mean value theorem and the Hölder’s inequality, for all (θ1, θ2) ∈ (C (a, γ) ∩ Θ)
2

E
∣∣ϕs

θ1
− ϕs

θ2

∣∣ ≤ sE
{
max

(
ϕs−1

θ1
, ϕs−1

θ2

)
|ϕθ1 − ϕθ2 |

}

≤ s
{

Eϕ
(s−1)q
θ1

+ Eϕ
(s−1)q
θ2

} 1
q ‖ϕθ1 − ϕθ2‖Lp(P)

≤ s
{
‖ϕθ1‖s−1

L(s−1)q(P) + ‖ϕθ2‖s−1
L(s−1)q(P)

}
‖ϕθ1 − ϕθ2‖Lp(P)

≤ 2sAs−1 ‖ϕθ1 − ϕθ2‖Lp(P)

by (4.1) (because (s− 1) q ≤ t) and the fact that b 7→
(
E |X |b

) 1
b

increases on R∗
+

when X is a random variable.
It then suffices to integrate the inequality with respect to ν on C (a, γ)∩Θ, replacing
θ2 by χm (θ) and then to use (4.2).
Furthermore, it can be written P-almost everywhere on X that

∫

C(a,γ)∩Θ

ϕs
θdν (θ) ≤

∫

C(a,γ)∩Θ

∣∣∣ϕs
θ − ϕs

χm(θ)

∣∣∣ dν (θ) +

∫

C(a,γ)∩Θ

ϕs
χm(θ)dν (θ)

hence by the inequality

(
k∑

i=1

xi

) 1
s

≤
k∑

i=1

x
1
s

i , ∀k ∈ N∗, ∀xi ≥ 0, ∀s ≥ 1
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and then by the Jensen’s inequality, we have

E

(∫

C(a,γ)∩Θ

ϕs
θdν (θ)

) 1
s

≤
(

E

∫

C(a,γ)∩Θ

∣∣∣ϕs
θ − ϕs

χm(θ)

∣∣∣ dν (θ)

) 1
s

+
∑

i∈Γm

Eϕχi,m
ν
(
C
(
ai,

γ

m

)
∩ Θ

) 1
s

The first term in the right member of the previous inequality is treated by (7.1).

Concerning the second, since the maximum of
∑

i∈Γm
x

1
s

i on
∑

i∈Γm
xi = 1 is

(CardΓm)
1− 1

s = m
r(s−1)

s , we have

∑

i∈Γm

Eϕχi,m
ν
(
C
(
ai,

γ

m

)
∩ Θ

) 1
s ≤ m

r(s−1)
s ν (C (a, γ) ∩ Θ)

1
s sup

θ∈C(a,γ)∩Θ

Eϕθ

Thus

E

(∫

C(a,γ)∩Θ

ϕs
θdν (θ)

) 1
s

≤ inf
m∈N∗

ψ (m)

where ψ : x 7→ Dsx
−α

s + Bx
r(s−1)

s with Ds =
(
2sAs−1K

) 1
s and

B = ν (C (a, γ) ∩ Θ)
1
s sup

θ∈C(a,γ)∩Θ

Eϕθ.

Remark then that ψ is a decreasing function on the interval ]0, x̃[ and an increasing

one on the interval ]x̃,∞[, where x̃ =
(

αDs

r(s−1)B

) s
α+r(s−1)

.

• If r (s− 1)B < αDs, then x̃ > 1 and

inf
m∈N∗

ψ (m) = min (ψ (⌊x̃⌋) , ψ (⌊x̃⌋ + 1)) ≤ ψ (⌊x̃⌋ + 1)

But x̃ < ⌊x̃⌋ + 1 ≤ 2x̃, hence

inf
m∈N∗

ψ (m) ≤ Ds
1−ωFαB

ω

where ω = α
α+r(s−1) and Fα =

(
r(s−1)

α

)ω (
2−

α
s + 2

r(s−1)
s

α
r(s−1)

)
.

