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Abstract. The Knapsack Sharing Problem (KSP) is an NP-Hard combinatorial optimization problem, admitted
in numerous real world applications. In the KSP, we have a knapsack of capacity c and a set of n objects, namely
N , where each object j, j = 1, . . . , n, is associated with a profit p j and a weight w j . The set of objects N is
composed of m different classes of objects Ji , i = 1, . . . , m, and N = ⋃m

i=1 Ji . The aim is to determine a subset
of objects to be included in the knapsack that realizes a max-min value over all classes.

In this article, we solve the KSP using an approximate solution method based upon tabu search. First, we
describe a simple local search in which a depth parameter and a tabu list are used. Next, we enhance the algorithm
by introducing some intensifying and diversifying strategies. The two versions of the algorithm yield satisfactory
results within reasonable computational time. Extensive computational testing on problem instances taken from
the literature shows the effectiveness of the proposed approach.
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1. Introduction

Unless P = NP, many interesting combinatorial optimization problems cannot be solved
exactly within a reasonable amount of time. Consequently, heuristics must be used to solve
large real world problems. Approximate algorithms may be divided into two main classes:
general purpose algorithms designed independently from the optimization problem at hand,
and tailored algorithms specifically designed for a given problem.

In this article we propose a general approximate algorithm for solving the Knapsack
Sharing Problem (KSP). This problem has a wide range of commercial applications (see
Brown [1] and Tang [17]). In the KSP, we have a set of n objects represented by N =
{1, . . . , j, . . . , n}, where each object j is associated with a profit p j and a weight w j .
Furthermore, the set N (= J1 ∪ J2 ∪ · · · ∪ Jn) is composed of m different classes of objects,
i.e., for each pair (p, q), p �= q, p ≤ m, and q ≤ m, we have Jp ∩ Jq = ∅ and

⋃m
i=1 Ji = N .

Moreover, given a knapsack of capacity c, we wish to determine a subset of objects to be
included in the knapsack. The KSP is equivalent to maximizing the minimal value of a set
of linear functions subject to single linear constraint. Indeed, if we define x j = 1 if the
object j is in the solution set, and x j = 0 otherwise, the mathematical formulation of the
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problem can be stated as follows:

(KSP)




Max min
1≤i≤m

{∑
j∈Ji

p j x j

}

Subject to
∑
j∈N

w j x j ≤ c

x j ∈ {0, 1}, for j = 1, . . . , n

We may assume without loss of generality that w j , p j (for j = 1, . . . , n), and c are positive
integers and that

∑
j∈N w j > c. In what follows, we consider that the elements of each

class Ji , i = 1, . . . , m, are indexed in decreasing order such that p1/w1 ≥ p2/w2 ≥ · · · ≥
p|Ji |/w|Ji |. Notice that if we have two terms that realize the same coefficient, then we first
accept the term with the greater profit. The problem so defined is NP hard, since it is a
generalization of the famous single-constraint knapsack, i.e., when m = 1. The KSP is
classified as KSP(Bn/m/1) (see Yamada and Futakawa [18]), which means that we have n
objects of binary (B) type divided into m classes with one constraint.

In this article, we develop an approximate algorithm for the KSP. First, we propose a
Single-depth Tabu Search (called STS) that combines a depth parameter with a tabu list.
Next, we enhance the STS approach by introducing some intensifying and diversifying
strategies: the resulting algorithm is called MTS (Multiple-depth Tabu Search). The rest
of the article is organized as follows. First, in Section 2, we briefly review the literature
concerning some sequential exact and approximate algorithms for the (general) knapsack
problem. In Section 3, we describe the principle of the Tabu Search (TS). In Section 4,
we present the TS procedure adapted for the KSP. We start (Section 4.1) by describing
the solution representation and fitness function associated with an instance of the prob-
lem. In Section 4.2, a greedy procedure is proposed in order to produce an initial feasible
solution. The main steps of the proposed algorithm are detailed in Sections 4.3–4.6. In
Sections 4.3 and 4.4, we describe the main principle of the first version of the algorithm,
called Single-depth Tabu Search, and in Sections 4.5 and 4.6 we present the enhanced al-
gorithm, called Multiple-depth Tabu Search. Finally, in Section 5, the performance of the
proposed approach is tested on a set of problem instances extracted from the literature that
have different sizes and densities.

2. Related work and knapsack problems

Because of its importance and despite its NP hardness, the knapsack problem has been
widely studied in the literature. The design of the solution approaches depends in general
on the particular framework of the application, which gives rise to the particular knapsack
problem, and on the available computational resources.

For the (un)bounded single constraint knapsack problem (see Martello and Toth [13],
Pisinger [15], and Syslo [16]), a large variety of solution methods have been devised.
The problem has been solved optimally (and approximately) by dynamic programming,
by the use of tree search procedures, and by other approaches. A good review of the



AN EFFICIENT ALGORITHM FOR THE KNAPSACK SHARING PROBLEM 29

single-constraint knapsack problem and its associated approaches can be found in Gilmore
and Gomory [5] and Martello and Toth [12].

Previous work has also developed several approaches for the general case, i.e., when the
number of constraints is not limited to one. The problem is then called the multidimensional
(or multiconstraint) knapsack problem (for a recent, detailed review of this problem, see
Chu and Beasley [3]). When the number of constraints is limited to only two knapsack
constraints, then the problem is referred to as the particular bidimensional knapsack problem
(see Freville and Plateau [4]).

