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Abstract

In this paper we present a synthesis of the two phase method for the biobjective assignment problem. The method,
which is a general technique to solve multiobjective combinatorial optimization (MOCO) problems, has been
introduced by Ulungu in 1993. However, no complete description of the method to find all efficient solutions of
the biobjective assignment problem (that allows an independent implementation) has been published.
First, we present a complete description of a two phase method for the biobjective assignment problem, with
an improved upper bound. Second, a combination of this method with a population based heuristic using path
relinking is proposed to improve computational performance. Third, we propose a new technique for the second
phase with a ranking approach.
All of the methods have been tested on instances of varying size and range of objective function coefficients. We
discuss the obtained results and explain our observations based on the distribution of objective function values.

Additional Key Words and Phrases: Multiobjective combinatorial optimization, assignment problem, exact algo-
rithm, population based heuristic, path-relinking, efficient solutions, k-best solution, ranking





1 Introduction

1.1 The Assignment Problem with Two Objectives

The single objective assignment problem (AP) is an integer programming problem that can be solved as a linear
program due to total unimodularity of the constraint matrix. Efficient algorithms to solve it, e.g., the Hungarian
method or the successive shortest paths method [17, 1] are well known.

In this paper we consider the assignment problem with two objectives (BAP). It can be formulated as follows:

min zk(x) =
n

∑

i=1

n
∑

j=1

ck
ijxij k = 1, 2

n
∑

i=1

xij = 1 j = 1, . . . , n

n
∑

j=1

xij = 1 i = 1, . . . , n

xij ∈ {0, 1} i, j = 1, . . . , n,

(BAP)

where all objective function coefficientsck
ij are non-negative integers andx = (x11, . . . , xnn) is the matrix of

decision variables. For simplicity, we shall writeC(x) for
∑n

i=1

∑n

j=1 cijxij .

Let X denote the set of feasible solutions of (BAP). We callR
n2

, X ⊂ {0, 1}n
2

⊂ R
n2

, decision space and
R

2, Z = {z(x) : x ∈ X} ⊂ N
2 ⊂ R

2, objective space.Z is also called the feasible set in objective space.
In multiobjective optimization there is in general no feasible solution which minimizes all objectives simulta-

neously.

Definition 1. A feasible solutionx∗ ∈ X is calledefficientif there does not exist any other feasible solutionx ∈ X

such thatzk(x) ≤ zk(x∗), k = 1, 2, with at least one strict inequality.z(x∗) is then called anondominated point.
The set of efficient solutions is denoted byXE and the image ofXE in Z is called thenondominated frontierZN .
If x, x′ ∈ X are such thatzk(x) ≤ zk(x′), k = 1, 2, andz(x) 6= z(x′) we say thatx dominatesx′ (z(x) dominates
z(x′)).

The set of of efficient solutions is partitioned in two subsets as follow:

• Supportedefficient solutions are optimal solutions of a weighted sum single objective problem

min
{

λ1z1(x) + λ2z2(x) : x ∈ X, λ1 > 0, λ2 > 0
}

. (BAPλ)

All supported nondominated points are located on the “lower-left boundary” of the convex hull ofZ (convZ),
i.e., they are nondominated points of(conv Z) + R

2
+. We use the notationsXSE andZSN , respectively, to

denote supported efficient solutions and supported nondominated points.

• Nonsupportedefficient solutions are efficient solutions that are not optimal solutions of (BAP)λ for anyλ

with λ1, λ2 > 0. Nonsupported nondominated points are located in the interior of the convex hull ofZ. No
theoretical characterisation which leads to an efficient computation of the nonsupported efficient solutions is
known. The sets of nonsupported efficient solutions and nondominated points are denotedXNE andZNN ,
respectively.

In addition we can distinguish two classes of supported efficient solutions.

• Supported efficient solutionsx are those whose objective vectorsz(x) are located on the vertex set ofconv Z.
We call these extremal supported efficient solutionsXSE1 and letZSN1 = z(XSE1), the extremal supported
nondominated points.

• The set of thosex ∈ XSE for which z(x) is not located on the vertex set ofconv Z. This set is denoted by
XSE2 and its image byZSN2.
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Both XSE1 and XSE2 can be obtained by solving (BAPλ). Neverthless, the computation of the latter is
generally more difficult than that of the former, because forall efficient solutionsx with z(x) on an edge of the
convex hull ofZ, the weight vectorλ for whichx minimizes (BAPλ) is the same. Therefore findingXSE2 requires
an enumeration ofall optimal solutions of (BAPλ) (cf. Figure1).
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Figure 1: XSE2: Supported efficient solutions withz(x) on an edge of the convex hull ofZ (instance
2AP100-1A20).

