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Axiom-based ontology matching:
a method and an experiment

Frédéric Fürst, Francky Trichet

Abstract

Managing multiple ontologies is now a core question in most of the applications that require semantic interoper-
ability. The Semantic Web is surely the most significant application of this report: the current challenge is not to
design, develop and deploy domain ontologies but to define semantic correspondences among multiple ontologies
covering overlapping domains. In this paper, we introduce a new approach of ontology matching named axiom-
based ontology matching. As this approach is founded on the use of axioms, it is mainly dedicated to heavyweight
ontology, but it can also be applied to lightweight ontology as a complementary approach to the current techniques
based on the analysis of natural language expressions, instances and/or taxonomical structures of ontologies. This
new matching paradigm is defined in the context of the Conceptual Graphs model (CG), where the projection (i.e.
the main operator for reasoning with CG which corresponds to homomorphism of graphs) is used as a means to se-
mantically match the concepts and the relations of two ontologies through the explicit representation of the axioms
in terms of conceptual graphs. We also introduce an ontology of representation, called MetaOCGL, dedicated to
the reasoning of domain ontology at the meta-level.

Categories and Subject Descriptors: I.2.4 [Knowledge Representation Formalisms and Methods]: Representa-
tion Languages

General Terms: Knowledge Engineering, Knowledge Representation, Ontology Matching

Additional Key Words and Phrases: Heavyweight Ontologies, Conceptual Graphs
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1 Introduction

Ontologies have become increasingly common on the Web where they are used to deal with the problem of data
and information heterogeneity. But this first level of heterogeneity is currently accompagnied with a second level
of heterogeneity related to semantics in the sense that the distributed nature of ontology development has led to a
large number of ontologies covering overlapping domains. In other words, it can exist several ontologies (which
have been defined by different communities) for the same domain. In this context, finding correlation between
modelling primitives (i.e. concepts and relations) in separate ontologies becomes very important. This task, which
is called ontology matching, ontology mapping or ontology alignment, is at the heart of the multiple-ontology
management process that is now a core question in most of the applications that require semantic interoperability
such as the Semantic Web.

The strategies for matching ontologies are quite diverse: hierarchical clustering techniques [3], Formal Con-
cept Analysis [23]), analysis of terminological features of concepts and relations (i.e. names or natural-language
definitions) or analysis of structure [24]. However, as recall in [11], most of the works that deals with ontology
alignment only consider lightweight ontology (i.e. an ontology composed of a taxonomy of concepts and a tax-
onomy of relations). No current tool provides mapping functionalities based on other ontology components and
in particular axioms which are the main building blocks for fixing the semantic interpretation of the concepts and
the relations of an ontology [22]. This situation is clearly explained in the main recommendations of the OntoWeb
project [17]: most of the current work related to ontology matching are only based on criteria related to the hier-
archy of concepts and relations (and thus, they are not efficient for heavyweight ontologies) because most of the
domain ontologies included in the libraries (available on the web) are lightweight ontologies1.

The work presented in this paper aims at defining a new ontology matching approach based on the explicit
use of all the components of a heavyweight ontology. This approach requires the explicit representation of the
axioms of the two ontologies (that are considering for the matching process) at the conceptual level, and not at
the operational level as it is usually the case in most of the works related to ontological engineering: for instance
in Protégé [16], the axioms are directly represented in an operational form (i.e. a rule or a constraint with fixed
and predefined operational semantics) by using the PAL language based on logical expressions. It is important to
underline that since the beginning of ontological engineering, domain axioms have always being considered and
represented at an operational level. As the operational form of an axiom can not easily be matched (semantically
speaking) with another one, most of the current mapping techniques only use the taxonomy of concepts and/or the
taxonomy of relations, and thus can not take all the semantic wealth of heavyweight ontologies into account. Our
work aims at filling this gap by allowing (1) the representation of the axioms at the conceptual level2 and (2) the
use of this increase in semantics for concepts and relations mapping.

To represent heavyweight ontologies at the conceptual level, we use OCGL (Ontology Conceptual Graphs
Language) [9]. This modelling language is based on a graphical syntax inspired from those of the Conceptual
Graphs model (CGs)3. It allows us to represent terminological knowledge through the specification of concepts
and relations, and to represent both classical properties (such as subsomption or algebraic properties) and any
kind of axioms at the conceptual level. This explicit graph-based representation of axioms coupled with reasoning
capabilities based on graphs homomorphism facilitates the topological comparison of axioms. The method we
propose mainly relies on this feature: ontology morphism founded on graph-based knowledge representation and
graph-based reasoning mechanisms.

The rest of this paper is organized as follows. Section 2 presents the modelling paradigm we advocate for

1The more significant example of this situation is the benchmark used during the Ontology Alignment Contest at the 3rd Evaluation of
Ontology-based Tools (EON’2004) Workshop (http://km.aifb.uni-karlsruhe.de/ws/eon2004).

2At the conceptual level, an axiom has a formal semantics but not an operational one. At the operational level, an axiom has both a formal
and an operational semantics, and this latter clearly limits its reuse and thus the reuse of the ontology. The operational semantics of an axiom,
represented through a set of rules and/or constraints, expresses the way the axiom is used to reason, whereas the formal semantics expresses
the way the axiom constrains the interpretation of the primitives (i.e. the concepts and the relations which are involved in the axiom).

3The Conceptual Graphs model, first introduced by Sowa [20], is an operational knowledge representation model which belongs to the field
of semantic networks. This model is mathematically founded both on logics and graph theory [20]. Two approaches for reasoning with CGs
can be distinguished: (1) considered CGs as a graphical interface for logics and reasoning with logic and (2) considered CGs as a graph-based
knowledge representation and reasoning formalism with its own reasoning capabilities. In our work, we adopt the second approach by using
the projection (a graph-theoretic operation corresponding to homomorphism) as the main reasoning operator; projection is sound and complete
w.r.t. deduction in FOL.
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defining a domain ontology. Section 3 presents the domain we consider in this paper for evaluating our work.
Section 4 introduces the basic fundations of our axiom-based matching method and presents the principles of our
algorithm. Section 5 comments the results of an experimentation in the context of a simple domain related to family
relationships. Section 7 compares our approch with related work and introduces our current study which aims at
defining an approach for reasoning domain ontolgies at the meta-level, for instance for verification/validation
purposes.

2 Context of the work: the OCGL modelling language

The OCGL modelling language (Ontology Conceptual Graphs Language [9]) we advocate for specifying an ontol-
ogy (at the conceptual level) is based on three building blocks: Concepts, Relations and Axioms. Representing an
ontology in OCGL mainly consists in (1) specifying the conceptual vocabulary of the domain and (2) specifying
the semantics of this conceptual vocabulary through axioms.

The conceptual vocabulary consists of a set of Concepts, a set of Relations and a set of ontological instances
of concepts4. The sets of concepts and relations can be structured by using both well-known conceptual properties
called Axiom Schemata and Domain Axioms.

