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Converting Suffix Trees into Factor/Suffix Oracles

Irena Rusu

Irena.Rusu@univ-nantes.fr

Abstract

The factor/suffix oracle is an automaton introduced by Allauzen, Crochemore and Raffinot. It is built for a
given sequence s on an alphabet Σ, and it weakly recognizes all the factors (the suffixes, respectively) of s :
that is, it certainly recognizes all the factors (suffixes, respectively) of s, but possibly recognizes words that are
not factors (not suffixes, respectively) of s. However, it can still be suitably used to solve pattern matching and
compression problems. The main advantage of the factor/suffix oracle with respect to other indexes is its size:
it has a minimum number of states and a very small (although not minimum) number of transitions.

In this paper, we show that the factor/suffix oracle can be obtained from another indexing structure, the suffix
tree, by a linear algorithm. This improves the quadratic complexity previously known for the same task.

General Terms: Algorithms

Additional Key Words and Phrases: indexing structure, factor recognition, suffix recognition





1 Introduction

The need to efficiently solve pattern matching problems lead to the definition of several indexing structures:
given a text, these structures allow to store the text, to have a fast access to it and to quickly execute certain
operations on data. Suffix arrays, suffix automata, suffix trees are classical structures which can be implemented
in linear time with respect to the text size, but still require a too important (although linear) amount of space.
Several techniques for reducing the memory space needed by index implementation were developed [3].

One of these techniques proposes to build indexes which are less precise but more space economical than
the classical indexes: such a new index validates a set of words which contains all the factors of the text, but
possibly contains words that are not factors. We then say that the index performs a weak factor recognition.

The factor and suffix oracles introduced in [1] are automata for weak factor recognition. A simple, space
economical and linear on-line algorithm to build oracles is given in [1], together with some applications to
pattern matching. Other applications to pattern matching, finding maximal repeats and text compression can be
found in [4], [5], [6] and [7]. In [8], a combinatorial characterization of the language recognized by the oracles
is provided.

Suffix trees and factor/suffix oracles are certainly related to each other. Making this relation more explicit
could be a way to obtain results on oracles using already known results on suffix trees. A first, quadratic,
algorithm to transform a suffix tree into a suffix oracle was proposed in [2]. We propose here a simple, linear
algorithm.

After recalling the main definitions in Section2, we present in Sections 3, 4, 5 respectively the construction
algorithm, the theoretical results insuring its correctness and the reasons of its linear complexity.

2 Trees and automata
Let s = s1s2 . . . sm be a sequence of length |s| = m on a finite alphabet Σ. Given integers i, j, 1 ≤ i ≤ j ≤ m,
we denote s[i . . . j] = sisi+1 . . . sj and call this word a factor of s. A suffix of s is a factor of s one of whose
occurrences ends in position m. The i-th suffix of s, denoted Suffs(i), is the suffix s[i . . .m] and has length
m + 1 − i. A prefix of s is a factor of s one of whose occurrences starts in position 1. The i-th prefix of s is
the prefix s[1 . . . i]. Say that a suffix of s is maximal if it is not identical to s and it is not the prefix of another
suffix of s.

The suffix tree
The suffix tree ST (s) of s is a deterministic automaton whose underlying graph is a rooted tree, whose initial

state is the root of the tree and whose terminal states are its leaves. The only word accepted in leaf number i,
denoted leaf(i), is Suffs(i). In the non-compact version of the suffix tree, transitions are labeled with letters
in Σ. The compact version is obtained from the non-compact version by discarding all states (excepting the
root) which have only one outgoing transition and creating new transitions labeled with factors of s to replace
the missing paths. To insure that every sequence s does have an associated suffix tree, a new character $ is
added to Σ and ST (s) is built for s$ instead of s. Then the only word accepted in leaf(i) (1 ≤ i ≤ m + 1) of
ST (s) is Suffs$(i). See B0 in Figure 1 for an example.

An important role will be played in the paper by the branches of the suffix tree. The k-th branch (1 ≤
k ≤ m + 1) of ST (s), denoted βk, is the directed path from the root to leaf(k), used to accept Suffs$(k).
The directed subpath of βk defined by the states u and v (with v deeper than u) is denoted βk[u . . . v]. Its
length |βk[u . . . v]| is the number of its transitions, while βk[u . . . v] stands for the word spelled along the
path βk[u . . . v]. Notice that |βk[u . . . v]| = |βk[u . . . v]| in the non-compact suffix tree, but |βk[u . . . v]| ≤
|βk[u . . . v]| in the compact suffix tree.

The factor/suffix oracle
The factor/suffix oracle for s is a deterministic automaton for weak factor recognition. It has m + 1 states

denoted 0, 1, 2, . . . , m, exactly m internal transitions from i to i + 1 labeled si+1 and at most m − 1 external
transitions from i to j (i+1 < j) labeled sj . Consequently, the oracle is homogeneous, that is, all the transitions
incoming a given state have the same label. Each state is terminal in the factor oracle, while only the states
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ending the spelling of a suffix of s (including the empty one) are terminal in the suffix oracle (see B(s) in
Figure 1 for a suffix oracle). The factor/suffix oracle was introduced in [1] and can be built using an on-line
linear algorithm. The algorithm we give here (also proposed in [1]) is quadratic, but more intuitive. In the
algorithm, Oracle(s) denotes indifferently the factor or suffix oracle.

