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Gapped consensus motif discovery: evaluation of a
new algorithm based on local multiple alignments

and a sampling strategy

Christine Sinoquet

sinoquet@lina.univ-nantes.fr

Abstract

We check the efficiency and faisability of a novel method designed for the discovery of a priori unknown motifs
described as gaps alternating with specific regions. Such motifs are searched for as consensi of non homologous
biological sequences. The only specifications required concern the maximal gap length, the minimal frequency
for specific characters and the minimal percentage (quorum) of sequences sharing the motif. Our method is based
on a cooperation between a multiple alignment method for a quick detection of local similarities and a sampling
strategy running candidate position specific scoring matrices to convergence. This rather original way implemented
for converging to the solution proves efficient both on simulated data, gapped instances of the so-called challenge
problem, promoter sites in Dicot plants and transcription factor binding sites in E.Coli. Our algorithm compares
favorably with the MEME and STARS approaches in terms of accuracy.





1 Introduction

A central task in post-genomics is automatic retrieval of a consensus motif in a set of biological sequences. We
address a peculiar instance of the pattern discovery problem in a set S of n nucleotide sequences {s1, s2, · · · , sn}.
In its general form, this problem may be stated as follows: identify a set of sub-word sets {SW1, SW2, · · · , SWn}
such that either SWi = ∅ or SWi = {oi1, oi2, · · · , oiri

} with any oij (1 ≤ j ≤ iri) verifying a similarity
constraint with any other olp (1 ≤ p ≤ lrl). In this paper we focus on the class of motifs allowing gaps, that is
the class whose elements are of the type ACTGxxxxCTTxxGGxxxAAGA for example. The latter pattern contains
three gaps with respective lengths 4,2 and 3. Motif characters differing from the wild-card character ’x’ are the
most frequent characters encountered over the set of occurrences of the consensus motif in the sequence set.
They are called specific characters. We restrict to the case where each sequence contains at most one occurrence
of the motif. An occurrence of the former pattern may be retrieved at position 4 in the following sequence:
aataACGGgtggCGTaaGGtccAAGA. The number of mismatches w.r.t. the specific regions is 2. The notion of
consensus motif is related to that of position specific scoring matrix (pssm), which represents a local alignment
of sub-words of the same length. pssm[c, j] yields the frequency of character c at position j over the considered
sub-words.

Whatever the definitions of similarity, pattern type and response type (zero or one sub-word per sequence,
exactly one sub-word, all possible sub-words), any instance of the ungapped consensus motif retrieval problem
(UCMR) is NP-hard [1] and approximated algorithms based on scoring have to be designed for large datasets or
long sequences. The gapped consensus motif retrieval problem (GCMR) is still more difficult, though of prime
importance for users mining biological data. Here we study the faisability and the limits of a GCMR algorithm
whose principle is converging to the pssm solution through iterations confronting pssms yielded by a UCMR algo-
rithm. First, we want to benefit from existing methods for local similarity search. Ungapped multiple alignments
(UMA) are such algorithms. But experience on both simulated and biological data (non homologous sequences)
teaches us that the less similar sequences, though known to share the motif, are uncorrectly aligned in an UMA
performed on the whole dataset. Deriving the consensus motif from such a MA does not yield the optimal solu-
tion (see Figure 1 in Appendix for illustration). So we investigate a stochastic solution for the GCMR problem,
thus identifying and exploring a new direction of research. No a priori knowledge on the consensus motif is
required except the maximal gap length for the consensus motif searched for. Neither do we require the user to
specify a range for the number of gaps, nor do we even need information about the gap length range. Our propo-
sition is half-way between pairwise sequence comparison and simultaneous comparison. The key idea rests on
sampling the search space for motif candidates by confronting UMAs built from small sequence datasets. To our
knowledge, the idea of having a UCMR method associated with a sampling strategy to perform GCMR has not
been explored yet. We first check the validity of the method for the highest frequency of specific characters, with
datasets of size 40, sequences of length 50, motif length 15 containing either scattered short gaps or some rather
long gaps. We also succeed in retrieving consensi for minimal frequency specifications under 100% in simulated
datasets of size 100, sequence lengths of size 50 to 300, model lengths in the range [14, 22] with different gap
distributions. We retrieve binding sites in tandem with scattered gaps inserted in 50 artificial sequences of lengths
50 to 300. Finally we focus on 4 biological datasets (promoter sites in Dicot plants, transcription factor binding
sites in E.Coli, sequence lengths ranging from 250 to 5800) and check that our method, compared with MEME
and STARS, is as efficient in average.