The Axiom Schemata proposed in OCGL are:

1. the ISA link between two concepts or two relations (subsomption property) used to construct concept/relation
taxonomies (tree or lattice);

2. the Abstraction of a concept (which corresponds to an Exhaustive-Decomposition in some works [11]);

3. the Disjunction between two concepts5;

4. the Signature of a relation;

5. the Algebraic properties of a relation (symmetry, reflexivity, transitivity, irreflexivity, antisymmetry);

6. the Exclusivity or the Incompatibility between two relations6;

7. the Cardinalities (Maximale and Minimale) of a relation.

OCGL has been implemented in a tool, called TooCoM (a Tool to Operationalize an Ontology with the Con-
ceptual Graph Model), dedicated to the edition and operationalization of domain ontologies [8]7. Thanks to this
tool, it is possible to define the conceptual primitives (concepts and relations) and to specify the axiom schemata
in a graphical way. Figure 2 (resp. figure 3) shows the hierarchies of concepts (resp. relations) of two ontologies
dedicated to family relationships.

Domain Axioms differ from axiom schemata in the sense that they are totally specific to the domain whereas
axiom schemata represent classical properties of concepts or relations. The OCGL graphical syntax used to express
such an axiom is based on the Conceptual Graphs model. Thus, an axiom is composed of an Antecedent part and
a Consequent part, with a formal semantics that intuitively corresponds to: if the Antecedent part is true, then the
Consequent part is true. Figure 1 shows the OCGL graph representing the axiom "The enemy of my friend is my
enemy".

Remark: Since many existing knowledge-representation systems (e.g. Frame-based or DL-based systems) are
compatible with the OCGL modelling language, the solution we propose can be applied to a variety of knowledge-
representation systems.

4An ontological instance of a concept is an instance required to express the semantics of the domain. For example, in the domain of
mathematics, π is an ontological instance of the concept Number, because the expression of many axioms of this domain requires this instance.
But 3.54 is not an ontological instance.

5Note that it is possible to define a Partition [11] by using the abstraction and the disjunction. For instance, the decomposition of Number
into (OddNumber and EvenNumber) is a partition because Number is an abstract concept and OddNumber and EvenNumber are disjoint.

6The incompatibility between two relations R1 and R2 is formalized by ¬(R1 ∧ R2), the exclusivity is formalized by ¬R1 ⇒ R2.
7TooCoM is available under GNU GPL license at http://sourceforge.net/projects/toocom/.
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Figure 1: Representation of an axiom in TooCoM. The bright nodes represent the antecedent part, the dark ones
the consequent part. Each part contains concept nodes (indicated by rectangles) and relation nodes (indicated by
ellipses). A concept node is described by a label and a marker that identifies the considered instance (the marker
∗ denotes an undefined instance). A relation node is only described by a label. An edge between a concept and a
relation is labeled with the position of the concept in the signature of the relation. The logical expression of the
graph is automatically generated.

3 Domain of the experiment: OntoFamily

In order to illustrate our ideas, this paper considers a very simple (but intuitive) domain related to family rela-
tionships. This limited domain includes the following notions8: father, mother, grandfather, grandmother, son,
daughter, cousin, nephew, niece, uncle, aunt, sister, brother, wife, husband, friend, enemy. This example is inter-
esting in so far as it is easy to understand and also because it necessarily requires Domain Axioms for defining
some notions (for instance, "An aunt is either a female sibling of one of one’s parents or the wife of an uncle who
is the male sibling of a parent") or specifying relations between notions (for instance, "The enemy of my enemy is
my friend"). In other words, Axioms Schemata are not sufficient for representing all the knowledge of this domain.

In the context of a course on Ontological Engineering, two groups of students in Master degree have worked
separately to construct (by hand) an ontology of this limited domain. This experiment has led to the definition (and
the representation in OCGL) of two ontologies respectively called OntoFamily O1 and OntoFamily O2

9.

3.1 Overview of OntoFamily O1

OntoFamily O1 is composed of:

• 3 types of concepts (cf. figure 2) which define a partition: Human (an abstract concept) and its two sub-
concepts Man and Woman which are disjoint;

• 31 binary relations structured into a lattice (lattice-depth=3) (cf. figure 3);

• 11 axioms shemata (cf. figure 4): 1 for the abstraction, 1 for disjunction, 1 for exclusivity, 3 for the symmetry,
4 for the cardinalities and 1 for the transitivity. Note that the abstractions and the disjunctions or exclusivities
are directly managed by the TooCom interface, this is why the list (in the figure) only includes 8 axioms
schemata;

• 18 axioms (cf. figure 5 and figure 6 for examples).

8We voluntary use the term notion in order to avoid confusion with concept or relation. Indeed, we only present here what must be
considered in the domain and not how it must be considered (i.e. the modelling choice between a concept or a relation).

9These ontologies are available in CGXML at http://sourceforge.net/projects/toocom/. CGXML is the XML storage
format used for OCGL.

Figures/o1_Axiom.eps
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Figure 2: Concepts of OntoFamily O1 and OntoFamily O2. An arrow represents a subsomption link between a
concept and one of its parent. A concept without surround is abstract. The crossed circles represent disjunctions
between concepts.

3.2 Overview of OntoFamily O2

OntoFamily O2 is composed of:

• 3 types of concepts (cf. figure 2) : Human (which is not abstract) and its two sub-concepts Male and
Female which are disjoint;

• 23 binary relations (cf. figure 3) structured into a tree (tree-depth=2);

• 10 axioms schemata (cf. figure 4): (1 for disjunction, 1 for exclusivity, 3 for the symmetry, 4 for the cardi-
nalities and 1 for the transitivity);

• 27 axioms (cf. figure 5 for an example).

3.3 Comparaison of OntoFamily O1 and OntoFamily O2

Table 1 summarizes the differences (from a quantitative point of view) between OntoFamily O1 and OntoFamily
O2.

4 Axiom-based semantic matching

The objective of ontology matching is to discover and evaluate identity links between conceptual primitives (con-
cepts and relations) of two given ontologies supposed to be built on connected domains. Our approach relies on the

Figures/o1_Concepts.eps
Figures/o2_Concepts.eps
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Figure 3: Relations of OntoFamily O1 and OntoFamily O2. An arrow represents a subsomption link. A crossed
circle represents an incompatibility (or exclusivity) between two relations. Algebraic properties and cardinalities
of a relation are indicated by symbols above the name of the relation (S for symmetry, T for transitivity, C+ and C-
for the cardinalities, etc.).

use of the axiomatic level of the ontologies to discover semantic analogies between primitives, in order to reveal
identities between them and to calculate the similarity coefficient of these identities, i.e. a coefficient that indicates
how closely two concepts or relations are related. Of course, using the axiomatic level does not forbid to use the
terminological level; these two approaches complement each other.

Two principles govern our method: (1) the use of the modelling stability and the rarity of a conceptual property
to fix its weight for the evaluation of matchings and (2) the use of meta-representations of domain axioms to
compare their structures.

Figures/o1_Relations.eps
Figures/o2_Relations.eps


11

Figure 4: Axioms Schemata of OntoFamily O1 and OntoFamily O2 (automatically generated by TooCom).