Algorithm Build Oracle [1]
Input: Sequence s.
Output: Oracle(s).

for i from 0 to m do
create a new state i;

for i from 0 to m − 1 do
build a new transition from i to i + 1 by si+1;

for i from 0 to m − 1 do
let u be a minimum length word whose reading ends in state i;
for all σ ∈ Σ, σ 6= si+1 do

if uσ is a factor of s[i − |u| + 1 . . . m] then
let j, i − |u| + 1 ≤ j ≤ m, be the end position of the first occurrence of uσ in s[i − |u| + 1 . . . m];
build a transition from i to j by σ.

It is shown in [1] that the minimum length word accepted in state i by the factor oracle is unique for each i,
0 ≤ i ≤ m.

3 The algorithm

The algorithm we propose in this section transforms the suffix tree of a sequence in the suffix oracle of the
same sequence in linear time. A first algorithm for this task was given in [2], but its complexity is quadratic.
For the sake of simplicity, the algorithm considers that ST (s) is the non-compact suffix tree, but there are very
few changes to perform when ST (s) is compact.

The branch β1 of ST (s) is called the main branch and will be a constant during the algorithm in the
following sense: each of the automata Bi (i ≥ 1) obtained successively from B0 = ST (s) will have a main
branch spelling the same word s1s2 . . . sm$. Its end leaf will be denoted leaf(Li+1). At each step of the
algorithm (see Figure 1), a branch will be bent along the main branch. This is done using the contraction
operation defined below. The result is an automaton which has less branches and one more external transition.
The final automaton B(s) only has one branch (the main one) and as many external transitions as the number
of steps that have been performed.

Given two distinct states u, u′ of Bi, the operation of contraction of u and u′ (in this order) consists in
(a) replacing each transition incoming to u′ by a transition with the same start point and incoming to u, and
(b) removing the part of the automaton which is disconnected from the root. The resulting state u is called a
contracted state.

A suffix number t > Li+1 is called a free suffix number of the automaton Bi (i ≥ 0) if βt exists in Bi. A
free suffix number t of Bi is strong (weak, respectively) if Suffs(t) is a maximal (not maximal, respectively)
suffix of s; or, equivalently, if the parent of leaf(t) in ST (s) (non-compact) has exactly one child (at least two
children, respectively). The corresponding branches and leaves will be called free, strong and weak respectively.
See B1 in Figure 1: branches 1 and 2 of B0 have been bent together by contracting u1 and u′

1, so that their
leaves are now identical to leaf(L2); the suffix number 6 is (free and) strong, the suffix number 7 is (free and)
weak, while the suffix numbers 1 and 2 are not free.

The branching state of two branches in Bi is the deepest state (that is, the most distant from the root) which
is common to the two branches.

In the algorithm below, the notation (x, γ, u) corresponds to a transition from x to u by γ, with γ ∈ Σ as
long as we refer to the non-compact suffix tree.
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Figure 1: Execution of the algorithm ST-to-SO on the suffix tree of s = aabbaaba. The grey states are terminal. The main
branch is the horizontal path labeled aabbaaba$.

The execution of the algorithm ST-to-SO is shown in Figure 1.

Algorithm ST-to-SO
Input: ST (s)
Output: automaton B(s)

B0 := ST (s);
β0:=β1; /main branch/
L1 := 1; /the leaf number of the main branch/
i := 1;
while (Bi−1 has at least one strong branch) do

let ki > Li be min. s. t. βki
is strong in Bi ;

Bi := bend(Bi−1, ki, Li);
Li+1 := ki;
i := i + 1

mark the parent of each weak leaf as terminal;
remove all the weak leaves;
mark the parent of leaf(Li) as terminal;
remove leaf(Li);
Return B(s).

Function bend(Bi−1, ki, Li)
xi := the branching state of β0 and βki

;
(xi, γi, ui) := the transition going out from xi

on βki
;

u′

i := the state of β0 such that |β0[u
′

i . . . leaf(Li)]|
and |βki

[ui . . . leaf(ki)]| are identical;
contract ui and u′

i;
β0 := the new path spelling s$;
Return Bi

Remark 1 If k is a weak suffix number of Bi (i ≥ 0), then so are k + 1, . . . , m. Consequently, every weak
suffix number is greater than every strong suffix number. Thus, according to the algorithm ST-to-SO, in each
Bi one has Li+1 < ki+1 < t, for each leaf number t 6= Li+1, ki+1 which exists in Bi.
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4 Theoretical results

In this section (Theorem 2) we prove that the automaton B(s) built by the algorithm ST-to-SO is identical to
the suffix oracle SO(s) of s. The proofs (and thus the results) are valid in both cases with respect to ST (s)
(compact or non-compact suffix tree).

We will call a step of the algorithm ST-to-SO any execution of the while loop. The i-th step is then executed
on Bi−1 and is identified by the 7-tuple (i, Li, ki, xi, γi, ui, u

′

i), where Li is the end state of the main branch
at the beginning of the i-th step and the other variables are computed in the function bend. The automaton
obtained at the end of the i-th step is denoted Bi. Thus the main branch β0 of Bi ends with the state Li+1 = ki

and Bi still contains the states xi, ui but not u′

i. Moreover, it contains states ki+1, xi+1, ui+1, u
′

i+1. In Bi, we
have that: (1) the branches βj with 1 ≤ j ≤ Li+1 − 1 do not exist anymore (either they were bent, or they have
been removed during a contraction); (2) a branch βj with Li+1 < j ≤ m+1 either exists and is free (strong or
weak) or does not exist anymore (it has been removed during a contraction). The notation βk is not ambiguous
and will be the same in all the automata Bi built during the algorithm.