The remainder of the paper is organized as follows. As preliminaries in section 1 we briefly categorize the
main heuristics proposed in the literature for the UCMR and GCMR problems. We end this section introducing
the terminology we use. In section 2, we outline our algorithm. Section 3 presents results obtained on simulated
and biological data and discusses them. Further possible improvements are discussed in Conclusion.

2 Preliminaries

2.1 Related literature

Studying the UCMR problem applied to realistic cases resorts to heuristics aiming at two goals: detection of
characters which often occur simultaneously; optimization of an objective function modelling the divergence of
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the occurrences "supporting" the consensus motif candidates. The commonly used objective functions are the χ2

statistic and the log-likelihood ratio statistic [3]. A variant of the log-likelihood ratio is also known as the Kulback-
Leibler divergence [8] or relative entropy. A recent detailed survey of the literature dedicated to UCMR may be
found in [12] or [6] for example. In the rest of this paragraph we cite a restricted number of approaches for the
sake of succinctness.

Multiple alignment (MA) algorithms in the line of CLUSTALW[15] implement a bottom up pairwise sequence
or alignment comparison. To identify characters frequently co-occurring at a constant distance, other methods
consider different search spaces and exploring strategies. For the sake of simplicity in our explanations, we shall
consider that the core algorithm of all methods described below searches for patterns of fixed length w. Except
for CONSENSUS [7], all algorithms resort to sampling the search space. CONSENSUS systematically builds the
pssms of level l adding a sub-word from one of the sequences to each current multiple alignment of level l − 1.
The Expectation Maximization-based method MEME [4] estimates the probability that the shared motif starts in
any possible position j for sequence i of the dataset, given the data and an initial guess at a description of the
pssm. Then it reestimates the probability of nucleotides in the pssm. It runs such cycles until pssm convergence
is reached. The Gibbs Sampler [9] drives the search relying on successive guesses at occurrence locations in
the following way: given a set of current locations in all sequences but one, current pssm P and background
frequencies B are calculated. Then every sub-word of length w in the excluded sequence is scored with a ratio of
probabilities (generation with P /generation with B). Finally a location on the excluded sequence is chosen with a
probability depending on the former ratio computed for the corresponding sub-word. Next cycle starts choosing at
random the sequence to be excluded before performing one more step with the new location set. From the very start
heuristic local alignment for pairwise comparison used seeds to detect potential similar regions (BLAST [2], FASTA
[10], PatternHunter [11]). In the same line, the stochastic approach PROJECTIONS [5] is a heuristic designed for
the UCMR problem which iterates trials, each time sampling the search space with a different seed - a black mask
of length w with only k windows (positions) to peer at the whole dataset-. All w-mers of the dataset are hashed
to k-mers corresponding to their "k-projections". The key recording most entries is a hint to recover the potential
consensus motif. In the MoDEL approach [6], a sub-optimal multiple alignment is obtained through exploring two
neighborhoods of a current MA (a list of occurrence locations): the former being all MAs shifted "a bit" from the
current one; the latter consisting of all MAs obtained with all possible location variations of a putative occurrence.

The still harder UCMR topical subject is under work-in-progress in the STARS approach [12]. It identifies
a potential common motif scanning the sequences one after another. It states as a first hypothesis that the first
sequence is the common motif and performs motif splitting under a scoring scheme. It goes through several such
cycles to escape the influence of the sequence scanning order.

2.2 Notations and definitions

The alphabet of the sequences is Σ.

Notation 1 ∀x ∈ alphabet Σ, 1(x=y) = 1 iff x = y and 1(x=y) = 0 iff x 6= y.

Before defining formally the consensus motif notion, let us first define the notion of pssm M relative to a set
S = {s1, s2, · · · , sn} of n sequences.

Definition 2.1 Given two integers minSeq and minWidth, a pssm M associated with S is any matrix M ∈

IR+|Σ|×l
with minWidth ≤ l ≤ mins∈S{length(s)}, indexed with characters of Σ, which verifies: ∃ su

(minSeq ≤ su ≤ n) substrings oi ∈ Σl, each included in one of the n sequences of S such that ∀c ∈ Σ, ∀ j 1 ≤
j ≤ l, M [c, j] = 1

su

∑su

i=1 1(oi[j]=c).
In the following, we will say that S supports the pssm. We will only consider pssms supported by a minimum

number of sequences: minSeq at least.