• If αDs ≤ r (s− 1)B, then x̃ ≤ 1 and hence

inf
m∈N∗

ψ (m) = ψ (1)

<
1

ω
B

≤ 1

ω
A1−ων (C (a, γ) ∩ Θ)

1−ω
s Bω using (4.1)

Finally, we can pose

(7.2) C = max

((
2sAs−1K

ν (C (a, γ) ∩ Θ)

) 1−ω
s

Fα,
1

ω
A1−ω

)
ν (C (a, γ) ∩ Θ)

1
s

It’s important to note that the map (x, y) 7→ max

((
2sAs−1x

y

) 1−ω
s

Fα,
1
ω
A1−ω

)
y

1
s ,

defined on R∗
+ × R∗

+, is increasing in y when x is fixed and increasing in x when y
is fixed. �
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In this paper, the proposition 4 is applied with A = 1, s = 2, p = 2 and

ϕ· =
√
ψθ,·. If I is bounded in a convex neighbourhood Θ̃ of θ, included in Θ,

using the lemma 1, the remark 1, and (7.2) we have

(7.3) C ≤ C0γ
r
2

√
sup

t∈C(a,γ)∩√
n(eΘ−θ)

π (θn,t)

where C0 = max

((
2γ sup

u∈eΘ
√
‖I (u)‖

) 1−ω
2

Fα,
1
ω

)
.

Before stating the propositions 5 and 6, let us show the two following technical
lemmas :

Lemma 2. Assume that (A1) holds.
Then for all θ ∈ Θ, for all θi belonging to ∂Θ and satisfying the assumption

(B1), there exists αi ∈ ]0, 1] such that for all γ > 0, n ∈ N∗ and a ∈ Rr, there exists
Ki,n > 0 such that for all m ∈ N∗

(7.4)

∫

C(a,γ)∩Un,θi

∥∥∥
√

Ψθ,t −
√

Ψθ,χm(t)

∥∥∥
L2(Pn

θ )
π (θn,t) dt ≤

Ki,n

mαi

where Un,θi
=

√
n (Vθi

− θ).

Proof. Let θi belonging to ∂Θ, satisfying the assumption (B1). There exists a posi-

tive function C̃θi
defined on Vθi

∩ Θ such that for all u ∈ Vθi
∩ Θ,

‖I (u)‖ ≤ C̃θi
(u) |u− θi|−2εi .

By the lemma 1, for all t ∈ √
n (Θ − θ)

∥∥∥
√

Ψθ,t −
√

Ψθ,χm(t)

∥∥∥
L2(Pn

θ )
≤ 1

2
sup

v∈[t,χm(t)]

√
‖I (θn,v)‖ ‖t− χm (t)‖

Moreover, by hypothesis, for all t ∈ Un,θi

√
‖I (θn,t)‖ ≤ √

n
Pr

j=1 ε
(j)
i

√
C̃θi

(θn,t)
∣∣t−√

n (θi − θ)
∣∣−εi

Let fix m ∈ N∗ and note for every cube C
(
al,

γ
m

)
belonging to the partition of

C (a, γ)

Jl =
n

j ∈ {1, · · · , r} :
h
a
(j)
l , a

(j)
l +

γ

m

i
∩
h√

n
“
θ
(j)
i − θ

(j)
”
− γ

m
,
√

n
“
θ
(j)
i − θ

(j)
”

+
γ

m

i
6= ∅
o

and Om = {l ∈ Γm : Jl 6= ∅}. If the set Jl is not empty then it can be written in
the form

Jl =

{
j ∈ {1, · · · , r} : a

(j)
l ∈

[√
n
(
θ
(j)
i − θ(j)

)
− 2γ

m
,
√
n
(
θ
(j)
i − θ(j)

)
+
γ

m

]}

Hence the cardinal of Om is lower than 3rmr−1. Using on the set Om the fact that∥∥√Ψθ,t −
√

Ψθ,χm(t)

∥∥
L2(Pn

θ )
is bounded above by

√
2, we have

Z

C(a,γ)∩Un,θi

‚‚‚
p

Ψθ,t −
p

Ψθ,χm(t)

‚‚‚
L2(Pn

θ )
π (θn,t) dt

≤ sup
t∈C(a,γ)

π (θn,t)
“
3r

√
2

γ

m
γ

r−1

+
1

2

√
n

Pr
j=1 ε

(j)
i

r
sup

t∈C(a,γ)

eCθi
(θn,t)