There are mainly two affirmations to justify before proving Theorem2:

i) The contracted states u1, u2, . . . , ui are placed in this order on the main branch of B(s) (the equality
is possible).

ii) During the contraction of ui and u′

i, some branches of Bi−1 are removed, but the suffixes corre-
sponding to these branches are still accepted by Bi.

To prove affirmation i), it is essential to compare the lengths of the words βki
[xi . . . leaf(ki)], for all i. A

surprising remark is that for any branch βki
which is bent during the algorithm, one can identify very early,

in ST (s), the state xi which will be computed by the algorithm. Thus, one can equally compute the length of
βki

[xi . . . leaf(ki)]. This is proved in (A1) of Theorem 1.
Affirmation ii) is based on the remark that each branch removed during a contraction has a copy in the

subtree of Bi−1 rooted in ui, which allows to substitute the missing branch in Bi. This is proved in (A4) of
Theorem 1.

Affirmations (A2), (A3) and (A5) in Theorem1 are technical requirements.

To give Theorem 1, we need several definitions. Let v be a state and t be a free suffix number of Bi. Then
we denote:

• min(v, Bi) the minimum length word read along a path joining the root to v in Bi.
• lm(v, Bi) the length of min(v, Bi).
• h(t, Bi) the deepest branching state of βt with some branch βj such that 0 ≤ j < t, in Bi.
• minb(t, Bi) = |βt[h(t, Bi) . . . leaf(t)]|.
• minw(t, Bi) = |βt[h(t, Bi) . . . leaf(t)]|.

In Figure 1, h(3, Bi) is the root for i = 1, 2, and minb(3, Bi) = 7 = minw(3, Bi) for i = 1, 2 (but
minb(3, Bi) = 2 in the compact version of ST (s)).

For the theorem below, see Figure 2.

Theorem 1 The automata Bi (i ≥ 0) obtained in Algorithm ST-to-SO have the following properties:

(A1) Contraction progress

a) The values h(t, Bi), minb(t, Bi), minw(t, Bi) are constant over all i such that t is a free suffix of Bi

(denote them h(t), minb(t), minw(t) respectively). Moreover, if 1 < t < t′ then minw(t) ≥ minw(t′).
In addition, in the i-th step (i ≥ 1) of the Algorithm ST-to-SO, xi = h(ki).

b) In Bi (i ≥ 2), ui is situated on the path β0[ui−1 . . . leaf(Li+1)]. The case where ui replaces ui−1 is
possible and holds if and only if minw(ki) = minw(ki−1).

c) β0[u
′

i . . . leaf(Li)] and βki
[ui . . . leaf(ki)] are identical words in the definition of the function bend, so

that β0 is well defined in this function.
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Figure 2: Step i in Algorithm St-to-SO. The dashed lines represent paths spelling the same word. The thick arrows are
arcs, while the thin arrows are paths.

(A2) Minimum words

For each state v in Bi, min(v, Bi) is unique and is the same in all the automata Bi containing v (denote
min(v) this word and lm(v) its length). Moreover, lm(ui) < lm(u′

i) in each step i of the algorithm. Further-
more, if x is the deepest contracted state which precedes v or is equal to v (assuming such a state exists), then
min(x) is a prefix of min(v). In addition, for each suffix number t of Bi, min(leaf(t)) = Suffs$(t).

(A3) General properties

The automaton Bi (i ≥ 0) is deterministic and homogeneous.

(A4) Branch substitution

Let t′ be a strong (weak, respectively) suffix number of Bi−1. Denote v′ the branching state of βt′ and β0 in
Bi−1 and assume that v′ is a state of the path β0[u

′

i . . . leaf(Li)]. Then:

a) the branch t = t′ + (ki − Li) is a free (weak, respectively) branch of Bi−1 whose branching state v with
βki

has the properties: βki
[ui . . . v] = β0[u

′

i . . . v′] and βt[v . . . leaf(t)] = βt′ [v
′ . . . leaf(t′)].

b) Suffs$(t
′) is still accepted by Bi, in leaf(t).

(A5) Main terminal state

For each suffix number k ∈ {1, 2, . . . , m + 1}, Suffs$(k) is accepted in a leaf of Bi.

Proof. The affirmations are proved in the given order.

Proof of (A1). To prove (A1a), we use induction on i. Denote z(t, Bi) the minimum number j, 0 ≤ j < t,
such that h(t, Bi) is, in Bi, a branching state of βt and of βj . Let root be the root of Bi (it is the same state for
all the values i).