Another problem, namely the max-min allocation problem, has been studied by several
authors (see Brown [2], Luss [11], Pang and Yu [14], and Tang [17]). Different exact and
approximate approaches have been tailored especially for this problem. For the particular
continuous KSP described by Kuno et al. [10], the authors have proposed a linear-time
solution algorithm. Another algorithm has been proposed by Yamada and Futukawa ([18]).
The KSP has been solved optimally by dynamic programming (see Hifi and Sadfi [9]) and
by the use of tree search procedures (see Yamada et al. [19]).

3. The tabu search

3.1. The tabu search basics

Tabu Search (TS) has its roots in the field of artificial intelligence as well as in the field
of optimization (see [6–8]). The heart of tabu search lies in its use of adaptive memory,
which allows the search history to guide the solution process. In its simplest manifestations,
adaptive memory is exploited to prohibit the search from reinvestigating solutions that
have already been evaluated. However, the use of memory in our implementation is much
more complex and calls upon memory functions that encourage search diversification and
intensification. These memory components allow the search to escape from locally optimal
solutions and in many cases to find optimal solutions.

One way of intelligently guiding a search process is to forbid (or discourage) certain
solutions from being chosen based on information that suggests these solutions may dupli-
cate, or significantly resemble, solutions encountered in the past. In TS, this is often done
by defining suitable attributes of moves or solutions and then imposing restrictions on a set
of the attributes, depending on the search history. Two prominent ways for exploiting search
history in TS are through recency memory and frequency memory. Recency memory is typ-
ically (though not invariably) a short-term memory that is managed by structures or arrays
called “tabu lists,” while frequency memory more usually fulfills a long-term search func-
tion. One standard form of recency memory discourages moves that lead to solutions with
attributes shared by other solutions recently visited. A standard form of frequency memory,
on the other hand, either discourages moves leading to solutions with attributes shared by
other solutions visited during the search or, alternatively, encourages moves leading to so-
lutions whose attributes have rarely been seen before. Another standard form of frequency
memory is defined over subsets of elite solutions to fulfill an intensification function.

Short- and long-term components based on recency and frequency memory can be used
separately or together in complementary TS strategies. Note that this approach operates
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by implicitly modifying the neighborhood of the current solution. Tabu search in general
includes many enhancements to the scheme sketched here.

3.2. TS foundations

TS begins in the same way as an ordinary local or neighborhood search, proceeding itera-
tively from one point (solution) to another until a chosen termination criterion is satisfied.
Each solution s ∈ S (S denotes the set of the feasible solutions) has an associated neigh-
borhood N (s) ∈ S, and each solution s ′ is reached from s by an operation called move.
As an initial point of departure, we may contrast TS with a simple ascent method, where
the goal is to maximize f (s) (or with a corresponding descent method, where the goal is
to minimize f (s)). Such a method only permits moves to neighbor solutions that improve
the current objective function value, and it terminates when no improving solutions can be
found. The final solution s obtained by an ascent method (maximizing context) is called a
local optimum, since it is at least as good or better than all the solutions in its neighborhood.
The evident shortcoming of an ascent method is that such a local optimum in most cases
will not be a global optimum.

3.3. Use of memory

The memory structures in our approach operate by referring to four principal dimensions:
recency, frequency, quality, and influence. Recency-based and frequency-based memory
complement each other and have important characteristics. The quality dimension refers
to the ability to differentiate the respective merits of solutions visited during the search. In
this context, memory can be used to identify elements that are common to good solutions
or to the paths that lead to such solutions. The fourth dimension, influence, considers the
impact of the choices made during the search, not only on quality but also on structures (in
the sense that quality may be regarded as a special form of influence). The memory used
in tabu search is both explicit and attributive. Explicit memory records complete solutions,
typically consisting of elite solutions visited during the search. An extension of this memory
records highly attractive but unexplored neighbors of elite solutions. The memorized elite
solutions (or their neighbors) are used to expand the local search.

These four principles adopted here are general and apply to the extended TS approach.
In our study, we made some adjustments in order to apply them to the KSP case.

4. The TS for the KSP

4.1. Solution representation and fitness function

In our approach, and before describing the method, we give a suitable representation scheme,
i.e., a way to represent a solution of the KSP. The standard KSP 0-1 binary representation
is an obvious choice for the KSP, since it represents the underlying 0-1 integer variables. In
our representation, we use an n-bit binary vector S, where n is the number of variables and
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Figure 1. Binary representation of the KSP solution.

S( j) = 0 or 1. S( j) = 0 (resp. S( j) = 1) means that x j = 0 (resp. x j = 1) in the solution
of the KSP. Figure 1 shows the vector representation of this solution.

Generally, the binary representation can introduce infeasibility in the resulting solution.
Therefore, a number of standard approaches exist to deal with dissatisfaction and infeasi-
bility constraints. We can

1. use a representation that automatically ensures the feasibility of the solution;
2. separate the fitness function into two terms, the first one containing a subset that realizes

a feasible solution to the KSP and the second one representing the amount of infeasibility
of the current solution; and

3. design a local search procedure guaranteeing transformation of any obtained infeasible
solution into a feasible one.

The above points were intensively used in several ways when genetic and simulated
annealing algorithms were applied to solve some particular optimization problems (see
Chu and Beasley [3], Glover and Laguna [7], and Hansen [8]). Here, we design another
process in order to construct a current feasible solution. The proposed process uses the so-
called critical element. The critical element of a class is the one that separates the class into
two parts: the right-critical and the left-critical areas. In our case, the solution is considered
as follows:

1. Consider a portion of each subvector Si , i = 1, . . . , m, and suppose that Si (k), k ≤ |Ji |,
is a critical element of the i-th class. Fix all elements of the left-critical region (of each
class) to “one” and consider all elements of the right-critical region to be “free.”

2. The obtained solution represents a feasible solution to the KSP if all free elements are
set to zero. We can see that the solution can also be improved by setting some elements
of the right-critical region to one.