γ

m

Z
S

l∈Oc
m

C(al,
γ
m )

sup
v∈[u,χm(u)]

˛̨
v −√

n (θi − θ)
˛̨−εi du

!
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Remark that if we note pj (resp. qj) the smallest (resp. largest) natural number

such that a(j) +pj
γ
m

≥ √
n
(
θ
(j)
i − θ(j)

)
+ γ

m
(resp. a(j) +qj

γ
m

≤ √
n
(
θ
(j)
i − θ(j)

)
−

γ
m

), then
⋃

l∈Oc
m
C
(
al,

γ
m

)
=
∏r

j=1

([
a(j) + pj

γ
m
, a(j) + γ

]
∪
[
a(j), a(j) + qj

γ
m

])
.

Thus
∫

S
l∈Oc

m
C(al,

γ
m )

sup
v∈[u,χm(u)]

∣∣v −√
n (θi − θ)

∣∣−εi
du

≤
r∏

j=1



∫

[a(j)+pj
γ
m

,a(j)+γ]
sup

vj∈[uj ,(χm(u))j]

(
vj −

√
n
(
θ
(j)
i − θ(j)

))−ε
(j)
i

duj

+

∫

[a(j),a(j)+qj
γ
m ]

sup
vj∈[uj ,(χm(u))j]

(
√
n
(
θ
(j)
i − θ(j)

)−ε
(j)
i − vj

)−ε
(j)
i

duj




=

r∏

j=1

(I1,j + I2,j)

Using the decrease of the real valued function u 7→ u−α on R∗
+ (α ≥ 0)

I1,j ≤ γ

m

m∑

l=pj

(
a(j) + l

γ

m
−√

n
(
θ
(j)
i − θ(j)

))−ε
(j)
i

≤
∫

[a(j)+pj
γ
m

,a(j)+γ]

(
uj −

√
n
(
θ
(j)
i − θ(j)

))−ε
(j)
i

duj

+
γ

m

(
a(j) + pj

γ

m
−√

n
(
θ
(j)
i − θ(j)

))−ε
(j)
i

≤
∫

h
a(j)+pj

γ
m

−√
n

“
θ
(j)
i −θ(j)

”
,a(j)+γ−√

n
“

θ
(j)
i −θ(j)

”i u
−ε

(j)
i

j duj

︸ ︷︷ ︸
Lj

+
( γ
m

)1−ε
(j)
i

But the function x 7→
∫ x+a

x
u−αdu decreases on R+ (if a ≥ 0 and α ≥ 0) thus three

cases appear :

• if ε
(j)
i ∈ [0, 1[, Lj ≤

∫h
0,

“
1−

pj

m

”
γ

i u
−ε

(j)
i

j duj ≤ γ
1−ε

(j)
i

1−ε
(j)
i

,

• if ε
(j)
i = 1, Lj ≤

∫
h

γ
m

,
“
1−

pj −1

m

”
γ

i u−1
j duj = log (m− pj + 1) ≤ logm,

• if ε
(j)
i > 1, Lj ≤

∫
h

γ
m

,
“
1− pj −1

m

”
γ

i u
−ε

(j)
i

j duj ≤
(

m
γ

)ε
(j)
i −1

1

ε
(j)
i −1

.

The treatment of the integral I2,j is similar.

Therefore there exists Ĉθi,j > 0, which depends only on ε
(j)
i and γ such that

I1,j + I2,j ≤ Ĉθi,jm
σj

“
ε
(j)
i

”

where on the one hand σj (x) = (x− 1)+ if x 6= 1 and σj (1) = ξj (chosen such

that
∑r

j=1 σj

(
ε
(j)
i

)
< 1), and on the other hand Ĉθi,j = γ

1−ε
(j)
i˛̨

˛1−ε
(j)
i

˛̨
˛

if ε
(j)
i 6= 1 and
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Ĉθi,j = 1
ξj

otherwise. Thus, noting Ĉθi
= 1

2

∏r
j=1 Ĉθi,j and using the fact that

1
m

≤ 1

m
1−

Pr
j=1(ε

(j)
i

−1)
+ , we have

∫

C(a,γ)∩Un,θi

∥∥∥
√

Ψθ,t −
√

Ψθ,χm(t)