When i = 0, B0 = ST (s) and only have to show that minw(t, B0) ≥ minw(t + 1, B0) for all t,
1 < t ≤ m. To see this, let v = h(t, B0) be the the branching state of βz(t,B0) and βt. Then the lm(v, B0)
first characters of Suffs$(t) and Suffs$(z(t, B0)) are common, while the (lm(v, B0) + 1)-th character is
different. Consequently, Suffs$(t + 1) and Suffs$(z(t, B0) + 1) have their first lm(v, B0) − 1 characters
in common, while the lm(v, B0)-th character is different. Call v′ the common state of βt+1 and βz(t,B0)+1

where the reading of their common prefix of length lm(v, B0) − 1 ends. Then, since we are in B0 = ST (s)
and there is a unique path joining the root to v′, we have that lm(v′, B0) = lm(v, B0) − 1. Moreover, since
z(t, B0) + 1 < t + 1, h(t + 1, B0) is either v′ or is deeper than v′ on βt+1. Consequently:

minw(t + 1, B0) ≤ |βt+1[v
′ . . . leaf(t + 1)]| = m + 2 − (t + 1) − lm(v′, B0) =

= m + 2 − t − lm(v, B0) = |βt[v . . . leaf(t)]| = minw(t, B0).

Affirmation (A1a) is proved in the case i = 0.
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We continue the induction with the general step. To show (A1a) for Bi, let t 6= ki, Li be a free suffix
number of Bi−1, and call v the state closest to leaf(t) among the branching states of βt with βki

and with βLi

respectively. Note that by Remark 1, t > ki > Li.
i) If v is situated on βki

[ui . . . leaf(ki)], then either z(t, Bi−1) = ki, or ki < z(t, Bi−1) < t and in
this case the branching state h(t, Bi) of βz(t,Bi−1) and βt is an internal state of βt[v . . . leaf(t)]. After the
contraction, h(t, Bi) = h(t, Bi−1) (since the subtree rooted at ui is not modified by the contraction). Moreover,
the definitions of minb(., .) and minw(., .) insure that these values are not changed neither.

ii) If v is situated on β0[xi . . . u′

i], then either z(t, Bi−1) = Li or ki < z(t, Bi−1) < t and in this case the
branching state h(t, Bi) of βz(t,Bi−1) and βt is an internal state of βt[v . . . leaf(t)]. After the contraction, none
of the values h(., .), minb(., .), minw(., .) changes.

iii) If v is situated on β0[root . . . xi], then nothing changes after the contraction.
iv) If v is situated on β0[u

′

i . . . leaf(Li)], then after the contraction t is no more a free suffix number.
Thus, the values h(t, Bi), minb(t, Bi), minw(t, Bi) are constant over all the values i such that t is a free

suffix of Bi. With the new notation minw(t, Bi) = minw(t), we have that minw(t) ≥ minw(t′) holds when
t < t′ (since we proved it in B0). Moreover, during the i-th step, z(ki, Bi−1) must be 0, obtained during a
contraction according to case i) above. Then h(ki), which is by definition the branching state of βz(ki,Bi−1)

and βki
, is equal to xi.

To show (A1b), notice that after the contraction yielding Bi−1 (involving branches Li−1 and ki−1), the
last state of the main branch is leaf(Li) = leaf(ki−1). Moreover, we have that ki−1 > Li−1 and, simi-
larly, that ki > Li = ki−1. Thus, by (A1a), minw(ki) ≤ minw(ki−1). Now, xi−1 = h(ki−1) and xi =
h(ki) by (A1a), which imply that minw(ki−1) = |βki−1

[xi−1 . . . leaf(ki−1)]| (in Bi−2) and minw(ki) =

|βki
[xi . . . leaf(ki)]| (in Bi−1).
With the main branch β0 in Bi−1, we have in Bi−1 :

|β0[u
′

i . . . leaf(Li)]| = |βki
[ui . . . leaf(ki)]| = minw(ki) − 1 ≤ minw(ki−1) − 1 =

= |βki−1
[ui−1 . . . leaf(ki−1)]| = |β0[ui−1 . . . leaf(Li)]|

since βki−1
and β0 are identical from ui−1 to the leaf, as insured by the algorithm, and since Li = ki−1 as

already mentioned. Then (A1b) is proved.
To show (A1c), notice that by (A1b) there is no contracted state between u′

i and Li on the main branch of
Bi−1, so that β0[u

′

i . . . leaf(Li)] and βki
[ui . . . leaf(ki)] are suffixes of the same length of s$. They are thus

identical and the definition of β0 in the function bend is correct.

Proof of (A2). We use induction on i. When i = 0, (A2) is obviously true since for each state v of ST (s)
there is exactly one path from the root to v. When v = leaf(t) for a suffix number t, then by the definition of
the suffix tree, the unique path from the root to v accepts Suffs$(t).

Now, let i ≥ 1 and assume that (A2) is true for Bi−1. Consider the i-th step, which transforms Bi−1 into
Bi (see Figure 2). According to the algorithm, the only states v of Bi whose minimum length word could
be changed during the contraction are situated in the subtree rooted at ui. We show that min(ui, Bi−1) =
min(ui, Bi) and this is sufficient to deduce that (A2) is true, since then the states v in the subtree of ui satisfy
min(v, Bi−1) = min(v, Bi) and obviously min(ui, Bi) is a prefix of min(v, Bi).