In our method, we apply this simple approach of using heuristic operators. We prefer this
approach because a “good” penalty function is often difficult to determine. By restricting
the proposed algorithm to search only the feasible region up to the solution space, we obtain
the following fitness function based entirely on the objective function to be maximized:

f (S) = min

{ ∑
j∈S1

p j S( j), . . . ,
∑
j∈Sm

p j S( j)

}
,

where S = (S1, . . . , Sm). Note here that we try to identify the better subset (class), which
produces the higher value and therefore the better KSP solution as well.
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4.2. An initial solution to the KSP: A Greedy Heuristic (GH)

The proposed heuristic is of the greedy type, called herein GH. The main steps of the GH
procedure are described by the following steps:

Initialization.
1. Set the initial capacity to zero, i.e., SumCap ← 0; (cumulate total capacity)
2. Set min ← 1, where min denotes the index of the class realizing the minimum

(sub)solution;
3. For each i ∈ {1, . . . , m}, set ji ← 1, Pi ← 0 and Wi ← 0, where Pi (resp. Wi ) is

the cumulate profit (resp. weight) of items picked in the i-th class.

Repeat
If SumCap + w jmin ≤ c then set SumCap = SumCap + w jmin ;
- Set jmin ← jmin + 1;
- Let min be an index realizing min

1≤i≤m
{Pi };

Until jmin > |Jmin|.

The GH procedure builds iteratively a feasible solution. Indeed, the main loop repeat
begins by constructing a partial feasible solution. The obtained solution is completed later,
using the same steps, by setting some elements to 0 or 1. Initially, all elements of each class
are ranged in decreasing order of the proportion profit/weight. In step 3 of the loop repeat,
a current index min, representing a favorite class, is selected. This current index represents
the class such that the sum of its fixed-items profits in the subsolution is the smallest
one. The first element, denoted jmin of the min-th class, is added to the current solution if
(1) the element has not been selected before and (2) its weight does not exceed the residual
capacity of the resulting knapsack. The process is iterated until there is no possibility of
fixing any other element in the current class to put in the knapsack. It is easy to see that this
solution is feasible.

4.3. The critical element and tabu list

In this section, we try to improve the solution produced by the procedure GH. We do so
by applying a neighborhood search throughout some elements called critical elements. We
recall that each class Ji has a critical element rJi , which denotes the index of a particular
element of the class Ji that has a particular knapsack capacity, namely, c̄ Ji . Let us consider
the following problems by setting c̄ Ji ≤ c, ∀i ∈ {1, . . . , m}, where c̄ Ji is a nonnegative
integer:

(
SK

c̄Ji
Ji

)



Max
∑
j∈Ji

p j x j

subject to
∑
j∈Ji

w j x j ≤ c̄ Ji

x j ∈ {0, 1}, for j ∈ Ji
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Each (SK
c̄Ji
Ji

) problem is associated with a specified class Ji , i = 1, . . . , m, and with a
capacity c̄ Ji . Notice that each (SK

c̄Ji
Ji

) represents exactly a Single Knapsack (SK) problem
(for more details, see Hifi and Sadfi [9]). Moreover, each class Ji is specified by its critical
element, which is obtained as follows: (1) we select the elements in the decreasing order of
p j/w j , and (2) the critical element rJi is the index of an element of such a class Ji realizing

rJi −1∑
kJi =1

wkJi
≤ c̄ Ji (1)

rJi∑
kJi =1

wkJi
> c̄ Ji (2)

m∑
i=1

c̄ Ji ≤ c (3)

We consider that a tabu list is a vector characterizing the partial critical elements (rJ1 , . . . ,

rJm ). We can show that there exists a bijection between the set of critical elements and the
set of all solutions obtained by combining different solutions. In our study, we consider
only the critical elements to simplify all the search procedures for KSP.

The description of the solution is such that, for each class Ji , i = 1, . . . , m, all items
located before rJi are set equal to “one” and items located after rJi are “free.” The obtained
solution is feasible and is completed by applying the GH procedure. At each step of the
algorithm, a new solution is generated and the tabu list updated with a new critical vector,
and we remove the old critical vector from the tabu list. This tabu list is an array recording
the critical elements for a given number of iterations.

4.4. A neighborhood of the current solution

In this section, we develop the main principle of the Single-depth Tabu Search algorithm
(STS). In order to improve each current feasible solution, we run on it a neighborhood search.
We recall that each feasible solution contains some critical elements, therefore, by moving
some of these elements, we construct a set of solutions representing the neighborhood of
the current feasible solution. Each class Ji has a critical element rJi verifying Eqs. (1)–(3)
of Section 4.3. For a given class, figure 2 shows the structure of an eventual partial exact
solution, and figure 3 illustrates the configuration of an eventual partial feasible solution.

Let � be a nonnegative integer representing a depth parameter. The depth parameter
allows us to jump backward from rJi to rJi − 1 and so on for each class Ji until the total
depth has been explored. For each class, and with reference to a certain feasible solution,

Figure 2. Binary representation of a partial KSP solution for the i-th class.
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Figure 3. Binary representation of a feasible KSP solution for the i-th class. The symbol ∗ denotes free items
not yet fixed in a given class.

we make moves in the current tabu list as follows: (1) let xrJi −1 be the (rJi − 1)-th item of
the i-th class, (2) set xrJi −1 equal to zero, and (3) complete the resulting configuration by
applying the GH procedure.

A set of new solutions is obtained and is called the neighborhood of the current solution.
A new search is then applied to improve the solution, i.e., the solution with the best value in
the neighborhood is selected for which the critical vector is not in the tabu list. This process
is iterated until the total depth is completely explored.