∥∥∥
L2(Pn

θ )
π (θn,t) dt

≤
(

3r
√

2γr + γ
√
n

Pr
j=1 ε

(j)
i

√
sup

t∈C(a,γ)

C̃θi
(θn,t)Ĉθi

)
sup

t∈C(a,γ)

π (θn,t)
1

m
1−P

r
j=1

“
ε
(j)
i −1

”+

The inequality (7.4) is hence true with αi = 1 −∑r
j=1

(
ε
(j)
i − 1

)+

and

Ki,n =

(
3r
√

2 + γ1−r
√
n

Pr
j=1 ε

(j)
i

√
sup

t∈C(a,γ)

C̃θi
(θn,t)Ĉθi

)
γr sup

t∈C(a,γ)

π (θn,t)

�

Under the assumptions of the the previous lemma the inequality (4.2) is fullfilled
in C (a, γ) ∩ √

n (Vθi
− θ), with ϕ· =

√
ψθ,·. Therefore the proposition 4 can be

applied with A = 1, s = 2, p = 2, and using (7.2) we have

(7.5) C ≤ Ci,nγ
r
2

√
sup

t∈C(a,γ)

π (θn,t)

where Ci,n = max

0
@
 

4

 
3r

√
2 + γ1−r√n

Pr
j=1 ε

(j)
i

r
sup

t∈C(a,γ)

eCθi
(θn,t) bCθi

!! 1−ωi
2

Fαi ,
1

ωi

1
A

and ωi = αi

αi+r
.

Lemma 3. Assume that (A1) and (B1) hold.
Then for all θ ∈ Θ, there exists ω ∈ ]0, 1[ such that for all γ > 0, n ∈ N∗ and

a ∈ Rr there exists Cn > 0 such that

Eθ

√∫

C(a,γ)

Ψθ,tπ (θn,t) dt ≤ Cn

√
sup

t∈C(a,γ)

π (θn,t)

(
sup

t∈C(a,γ)

Eθ

√
Ψθ,t

)ω

Proof. Fix θ ∈ Θ, n ∈ N∗, (a, γ) ∈ Rr × R∗
+.

By hypothesis, the Fisher information of the model M is locally bounded, hence
bounded on every compact included in

√
n (Θ − θ) and in particulary on C (a, γ) ∩√

n (Θ − θ). Therefore, using (7.3) there exists C0 > 0 such that

Eθ

√∫

C(a,γ)∩√
n((∪k

i=1Vθi)
c−θ)

Ψθ,tπ (θn,t) dt

≤ C0γ
r
2

√
sup

t∈C(a,γ)

π (θn,t)

(
sup

t∈C(a,γ)

Eθ

√
Ψθ,t

)ω0

where ω0 = 1
1+r

.

Moreover, by the lemma 2, the assumption (4.2) is fullfilled in each of the k
neighbourhoods C (a, γ) ∩ √

n (Vθi
− θ), hence the proposition 4 can be applied.
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Using the inequality (7.5) and noting ω̃ = mini=1,··· ,k ωi, there exists a constant

Ci,n such that

Eθ

√∫

C(a,γ)∩S
k
i=1 Un,θi,τ

Ψθ,tπ (θn,t) dt

≤
(

k∑

i=1

Ci,n

)
γ

r
2

√
sup

t∈C(a,γ)

π (θn,t)

(
sup

t∈C(a,γ)

Eθ

√
Ψθ,t

)eω

We can note Cn= γ
r
2

∑k
i=0 Ci,n, and ω = min (ω0, ω̃) to conclude. �

Remark 2. It’s important to note that if C (a, γ) ⊂ B (0, τ
√
n) then by construction,

the constant Cn can be bounded above by
√
n

η
Cτ where η =maxi=1,··· ,k

(
1−ωi

2

∑r
j=1 ε

(j)
i

)

and Cτ is a constant that doesn’t depend on the vertex a of the cube, nor on n, but
on τ . It suffices to remark that C0 doesn’t depend on n (see (7.3)), that n− η

2 ≤ 1
and to use (7.5).

Recall the following inequality, which is of interest only when K is bounded.