Notation 2 We denote M+ the vector ∈ IR+l
verifying: ∀ j 1 ≤ j ≤ l, M+[j] = maxc∈Σ{M [c, j]}.

Notation 3 The character in Σ corresponding to the greatest frequency at position j is denoted char(M +[j]).
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Notation 4 The notation M+
f [j] will bring conciseness to specify the following predicate: the value for the most

frequent character at position j verifies M+[j] ≥ f . This character will be denoted char(M+
f [j]).

Notation 5 Let ′x′ (/∈ Σ) be the wild-card character. We denote mask(M) the string ∈ Σl ∪ {′x′} verifying:

∀ j 1 ≤ j ≤ l, mask(M)[j] =

{

′x′ if M+[j] < f
char(M+

f [j]) otherwise.

Definition 2.2 Given g, f ∈ N, we denote maxGapLengthg,f (M) the following predicate: max(j2 − j1 + 1 ∈
N | ∀ j 1 ≤ j1 ≤ j ≤ j2 ≤ l, M+[j] < f, M+[j1 − 1] ≥ f, M+[j2 + 1] ≥ f} ≤ g.

Then we define a consensus motif as follows:

Definition 2.3 Given a set S = {s1, s2, · · · , sn}, g a constraint on maximal gap length and f , the minimal
frequency required to distinguish between wild-card and specific characters, a consensus motif of length l verifying

quorum q for S is a pssm ∈ IR+|Σ|×l
such that:

(1) M is associated with S ′ ⊆ S | S ′ |≥ q × n,
(2) maxGapLengthg,f(M) is true.

3 Sampling sequences for running pssms to convergence

We deal with n initial sequences of maximal size t. g is the maximal gap length specified. l is the total length of
the consensus motif, f is the minimal frequency allowing distinguishing between wild-card and specific characters
and ns is the number of specific characters. Both l and ns are a priori unknown. In this exposition part, we will
not detail which UMA algorithm is used.

Our algorithm implements three levels involving two types of operations on pssms. We describe the algorithm
in a bottom up fashion.

3.1 Comparing pssms at UMA level

The idea underlying our algorithm consists in iterating a local search for pssm candidates in sufficiently different
contexts. Choosing as such a context a subset of m sequences selected from the initial dataset, a MA is performed
on the current sample. Scanning this alignment, we generate at most nmMA pssms, each corresponding to "rect-
angles" in the MA satisfying the definitions 2.1 and 2.2 at this small scale. Each pssm is generated under the
following constraints: minimal "height" (number of sequences supporting the pssm); minimal "width" (minimal
length for candidate motif seeds); the number of contiguous columns with most frequent characters having their
frequencies below threshold f is smaller than g (def. 2.3); no two pssms retained among the nmMA ones (at
most) have an identical mask (notation 5). Two pssms with the same mask are contracted to yield a unique matrix.
The operator designed to contract two pssms will be described later on. Contracting pssms is the way chosen to
take account of sparse local identical similarities. Studying MA outputs helps understanding that depending on
the characteristics of the MA algorithm used and the sample data structure one can not expect that strong local
similarities are always well aligned in a "high" rectangle rather than distributed in smaller rectangles. In addition,
note that at this low level, two pssms may have masks such that one is a substring of the other one. Finally, the
scoring function used to keep the best nmMA candidates is fscoreMA, whose choice is discussed further.

3.2 Reducing the search space for motif candidates

As similarities not related to the putative consensus motif searched for are likely to yield strong candidate pssms

(local optimal solutions), we do actually perform a pair of MAs during each iteration to reject false positives.
Each step, a pair of subsets is selected at random for this purpose from the initial data. Once we have obtained
2 × nmMA candidates (at most) for a pair of MAs, the pairwise comparison of these candidates is processed
to identify whether two motif candidates may cooperate to strengthen one of these two motifs. At this level
we retain nmi candidates on the basis of a scoring function fscorei. We mentioned in previous paragraph the
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contraction operator. The second operation used at this intermediary level generalizes contraction operation and
can be described in words as follows: the pssm1 with the greatest number of columns is successively scanned from
left to right with a window the size of the other pssm2’s second dimension, and yielding each time a potential
pssm12 candidate; this candidate is retained if its score improves the nmi best current solutions; if so, it replaces
pssm1. This operation is called pssm merging. During a merging operation, wild-card characters are likely to
appear, which may entail shortening the resulting candidate motif or may even lead to its rejection for not satisfying
the maximal gap length constraint.