The main steps of the STS algorithm are described in figure 4. The algorithm starts by
setting the neighborhood to the empty set and by considering that the stopping criterion
is represented by a constant MaxIter. At each iteration (of the Main step) and for each
class i ∈ {1, . . . , m}, r ′

Ji
is set equal to j , where j denotes the index of the best critical

element taken in the following order: rJi −1, . . . , rJi −�. The current solution is completed
according to the new configuration realized with the obtained critical element as (rJ1 −
1, . . . , r ′

Ji
, . . . , rJm − 1). In this case, a neighborhood of a solution is then obtained for the

considered depth �. In fact, for each constructed solution m�, neighbors are considered.
The best solution is updated if one of the neighbors improves the current solution and
does not belong to the tabu list. For the current iteration, a new solution is obtained and
is considered as tabu relating to its critical element. The tabu list is then composed by the
current best critical vector element if we consider all the classes Ji , i = 1, . . . , m. The same
process is iterated by considering the new obtained solution and so on.

We can see that the STS has a complexity of O(mn). On the one hand, at each step of the
loop for of themain step of the algorithm of figure 4, the functionFindNeighborhood-

Figure 4. The single-depth tabu search approach.
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(Sol, �) takes � × O(mn) operations, where � is the constant representing the depth
parameter; therefore, for a maximum number of iterations MaxIter, we have MaxIter ×
� × O(mn) operations. On the other hand, the FindBestSol(Neighborhood\TabuList)
procedure has the same complexity, therefore, the complexity of STS is evaluated to O(mn).

In our method, recency-based memory and frequency-based memory are both concen-
trated in depth exploration and the search for other solutions, i.e., the process starts by
making an inventory of candidate solutions, in addition to exploring the total depth. This
inventory is treated in the tabu list. The quality component consists of identifying and
discriminating elements that seem to improve on the current solution by building its neigh-
borhood. Finally, the influence component tries to capture the best candidates from the
beginning of the search process until the best solution is selected with reference to the con-
structed neighborhood. Locally, the obtained solution could be the worst, but the tabu list
represents the history of the process of the search, so attractive areas could then be explored
to create more improvements.

4.5. Intensification and diversification strategies

In this section, we propose an improved version of the STS algorithm. The improved
version is called Multiple-depth Tabu Search, denoted MTS, in which two different depth
parameters are used. Generally, two highly important components of TS are intensification
and diversification strategies. Intensification strategies are based on modifying choice rules
to encourage move combinations and solution features that have historically been found to
be good. These strategies may also initiate a return to attractive regions in order to search
them more thoroughly. On the other hand, the diversification stage consists of encouraging
the search process to examine unvisited regions and to generate solutions that differ in
various significant ways from those seen before.

In our study, we have considered a combination of diversification and intensification
strategies. This proposed strategy seems an appropriate way for the KSP to select good
solutions. The strategy considers two depths called right depth (denoted �r ) and left depth
(denoted �l). Each one explores the neighborhood in the opposite direction from the other.
In addition, �r is at least two times �l . This setup allows the search to explore the entire
left neighborhood and to attend to the entire right neighborhood. The strategy is based
on making combinations of all solutions never visited before, and it modifies choice rules
to encourage move combinations and solution features historically found to be good. The
strategy may also initiate a return to attractive regions to search them more thoroughly.
Such an approach can be based on generating subassemblies of solution components that
are then fleshed out to produce full solutions.

In figure 5, we represent an intensified-diversified strategy applied by the MTS algorithm.
The symbol ∗ denotes the explored area, with free items and those not fixed yet, for a

Figure 5. Binary representation of an MTS partial KSP solution for the i-th class.
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given first subsolution. Once a �l is fixed, the entire right neighborhood is explored from
rJi + 1 to rJi + �r . The obtained set of all combinations of subsolutions is the constructed
neighborhood for the current solution. Furthermore, for each class Ji , if any improved
subsolution is obtained, then it is a tabu subsolution. The generalization to the solution is
reached by treating all the classes.

4.6. Using a second neighborhood

4.6.1. An overview of the MTS approach. The main idea of the MTS approach remains
the same as for the STS approach. Here, we consider two different depths, namely, one left-
direction depth and another right-direction depth; in other words, we consider two critical
areas. At the beginning, we fix the left area depth running heuristic and a pseudo-STS
algorithm. We then run a right neighborhood search and explore the entire corresponding
depth. Then a combination of solutions for the first fixed right depth is generated. A pseudo-
STS is run for this combination. This principle is applied for the entire left depth area,
and we explore, for such a fixed left depth, the total right corresponding depth area. This
procedure seems much more interesting in investigating more regions, and it gives many
more good solutions, in the sense that it improves the solutions given by the single-depth
strategy (see Section 5). Note here that we can also choose more than two depths, but
the computational time will increase significantly. Furthermore, with two depths, limited
computational experience showed that the MTS approach produced good results within a
reasonable computational time.

4.6.2. The main principle of the search process. The main steps of the MTS algorithm
are given in figure 4 by replacing the parameter � by the pair (�l , �r ) in the procedure
InitDepth(•) (line 4 of Initialization) and in the procedure FindNeighborhood(Sol,
•) (line 2 of the Main step). The MTS algorithm has the same idea in building neighbor-
hoods and searching for improved solutions. The difference consists in the manipulation of
two types of depths for exploring new areas: (1) a right area and (2) a left area. At the begin-
ning, the neighborhood set is initialized to the empty set. At each iteration and for each class,
we assign to r ′

Ji
the index j that realizes the best critical element. In this case, the current con-

figuration (considering the new critical element) is denoted by (rJ1 −1, . . . , r ′
Ji
, . . . , rJm −1).