Lemma 4. Let M be a model, K be a part of Θ and fix θ ∈ Θ.
Then, for all s ≥ 0

sup
t∈B(0,s)c∩√

n(K−θ)

Eθ

√
Ψθ,t ≤ exp

(
−1

2
ρ2

θ,Ks
2

)

where ρθ,K = inf
u∈K−θ

d(θ,θ+u)
‖u‖ .

Proof. See lemma 5.3 in the chapter I of [4]. �

It is not difficult to see that if M is DQM with I non singular and locally
bounded, and K a convex bounded subset of Rr then ρθ,K is positive.

Proof. (of the proposition 5).
Let partition the exterior of the ball of center 0 and radius α with crowns

B (0, l)
c∩B (0, l+ 1) and denote by (C (ai, 1))i∈Il

a partition, with cubes, of B (0, l)
c∩

B (0, l+ 1). Since I is locally bounded, there exists εθ > 0 such that I is bounded
on B (θ, εθ). Therefore, using once again (7.3) and then the lemma 4, there exists
Cεθ

> 0 such that

Eθ

√∫

B(0,α)c∩B(0,εθ

√
n)

‖t‖p
Ψθ,tπ (θn,t) dt

≤
∑

α≤l<εθ

√
n

(l + 1)
p
2

∑

i∈Il

Eθ

√∫

C(ai,1)∩B(0,εθ

√
n)

Ψθ,tπ (θn,t) dt

≤ rCεθ

√
sup

u∈B(θ,εθ)

π (u)
∑

l≥α

(l + 1)
p
2 +r−1

exp

(
−1

2
ρ2

θ,B(θ,εθ)ωl
2

)
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Using successively the lemma 3, the remark 2, the lemma 4 and the fact that√
n is bounded above by l+1

εθ
, there exists CA > 0 such that

Eθ

√∫

B(0,α∨εθ

√
n)

c∩B(0,A
√

n)
‖t‖p

Ψθ,tπ (θn,t) dt

≤
∑

α∨εθ

√
n≤l<A

√
n

(l + 1)
p
2

∑

i∈Il

Eθ

√∫

C(ai,1)∩B(0,A
√

n)
Ψθ,tπ (θn,t) dt

≤ rCA

√
sup

u∈B(θ,A)

π (u)
∑

l≥α

(l + 1)
η+ p

2 +r−1
exp

(
−1

2
ρ2

θ,B(θ,A)ωl
2

)

It suffices then to remark that for all s ≥ 0, a > 0 and b > 0
∑

l≥α

(l + 1)
a
exp

(
−bl2

)
= O

(
α−s

)

�

Proof. (of the proposition 6).
Let A > 2 ‖θ‖. Studying with attention the proof of the lemma 3 and using

the remark 2, it can be noticed that if C (a, γ) ⊂ B (0, τ
√
n), the constant Cn is

bounded above by
√
n

η
Cτ where Cτ = O

(
τ

z
2

)
. Let use again the partitions with

crowns, and then cubes, defined in the proof of the proposition 5. Then there exists,
thanks to the lemma 3 and the assumption (B4), a constant C such that

√
n

s
Eθ

sZ

B(0,A
√

n)c
‖t‖p Ψθ,tπ (θn,t) dt

≤ 2
m
2 rC

√
n

s+η− z−m
2

0
@ sup

t∈B(0,A
√

n)c
Eθ

p
Ψθ,t

1
A

ω

X

l≥A

„
l

l + 1

«− m
2

(l + 1)r−1+ z−m
2

+ p
2

But sup
t∈B(0,A

√
n)c Eθ

√
Ψθ,t =

(
supv∈B(0,A)c Eθ

√
fθ+v

fθ
(X1)

)n

. Notice then that

lim sup‖v‖→∞ Eθ

√
fθ+v

fθ
(X1) < 1, by the equality

Eθ

√
fθ+v

fθ

(X1) = 1 − 1

2
d2 (θ, θ + v)

and the assumption (B3). Therefore, there exists A > 2 ‖θ‖ such that for all s ≥ 0,(√
n

s
(
supv∈B(0,A)c Eθ

√
fθ+v

fθ
(X1)

)nω
)

n

is a bounded sequence. �

The proof of the theorem 1 is actually contained in the more general one of the
theorem 2, which takes into account the non bounded part of Θ, which imposes the
assumptions (B2), (B3) and (B4).