Each iteration ends with a pairwise comparison involving the contraction operator. The nm (at most) solutions
strenghtened through i − 1 iterations are compared with the nmi (at most) solutions just obtained at iteration i.
This process yields nm solutions if possible.

The scoring functions retained for candidate filtering during elementary steps (fscoreUMA), MA confronta-
tions (fscorei) and motif strengthening or rejection through successive iterations (fscore) are identical. Contrary
to expectation a scoring function rewarding pssms conserved through iterations (neither successive ones nor scat-
tered ones) was empirically shown to be a bad choice. Furthermore too short candidates must be rejected. The
scoring function chosen can not be the usual log-likelihood ratio statistic (

∑

c ∈ Σ
∑l

j=1 M [c, j]log M [c,j]
b[c] ) where

b is the background probability for character c computed on the subset involved in the MA considered. One can
only compare pssms with same second dimension and which are supported by the same number of occurrences. So
though locations of occurrences which suppport the best pssms are memorized through the three levels of the al-
gorithm, we can not use the log-likelihood ratio as a score. Finally our concern is the discovery of consensus motif
with gaps and we think it is relevant to take account of specific regions only. Gaps are chosen to be "silent" w.r.t.
the quality of the solution. The scoring function we propose (and test with success) is:

∑l

j=1, M+[j]≥f M+
f [j].

Before we describe formally merging and contraction, we complete the definition of a pssm as follows:

Definition 3.1 A pssm is a quadruplet (pssm matrix, scoring function f , score, number of sampled sequences
supporting this pssm). Remember a sequence supports a pssm if it contains an occurrence of the consensus motif
represented by this pssm and contributed to the calculation of its frequencies.

Definition 3.2
pssm merging: pssm × pssm→ pssm set (eventually ∅)
Given pssms M1 and M2 with characters of Σ as line indexes and numbers of columns respectively l1 and l2
(l1 ≤ l2 w.l.o.g.), numbers of supporting sequences ns1 and ns2 and nm ∈ N

+, M1 ⊕M2 is the set of pssm
matrices M of size |Σ| × l1, with number of supporting sequences ns1 + ns2, which verifies:

(1) ∀c ∈ Σ, ∀ j 1 ≤ j ≤ l1, M [c, j] = ns1M1[c,j]+ns2M2[c,j2+j]
ns1+ns2

, for some j2 ∈ [1, l2 − l1 + 1]
(2) maxGapLengthg,f (M) is true.
(3) score(M) =

∑l1
j=1, M+[j]≥f M+

f [j]
Moreover, let nm be the maximal number of best candidates retained (nm depends on the level considered in the
algorithm.)
(4) |M1 ⊕M2| ≤ nm (Best pssms are kept considering the highest scores.)

Definition 3.3
pssm contraction: pssm × pssm→ pssm (eventually null)
Given pssms M1 and M2 having the same number of columns l, M1 •M2 is the pssm verifying
(1) M1 •M2 ∈M1 ⊗M2

(2) mask(M1) = mask(M2).

One must be aware that pssm merging does not necessarily correspond to mask intersection. That is two pssms

with respective specific characters c1 and c2 in position j may yield a merged pssm with a specific character
differing from the formers in this position.

As already mentioned locations of occurrences suppporting the best pssms are memorized through all three
levels of the algorithm. As candidate motifs are strengthened and their pssms are merged, the occurrence locations
relative to these pssms are strengthened too ("one more hit"). As we had foreseen it starting this research work, the
optimal solution may well be splitted in sub-motifs among the nm final sub-optimal solutions, either overlapping
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or not. There are two reasons for this: depending on the MA algorithm run, large gaps may induce splitted local
similarity detection; when the motif length specified as a input for the UMA is smaller than the real unknown
consensus motif length. So the ending stage of our algorithm checks for co-occurrence between as many sub-
motifs as possible, under the quorum constraint. Last step consists in checking the significance of the motif after
its retrieval.

3.3 Checking the motif significance

Such consensus motifs involved in biological functions contain intrinsic information. The probability that a given
motif of length l with ns specific characters occurs by chance at least one time in each of n sequences of size t

is:(1− (1−
∑d

m=0

(

ns
m

)

( |Σ|−1
|Σ| )

m
( 1
|Σ| )

ns−m
)t−l+1)

n

. The principle of our algorithm is to retrieve occurrences
w.r.t. the minimal frequency for specific characters. So the maximal Hamming distance observed for occurrences
must be calculated a posteriori. It has been shown (see [13] for example) that this value, which is calculated
with no care of overlapping words is though a good approximation for the theoretical value. The principle of our
algorithm is to retrieve occurrences w.r.t. the minimal frequency for specific characters. So the maximal Hamming
distance observed for occurrences must be calculated a posteriori.