Each considered depth � represents a solution—one that can be characterized by its neigh-
borhood. By considering all depths, we obtain a total of m × �r × �l neighbors for each
solution. Note that this outcome is much richer than the one obtained by applying the STS
algorithm. The best solution is updated if one of the neighbors improves the current solution
and if its critical elements do not belong to the tabu list. At each iteration, a new solution
is obtained, and it is considered to be tabu. The tabu list is composed of the current best
critical vector for the considered classes. The newly obtained solution is used in the next
iterations to try for another local improvement.

We can show that this algorithm has a complexity evaluated to O(nm). Indeed, we just note
that the FindNeighborhood(Sol, �r , �l) (resp. FindBestSol(Neighborhood \TabuList))
procedure takes �r × �l × O(nm) operations and that, for a constant �r × �l × D, the
MTS algorithm has a complexity of O(nm).
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5. Computational results

The proposed algorithm was coded in C and executed on an UltraSparc10 (250 MHz
and with 128 Mo of RAM). Our computational study was conducted on 240 problem in-
stances of various sizes and densities. These test problem instances (detailed in Table 1)
are standard and publicly available,1 and their optimal solution values are known and
taken from [9]. These instances are divided into two different sets. The first set repre-
sents 168 “uncorrelated” instances, and the second one contains 72 “strongly correlated”
instances.

The “uncorrelated” instances are generated as follows: for each instance, the number
m (classes) is taken in the interval [2, 50], the number n (variables) is taken from [1000,
20000], and w j and p j are mutually independent and are uniformly taken from [1, 100]
and [1, 50], respectively. The capacity of the KSP c is equal to �(

∑n
j=1 w j )/2�, and the

cardinality of each class Ji , i = 1, . . . , m, is in [1, n − m + 1]. The other 72 instances
(the “correlated” instances) are generated in the same way as the “uncorrelated” ones, but
the profit p j associated with the objects have been taken to be equal to w j + 100 for
j = 1, . . . , n.

Table 1. Test problem details: 1 ≤ x ≤ 4.

Inst. n m Inst. n m Inst. n m

A02.x 1000 2 B02.x 2500 2 C02.x 5000 2

D02.x 7500 2 E02.x 10000 2 F02.x 20000 2

A05.x 1000 5 B05.x 2500 2 C05.x 5000 2

D05.x 7500 5 E05.x 10000 2 F05.x 20000 2

A10.x 1000 10 B10.x 2500 10 C10.x 5000 10

D10.x 7500 10 E10.x 10000 2 F10.x 20000 10

A20.x 1000 20 B20.x 2500 20 C20.x 5000 20

D20.x 7500 20 E20.x 10000 20 F20.x 20000 20

A30.x 1000 30 B30.x 2500 30 C30.x 5000 30

D30.x 7500 30 E30.x 10000 30 F30.x 20000 30

A40.x 1000 40 B40.x 2500 40 C40.x 5000 40

D40.x 7500 40 E40.x 10000 40 F40.x 20000 40

A50.x 1000 50 B50.x 2500 50 C50.x 5000 50

D50.x 7500 50 E50.x 10000 50 F50.x 20000 50

A02C.x 1000 2 B02C.x 2500 2 C02C.x 5000 2

D02C.x 7500 2 E02C.x 10000 2 F02C.x 20000 2

A05C.x 1000 5 B05C.x 2500 5 C05C.x 5000 5

D05C.x 7500 5 E05C.x 10000 5 F05C.x 20000 5

A10C.x 1000 10 B10C.x 2500 10 C10C.x 5000 10

D10C.x 7500 10 E10C.x 10000 10 F10C.x 20000 10
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Table 2. Representation of the quality results realized by the three versions of the algorithm.

Single depth without tabu list Single depth with tabu list Multiple depth with tabu list

Instances (no. of nb) Optima %Av. Rat. Worst Optima %Av. Rat. Worst Optima %Av. Rat. Worst

Uncorrelated (168) 18 0.210 1.455 81 0.051 0.476 129 0.019 0.316

Correlated (72) 5 0.187 0.722 25 0.014 0.097 50 0.003 0.029

5.1. The summary results

In a preliminary experiment, we have solved the problem instances by considering several
versions of the algorithm. A summary of the obtained results appears in Table 2, where
we report, for each version, the number of instances solved at the optimum (denoted by
Optima) and the Average Percentage Deviation (Av. P.D.), representing the average gap
Av. P.D. = ∑�

i=1( Opti −Ai

Opti
× 100%)/� (where � denotes the number of instances, Ai repre-

sents the solution value obtained by applying the algorithm on the instance i , and Opti is the
optimal solution value of this instance). We have also reported the worst-case percentage
deviation of each group, denoted Worst.

First, we have considered a simple version that combines the GH procedure and a simple
Local Search, called herein GH-LS. In this case, we have removed the tabu list. The second
version of the algorithm, called STS herein, represents the algorithm GH-LS, in which a
tabu list is introduced. Finally, we have considered a third version representing the MTS
algorithm. The implementation of the different versions of the algorithm involves some
decisions: the way to set the number of iterations, the right values of the left-depth �l (or
�) and right-depth �r , and the length of the tabu list. Several strategies have been explored,
and we have chosen the strategy that produced good results without large computational
time. In our study, we have retained the following strategies. The stopping criterion for
the GH-LS and STS algorithms was set to a maximum number of iterations of 500 for
the uncorrelated (resp. 300 for the correlated) problem instances. The depth parameter
� was set at five. For the MTS algorithm, the maximum number of iterations was set,
respectively, at 300 for the uncorrelated and at 200 for the correlated ones. The left-depth
�l was set at five and the right-depth �r was doubled. Furthermore, for the STS and MTS
versions, the length of the tabu list varies dynamically. Indeed, if m∗ is the number of the
different classes, then the length is automatically and randomly taken in the integer interval
[�√m∗� + 1, �√m∗� + 5]. The change of the tabu list is made after 25 iterations if the best
current solution has not improved. These limits allows us to keep the average computing
times below two minutes of CPU.