Proof. (of the theorem 2).
We first show that the Bayes estimator is asymptotically efficient and regular.

In the right side of the inequality (3.1), let separate the numerator in two parts,
the one treating of the interior of a ball B (0, α), and the other of its exterior. By
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the proposition 3, there exists an increasing sequence of non negative real numbers
(αn)n tending to the infinity such that

∫
B(0,αn)

(
t− I−1 (θ)Skn

n,θ

)
Ψθ,tπ (θn,t) dt

∫
√

n(Θ−θ)
Ψθ,tπ (θn,t) dt

= oPn
θ

(1)

Furthermore
∥∥∥∥∥

∫

B(0,αn)c

(
t− I−1 (θ)Skn

n,θ

)
Ψθ,tπ (θn,t) dt

∥∥∥∥∥

≤
∫

B(0,αn)c

(
‖t‖ +

∥∥∥I−1 (θ)Skn

n,θ

∥∥∥
)

Ψθ,tπ (θn,t) dt

Let now separate B (0, αn)
c

in a bounded part B (0, αn)
c ∩ B (0, A

√
n) and a non

bounded part B (0, αn ∨A√n)
c
, where A is a positive real number. Noticing that

I−1 (θ)Skn

n,θ converges in Pn
θ -distribution to N

(
0, I−1 (θ)

)
, it sufficies then to use,

with p = 1 and p = 0, the assertion (4.3) on B (0, αn)c ∩ B (0, A
√
n) and then the

proposition 6 on B (0, αn ∨A√n)
c
.

Let q be a positive number.

Since θ̂n = E (∆| (X1, · · · , Xn)) Pn
θ -almost everywhere, by the Jensen’s inequality

and passing to the expectation, we have

Eθ

∥∥∥
√
n
(
θ̂n − θ

)∥∥∥
q

≤
∑

l≥0

(l+ 1)q
Eθ

∫
B(0,l)c∩B(0,l+1) Ψθ,tπ (θn,t) dt∫

√
n(Θ−θ)

Ψθ,tπ (θn,t) dt

Let ξ > 0 such that B (θ, ξ) ⊂ Θ and supu∈B(θ,ξ)

√
‖I (u)‖ is finite.

We can apply the following inequality

x

z
≤ 1{y≤b} + 1{x≥a} +

a

b
, ∀ (a, b) ∈ R∗

+ × R∗
+ if 0 < x ≤ y ≤ z

to x =
∫
B(0,l)c∩B(0,l+1)

Ψθ,tπ (θn,t) dt, z =
∫
√

n(Θ−θ)
Ψθ,tπ (θn,t) dt,

y =
∫
B(0,ξ

√
n) Ψθ,tπ (θn,t) dt, a = Jζ

n,l where Jn,l = Eθ

√∫
B(0,l)c∩B(0,l+1) Ψθ,tπ (θn,t) dt,

and b = Kn,l. The two positive constants Kn,l and ζ will be chosen later.

Notice that if we suppose that
Kn,l

infu∈B(θ,ξ) π(u) < ξr
n,l ≤ (ξ

√
n)

r
where ξn,l will be

chosen later, we have

Pn
θ

({∫

B(0,ξ
√

n)
Ψθ,tπ (θn,t) dt ≤ Kn,l

})

≤ Pn
θ

({∫

B(0,ξ
√

n)
Ψθ,tdt ≤

Kn,l

infu∈B(θ,ξ) π (u)

})

≤ Pn
θ

({∫

B(0,ξn,l)

Ψθ,tdt ≤
Kn,l

infu∈B(θ,ξ) π (u)

})

≤ Pn
θ

({∫

B(0,ξn,l)

(Ψθ,t − 1) dt ≤ Kn,l

infu∈B(θ,ξ) π (u)
− ξr

n,l

})



22 ROUDOLF IASNOGORODSKI AND HUGO LHÉRITIER

By the Chebychev’s inequality we have

Pn
θ

({∫

B(0,ξ
√

n)
Ψθ,tπ (θn,t) dt ≤ Kn,l

})
≤

Eθ

∫
B(0,ξn,l)

|Ψθ,t − 1| dt
ξr
n,l −

Kn,l

infu∈B(θ,ξ) π(u)