Concepts Relations (binary) Axiom Domain
Nb Structure Nb Structure Schemata Axioms

O1 3
tree

depth = 2
31

lattice
depth = 3

1 abst 1 disj
1 exclu 3 sym
4 card 1 trans

18

O2 3
tree

depth = 2
23

tree
depth = 2

1 disj
1 exclu 3 sym
4 card 1 trans

27

Table 1: Quantitative differences between O1 and O2. Note that signatures of relations are not explicitly indicated
but they are of course specified in both ontologies.

4.1 Assumption about stability and rarity

As recalled in [6], when dealing with heterogeneous knowledge resources, one key issue is understanding what
forms of heterogeneity exist between the knowledge sources and what are the mismatches they can cause. We
can broadly distinguish between mismatches caused by non-semantic and semantic heterogeneity. The former
type of heterogeneity is also known as syntactic or language heterogeneity, while the latter is also called ontol-
ogy heterogeneity. Syntactic heterogeneity denotes the differences in the language primitives that are used to
specify ontologies, while semantic heterogeneity denotes differences in the way the domain is conceptualised and
modelled. In our work, we only consider semantic heterogeneity, since the two ontologies that are considered
for the matching are supposed to be represented in the same knowledge representation language: OCGL. Mis-
matches caused by semantic heterogeneity occur when different ontological assumptions are made about the same
domain. In [6], six types of mismatches are introduced (Representation paradigm, Top-level concepts, Modelling
convention, Synonym terms, Homonym terms and Encoding). The most well-known are the modelling convention
mismatches which depend on modelling decisions made while designing the ontology. For instance, it is often the
case that an ontology designer has to decide whether to model a certain distinction by introducing a new concept
or a new relation. These mismatches clearly demonstrate that the stability of the ISA taxonomies of concepts (resp.
relations) is not really strong. In order to generalize this phenomena, we make assumptions about the stability and

Figures/o1_AxiomsSchemata.eps
Figures/o2_AxiomsSchemata.eps
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Figure 5: Axiom "Aunt" of OntoFamily O1 and axiom "AuntMother" of OntoFamily O2. O2 needs more than one
axiom for representing this notion because of the modelling choice, in particular the fact that the notions Child
and Parent are not considered in O2. Note that the logical expression of an axiom is automatically generated by
TooCom. The windows called "Note" enable the storage of natural language definitions.

Figure 6: Axiom "GrandMother" of OntoFamily O1.

the rarity of the OCGL properties used to model a domain.
Conceptual properties of a domain, expressed in OCGL by axiom schemata and domain axioms, can be mod-

Figures/o1_Axiom_Aunt.eps
Figures/o2_Axiom_Aunt.eps
Figures/o1_Axiom_GrandMother.eps
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elized in different ways. For instance, two hierarchies of concepts can be different if additional concepts are
added to structure them or not (e.g. the Human concept could have been omitted in OntoFamily). In a similar
way, the signature of a relation can be different from a modelization to another one (e.g. the notion of cousin
can be represented by only one relation cousin(Human,Human), or by two relations when introducing the gender
cousin(Woman,Human) and cousin(Man,Human)). The modelling stability of a property (i.e. an axiom schema or
a domain axiom) indicates its degree of stability from an ontology to another one. The search of correspondences
between ontologies must favor the properties which own the higher modelling stability, because analogies between
them in the two ontologies are more relevant than others.

Moreover, in the same ontology, a property can be very common or, on the contrary, extremely rare. For
example, the symmetry property is very common. But a domain axiom is, by definition, very particular and only a
few axioms with the same formal semantics can exist in a given ontology. The rarity of a property in the ontologies
to align increases the weight of the matchings discovered thanks to this property. So, at the beginning of the
matching process, these rarities must be valuated in order to adapt the weight of each property to the characteristics
of the ontologies to align.

modeling stability of OCGL properties

Subsumptions
WISA

Domain axioms
WAxiom

Algebraic
Properties WAlg

Cardinalities
WCmin, WCmax

Signatures
WSign

Disjunctions WDisj
Incompatibility WIncomp

Exclusivity WExclu

ra
rit

y 
of

 O
C

G
L 

pr
op

er
tie

s

Abstractions
WAbs

(Symmetry WSym, Transitivity WTrans, Reflexivity WRefl,
Irreflexivity WIrref, Antisymmetry WAntiSym)

Figure 7: modelling stability and rarity of OCGL properties. Subsomptions and signatures are both very com-
mon and not very stable. Domain axioms and algebraic properties are less common, and the stability of domain
axioms is lower than those of algebraic properties because the representations of algebraic properties are fixed.
Cardinalities are less stable than properties that link two concepts or relations (i.e. disjunction, incompatibility and
exclusivity), because both their values and the relations they are about can change.

Figure 7 presents the relative values of stability and rarity of the OGCL properties. These evaluations of
modelling stability and rarity are only assumptions that fix the default weights of the modelling properties. These
weights can be modified by the user, in order to improve the results of each matching process. By default, the
values of the weights are ordered as follows: WAlg(WSym, WTrans, WRefl, WIrref , WAntiSym) > WDisj =
WIncomp = WExclu > WCmin = WCmax > WAxiom > WSign > WAbst > WISA.

The less valuated properties are the subsomption links between primitives, because they are very common
in ontologies, and different hierarchies can easily be built for the same domain (for example by adding abstract
concept to structure them). Signatures of relations are also very common but their variability from an ontology
to another is lower. Domain axioms and algebraic properties of relations are less common than subsumption
links and signatures. The stability of domain axioms is lower than those of algebraic properties, because the
representation of algebraic properties are fixed. The axioms are built by the user and several axioms can be built to
modelize the same properties, for example by specifying, or not, difference relation between concepts. The other
properties (abstraction, cardinality, disjunction, incompatibility/exclusivity) are even rarer than the previous one.
But abstraction seems to be a more variable property than cardinalities, and cardinalities seem to be less stable than
properties that link two concepts or relations (disjunction, incompatibility/exclusivity), because both their values
and the relations they are about can change.

4.2 MetaOCGL: an ontology of representation

To detect analogies between axioms represented as graphs, and then to detect analogies between the primitives
corresponding to the nodes of the graphs, the domain axioms are transcribed into a more abstract form, that
preserves the topological structures of the graphs. These abstract representations are based on an ontology of the
OCGL language, expressed in OCGL, and called MetaOCGL. As shown in figure 8, MetaOCGL includes all the
concepts of OCGL and their relations (isa relation, exclusivity/incompatibility between relations, disjunction of

Figures/stability_rarity.eps
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Figure 8: Concepts, relations, axiom schemata and domain axioms of MetaOCGL.

concepts, links between relations and concepts in a graph that expresses an axiom). Figure 9 shows the OCGL
graphs dedicated to the representation of the two axioms of OntoFamily O1 "the enemy of my enemy is my friend"
and "the enemy of my friend is my friend", and their corresponding meta-graphs in MetaOCGL.

The comparisons between axioms represented in MetaOCGL are performed by using the projection operator
of the Conceptual Graphs model, a graph-theoretic operation corresponding to homomorphism which is sound and
complete w.r.t. deduction in FOL. Given two graphs G1 and G2, which represent in MetaOCGL two axioms A1

and A2, if two projections exist from G1 into G2 and from G2 into G1, then A1 and A2 have the same structure.
In this case, the axioms A1 and A2 express the same type of property, and the analogy between the two axioms can
be extended to the primitives that appear in the axioms.