All efficient solutions of multiobjective linear programming problems are supported (see, e.g., [19]). Because
of total unimodularity of the constraint matrix of (BAP), one might therefore think that nonsupported efficient
solutions of the (BAP) do not exist. But this is not true, as [22] have pointed out and as can be seen, e.g., in Figure
3. Thus, the biobjective assignment problem must be considered as an integer programming problem. Moreover,
the following theorem holds.

Theorem 1. The assignment problem with two objectives isNP-complete, #P-complete, and intractable.

Here, intractability means that an exponential number of efficient solutions may exist. For a proof see [18] for
NP-completeness and [23] for #P-completeness and intractability or [4] for a concise proof of all statements.

1.2 Classification of Efficient Solutions

XE can be classified into subsets in several ways.

Definition 2. 1. [13] Feasible solutionsx, x′ ∈ X are said to beequivalentif z(x) = z(x′).

2. [13] A complete setXE is a set of efficient solutions such that allx ∈ X \ XE are either dominated by
or equivalent to at least onex ∈ XE . I.e., for each nondominated pointz ∈ ZN there exists at least one
x ∈ XE such thatz(x) = z.

• [13] A minimal complete setXEm
is a complete set without equivalent solutions. Any complete set

contains a minimal complete set.

• The maximal complete setXEM
is the complete set including all equivalent solutions, i.eall x ∈

X \XEM
are dominated.

figures_eps/fig1data.eps
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As indicated by intractability of (BAP) the number of equivalent efficient solutions can be large. Indeed, it
is known that for some instances of the (BAP) all feasible solutions are efficient. In that case, it is impossible to
design an efficient algorithm for computing the maximal complete setXEM

. This is the motivation for Hansen’s
introduction of the notion of minimal complete setXEm

.
Supported and nonsupported efficient solutions can also be classified using the definitions of Hansen. Thus we

can talk about

• Complete sets of supported and nonsupported efficient solutions.

• Minimal and maximal complete sets of supported and nonsupported efficient solutionsXSEm
, XNEm

,
XSEM

, andXNEM
.

• Extremal and non-extremal supported efficient solutionsXSE1m
, XSE2m

,XSE1M
andXSE2M

.

Published papers are sometimes vague about the ability of proposed algorithms. Some authors claim that their
algorithm can enumerate “all” efficient solutions, but do not mention whether that includes equivalent solutions, or
even solutions inXSE2. To state clearly the characteristic of existing algorithms, it is important to give the class
of efficient solutions that an algorithm computes.

1.3 Literature

According to [5], early papers on multiple objective assignment problems only deal with supported efficient so-
lutions, using convex combinations of objective functions, or goal programming. Some algorithms to determine
a complete setXE have been proposed: [14] assume that the efficient solutions are connected by simplex pivots.
[21] has shown this assumption is false. [22] proposed an operational procedure for the BAP derived fromthe two
phase method. However, this procedure is very time consuming (see [20]). Consequently, approximation methods
have been proposed for computing sub-optimal solutions with a reasonable computing time. Two methods have
been proposed for the assignment problem: an extension of simulated annealing to deal with multiple objectives,
called the MOSA method [21], and a population-based heuristic using path-relinking [9].

2 The Two Phase Method

The two phase method is a general framework for solving MOCO problems [22], although it has never been applied
for problems with more than two objectives. The main idea is to use efficient algorithms for the single objective
problem to compute efficient solutions. As efficient algorithms for single objective problems are problem specific
it is necessary to preserve constraint structure of the problem throughout the solution procedure. It is therefore,
for example, not possible to add constraints on objective function values (as is done in multiobjective integer
programming methods, e.g., [15, 6]) to search for efficients solutions.

In Phase 1 supported efficient solutions are computed. It is based on Geoffrion’s theorem [10] stating that an
optimal solution of (BAPλ) with positive weights is efficient.

In Phase 2, information from supported efficient solutions identified by Phase 1 is used to reduce the search
space for computing the nonsupported efficient solutions. In implementations, Phase 2 is generally enumerative.

In the biobjective case, Phase 2 explores the triangles defined by two adjacent supported solutions (Figure2)
in the objective space. To search for nonsupported efficientsolutions in an effective manner, lower bounds, upper
bounds, reduced costs, etc. are usually employed.

The method has first been proposed for the biobjective assignment problem by [22]. Some experimental results
have been published by [20]. But the results obtained by [3] using an MIP solver have shown more efficient
solutions. This put the validity of the implementation in question. In fact, the method of [22] is not wrong but it
does not consider all the possible cases as we report in this paper.