We show that:

lm(ui, Bi−1) < lm(u′

i, Bi−1). (1)

In order to recognize min(leaf(ki)) (min(leaf(Li)) respectively) one has to use the state ui (u′

i respec-
tively) so that we have by induction in Bi−1 and using (A1b) to deduce that there is no contracted state on
β0[u

′

i . . . leaf(Li)]:



11

s$

s$

L i ii ik  =L +r L +lm(v’)−1=k  +lm(v’)−r−1 

iL +lm(v’)=k  +lm(v’)−r

t’ t=t’+r t’+lm(v’)−1=t+lm(v’)−r−11

1 m+1

m+1

length lm(v’)−r

t’+lm(v’)=t+lm(v’)−r

i

i

Figure 3: Identical characters in the proof of (A4a)

lm(ui, Bi−1) = lm(leaf(ki), Bi−1) − |βki
[ui . . . leaf(ki)]| = m + 2 − ki − |βki

[ui . . . leaf(ki)]|

and

lm(u′

i, Bi−1) = lm(leaf(Li), Bi−1) − |β0[u
′

i . . . leaf(Li)]| = m + 2 − Li − |β0[u
′

i . . . leaf(Li)].

According to the algorithm, |βki
[ui . . . leaf(ki)]| = |β0[u

′

i . . . leaf(Li)]|. We deduce that lm(u′

i, Bi−1)
−lm(ui, Bi−1) = ki − Li > 0 and (1) is proved. Therefore, all the words whose reading ends in ui in Bi and
in u′

i in Bi−1 are longer than min(ui, Bi−1), therefore min(ui, Bi) = min(ui, Bi−1).

Proof of (A3). To start the induction (again on the number i of the current step), when i = 0 the automaton
Bi is ST (s) which is by definition deterministic and homogeneous.

Now, assuming (A3) holds for Bi−1, it is easy to note that Bi will be deterministic, since each state in Bi

keeps the outgoing transitions it had in Bi−1.
To show that Bi is homogeneous, we have to show that in Bi−1 the transition incoming to u′

i along the
main branch is labeled γi. This is easy too, since the word read along the main branch is always s$. Since
βki

[xi . . . leaf(ki)] is a suffix of min(leaf(ki)), and thus of s (by (A2)), and since βki
[ui . . . leaf(ki)] =

β0[u
′

i . . . leaf(Li)] by (A1c), the characters preceding ui and u′

i respectively must be the same.

Proof of (A4). According to Remark 1 one has t′ > Li in Bi−1. We first prove statement (A4a). Consider
the most recently contracted state, ui−1. By (A1b) we deduce that ui−1 is also the deepest contracted state on
the main branch, and that ui−1 = v′ if and only if ui−1 = u′

i = v′. Thus, by (A2) and because Li = ki−1, we
have:

Suffs$(Li) = min(ui−1)β0[ui−1 . . . leaf(Li)] = min(v′)β0[v
′ . . . leaf(Li)],

and

Suffs$(t
′) = min(ui−1)βt′ [ui−1 . . . leaf(t′)] = min(v′)βt′ [v

′ . . . leaf(t′)],

so that Suffs$(Li) and Suffs$(t
′) have their lm(v′) first characters in common, but not the (lm(v′) + 1)-th.

Thus (see Figure 3):

sLi
= st′ , sLi+1 = st′+1, . . . , sLi+lm(v′)−1 = st′+lm(v′)−1, (2)

but sLi+lm(v′) 6= st′+lm(v′). (3)

Furthermore, |βki
[ui . . . leaf(ki)]| = |β0[u

′

i . . . leaf(Li)]| ≥ |β0[v
′ . . . leaf(Li)]|, so that m + 2 − ki −

lm(ui) = m + 2 − ki − (lm(xi) + 1) ≥ m + 2 − Li − lm(v′). We deduce



12

Li + lm(v′) ≥ ki + lm(xi) + 1 > ki, (4)

while ki > Li by definition. Therefore, ki can be written like ki = Li + r, with r = ki − Li < lm(v′), and
formulas (2), (3) imply :

ski
= st′+r, ski+1 = st′+r+1, . . . , ski+lm(v′)−r−1 = st′+lm(v′)−1,

but ski+lm(v′)−r 6= st′+lm(v′).

Now, we define t = t′ + r = t′ + (ki − Li) and we have

ski
= st, ski+1 = st+1, . . . , ski+lm(v′)−r−1 = st+lm(v′)−r−1,

but ski+lm(v′)−r 6= st+lm(v′)−r,

thus Suffs$(ki) and Suffs$(t) have in common a longest prefix P of length lm(v′)−r = lm(v′)−(ki−Li).
Since Bi−1 is deterministic by (A3), there is a unique state v where the reading of P ends. Since lm(v ′)−(ki−
Li) > lm(xi), by (4), v is situated on βki

[ui . . . leaf(ki)]. Moreover, we have lm(v) = lm(v′) − (ki − Li);
otherwise, lm(v) < lm(v′) − (ki − Li) and min(leaf(ki)) would be shorter than Suffs$(ki).