4.3 Algorithm

Our algorithm takes as input two ontologies O1 and O2 (represented in OCGL) and provides as output potential
similarity between two concepts or two relations: the result is a set of matchings (Pi, P

′

j , C), where Pi and P ′

j are
respectively conceptual primitives (concepts and relations) of O1 and O2, and C the similarity coefficient between
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Figure 9: Two axioms of OntoFamily represented with MetaOCGL. The type_identity links denote that the nodes
are of the same type in the axiom.

Pi and P ′

j . Of course, for a given primitive Pi of O1, several (or any) matchings can exist with primitives of O2,
and vice versa. Both axiom schemata and domain axioms are used to evaluate or discover primitive matchings.
Of course, the weight of each OCGL property is used to modulate its influence on the evaluation of the matching.
Again, these weights are parameters of our algorithm which can be changed to improve the precision of the results.

4.3.1 Using axiom schemata to evaluate matchings

Axiom schemata that deal with only one primitive (i.e. algebraic properties and abstractions) are compared from
O1 to O2, in order to discover primitive matchings. If an algebraic property (resp. an abstraction) appears in O1

for a primitive p1 and in O2 for a primitive p2, the coefficient c of the matching (p1, p2, c), if it exists, is increased
by WAlg (resp. WAbs). If the matching does not exist, (p1, p2, WAlg) (resp. (p1, p2, WAbs)) is created. If an
algebraic property (resp. an abstraction) appears in O1 for p1 but not in O2 for p2 (or inversely), the coefficient c

of the matching (p1, p2, c), if it exists, is decreased by WAlg (resp. WAbs). If it does not exist, (p1, p2,−1 ∗WAlg)
(resp. (p1, p2,−1 ∗ WAbs)) is created. A partition10 is a property which is more semantically rich than a simple
abstraction. So, if two concepts c1 and c2 are respectively the head concept of a partition in O1 and O2, the
coefficient c of the matching (c1, c2, c), if it exists, is increased by 2 ∗WAbs (or decreased by 2 ∗WAbs if only one
concept is involved in a partition). If it does not exist, (c1, c2, 2 ∗ WAbs) (or (c1, c2,−2 ∗WAbs)) is created.

Axiom schemata that deal with two primitives (i.e. disjunction, incompatibility and exclusivity) are used either
to modify the coefficients of existing matchings, or to create new ones. The coefficient of a matching whose two
primitives are involved in a disjunction, an incompatibility or an exclusivity is increased by the corresponding
weight (i.e. WDisj , WIncomp or WExclu). It is decreased if only one of the primitive is part of such a property.
The matching is created with the corresponding coefficient if it does not exist.

Finally, table 2 presents the different actions that are done when considering the cardinalities. If the matching
between the two considered relations does not exist when an analogy between cardinalities is found, the matching
is created, with the corresponding coefficient. Only cardinalities of relations with the same arity are compared.

4.3.2 Using domain axioms to evaluate matchings

As introduced in section 4.2, domain axioms are represented in MetaOCGL in order to compare their structures.
For each axiom couple (a1, a2), where a1 ∈ O1 and a2 ∈ O2, the representations of a1 and a2 in MetaOCGL,
meta(a1) and meta(a2), are built. These representations can be enriched by adding information about the nodes:
for instance, in figure 9, the two relations enemy of the axiom in OCGL are represented in MetaOCGL by the two
concepts Antecedent_R which are linked by the meta-relation called type_identity.

Two types of topological equivalence are then considered:

10A partition [11] is the combination of the abstraction of a concept (the head) and the disjunction between its children. For instance,
the decomposition of Number into (OddNumber and EvenNumber) is a partition because Number is an abstract concept and OddNumber and
EvenNumber are disjoint.
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Relation r1 in Ontology 1 Relation r2 in Ontology 2 Action
Min 0 (resp. cmin > 1) cmin > 1 (resp. 0) −2 ∗ Wcmin

Card cmin 6= 0 cmin 6= 0 +2 ∗ Wcmin

c1min 6= 0 c2min 6= 0 and 6= c1min −Wcmin

Relation r1 in Ontology 1 Relation r2 in Ontology 2 Action
Max ∞ (resp. cmax > 1) cmax > 1 (resp. ∞) −Wcmax

Card cmax 6= ∞ cmax 6= ∞ +2 ∗ Wcmax

c1max 6= ∞ c2max 6= ∞ and 6= c1max −2 ∗ Wcmax

Table 2: Modifications of the coefficient of the matching (r1, r2, c) according to the cardinalities of the relations.
cmin and cmax are the values of cardinalities for the relations (for a given element of their signatures).

1. the Equivalence, that occurs when projections exist from meta(a1) to meta(a2) and from meta(a2) to
meta(a1), without considering the type_identity relations;

2. the Typed Equivalence that occurs when the two projections exist with the type_identity relations.

The weight of a typed equivalence is higher than those of an equivalence. A typed equivalence (resp. equiva-
lence) between two axioms increases the coefficient of nodes linked by projection by the weight of the axiom typed
equivalence (resp. equivalence). When no projection (or only one) exists, no modification is done. For example,
the two domain axioms of figure 9 are equivalent because two projections exist between their meta-graphs without
considering the type-identity relations. When considering the type-identity relations, there exists no projection, so
they are not typed equivalent.

4.3.3 Resolving matchings

Because they link a relation and a set of concepts, signatures of relations are only used to increase or decrease
existing matching coefficients, and not to create new ones. However, two contexts of use are distinguished:
modifying relation matching coefficients by considering the matchings between concepts of their signatures, or
modifying concept matching coefficients by considering the matchings between relations with the considered con-
cepts in their signatures. For example, if the relations mother1(Woman1,Human1) and parent2(Human2,Human2)
match, the coefficients of the matchings (Woman1,Human2) and (Human1,Human2), if they exist, are increased
by WSign. But if the matchings (Woman1,Human2) and (Human1,Human2) exist, the coefficient of the relation
matching (mother1,parent2) can also be increased by WSign. The choice between these two possibilities is based
on the ratio FoundC (or FoundR) between the number of concept (or relation) matchings and the average number
of concepts (or relations) in O1 and O2: if FoundC is higher than FoundR (that is the proportion of discovered
concept matchings is higher than those of relation matchings), the signatures are used to improve the coefficients
of existing relation matchings with the existing concept matchings, and vice-versa. So, before using the signatures,
the concept (or relation) matchings must be fixed, then the signatures are used to improve the relation (or concept)
matchings, which are then fixed.

Fixing concept matchings or relation matchings is done by considering their coefficients: when several match-
ings exist for one primitive to link, the matching with the higher coefficient is considered as the most probable. Of
course, the coefficients do not totally prevent contradictions between 3 or more matchings. In this case, the user
must choose one of the proposed matchings.