The quality of the results obtained by the three versions of the algorithm are given in
Table 2. Examining Table 2, we observe the following:

• The GH-LS algorithm produces reasonable quality results (see columns 2, 3, and 4
of Table 2)—on average, 0.21% (for the uncorrelated instances) and 0.187% (for the
correlated instances) from the optimum—but it can give poor results in some instances,
with a worst-case result of 1.455%. This finding means that GH-LS gives only a feasible
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solution without knowing how to improve it, since the tabu list was canceled. The history
of tabu possible candidates is not taken into account, so the search process cannot escape
from some local optima.

• The results of the GH-LS algorithm are improved by adding the tabu list (see columns 5, 6,
and 7 of Table 2). The quality of the obtained solutions is higher, with an overall percentage
of 0.051% (resp. 0.014%) for the uncorrelated (resp. correlated) instances. These results
are better than those obtained by directly using the GH-LS algorithm. More concretely, if
we use the STS algorithm, the number of optimal solutions obtained increases from 18 to
81 (resp. from 5 to 25) for the uncorrelated (resp. correlated) instances, and globally, the
percentage of the attainable optimal solutions increases from 9.58% to 44.17%. In this
case, we can show that using the tabu strategy is efficient and improves several solutions.

• The MTS algorithm, with multiple depth parameters, sometimes needs longer computing
times (as shown in Table 2, columns 8, 9, and 10), but it obtains very high quality results
even in the worst cases: 179 out of 240 optimal solutions are attained, and the overall
percentage with respect to the optimum is 0.011%. These good results increase for both
type of instances, (uncorrelated with a percentage deviation of 0.019% and 129 optima
out of 168 instances) and correlated (with a percentage deviation of 0.003% and 50 optima
out of 72 instances).

5.2. The test details

In this section, we present a detailed experimental study of the MTS version of the algorithm.
As shown in Table 2, the MTS algorithm outperforms the others in the sense that it gives
better average percentage deviation. For each instance, we report (see Tables 3–5) the
Percentage Deviation (P.D.) and the execution time (CPU), which is the total time (measured
in seconds) that MTS algorithm takes before termination. We use also the symbol � if the
algorithm produces the optimal solution and the symbol � if the MTS algorithm improves
the solution value produced by the STS algorithm. The results are shown in Tables 3 and 4
for uncorrelated instances and in Table 5 for the correlated ones.

Examining Tables 3–5, we observe the following:

1. For the first set of problems representing the uncorrelated instances (see Tables 3 and
4), we note that the MTS algorithm performs better than the STS one (see columns
under “Best” marked with the symbol �). Indeed, the MTS version improves 75 solution
values out of 168, which represents a percentage of 44.64%. Figure 6 shows the dispersion
P.D.s of the improved solutions. Note that the average best-solution time (columns under
CPU of Tables 3 and 4), realized by the MTS algorithm, is under 100 seconds for all
uncorrelated instances.

2. For the second set of problems representing the correlated instances (see Table 5), we note
that the phenomenon is the same as for the uncorrelated ones. In this case, the algorithm
performs better than the other versions by improving 43 solution values out of 72, which
represents a percentage of 59.72% (figure 7 shows these obtained improvements). We
can also remark that the average best-solution time (columns CPU of Table 5), realized
by both algorithms, is under 100 seconds for all correlated instances.
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Table 3. Performance of the multiple depth tabu search (MTS) approach on the uncorrelated instances with
m ≤ 10 (classes).