The algorithm is described in 1.

3.4 Complexity

In average, every sequence will be chosen mu
n

times during u iterations since all samples are equiprobable. The
maximal complexity for aligning z sequences of maximal length t with ClustalW is O(z3t2) (steps 8 and 9). Thus,
with u iterations each performing a pair of multiple alignments, the computation cost is O(u t2m3). Scanning
the MA generated from a small sample of sequences to identify nmMA pssms has a negligible cost. Finally, the
complexity is O(u t2 C) with C constant if m is chosen small, which is the case in our implementation (10). When
using MoDEL, the time complexity of an alignment is approximated by O(n t w b) where w is the fixed length for
the local MA (the range [15− 25] for binding site retrieval) and b is the intrinsic number of iterations for MoDEL
execution (default value is 45). The complexity is then O(u m t w b). Note that the time complexity does not
depend on the maximal gap length g.

4 Results
4.1 First benchmark: simulated data

We implemented supplementary software devoted to the algorithm evaluation. Depending on the aim, one specifies
the re-use of a given consensus motif or one creates a new mask: the software designed for this purpose requires
the length of the consensus motif, the number of gaps, the range for gap lengths. Artificial sequences of sizes in a
specified range are then generated at random and occurrences of a given consensus motif are inserted under (strict)
quorum constraint. Then the generation algorithm blurs all motif occurrences at random, but under the constraint
of the minimal frequency required for specific characters.

Evaluation is done as follows: comparing the retrieved consensus motif m with the real one M , we system-
atically compute two parameters named cover and exactness. cover is the ratio |m| / |M | where |m| denotes
the length of m. W.l.o.g. suppose |m| < |M |. For any valid position in M , we calculate the mismatch score
between m and the current sub-word in M having length |m| (mismatch score between any two different charac-
ters = 1), skipping the z (for instance) wild-card characters in M . exactness is the maximum value among ratios
|m|−z−mismatch score

|m|−z
.

Our first tests were run using the MA software clustalW (v. 1.83) [15]. We tuned it to allow long shifts of the
sequences relatively to one another so as to only have gaps (those of clustalW) at extremities. We chose the identity
matrix to set substitution costs. We focused on 9 consensus motifs to test the case (f = 100%, quorum = 100%).
These motifs are presented in Table 1. We observed the cover was not perfect but that we could yet recover rather
fuzzy motifs (motifs (6), (8) and (9)). Introducing motif extension (see 3.2), we obtained a quasi perfect cover
except for motif (9) which is TxxxCTTxxxCxxxT. Table 2 shows this improvement.
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Algorithm 1 Gapped consensus motif retrieval
Input: a set S of n sequences; maximal gap length g; minimal frequency f ; quorum q; sample size m.
Output: answer Yes/No; if Yes, a maskMask, the corresponding pssm P , occurrence locations OccLoc for at
least q × n sequences.

1: while no solution is found do
2: Sol ← ∅ /* Initialize the list of solutions (pssms).*/
3: for iter=1, · · · , u do
4: S1 ← AleatSubset(S, m) /* first sample */
5: S2 ← AleatSubset(S, m) /* second sample */
6: /* Now perform 2 ungapped multiple alignments to obtain 2× nmUMA best solutions Sol1 ∪ Sol2.*/
7: Sol1 ← UMA(S1, pssmContractionOperator, fscoreUMA)
8: Sol2 ← UMA(S2, pssmContractionOperator, fscoreUMA)
9: /* Compare and keep nmi best solutions Soli.*/

10: Soli ← pairwiseComparison(pssmMergingOperator,Sol1,Sol2, fscorei)
11: /* Update the nm best solutions in Sol.*/
12: Sol ← pairwiseComparison(pssmMergingOperator,Sol,Soli, fscore)
13: end for
14: if Sol 6= ∅ then
15: answer ← Y es
16: /* Check for co-occurrence between some masks in S and subsequently extend the consensus motif (if

necessary) until the quorum constraint is no more satisfied. Doing this, reject occurrence locations which
are not consistent with quorum constraint. Then check for the significance of the motif (see text 3.3).*/

17: (Mask, P, occLoc)← extendMotifSelectOccurrences(Sol, S, q)
18: break;
19: end if
20: end while
21: answer ← No
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consensus motif number nb gaps length of gaps consensus motif
1 1 1 CTGATCGxTGACTAT
2 2 GTTxxGGTTTTAAGT
3 3 TCCACGxxxTTGGTC
4 2 1 CTAGxGAAxATTTAT
5 2 GCGxxATxxAACTGC
6 3 AGTxxxCxxxCCCAA
7 3 1 GTxGTTGTxAGxAGC
8 2 CAxxCGxxTCxxGCT
9 3 TxxxCTTxxxCxxxT

Table 1: Nine consensus motifs of length 15.