5 Experimental results

5.1 Assessment

The application of our algorithm on OntoFamily O1 and OntoFamily O2 (before the matching resolving step) leads
to 201 matchings, including 9 concept matchings (among 9 possible ones), and 192 relation matchings (among
713 possible ones). A lot of these matchings only appear in three or less axiom comparisons, and never in axiom
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Primitive
of ontology

Primitive
of ontology

Axioms Multiple Primitives Properties
ISA

relations
Abstraction

O1 O2 WT opo WT opo+ WDisj WIncomp WExclu Wisa WAbst
Human Human 98 10 0 � � 0 -1
Human Male 84 10 0 � � 0 -1
Human Female 76 0 0 � � 0 -1
Woman Human 9 3 0 � � 0 0
Woman Male 52 6 0 � � 0 0
Woman Female 54 6 0 � � 0 0

Man Human 9 3 0 � � 0 0
Man Male 52 6 0 � � 0 0
Man Female 56 6 0 � � 0 0

Figure 10: Results for the concepts

schema comparison, so they are rejected because of their low level of relevance comparing to the other ones. Thus,
9 concept matchings and 69 relation matchings are considered for the resolving step (cf. figure 11 and figure 10).

In this context, MRc = 3 and MRr ≈ 2.55, so, the concept matchings are resolved before the relation ones. The
(Human,Human) matching has the higher score with 108 ∗ WAxiom (98 equivalences and 10 typed equivalences),
plus −1 ∗ WAbs (because Human is abstract in O1 but not in O2). For the other concepts, the matching with
the higher coefficient is (Woman,Female), with 60 ∗ WAxiom (54 equivalences and 6 typed equivalences); the
coefficient of (Man,Male) is equal to 58 ∗ WAxiom (52 equivalences and 6 typed equivalences). All the links
between concepts are discovered by our algorithm.

When the concept links are fixed, the signatures are used to improved the coefficient of relation matchings:
the coefficient of each relation matching is possibly increased or decreased by WSign according to whether the
concepts of the two relations are linked or not. Finally, the resolving matching process produces 9 relation links
(among 17 true links): (aunt,aunt), (daughter, daughter), (enemy,enemy), (father,father), (friend,friend), (hus-
band,husband), (son,son), (uncle,uncle) and (wife,wife).

These results, although perfectible, are encouraging according to the context of the experiment, i.e. two "small"
heavyweight ontologies. Indeed, our approach could be more relevant in a context of more large and complex
ontologies (in terms of numbers of concepts and relations and of numbers of heterogeneous axioms). Note that this
experiment has also shown that using subsomption links can improve the efficiency of our algorithm. For example,
the relation matchings (parent,mother) and (parent,father) have high coefficients, so it is relevant to deduce the
(parent,parent) matching.

5.2 Detailed results

Figures 10 and 11 present respectively the concept matchings and the relation matchings which are discovered
and evaluated by our algorithm. For each discovered couple of primitives, and for each property, the given value
corresponds to the number of times that the property has permitted to increase or decrease the matching validity.
For instance, in figure 10, the couple (Human,Human) has been founded 98 times in domain axiom equivalences,
10 in domain axiom typed equivalences, never in disjunction comparisons, never in subsumption comparisons, and
one time in abstraction comparison (with a différence between abstraction properties, which implies a decreasing
of the value). The / symbol indicates that the property is not relevant for the primitives of the couple, for instance
the algebraic, or incompatibility/exclusivity properties are not relevant for concepts.

6 Generalization of our approach: reasoning ontologies at the meta-level

In this section, we claim that for reasoning on a domain ontology, it is relevant to represent it at the meta-level,
in order to consider it as a knowledge base and thus to make any kind of reasoning possible, such as ontology
mapping/matching, ontology merging, ontology verification, ontology validation, etc. Our approach consists in
using an ontology of representation (MetaOCGL) for representing a domain ontology expressed in OCGL [9].
MetaOCGL is the ontology of representation which describes all the modeling primitives (and their relations) of
OCGL and its formal semantics. This ontology is represented in OCGL and this is why we call it MetaOCGL.
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Primitive
of ontology

Algebraic Properties Cardinalities Axioms Multiple Primitives Properties Signatures
ISA

relations
Abstraction

O1 O2 WS WT WR WI WA Wcmin Wcmax WT opo WT opo+ WDisj WIncomp WExclu Wsign Wisa WAbst
aunt uncle 5 3 � -1 �

aunt aunt 5 1 � 1 �

aunt brother 4 1 � -1 �

aunt sister 4 1 � 1 �

aunt mother 3 1 � 1 �

brother friend 1 � -1 -1 �

brother enemy 1 � -1 -1 �

brother cousin 1 � -1 �

brotherhood friend 1 � -1 1 �

brotherhood enemy 1 � -1 1 �

brotherhood cousin 1 � 1 �

child husband -2 -2 � -1 �

child wife -2 -2 � -1 �

child daughter 2 � -1 �

child son 2 � -1 �

child mother 8 � -1 �

child father 8 � -1 �

daughter daughter 2 2 � 1 �

daughter son 2 2 � -1 �

daughter wife -2 -2 � -1 �

daughter husband -2 -2 � -1 �

enemy friend 1 2 2 � 1 1 �

enemy enemy 1 3 3 � 1 1 �

enemy mother 15 � -1 -1 �

enemy father 14 � -1 -1 �

enemy brother 10 � -1 -1 �

enemy sister 10 � -1 -1 �

enemy uncle 6 � -1 -1 �

enemy aunt 6 � -1 -1 �

father father 2 1 � 1 �

friend friend 1 1 1 1 � 1 1 �

friend enemy 1 2 2 � 1 1 �

friend cousin 1 2 � -1 1 �

friend mother 6 � -1 �

friend sister 5 � -1 �

friend brother 5 � -1 �

husband wife 2 2 � -1 �

husband husband 2 2 � 1 �

husband son -2 2 � -1 �

husband daughter -2 2 � -1 �

mother father 2 1 � -1 �

nephew nephew 3 1 � 1 �

nephew son 3 1 � 1 �

nephew daughter 3 1 � -1 �

nephew brother 4 1 � 1 �

niece nephew 3 2 � -1 �

niece sister 6 1 � 1 �

niece brother 4 1 � -1 �

niece niece 3 1 � 1 �

niece son 3 1 � -1 �

parent mother 19 � -1 �

parent father 16 � -1 �

sister friend 1 � -1 -1 �

sister enemy 1 � -1 -1 �

sister cousin 1 � -1 �

son daughter 2 2 � -1 �

son son 2 2 � 1 �

son wife -2 -2 � -1 �

son husband -2 -2 � -1 �

uncle aunt 5 1 � -1 �

uncle uncle 5 1 � 1 �

uncle brother 4 1 � 1 �

uncle father 3 1 � 1 �

uncle father 3 1 � -1 �

wife wife 2 2 � 1 �

wife husband 2 2 � -1 �

wife son -2 2 � -1 �

wife daughter -2 2 � -1 �

Figure
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6.1 Operationalization: basic fundations

Ontologies can be used to shared knowledge between systems or between systems and humans, to reason on knowl-
edge bases or to search in knowledge bases. Thus, they have to integrate all the knowledge of a given domain, and
not only the terminological knowledge, as in a thesaurus. Ontologies have to evolve from lightweight ontologies,
which only include some well-known properties such as subsomptions or algebraic properties, to heavyweight
ontologies, which include all axioms that are needed to represent the semantics of the domain [22].
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Figure 12: The operationalization process of an heavyweight ontology. Terminological knowledge is represented
in the same way at the ontological level and the operational level. The representation of axiomatic knowledge
at the operational level depends on a scenario of use that describes the way the axioms are used to reason in the
operational ontology. The operational representation of an axiom is a set of rules and/or constraints.