In addition,

|βki
[ui . . . v]| = |βki

[ui . . . leaf(ki)]| − |βki
[v . . . leaf(ki)]| =

= |β0[u
′

i . . . leaf(Li)]| − (m + 2 − ki − lm(v)) =

= |β0[u
′

i . . . leaf(Li)]| − (m + 2 − Li − lm(v′)) =

= |β0[u
′

i . . . leaf(Li)]| − |β0[v
′ . . . leaf(Li)]| =

= |β0[u
′

i . . . v′]| (5)

The following equality also holds

|βt[v . . . leaf(t)]| = m + 2 − t − lm(v) = m + 2 − t′ − (ki − Li) − lm(v′) + (ki − Li) =

= m + 2 − t′ − lm(v′) = |βt′ [v
′ . . . leaf(t′)]| (6)

Using (5), (6) and the remark (also based on (5) and (6)) that βt[ui . . . leaf(t)], βt′ [u
′

i . . . leaf(t′)] are
suffixes of s$ of the same length (and are therefore identical), we deduce that βki

[ui . . . v] = β0[u
′

i . . . v′] and
βt[v . . . leaf(t)] = βt′ [v

′ . . . leaf(t′)].
To finish the proof of (A4a), notice that if t′ is a weak suffix number of Bi−1, then so is t. Indeed, if w′ 6= t′

is the suffix number of a branch which contains the parent of t′, then Suffs$(t) and Suffs$(w
′ + (ki − Li))

have a common prefix of length |Suffs$(t)| − 1, thus the branch accepting Suffs$(w
′ + (ki − Li)) contains

the parent of t. The suffix number t is therefore weak. In the case where t′ is a strong suffix number, t can be
either a strong or a weak suffix number, as shown by Figure1: in B0, t′ = 5 is strong and t = 6 is strong; in
B1, t′ = 6 is strong while t = 7 is weak.

We will now prove statement (A4b). As mentioned above and because of (A2), in Bi−1:

Suffs$(t
′) = min(v′)βt′ [v

′ . . . leaf(t′)] = min(u′

i)β0[u
′

i . . . v′]βt′ [v
′ . . . t′].

Once the contraction is performed, the path P0 which allowed to read min(u′

i) in Bi−1 still exists in
Bi, but its length is greater than min(ui) (since lm(ui) < lm(u′

i) by (A2)). Thus, in Bi the path P =
P0β0[ui . . . v]βt[v . . . t] allows to recognize Suffs$(t

′), using affirmation (A4a).

Proof of (A5). This is easily proved by induction on i. When i = 0, Bi = ST (s) and the affirmation is
obviously true.

If we assume the affirmation is true in Bi−1, then by (A4b) the suffixes which were accepted in each
removed leaf leaf(t′) of Bi−1 will be accepted by Bi in leaf(t′ + (ki − Li)); this is true since all the paths
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allowing Bi−1 to accept such suffixes are replaced with equivalent paths (having different states but spelling
the same word) in Bi.

Similarly, the suffixes which were accepted by Bi−1 in leaf(ki) and leaf(Li) will be accepted by Bi in
leaf(Li+1).

Finally, consider the suffixes accepted in some leaf(t′) such that t′ is free both in Bi−1 and in Bi. They
will be accepted in the same leaf leaf(t′) of Bi.

Theorem 1 is proved.

Now, we assume that the m+1 states of B(s), as well as the m+1 states of SO(s) are denoted 0, 1, . . . , m

such that the internal transitions are (i, si+1, i + 1) in both cases (i = 0, . . . , m − 1). As in [1], denote by
poccur(w, s) the last position of the first occurrence of the word w in s.

For a state x, denote minSO(x) and minB(x) the minimum word whose reading by the automaton SO(s)
and B(s) respectively ends in x. Then, if i is a state of SO(s), we have i = poccur(minSO(i), s) [1].

We can now affirm that:

Theorem 2 The automaton B(s) built by the Algorithm ST-to-SO for a given sequence s is the suffix oracle
of s.

Proof. We first need two claims. The first one is implicit in [1] and can be easily deduced using the property
x = poccur(minSO(x), s).

Claim 1 [1] In the factor/suffix oracle, if x < u are two states and γ ∈ Σ, then there exists a transition (x, γ, u)
if and only if u = poccur(minSO(x)γ, s).

Claim 2 In the automaton B(s), if x < u are two states and γ ∈ Σ, then there exists a transition (x, γ, u) if
and only if u = poccur(minB(x)γ, s).

Proof of Claim 2. Recall that, according to Algorithm ST-to-SO, the word read along β0 is s$ in all the
automata Bi.

“⇒”: Let (i, Li, ki, xi, γi, ui, u
′

i) be the step in Algorithm ST-to-SO which adds the transition (x, γ, u). This
step transforms Bi−1 into Bi. Then the current automaton is Bi−1 and x = xi, u = ui and γ = γi (see Figure
2). By (A2) the minimum word read in xi is unique. By (A1b) this word will not be changed in the next steps
(which contract states deeper than xi), so that this word is necessarily minB(xi). Moreover, since Bi−1 is
deterministic by (A3), there is exactly one transition in Bi−1 outgoing from xi and labeled γi: the one on βki

.
By (A2) we have that

Suffs$(ki) = min(leaf(ki)) = minB(xi)βki
[xi . . . leaf(ki)] =

= minB(xi)γiβki
[ui . . . leaf(ki)] = minB(xi)γiβ0[u

′

i . . . leaf(Li)].

Consequently, since Suffs$(ki) is a suffix of Suffs$(Li) (and thus of s$, which is read along β0), we deduce
that one can read on β0 just before u′

i the word minB(xi)γi, and also that this occurrence of minB(xi)γi in
s$ starts in position ki. One has to show that this is the first occurrence of minB(xi)γi in s$ (and thus in s).