Inst. Opt. Best P.D. CPU Inst. Opt. Best P.D. CPU

A02.1 20490 20490� � 1.9 B02.1 50803 50803 � 6.2

A02.2 20419 20419 � 1.9 B02.2 50136 50136 � 5.5

A02.3 20889 20888 0.005 2.0 B02.3 50873 50873� � 5.7

A02.4 20564 20564� � 1.9 B02.4 52143 52143 � 6.0

A05.1 8071 8058� 0.161 3.3 B05.1 20371 20370� 0.005 5.3

A05.2 7995 7990� 0.063 2.8 B05.2 20349 20349� � 5.6

A05.3 7960 7960� � 3.3 B05.3 20424 20424� � 5.8

A05.4 8115 8115� � 2.6 B05.4 20376 20376� � 5.9

A10.1 4054 4054 � 3.5 B10.1 10047 10043� 0.040 10.8

A10.2 3525 3525 � 2.7 B10.2 9905 9905� � 8.1

A10.3 4087 4087� � 3.1 B10.3 10129 10129� � 7.4

A10.4 4037 4037� � 5.3 B10.4 10360 10360� � 9.1

C02.1 102284 102284 � 13.4 D02.1 153401 153401 � 23.5

C02.2 101565 101565 � 13.2 D02.2 152374 152374 � 23.8

C02.3 101551 101551 � 13.3 D02.3 153455 153455 � 24.5

C02.4 104568 104568� � 15.2 D02.4 155556 155556 � 24.1

C05.1 40564 40564� � 11.9 D05.1 61486 61480 0.010 19.0

C05.2 40798 40795� 0.007 12.8 D05.2 61000 61000� � 19.1

C05.3 40438 40438� � 10.7 D05.3 60690 60690� � 19.4

C05.4 40449 40449� � 11.4 D05.4 60750 60750 � 19.3

C10.1 20391 20391� � 12.7 D10.1 30574 30569� 0.016 18.5

C10.2 20252 20252� � 14.4 D10.2 30460 30460 � 24.5

C10.3 20213 20213� � 15.8 D10.3 30619 30619� � 19.6

C10.4 20858 20854� 0.019 14.5 D10.4 31029 31029� � 19.8

E02.1 203577 203577 � 36.4 F02.1 409305 409305 � 98.8

E02.2 204750 204750 � 38.2 F02.2 409818 409818 � 99.7

E02.3 204462 204462 � 37.5 F02.3 409741 409741� � 96.4

E02.4 207203 207203 � 36.7 F02.4 406213 406213� � 91.6

E05.1 81275 81275� � 27.6 F05.1 163514 163510� 0.002 65.5

E05.2 81240 81238� 0.002 29.4 F05.2 162566 162566 � 64.7

E05.3 81956 81956� � 27.3 F05.3 163850 163850� � 72.5

E05.4 81196 81194� 0.002 29.9 F05.4 163202 163202 � 53.6

E10.1 40681 40680� 0.002 24.5 F10.1 81739 81739 � 50.7

E10.2 40828 40828 � 26.7 F10.2 81957 81952� 0.006 52.4

E10.3 40839 40839� � 24.0 F10.3 81917 81917� � 54.0

E10.4 41406 41406 � 25.0 F10.4 81168 81168 � 41.7
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Table 4. Performance of the multiple depth tabu search algorithm on the uncorrelated instances with m ≥ 20
(classes).

Inst. Opt. Best P.D. CPU Inst. Opt. Best P.D. CPU

A20.1 1989 1987� 0.100 8.6 A30.1 1088 1088 � 16.4

A20.2 1465 1465 � 9.8 A30.2 747 747 � 20.8

A20.3 2001 2001� � 4.4 A30.3 1277 1277 � 10.8

A20.4 1972 1972� � 8.1 A30.4 1198 1198 � 10.7

A40.1 712 712 � 10.7 A50.1 550 550 � 55.9

A40.2 595 595 � 37.8 A50.2 459 459 � 43.8

A40.3 716 716 � 31.6 A50.3 536 536 � 52.9

A40.4 668 668 � 36.0 A50.4 489 489 � 59.8

B20.1 4997 4991� 0.120 12.3 B30.1 2525 2525 � 22.3

B20.2 4164 4164 � 10.3 B30.2 3123 3123 � 12.2

B20.3 4996 4981 0.300 2.7 B30.3 3218 3218 � 22.5

B20.4 5115 5115� � 13.0 B30.4 2716 2716 � 12.1

B40.1 2173 2173 � 30.7 B50.1 1811 1811 � 58.8

B40.2 2177 2177 � 40.3 B50.2 1615 1615 � 40.7

B40.3 2181 2181 � 20.4 B50.3 1511 1511 � 62.5

B40.4 2057 2057 � 39.5 B50.4 1780 1780 � 40.9

C20.1 10113 10113 � 17.3 C30.1 6719 6698 0.313 26.6

C20.2 10066 10047 0.189 25.1 C30.2 6698 6690� 0.119 31.2

C20.3 10079 10065 0.139 17.4 C30.3 6594 6594� � 48.0

C20.4 10377 10377� � 20.5 C30.4 6206 6206 � 12.5

C40.1 4644 4644 � 24.5 C50.1 3935 3935 � 28.6

C40.2 4846 4846 � 41.6 C50.2 3992 3980� 0.301 0.6

C40.3 4588 4588 � 33.3 C50.3 3633 3633 � 54.0

C40.4 5122 5122� � 34.9 C50.4 3994 3994 � 48.6

D20.1 15276 15272� 0.026 23.4 D30.1 10129 10115� 0.138 33.6

D20.2 15151 15151 � 27.8 D30.2 10103 10103� � 45.1

D20.3 15256 15253� 0.020 25.7 D30.3 10153 10146� 0.069 29.8

D20.4 15468 15447 0.136 27.6 D30.4 9591 9591 � 12.8

D40.1 7606 7582 0.316 38.3 D50.1 6057 6057 � 1.0

D40.2 7505 7505� � 43.0 D50.2 5797 5797 � 62.0

D40.3 7074 7074 � 22.9 D50.3 5407 5407 � 54.6

D40.4 7663 7652� 0.144 45.6 D50.4 6131 6131� � 0.9

E20.1 20274 20274 � 31.6 E30.1 13438 13422 0.119 56.2

E20.2 20382 20382 � 33.7 E30.2 13556 13556� � 34.2

E20.3 20368 20358� 0.049 28.0 E30.3 13590 13590� � 53.0

E20.4 20634 20634� � 38.8 E30.4 13200 13200 � 13.5

(Continued on next page).
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Table 4. (Continued).

Inst. Opt. Best P.D. CPU Inst. Opt. Best P.D. CPU

E40.1 10098 10098 � 49.4 E50.1 8081 8079� 0.025 1.4

E40.2 9838 9838 � 34.3 E50.2 8081 8079 0.025 1.4

E40.3 10150 10150� � 64.2 E50.3 8111 8111 � 1.4

E40.4 10260 10248� 0.117 48.4 E50.4 8195 8195 � 1.5

F20.1 40884 40884 � 69.6 F30.1 27217 27217 � 63.7

F20.2 40926 40926� � 67.3 F30.2 27250 27244 0.022 61.0

F20.3 40936 40936� � 58.6 F30.3 27223 27223� � 62.2

F20.4 40528 40528 � 52.5 F30.4 26938 26938 � 79.8

F40.1 20393 20390� 0.015 83.9 F50.1 16262 16259� 0.018 4.4

F40.2 20425 20425 � 97.0 F50.2 16291 16288� 0.018 3.5

F40.3 20428 20428� � 70.0 F50.3 16326 16326 � 3.5

F40.4 20218 20218 � 73.0 F50.4 16123 16114� 0.056 79.7

Figure 6. Representation of the percentage improvement (of the P.D.s) when the MTS algorithm is applied: the
uncorrelated instances.