But, for keeping the independence of an ontology from the applications where it is used, in order to ensure
its portability, the representation of the axioms must only precise their formal semantics, which constraint the
interpretation of the conceptual primitives, without forcing their operational semantics, which fix the way the
axioms are used in a KBS to reason [9]. For example, the axiom “the enemy of my enemy is my friend” can
be used to produce knowledge (i.e. to deduce, when there exists an enemy of one of my enemies, that he is my
friend) or to check assertions (i.e. to check that any enemy of one of my enemies is my enemy). An axiom
can also be automatically applied by the system or explicitly applied by the user. The combination of these two
criteria produces four different contexts of use for an axiom: (i) inferential implicit to automatically produce new
knowledge from given facts, (ii) inferential explicit to allow the user to produce new assertions from given facts,
(iii) validation implicit to automatically check a fact base, and (iv) validation explicit to allow the user to check a
fact base at his request11.

Using heavyweight ontologies in applications requires their operationalization, which consists in (1) specifying
the way the axioms will be used to reason through a scenario of use and (2) transcribing the axioms in operational
forms (rules and/or constraints) according to the adopted scenario of use. Because the operational semantics of
each axiom have to be specified, building a scenario of use consists in choosing, for each axiom, its context of use
which defines the way the axiom will be used12. For a given ontology, each scenario of use (i.e. a set of contexts
of use) leads to a different operational ontology, as shown in figure 12.

Operationalizing a domain ontology corresponds to building a KBS which can be used to reason on facts on the
domain. For example, operationalizing OntoFamily O1 in an inferential scenario of use produces an operational
ontology appropriated to deduction: given few persons, linked only by descendants links, the KBS can automat-
ically deduce parents links, brotherhood links and other family links. Another operationalization, in a validation

11Note that “deduction vs validation” and “implicit vs explicit” contexts of use are fine-grained examples of knowledge uses. At a more
general level of granularity, a scenario of use can specify the reasoning mechanism used in a KBS (deduction, abduction, induction), or the
goal of the KBS (e.g. teaching system or corporate memory management).

12According to the structure of the axiom and to the context of use, the operational form can be a rule, a constraint, or a set of rules and
constraints (cf. [9] for more detail about this transformation process).
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scenario of use, can be used to check a fact base of family relationships, in order to evaluate its consistency, its
completeness and its conciseness.

The OntoFamily O1, represented in OCGL, includes 3 concepts, 31 binary relations, 11 axiom schemata and
18 axioms. Operationalizing O1 for automatically completing a set of facts, i.e. in an inferential implicit scenario
of use, leads to an operational ontology which includes the same terminological knowledge (3 concepts and 31
relations) but 39 rules and 7 constraints. The operational ontology automatically generated can be used, for exam-
ple, to deduce, from a graph that represents facts which only deals with direct parent relations (father and mother),
all the family relationships such as brotherhood relations, grandfather and grandmother relation, niece, nephew,
uncle, aunt, etc. (cf. [?] for more detail).

6.2 Reasoning domain ontologies at the meta-level

6.2.1 Operationalization at the meta-level
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Figure 13: Overview of the interactions between Domain Ontology, Ontology of Representation and KBS.

Since domain ontologies are conceptual representations of a domain, their operationalization produces opera-
tional ontologies that enable reasoning on domain facts. In the same way, reasoning on ontologies themself can
be done by operationalizing the representation ontology on which they are based, i.e. a meta-ontology. More pre-
cisely, if we consider ontologies expressed in the OCGL language (for example), operationalizing the ontology of
the OCGL language produces operational ontologies that permit to reason about the first ontologies. The ontology
of OCGL, called MetaOCGL, represents knowledge about the OCGL language, the primitives of the language, and
their semantics expressed through axioms. Operationalizing MetaOCGL consists in choosing the way the axioms
will be used to reason about an ontology expressed in OCGL, for example OntoFamily O1. To complete O1, by
automatically adding subsomption links, or by propagating inherited properties, for example, MetaOCGL have
to be operationalized in an inferential scenario of use. To validate OntoFamily according to the OCGL formal
semantics, MetaOCGL have to be operationalized in a validation scenario of use.

Figure 13 shows the interactions that exist between Domain Ontology, Ontology of Representation and KBS.
It also underlines the three main activities related to the integration of ontologies into KBS: Modelization, Opera-
tionalization and Representation.

At the domain level, an ontology (called Domain Ontology in figure 13) of a particular domain (called Domain
in the figure) is built via a modelization process. Reasoning about facts on this domain in a KBS is allowed by
operationalizing the ontology according to a particular scenario of use which describes the way the axiomatic part

Figures/metaop.eps


21

of the ontology is used in the KBS. Then, the generated operational ontology can be used to reason about facts
which are representations of instances of the domain. To sum-up, the Modelization of a domain leads to a domain
ontology including Concepts, Relations and Axioms (both axiom schemata and domain axioms). The Operational-
ization of a domain ontology leads to the development of the ontological level of a KBS, including Terminological
Knowledge (concepts and relations) and Reasoning Knowledge, i.e. rules and constraints corresponding to the
operational forms of the axioms in the context of use which has been choosen. Finally, the Representation of a
domain leads to the construction of the Assertional Level of the KBS, i.e. facts which are defined according to the
Terminological Knowledge, and which are manipulated by the Reasoning Knowledge.

This three-step process (Modelization, Operationalization, Representation) can also be applied at the meta-
level (cf. figure 13). The Ontology of Representation modelizes the language used to express the Domain Ontol-
ogy. This ontology of representation is also expressed with the considered language. It can be operationalized in a
KBS, and the generated operational ontology enables reasoning on the Domain Ontology. In this KBS defined at
the meta-level, a fact is the representation of a particular domain ontology, for example a graph which represents
OntoFamily O1 in MetaOCGL. Because the ontology of representation is a meta-representation, modelizing this
ontology in the same language produces the same ontology of representation. But this ontology can be repre-
sented as a fact in a KBS which implements an operational version of it, in order to reason on the ontology of
representation itself.

6.2.2 Operationalization of MetaOCGL: an application to ontology evaluation

In order to use the MetaOCGL ontology for ontology evaluation (which includes verification, validation and as-
sessment activities [11]), it is necessary to operationalize it in a validation and explicit scenario of use, i.e. all
the axioms are used to validate a fact base. In the example of the figure 14, this fact base is the graph which
represents an extract of the OntoFamily O1. An error has been voluntarily introduced in the signature of the
“aunt(Woman,Universal)” binary relation: this relation is a sub-relation of the “relation_involving_a_Man(Woman,Hu-
man)” relation. So, the signature of “aunt” is not in conformity with those of “relation_involving_a_Man”. The
application of the signature conformity axiom (cf. figure 8), in a validation context of use, reveals the problem: the
dark part of the graph is those which corresponds to the breaking of the axiom.