By contradiction, if this is not the case, then another occurrence of minB(xi)γi exists in s$ in position
k′ < ki. By (A3) we have that Bi−1 is deterministic, thus the path U which accepts Suffs$(k

′) contains ui

and uses the path P which spells minB(xi). Then, by (A5), Suffs$(k
′) is accepted in a leaf leaf(j) (with

j ≥ ki) in the subtree of ui. But then Suffs$(k
′) = Suffs$(j). Indeed, (by (A2), Suffs$(j) also uses P

and the unique path going from ui to Suffs$(j). Obviously, this is not possible since k′ < ki ≤ j and thus
|Suffs$(k

′)| > |Suffs$(j)|.

“⇐”: Let u = poccur(minB(x)γ, s). By (A5), all the suffixes of s are accepted by B(s), and thus the
suffix of s starting in position u − |minB(x)γ| + 1, which begins by minB(x)γ, is accepted too. Since B(s)
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is deterministic, there must exist a transition outgoing from x (where minB(x) is read) and labeled γ. If
u = x + 1, the transition is internal and we are done. If u > x + 1, the transition must be external. According
to the affirmation “⇒” proved above, the end state of this transition is necessarily u.

To finish the proof of Theorem 2, denote by SO[0 . . . x] (B[0 . . . x] respectively) the partial automaton
obtained from SO(s) (from B(s) respectively) by removing all states y with y > x and all transitions incident
to such a state.

We show by induction on the state x ≥ 0 that:
(ix) SO[0 . . . x] is identical to B[0 . . . x];
(iix) the transitions outgoing from the state x in SO(s) and in B(s) are exactly the same.
When x = 0, (ix) is obviously true and minSO(x) = minB(x) = λ (the empty word). By Claims 1 and

2, both in SO(s) and B(s), for each γ ∈ Σ which appears in s there is a transition labeled γ from x to the
minimum state u such that su = γ. All these transitions are external, except for the case γ = s1. Affirmation
(iix) is then proved.

Assume the affirmations (ix′) and (iix′) are true for x′ = 0, 1, 2, . . . , x−1 and let us prove them for x ≥ 1.
By (iix′), all the transitions outgoing from states x′ < x and incoming to states u′ ≤ x are the same, so that
(ix) holds. Consequently, minSO(x) = minB(x) and thus, by Claims 1 and 2, affirmation (iix) holds.

The states and the transitions of B(s) and SO(s) are thus identical. To conclude that the two automata are
identical, one has to show that the terminal states are the same. Denote Bh the last automaton built in the while
loop of Algorithm ST-to-SO. Then B(s) is obtained from Bh by removing some leaves and marking their
parents as terminal. By (A5), in Bh every suffix of s$ is accepted in a leaf of Bh, which is either weak (since
the while loop is finished) or is leaf(Lh+1). Thus, according to the algorithm, every suffix of s is accepted by
B(s) in a terminal state. Conversely, a state of B(s) is terminal only if it is the parent of a weak leaf of Bh or
of leaf(Lh+1); each of these leafs ends the recognition of at least one suffix of s$. Thus the terminal states of
B(s) are the same as those of SO(s). This finishes the proof of Theorem2.

Several corollaries can be easily deduced from this main result. The first one concerns the arrival order
of the external arcs incoming the same state u of B(s). According to (A1b), these external arcs are added in
consecutive steps of Algorithm ST-to-SO. The result below shows that each new added arc is longer that the
preceding one, that is, its initial state is less deep than the initial state of the preceding arc (while the end state
is the same, u).

Corollary 1 In Algorithm ST-to-SO, if there exist integers i > l ≥ 1 such that ui−l, ui−l+1, . . ., ui−1, ui are
contracted in the same state ui of B(s), then the states xi, xi−1, . . . , xi−l+1, xi−l are distinct and occur in this
order on the main branch.

Proof. Notice first that, since ui−l, ui−l+1, . . . , ui−1, ui are contracted in the same state and since the
automaton is homogeneous at each step by (A3), we must have γi−l = γi−l+1 = . . . = γi−1 = γi. We denote
all these values by γ.

By contradiction, assume that Corollary 1 is not true. Then, there exists j, 1 ≤ j ≤ l, such that xi−j is less
deep than xi−j+1. In Bi−j+1 (and therefore in B(s)) we obtain the transitions in Figure 4a). In Bi−j−1 (see
Figure 4b), one has

Suffs$(ki−j) = minB(xi−j)γβki−j
[ui−j . . . leaf(ki−j)] =

= minB(xi−j)γβki−j+1
[ui−j+1 . . . leaf(ki−j+1)] (7)

since βki−j
[ui−j . . . leaf(ki−j)] and βki−j+1

[ui−j+1 . . . leaf(ki−j+1)] represent suffixes of s of the same
length, thus they spell the same word. Moreover,

Suffs$(ki−j+1) = minB(xi−j+1)γβki−j+1
[ui−j+1 . . . leaf(ki−j+1)]. (8)

Now, because of ki−j = Li−j+1 < ki−j+1, we have that |Suffs$(ki−j)| > |Suffs$(ki−j+1)|, therefore
Suffs$(ki−j+1) is a suffix of Suffs$(ki−j). Consequently, using (7) and (8), minB(xi−j+1) is a suffix of



15

leaf(ki−j+1)

γ

γ

i−j

i−j+1

i−j i−j+1

u

u

i−j

i−j+1

u’i−j= u’i−j+1

a) b)

leaf(ki−j

leaf(L i−jroot root

)=leaf(Li−j+1)

)

uxx x

x

γ

γ

i−j+1

Figure 4: Automata B(s) and Bi−j−1 in the proof of Corollary 1.

minB(xi−j ). Then we can use the following statement (recall that the factor oracle is the suffix oracle where
all the states are terminal):

Claim 3 ([1]) Let w be a factor of s.Then every suffix of w is recognized by the factor oracle of s in a state
l < poccur(w).