Figure 7. MTS algorithm: representation of the improvement of the P.D.s for the correlated instances.
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Table 5. Performance of the multiple depth tabu search approach on the “correlated” instances.

No. of instances Opt. Sol. P.D. CPU No. of instances Opt. Sol. P.D. CPU

A02C.1 41492 41492� � 3.0 D02C.1 312223 312217 0.002 14.6

A02C.2 41397 41397 � 1.6 D02C.2 311947 311947 � 14.6

A02C.3 41565 41565 � 2.0 D02C.3 311690 311690� � 14.7

A02C.4 41556 41556 � 1.6 D02C.4 311419 311417� 0.001 14.5

A05C.1 16554 16554 � 1.9 D05C.1 124794 124782 0.010 12.1

A05C.2 16561 16561� � 1.7 D05C.2 124758 124758 � 11.9

A05C.3 16590 16587 0.018 3.1 D05C.3 124669 124669 � 11.9

A05C.4 16584 16584 � 3.9 D05C.4 124529 124529� � 11.6

A10C.1 8245 8245 � 2.9 D10C.1 62334 62334� � 9.6

A10C.2 8203 8203� � 4.3 D10C.2 62311 62311� � 10.0

A10C.3 8250 8248� 0.024 4.6 D10C.3 62289 62280� 0.014 9.8

A10C.4 8255 8255 � 5.6 D10C.4 62216 62211� 0.008 10.3

B02C.1 103672 103672� � 2.8 E02C.1 416396 416396� � 23.4

B02C.2 103572 103555� 0.016 3.2 E02C.2 415426 415426� � 24.2

B02C.3 104034 104034 � 2.9 E02C.3 415470 415470 � 24.1

B02C.4 104031 104031 � 2.7 E02C.4 415341 415334� 0.002 23.6

B05C.1 41393 41393� � 2.7 E05C.1 166484 166474� 0.006 14.1

B05C.2 41437 41425� 0.029 3.1 E05C.2 166126 166126� � 14.2

B05C.3 41580 41580� � 2.7 E05C.3 166116 166094 0.013 14.5

B05C.4 41561 41561 � 3.7 E05C.4 166062 166062 � 13.7

B10C.1 20657 20657 � 6.3 E10C.1 83216 83199� 0.020 12.4

B10C.2 20648 20648 � 7.2 E10C.2 82995 82985� 0.012 15.5

B10C.3 20740 20740� � 6.8 E10C.3 83029 83014� 0.018 14.7

B10C.4 20721 20721� � 7.7 E10C.4 82981 82981� � 15.7

C02C.1 207675 207673� 0.001 7.6 F02C.1 830622 830611� 0.001 82.9

C02C.2 207916 207916 � 8.1 F02C.2 831513 831513 � 82.9

C02C.3 208043 208043 � 10.1 F02C.3 831145 831145� � 83.9

C02C.4 207973 207973� � 10.8 F02C.4 831445 831445� � 85.4

C05C.1 83013 83013� � 6.2 F05C.1 332143 332126 0.005 41.6

C05C.2 83129 83120� 0.011 6.5 F05C.2 332527 332527 � 41.9

C05C.3 83185 83185 � 6.6 F05C.3 332402 332388 0.004 42.5

C05C.4 83188 83188 � 5.9 F05C.4 332498 332498� � 40.8

C10C.1 41466 41466� � 7.7 F10C.1 166028 166028� � 29.9

C10C.2 41521 41518� 0.007 10.7 F10C.2 166248 166248� � 28.6

C10C.3 41554 41554 � 12.0 F10C.3 166154 166148 0.004 29.8

C10C.4 41554 41554� � 6.5 F10C.4 166192 166192 � 30.4
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Table 6. Computational times of the single/multiple depth approach compared to the exact algorithm.

Single depth approach Multiple depth approach Exact approach

Instances (no. of nb) Min. Av. Max. Min. Av. Max. Min. Av. Max.

Uncorrelated (168) 0.3 12.8 83.1 0.6 30.0 109.7 0.4 106.3 1687.5

Correlated (72) 0.2 15.8 74.8 1.6 16.2 85.4 0.8 212.6 1682.4

Average 14.3 23.1 159.5

We have also compared the computing times consumed by both the STS and MTS
approaches to the computing times of the exact algorithm developed in [9]. A summary of
the results appears in Table 6. Over all instances, we have reported the minimum (denoted
Min.), maximum (denoted Max.), and average computing time (denoted Av.) realized by
each algorithm. We note that the STS (resp. MTS) algorithm uses on average 8.96% (resp.
14.48%) of the time consumed by the exact algorithm. We think these later percentages are
reasonable for both approaches, since they produce good average percentage deviation. For
example, the MTS approach is able to produce high-quality results (the overall P.D. with
respect to the optimum is 0.011%), and it attains 74.58% of optimal solutions.

6. Conclusion

In this article, we have proposed an efficient approximate algorithm for solving the knapsack
sharing problem. The approach is mainly based upon tabu search and upon combining a
single or double depth parameter with a tabu search. The principle of the method is to
detect some critical elements of the current feasible solution and to tailor a neighborhood
search on that solution. We have used a depth-parameter strategy and designed a heuristic
feasibility in order to improve the performance of the algorithm. Computational results
indicate that the two versions of the algorithm are able to generate high-quality solutions
for the knapsack sharing problem, within reasonable computing times.
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