Figure 14: Operationalization of MetaOCGL for ontology verification.

Note that our approach allows the knowledge engineer to explicitly define, through the definition of axioms
at the meta-level, the criteria used to evaluate the content of ontologies in terms of consistency, completeness and
conciseness. This declarative definition of criteria at the conceptual level increases both the portability and the
modularity of the evaluation criteria, which, in most of the similar works, are directly hard-coded in the tools.
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6.3 Comparison between ontology engineering and model engineering

In this section, we have presented a new approach for reasoning domain ontologies at the meta-level, approach
which mainly relies on the application of ontology operationalization mechanisms to an ontology of representation.
We have also illustrated the relevance of our work in the context of two core questions for semantic interoperability:
ontology evaluation and ontology matching.

In the field of model engineering, the OMG has defined a complete architecture called MDA (Model Driven
Architecture) [19]. In the MDA, a specific model (level M1) captures each aspect of a system, a meta-model (level
M2) captures a model and a meta-meta-model (level M3) captures a meta-model (cf. figure 15). For example, an
UML model modelizes an application, UML modelizes this UML model and the MOF modelizes UML. The M0
level is the “real world”, that is the applications in software engineering. A similar architecture can be considered
in the field of ontology engineering: an ontology (level M1) is a model of a knowledge domain, a meta-ontology
(level M2) is a model of ontology and a meta-meta-ontology (level M3) is a model of meta-ontology. For example,
OntoFamily O1 is a model of the family relationship domain, OCGL is a model of O1, and Meta-OCGL is a model
of OCGL.

MOF

UML

an UML
model

an ontology
in OCGL

OCGL

MetaOCGL M3: meta-meta-model

M2: meta-model

M1: model

M0: "real world"application domain

Figure 15: Standard OMG layered organization illustrated with UML and comparison with ontology engineering
and OCGL.

What we claim is that reasoning the M1 level (for ontology validation or verification, ontology querying,
ontology mapping, etc.) can be done by using terminological and axiomatic representations at the M3 level. This
approach, based on a specific operationalization process (which can be compared to a transformation in model
engineering), provides a more portable and modular method for reasoning domain ontology than methods which
are only defined at the M2 level and thus totally specific to a predefined knowledge representation language.
This approach can also increase the efficiency of ontology mapping, by enabling axiom comparison and primitive
matching at the meta-level, independently from syntactical considerations.

Moreover, a link can be etablished between our approach in ontology engineering and model engineering
techniques. Ontologies currently evolve from lightweight ontologies, used as simple descriptions of domains, to
heavyweight ontologies, used to reason on domains. In a similar way, models evolve from descriptions of systems
to sources for automatic application building [13]. In this context, ontology engineering and model engineering
both focus on using more and more abstract representations, in order, on the one hand, to improve model or
ontology building and (re)using and, on the other hand, to increase their independence from platforms.

7 Discussion

7.1 Related work

7.1.1 Related work in Ontological Engineering.

Currently, a lot of tools that deal with finding correspondences between ontologies are proposed [14].
The first way to classify these tools is to consider the objective which is pursued: (1) merging two ontologies

to create a new one (e.g., IPROMPT [16] or OntoMerge [4]), (2) defining a transformation function that transforms
one ontology into another (e.g., OntoMorph [1]) or (3) defining a mapping between concepts in two ontologies
by finding pairs of related concepts (e.g., ANCHORPROMPT [16], GLUE [3], S-MATCH [10], FCA-Merge [23]
or ASCO [24]). Our work is dedicated to the latter objective by considering the mapping between relations in

Figures/OMG.eps
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addition. Note that although we are able to compare two axioms structurally, we have not yet considered the
semantic mapping between axioms.

Another way to categorize the tools is to consider the type of input on which the tool relies in its analysis and
which it requires: (1) class names and natural-language definitions, (2) class hierarchy and properties (e.g., AN-
CHORPROMPT, GLUE), (3) instances of classes (e.g., FCA-Merge) or (4) descriptions of classes (e.g., S-MATCH).
Some tools consider several inputs: for instance, ASCO [24] uses both (1), (2) and (4) [24]. Our approach is based
on both (2) class hierarchy and properties, (4) descriptions of classes and, in addition, a new type of input: axioms.

7.1.2 Related work in Database Schema Integration.

As recalled in [16], database schemas are similar to ontologies: both are structural representations of knowledge.
The difference often lies in scale rather than substance: database schemas in practice use much fewer modelling
primitives than ontologies and are often smaller than ontologies. Just as with ontologies, researchers are often
faced with the problem of finding correlation between different schemas. However, the more common approach
in the database-schema research is to develop mediators rather than find point-to-point correlations (see [18] for a
survey of approaches to Automatic Schema Matching).

The main difference between schema-matching and ontology-matching approaches remains the number of
knowledge-modelling primitives on which the analysis relies. Schema-matching approaches look only for matches
between concepts, whereas in ontology matching finding correspondences between relations (or properties) is just
as important. In addition, in the context of our work, we consider axioms for finding correspondences between
concepts and relations (and in future, between axioms too): this approach (which can be compared by using
integrity constraints for finding correlations), is not yet developed in the field of database schema matching.

7.2 Similarity measures

In [5], a similarity stack is provided in order to classify the different measures that can be used to perform ontology
matching. This stack is composed of five levels: the Entities level, the Semantic Nets level, the Description Logics
level, the Restrictions level and the Rules level.

For the first three levels, the authors provide similarity measures which of course differ according to semantic
complexity of the level which is considered. Thus, for the first level, the measure only considers the labels of
the entities. The rule based on this measure is as follow: labels are human identifiers (names) for entities and are
normally shared by a community of humans speaking a common language, so if labels are the same, the entities are
probably also the same. The second level takes the properties (i.e. the relations between concepts) into account: if
the properties of two concepts are equal, the concepts are also equal. The third level is based on the ISA relationship
that can be used to define a hierarchy of concepts and/or a hierarchy of properties (i.e. to define taxonomies). An
example of a rule based on this ISA relationship is: if super-concepts are the same, the actual concepts are similar
to each other. This level also considers the instances: concepts that have the same instances are the same.

However, for the Restrictions level and Rules level, no measure is proposed. Explanations given by the authors
are the following: "the features like algebraic properties or equivalence/disjointness are not sufficiently used by the
community to be considered as a material for similarity measure; for the Rules level, there has not been sufficient
research and practical support for the Rule Layer of the Semantic Web Layer Cake".

Our work must be considered as an extension of this classification of similarity measures in the sense that it
provides measures based on the axioms of the domain which include both the Restrictions level and the Rules
level. However, as we claim that it is not possible to consider rules and constraints at the ontological level (rules
and constraints only exist at the operational level, cf. [9] for the justification of this point of view), we propose to
modify the stack by merging the two levels Restrictions and Rules into only one: the Axioms level.