(a) (b) motif
consensus motif # gaps gap length cover exactness time cover exactness time significance

number (s) see text 3.3
1 1 1 0.86 1.0 347 0.96 0.99 207 0.998
2 2 0.77 1.0 431 0.95 0.99 105 0.016
3 3 0.96 1.0 493 1.19 0.99 577 2.812 E-15
4 2 1 0.85 1.0 512 0.92 1.0 195 0.016
5 2 0.67 1.0 425 0.96 0.93 97 5.584 E-36
6 3 0.97 0.99 465 0.96 0.99 87 4.825 E-83
7 3 1 0.79 1.0 367 0.94 0.92 95 2.812 E-15
8 2 0.71 1.0 409 0.95 0.99 83 4.825 E-83
9 3 0.71 0.95 426 0.65 0.98 105 3.231 E-155

Table 2: Tests for the 9 motifs of Table 1 in the exact case (minimal frequency = 100%). Average values for cover, exactness and execution
time are computed from 100 runs over the same set of 40 sequences of length 50, for each consensus motif. For purpose comparison, the
number of iterations of the algorithm is set to 100. Version (b) of the algorithm implements motif extension. The right column displays the
probability that the exact motif occurs by chance at least once in the set of 40 sequences (see text 3.3).

Then we opted for the MA software MoDEL [6] to evaluate our method under a larger variety of conditions:
longer sequences, various gap distributions and various frequencies for specific characters. Besides statistics about
cover and exactness, Table 3 shows a series of results including more details on false wild-card or specific
characters predicted. Table 4 gives the significances (3.3) of the motifs considered depending on different mismatch
values. The reader familiar with motif discovery topics will have noticed in the previous benchmark peculiar
instances of the so-called challenge problem [14] (b, c, d and e) . The challenge for instance (n, t, l, d) of this
problem consists in discovering in n sequences of size t an occurrence of a motif of length l with exactly d
mismatches. In our case, difficulty is increased by the presence of gaps. Furthermore an instance is indeed
(n, t, ns, d) with ns the number of specific characters and d the maximal mismatch value. Remember we generate
data controlling the mismatch errors by column, and not by occurrence.

a1 a2 a3 a4 b1 b2 c1 c2 d1 d2 e1 e2
q % 100 70 100 70 100 70 100 70 100 70 100 70
f % 100 100 80 80 80 80 80 80 80 80 80 80
cover 0.97 0.97 0.85 0.68 1.0 1.0 1.0 0.97 0.92 0.93 0.91 0.95
exactness 1.0 1.0 0.98 0.92 0.98 0.96 0.95 0.92 0.96 0.95 1.0 1.0
false w. 0.49 0.5 2 2.4 0.5 1.43 0.2 1.02 0.37 0.47 0.11 0.3
false s. 0.38 0.37 0.13 0.9 0 0.44 0.9 0.3 0.22 0.21 0.2 1.5

motif ns
a GCGxxAAGCAxxCC 10
b TGATxxTAGxxACGCC 12
c TTTxCTCxCGxCCGxGAG 14
d AATTTxxTCCTAGxTxTACG 16
e CTTGGACxCGAxCCTCxxCGCC 18

Table 3: Performances of the algorithm for 2 quorum values (q) and 2 frequency values (f). In each subcase a 100 sequences of lengths ranging
from 50 to 300 have been generated under the quorum and minimal frequency constraints. In cases b, c, d and e, 20 sequences of length
600 have been generated. Average values for cover, exactness and number of false wild-card (resp. specific) characters predicted have been
computed for 100 runs (model length specified for the MA software MoDEL: 20). ns denotes the number of specific characters in the motif.
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motif n t l ns d significance of the motif
a 100 50 14 10 2 2.422 E-182

4 5.374 E-29
7 0.999

a 100 300 14 10 2 1.318 E-95
4 0.720
7 1.0

b 20 600 16 12 3 1.686 E-14
c 18 14 4 1.383 E-15
d 20 16 5 4.776 E-17
e 22 18 6 9.0912 E-19

Table 4: Significance of various classes of consensus motifs from Table 3 (see text 3.3). n is the number of sequences, t is their common length,
l is the motif length, ns is the number of specific characters, d is the maximal number of mismatches per occurrence (computed on specific
characters only).