Since

Eθ

∫

B(0,ξn,l)

|Ψθ,t − 1|dt ≤ 2
√
n

∫

B(0,ξn,l)

d (θ, θn,t) dt

≤ ξr+1
n,l sup

u∈B(θ,ξ)

√
‖I (u)‖

we can then choose Kn,l = 1
2ξ

r
n,l infu∈B(θ,ξ) π (u) and thus

Pn
θ

({∫

B(0,ξ
√

n)
Ψθ,tπ (θn,t) dt ≤ Kn,l

})
≤ 2ξn,l sup

u∈B(θ,ξ)

√
‖I (u)‖

It allows us to state the following inequality

Eθ

∥∥∥
√
n
(
θ̂n − θ

)∥∥∥
q

≤
∑

l≥0

(l + 1)
q

(
2ξn,l sup

u∈B(θ,ξ)

√
‖I (u)‖ + J

1− ζ
2

n,l +

(
1

2
inf

u∈B(θ,ξ)
π (u)

)−1 Jζ
n,l

ξr
n,l

)

Choosing ζ = 2(r+1)
r+3 and ξn,l = J

2
r+3

n,l , there exists C > 0 such that

Eθ

∥∥∥
√
n
(
θ̂n − θ

)∥∥∥
q

≤ C


J

2
r+3

n,0 +
∑

l≥1

(l + 1)
q
J

2
r+3

n,l




Remark first that by the Jensen inequality and since
∥∥√Ψθ,t

∥∥
L2(Pn

θ ) ≤ 1, we have

Jn,0 ≤
√∫

B(0,1)

π (θn,t) dt

Then the continuity of π implies that Jn,0 is uniformly bounded in n.
Second, for all p ≥ 0 and l ∈ N∗

Jn,l ≤ l−
p
2 Eθ

√∫

B(0,l)c∩B(0,l+1)

‖t‖p Ψθ,tπ (θn,t) dt

Let A a positive number defined in the proposition 6.
If l ∈ N∗∩ [1, A

√
n[ then, using the proposition 5, there exists a positive constant

C̃, independant of n, such that

Jn,l ≤ l−
p
2 Eθ

√∫

B(0,1)c∩B(0,(A+1)
√

n)
‖t‖p

Ψθ,tπ (θn,t) dt

≤ C̃l−
p
2
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If l ≥ A
√
n then, using the proposition 6, for all p < m − z − 2r there exists a

positive constant Ĉ, independant of n, such that

Jn,l ≤ l−
p
2 Eθ

√∫

B(0,A
√

n)c
‖t‖p Ψθ,tπ (θn,t) dt

≤ Ĉl−
p
2

Therefore, for all l ≥ 1, Jn,l ≤ max
(
C̃, Ĉ

)
l−

p
2 and thus

∑
l>0 (l + 1)

q
J

2
r+3

n,l is

bounded above by max
(
C̃, Ĉ

)∑
l>0 (l+ 1)

q− p
r+3 which converges if (q + 1) (r + 3) <

p < m− z − 2r.

Since θ̂n is asymptotically efficient, it suffices to apply the theorem 2.22 of the

chapter II in [1] to prove that θ̂n is ℓ-asymptotically of minimal risk.
Studying with attention the definition of the constants, it can be noticed that

they are locally bounded in θ. To establish that θ̂n is ℓ-asymptotically minimax,
a “uniform” version of the lemma 4 is necessary. Most precisely, it can be shown
(see [10]) that for all s ≥ 0 and τ > 0, there exists ρθ,K,τ > 0 and Cθ,K,τ > 0 such
that for all n ∈ N∗

sup
u∈B(θ,τ)

sup
t∈B(0,s)c∩√

n(K−u)

Eu

√
Ψu,t ≤ Cθ,K,τ exp

(
−1

2
ρ2

θ,K,τs
2

)

Furthermore, it should be noticed that the assumption (B3) implies the fact that
there exists τ > 0 and A > 0 such that

inf
u∈B(θ,τ)

inf
v∈B(0,A)c

d (u, u+ v) > 0

�
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