Then, to compare the different ways to compute the distance between two entities of two ontologies, [7] pro-
vides the following taxonomy:

• Terminological (T): comparing the labels of entities. Two approaches are distinguished: (1) string-based
considering only string structure dissimilarity (TS) and (2) lexicon-based (TL) including the relationships
found in a lexicon (i.e. considering synonyms as equivalent and hyponyms as subsumed);
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• Internal structure comparison (I): comparing the internal structure of the entities (e.g. the value range or the
cardinality);

• External structure comparison (S): comparing the relations of the entities with other entities. Two ap-
proaches are distinguished: (1) taxonomical structure (ST) comparing the position of the entities within
a taxonomy and (2) external structure comparison with cycles (SC), an external structure comparison robust
to cycles;

• Extensional comparison (E): comparing the known extension (i.e. the instances) of the entities;

• Semantic comparison (M): comparing the interpretations (or more exactly the models) of the entities.

The originality of our work is that, by considering the axioms of the domain, we deal with the Semantic
Comparison (M). As recalled in [7], the only work which also considers (M) is the algorithm of [10] which
uses a complete prover to decide subsumption or equivalence classes given initial equivalence of some classes
and analysis of the relationships in the taxonomy. What differentiates our work from this approach is that we do
not only consider the ISA relationship for interpretating the entities; we consider all the semantic structure of the
entities including axiom schemata (ISA relationship, algebraic properties, etc.) and domain axioms which are the
main material for fixing the semantic interpretation of the entities. For the same reason, our work is complementary
from the ANCHORPROMPT system [16] which uses the ISA graph structure to find correlations between concepts,
and do not consider the axioms expressed in PAL (Protégé Axiom Language). Note that like the other methods
(cf. [7] for a detailed comparison), we also consider I, ST. We do not consider E.

7.3 Limitations

First, our approach suffers from the same limitation as the graph-based algorithm underlying the tool ANCHORPROMPT[16]:
it does not work well when the two ontologies have major modelling differences in their internal structure. How-
ever, in such a context, our approach will be more efficient than ANCHORPROMPT, due to the axioms which are
generally independent from the concept and relation modelization choices (topologically speaking).

Secondly, evaluation of primitive matching is simply based on the arithmetic sum of weights. The significance
of each axiomatic representation for comparing primitive is then taken into account, but not the one of combination
of representations. For example, a matching of two relations that are reflexive, symmetric and transitive is more
significant than one of two relations that are reflexive, transitive and incompatible with another one, even if the
sum WR + WS + WT is equal to WR + WT + WIncomp, because the combination of reflexivity, symmetry
and transitivity is the equivalence property, which is a very significant property. So, to improve the evaluation
of primitive matchings, combinations of properties must be weigthed, and not only each property. The discrete
Choquet integral [2] is exactly an aggregation operator which permits to weight the subsets of element of the sum,
and not only each element. This operator is widely used in multicriteria decision systems and fuzzy systems [12],
and it can be applied to our ontology matching problem in order to more precisely evaluate primitive matching.

Formally, a Choquet integral is defined with respect to a fuzzy measure. A fuzzy measure µ on a set C is
a set function µ : P(C) → [0, 1] satisfying µ(∅) = 0, µ(C) = 1 and ∀A, B ∈ P(C), A ⊂ B ⇒ µ(A) ≤
µ(B). The discrete Choquet integral of scores x1, ..., xn with respect to the fuzzy measure µ is defined by∑n

i=1 xσ(i)[µ(Aσ(i)) − µ(Aσ(i+1))] where σ is a permutation that order the elements xσ(1) ≤ ... ≤ xσ(n) and
Aσ(i) = {σ(i), ..., σ(n)} (Aσ(n+1) = 0. We currently study the integration of this integral in our algorithm.

7.4 Semantic matching Versus Syntactic matching

As recalled in [10], syntactic matching differs substantially from semantic matching in that, instead of computing
semantic relations between nodes, it computes syntactic similarity coefficients between labels, mainly in the [0,1]
range. Possible semantic relations are: equivalence, more general, less general, mismatch or overlapping. Thus,
for instance, the concepts of two nodes are equivalent if they have the same extension, they mismatch if their
extensions are disjoint, and so on. In [10], they order these relations according to their binding strength, from the
strongest to the weakest. Thus, equivalence is the strongest since the mappings tells us that the concept of the
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second node has exactly the same extension as the first, more and less general give us a containment information
with respect to the extension of the concept of the first node, mismatch provides a containment information with
respect to the extension of the complement of the concept of the first node while, finally, overlapping does not
provide any useful information, since we have containment with respect to the extension, of both the concept of
the first node and its negation.

In the context of our approach, although we assign coefficients, we clearly concentrate on semantic matching
in the sense that we calculate mappings by computing the semantic relations holding between the concepts (and
not labels!) assigned to nodes. But we only focus on the equivalence semantic relation.

Then, according to J. SOWA [21], to integrate two ontologies means to derive a new ontology that facilitates
interoperability between systems based on the original ontologies, and he distinguishes three levels of integration:
Alignment - a mapping of concepts and relations to indicate equivalence, Partial compatibility - an alignement that
supports equivalent inferences and computations on equivalent concepts and relations, and unification - a one-to-
one alignement of all concepts and relations that allows any inference or computation expressed in one ontology
to be mapped to an equivalent inference or computation in the other ontology. But what equivalence means? As
recalled in [15], this is not a formally and consensually agreed term, neither do we have mechanisms for clarify
this notion. Thus, in first-order logic, two concepts are equivalent if, and only if, they are first-order equivalent:
this is the usual approach to formal semantic interoperability. In some works, as semantics is defined in terms of
instances, two concepts are equivalent if, and only if, they share exactly the same instances (e.g. FCA-Merge).

In our work, two concepts are equivalent if, and only if, they are first-order equivalent.

8 Conclusion

In this paper, we have introduced a new ontology matching approach mainly based on the use of axioms. This
approach has been defined in the context of a graph-based knowledge representation and graph-based reasoning
mechanisms.

Our method has the advantage of incorporating most of the descriptive features of a heavyweight ontology into
the matching process whereas most of the current methods cover only subsets of a lightweight ontology (mainly
the hierarchy of concepts and their natural language expression). Of course, we are conscious that our method,
although applicable, can not be very efficient in a context of lightweight ontologies. However, as demonstrated by
the current challenge "Reasoning the Semantic Web", the need for developing heavyweight ontologies inevitably
will increase in an immediate future. So, it seems interesting to focus on developping matching techniques dedi-
cated to this type of ontology. This paper presents only preliminary work and some of the main issues we need to
work on are: (1) to develop and to integrate in TOOCOM an efficient implementation of our approach, (2) to do a
thorough testing of our ideas, (3) to compare our work to the other state of the art matching systems in our particu-
lar context dedicated to heavyweight ontologies (for this purpose, we plan to use the benchmark and the evaluation
method proposed at EON’2004 - http://km.aifb.uni-karlsruhe.de/ws/eon2004) and to use the
criteria proposed by the OntoWeb project [17] (pp 36-37)) and (4) to study how subsomption links and instances
can be used in our matching method. We also study how to complement our approach with the reverse: from
"using axioms to discover concept/relation matchings" to "using previously attested concept/relation matchings to
discover axioms matchings".
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Managing multiple ontologies is now a core question in most of the applications that require semantic interoper-
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