4.2 Second benchmark: biological data

Then we achieved a more thorough examination of real vs predicted occurrence locations focusing on a hard case:
long blurred occurrences. We wanted to focus on motifs of a biological type. Yet we still wanted to control
the distance of the occurrences w.r.t. the motifs. Inserting in 50 artificial sequences (quorum 100%) the tandem
binding site described in [12] (AxTGAATAAxxATxCATxTATxxTGAATAxAAATTCAxT) as the consensus of 8
transcription promoters for ArgR in E. Coli, we imposed the specific character frequency 70% and observed rather
blurred occurrences (up to 13 mismatches for the 30 specific characters, average number of mismatches 9). In
this case the UMA performed on the whole dataset yields a percentage of false locations equal to 38% in average
(10 runs). We always managed to obtain the good locations (among other ones, since our current version does
not choose between candidate locations) over 10 runs. The cover parameter averages 76%, which shows motif
extension completed the search in this case since MoDEL was run for the model length 20. The 10 runs yielded 5.3
false specific characters in average and 1.2 false wild-cards. Table 5 gives the 3 motifs we obtained together with
the motif discovered by MEME. Table 6 gives the motif significance for different mismatch values.

# # false specific # false wild-card
results characters characters

over 10 runs

AxTGAATAAxxATxCATxTATxxTGAATAxAAATTCAxT
(consensus motif)

TGAATAATAATACATxTATTGTGAATAAA 3 6 0
TGAATAATAxTACATxTATTxTGxATAAAA 5 5 2
TGAAxAATAATACATxTAxAxTxAATxAAA 2 5 4

MEME result
AxTGAATAAxxATxCATxTATxxTGAATAxAAATTCAxT (1)

Table 5: The 3 motifs retrieved in 10 runs for 50 artificial sequences of lengths ranging from 50 to 300, all containing an occurrence of the
tandem binding site AxTGAATAAxxATxCATxTATxxTGAATAxAAATTCAxT (consensus of 8 transcription promoters for ArgR in E. Coli

collected in [12]). (1) Specific characters were identified from the MEME output as contributing for a value greater than or equal to 0.6 bits to
total information content IC (19.5 bits).

n t l ns d significance of the motif
50 50 39 30 7 0.0

11 2.618 E-196
15 3.928 E-75

50 300 39 30 7 2.708 E-298
11 2.220 E-129
15 3.504 E-15

Table 6: Significance (see text 3.3) of the consensus motif of Table 5 for different mismatch values (d) and different sequence sizes (t). n is
the number of sequences, t is the sequence length, l is the motif length, ns is the number of specific characters, d is the maximal number of
mismatches per occurrence (computed on specific characters only).

Finally, we run our algorithm on the same biological datasets as those collected for STARS evaluation from
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Figure 2: (a) Sequence logos for binding sites of genes from E.Coli coding for different proteins. From left to right: 18 genes
coding for PurR protein - 5 genes coding for TyrR protein - 16 genes coding for LexA protein. All datasets were collected by
A.Mancheron [12] who computed the corresponding sequence logos.

the pages http://www.softberry.com/berry.phtml and http://arep.med.harvard.edu/ecoli_matrices/. Figure 2 shows the
sequence logos collected in [12]. Table 7 describes the conditions for the tests and their results. We compared our
results with the outputs of MEME and STARS.

Tata box for Binding sites Binding sites Binding sites
Dicot plants PurR, E.Coli TyrR, E.Coli LexA, E.Coli

# seq. 131 18 5 16
length 251-251 299-5864 251-2021 100-3842
avg length 251 2477 717 1809
# nucleot. 32880 44592 3585 28941
motif (1) TATAxATA AxGxAAxCGxTTxCxT TGTAAxxxxxxxTTxAC CTGTAxAxxxAxxCAG
our algor.
q a 100% TATAAATA GxAAxCGxTTxC TGTAxxTTTxTxxxTACA TACTGTATATxxAxxCAG