With w = minB(xi−j) and since minB(xi−j+1) is a suffix of w, we deduce that state xi−j+1, which ends
the spelling of minB(xi−j+1) in B(s), satisfies xi−j+1 < poccur(minB(xi−j)). But poccur(minB(xi−j )) =
xi−j , so that xi−j+1 < xi−j . But this contradicts the initial assumption that xi−j+1 > xi−j .

The two corollaries below allow to estimate the number of external arcs. The second one gives a new proof
of an already known result.

Corollary 2 The number of external transitions in SO(s) is upper bounded by the number of maximal suffixes
of s.

Proof. The suffixes of s which are not maximal give weak leaves in ST (s). None of the weak leaves yields an
external transition in B(s) during the algorithm. Each other leaf (but the leaf 1) is either bent (and thus it gives
an external transition) or is removed during the contractions.

Corollary 3 [1] The total number of transitions TSO(s) of SO(s) satisfies |s| ≤ TSO(s) ≤ 2|s| − 1.

Proof. This can be easily proved using Corollary 2 and the remark that s can have at most |s| − 1 maximal
suffixes.

5 Complexity results

In this section we assume that ST (s) is implemented in its compact version, and that the construction of the
automata Bi preserves the compactness of the branches.

Theorem 3 Algorithm ST-to-SO runs in O(|s|) .

Proof. The number of operations the algorithm performs before and after the while loop is clearly linear. In
the while loop (which is executed at most |s| − 1 times), only two tasks need more than a constant time to be
executed: finding xi and finding u′i (notice that β0 does not need to be explicitly computed). We show that
globally (over all the executions of the while loop), each of these tasks needs linear time. To do this, we will
use the following result, where Bh denotes the last automaton built in the while loop of Algorithm ST-to-SO:

Claim 4 With minb(ki) = |βki
[h(ki) . . . leaf(ki)]| (i = 1, . . . , h), we have that Σh

i=1minb(ki) is in O(|s|).
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Proof of Claim 4. Consider Bi−1 and recall that, by (A3a), xi = h(ki) and minb(ki) is the same in Bi−1

and in B0 = ST (s). Then minb(ki) is the length of the path βki
[h(ki) . . . leaf(ki)] in ST (s). If we consider

this path backwards, we obtain a walk in ST (s) starting with leaf(ki) and advancing on βki
until a branch

with smaller number is encountered. Now, Σh
i=1minb(ki) is the total length of the backward walks along all

the paths βki
[h(ki) . . . leaf(ki)] (i = 1, 2, . . . , h) in ST (s). It is easy to see that these walks are equivalent

(up to the traversal of the branch β1) to a depth first traversal of ST (s) where the children of each node are
considered in increasing order. The global time needed to perform this is thus linear, if we consider that the
implementation uses the compact suffix tree.

Now we consider the two tasks identified above. To perform them in linear time, one needs a pre-treatment
of ST (s) in order to compute minb(j) (2 ≤ j ≤ h), and the length lm(v) of min(v) for every state v of
ST (s). According to (A1) and (A3a) respectively, these values remain constant in the other automata Bi built
by the algorithm. The values minb(j) (2 ≤ j ≤ h) and lm(v) (v is a state of ST (s)) are easily computed
using a depth-first traversal of ST (s).

Finding xi. By (A3a), a backwards traversal of βki
starting with leaf(ki) and using minb(ki) transitions

will stop on xi = h(ki). Using Claim 4, the backwards traversals to find all the values xi need linear time.
Finding u′

i. Notice that βki
[ui . . . leaf(ki)] and β0[u

′

i . . . leaf(Li)] are both suffixes of s$. Then it is
sufficient to compute the length l = lm(leaf(ki)) − lm(ui) of the word spelled by βki

[ui . . . leaf(ki)] and to
identify the state u′

i using a backwards traversal of β0 until the needed length is reached. This traversal takes
at most minb(ki) = |βki

[xi . . . leaf(ki)]| steps since by (A4a) every state v′ on β0[u
′

i . . . leaf(Li)] has a copy
on βki

[ui . . . leaf(ki)], therefore |βki
[ui . . . leaf(ki)]| > |β0[u

′

i . . . leaf(Li)]|. Claim 4 finishes the proof.

6 Perspectives

The algorithm we proposed transforms a very well known structure (the suffix tree) into a structure which was
introduced recently and is about to be studied (the factor/suffix oracle). In this context, the simplicity of the
contraction operation and the successive steps in the algorithm should allow to deduce new results on oracles
starting with already known result on suffix trees. Typically, statistical results on the number of words validated
by the oracles could possibly be obtained in this way.
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