AxGxAAACGTTTxCGT
q b 70% (2) ATAAAxA GxAAACGTTTxCG CTGTxxATCxATACAG

TAxAAA(3) GCAAACGTxTxCxT CTGTxxATxxATACAGTA
MEME
q 100% TATAAATA AxGCAAACGxTTxCxT (5) TTxTxTxTTAACCxxCTxCCC (7) CTGTATATxxAxxCAG (9)

TTTTAxGxxxCTGCCCGTxxxCxT (8)
q 70% TATAAATA AxGxAAACGTTTxCxT (6) CTGxAxAxxxAxACAGxA (10)
STARS (4) TATAAATA GCxAxCGTTTTC TGTAAAxxAAxxTxTAC ACTGTATATxxAxxCAG

Table 7: Outputs of our algorithm, MEME and STARS for biological motif retrieval under minimal frequency constraint f = 80% and 2 quorum
values. (1) The biological consensus motifs are described with the sequence logos shown in Figure 2. We systematically compared 10 outputs
for our algorithm. (2) To test our method with quorum q, we replaced 100− q% sequences in the initial dataset with as many sequences of the
same lengths chosen at random in the adequate genomes. (3) The 2 sub-optimal solutions found for quorum < 100%. (4) q = 100%, published
results. We obtained gapped predicted consensi from MEME outputs under the following conditions: (5) contribution to information content
IC (20.4 bits) strictly below 0.8 bits for specific characters. (6) 1.0 bits and total IC 18.8 bits - see (4). (7) when length specified in [15,25];
threshold 0.9 bits and total IC 25.3 bits. (8) when length specified in [20,25]; threshold 0.9 bits and total IC 28.0 bits. (9) when length specified
= 20; threshold 1.0 bits and total IC 23.1 bits. (10) when length specified = 20; threshold 1.0 bits and total IC 18.8 bits. [12].

4.3 Discussion

Not only is our algorithm efficient on sets of 100 sequences with lengths ranging from 50 to 300. It succeeds
too in recovering the consensus motif for sequences with lengths up to 5800 and averaging 2500. We designed
the 4 motifs b, c, d and e (Table 3) to confront our algorithm to the challenge problem mentioned above (a class
of subtle motifs, see end of 4.1). We manage to recover such motifs, though in our case they are gapped, which
brings more difficulty. Our stochastic non sophisticated approach yields relatively steady results. The quality
of the outputs (both in terms of motif and occurrence recovery) stands comparison with MEME and STARS. All
three methods perform well in motif identification, except for MEME on the TyrR set (5 sequences, gap length:7).
Overmore, we checked that the real occurrences were always found among the occurrences most frequently hit
during u iterations of our algorithm. Resorting to a much less sophisticated technique than the one implemented in
MEME, our algorithm compares favourably with MEME and STARS in terms of efficiency. MEME yielded outputs
in less than 30 s. Our prime objective being prooving the soundness and accuracy of our method, we just ran our
algorithm on the usual PC type (RAM 256 Mo, 1.6 GHz), with no iteration number optimization suited to the data
analysed (u = 100). Finally, accuracy holds for quorum under 100%.

purR.LGO.ps
tyrR.LGO.ps
lexA.LGO.ps
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5 Conclusion
We presented a novel method for UCMR under minimal specific character frequency, maximal gap length and
quorum constraints. First, we wanted to benefit from a pre-existing local multiple alignment algorithm for our
purpose. Secondly, pssm convergence is obtained in an original way: strengthening (literally merging) the best
candidates satisfying frequency and gap constraints, which distinguishes our algorithm from methods such as
MEME and PROJECTIONS. Furthermore, our algorithm checks for the maximal gap length constraint during all
three levels, instead of performing a posteriori checking. As for other stochastic methods, prooving the soundness
of the intuition behind the method required implementing an experimental protocol. Our algorithm is efficient and
robust w.r.t. the following criterion: maximal gap length specified with too high a value. Retrieval under quorum
constraint is successful, which is not a trivial result. Moreover, our method has a low memory cost. Next step
will consist in examining which parts of the algorithm may significantly be sped up. Studying the convergence
of the solution with respect to the number of iterations is also one of our future tasks as will be a more thorough
examination of the choice for scoring functions. These former topics are currently in study. Finally, testing the
algorithm on other more various biological inputs and systematically comparing the locations predicted by our
method and other approaches will be of high interest.
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Appendix

Figure 1: Multiple alignment obtained with software CLUSTALW for a set of 40 sequences all containing the consensus motif
AGTxxxCxxxCCCAA.

alignment1.eps
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