In this paper, we first provide a full description of the two phase method for the biobjective assignment problem.
Second, we introduce improved bounds and new algorithms forPhase 2, with a discussion on the distribution of
nondominated points which yields a justification of the efficiency of the algorithms. As the numerical experiments
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Figure 2: The exploration space is reduced to the interior ofthe triangles (instance2AP10-1A20).

show, the most efficient configuration of the procedure we propose for solving bi-objective assignment problems
is based on a ranking algorithm, and outperforms CPLEX in terms of CPU time.

The remainder of the paper is structured as follows. Section3 describes the Phase 1 algorithm. Section4 de-
velops some lower and upper bounds, and Section5 presents several Phase 2 algorithms that allow finding minimal
or maximal complete sets. All proposed algorithms are evaluated on a wide set of numerical instances. Nmerical
results are reported and discussed in Section6. The paper is concluded with a discussion on the distribution of
solutions.

3 Phase 1: Determination of Supported Efficient Solutions

The Phase 1 algorithm described in this section is used unchanged for all algorithms described in the rest of the
paper (see algorithms1 and2)

This phase determines the setXSEM
by a dichotomic method.S denotes a set of efficient solutions already

found. Initially, we setS ← {x1, x2}, the two lexicographic optimal solutions corresponding tolexminx∈X(z1(x), z2(x))
and lexminx∈X(z2(x), z1(x)), respectively.

3.1 Finding Lexicographic Extreme Efficient Solutions

To determinex1 andx2, we first compute one optimal solution (using proceduresolveAP in algorithms1 and
2) for each of the two single objective problems (x1′ for minx∈X z1(x) andx2′ for minx∈X z2(x)) by solving
(BAP(1,0)) and (BAP(0,1)). These solutions may be only weakly efficient.

While x1 andx2 can be found by solvingmin{z2(x) : x ∈ X, z1(x) ≤ z1(x′)} andmin{z1(x) : x ∈
X, z2(x) ≤ z2(x′)}, respectively, or by enumerating all optimal solutions of (BAP(1,0)) and (BAP(0,1)), these
techniques might be time consuming in practice, because a single objective assignment problem may have an
exponential number of optimal solutions and (BAPλ) with a constraint derived from an objective function isNP-
hard [16].

We designed the following procedure, which is hereafter illustrated for the first objective. It is possible to find
x1 by solving an additional (BAPλ) with the weight vector(1, 0) slightly modified. Becauseck

ij ∈ N we know
Z ⊂ N

2. If we use weights defined by the normal to the line through(z1(x1), z2(x1)) and(z1(x1) + 1,−1),

figures_eps/2ph.eps
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i.e., λ1 = z2(x1) + 1 andλ2 = 1, the optimal solutions of the corresponding (BAPλ) are optimal solutions of
lexminx∈X(z1(x), z2(x)). Note that we assume allck

ij to be integer.

x2 is found the same way by usingx2′ and solving problem (BAPλ) with weightsλ1 = 1 andλ2 = z1(x2)+1.

3.2 Findind XSE1M
and XSE2M

During the dichotomic search, the solutions ofS are sorted byz1 increasing. We will consider two consecutive
solutionsxr andxs according to this order, that are not equivalent, i.e.,z1(xr) < z1(xs) andz2(xr) > z2(xs). A
weighted sum problem (BAP)λ with λ1 = z2(xr) − z2(xs) andλ2 = z1(xs) − z1(xr) is solved, and all optimal
solutions are enumerated using the algorithm of [7] (using procedureenumerate in algorithm2). Initially, we
will choosexr = x1 andxs = x2.

Let {xt, t ∈ T } be all optimal solutions of (BAPλ), whereT is an index set such that|T | is the number of
optimal solutions of (BAPλ). Two cases can occur:

a) {z(xt), t ∈ T } ∩ z(xr)z(xs) = ∅. All solutionsxt are new supported efficient solutions and we add them to
S. Then we compute the minimum and maximum ofz1(x) in {xt : t ∈ T }. Let xt1 andxt2 be the solutions
where the minimum and maximum are attained. Two new weightedsum problems are considered, one defined
by xr andxt1 and one defined byxt2 andxs (using proceduresolveRecursion in algorithms1 and2). It
is not necessary to consider a scalarized problem defined by two solutions of{xt, t ∈ T } because the weight
vectorλ will be the same as that defined byxr andxs and therefore no new solutions will be found.

b) {z(xt), t ∈ T } ⊂ z(xr)z(xs). All solutionsxt are supported efficient solutions and we add the new solutions
to S, but no new scalarized problem is generated.

Phase 1 stops if no new weighted sum problems (BAPλ) have to be solved.
At the end of Phase 1,S = XSEM

. Note that without using an enumerative algorithm, we will in general
only find a minimal complete setXSE1m

and possibly some other supported efficient solutions. The numerative
algorithm is necessary to be sure to find a setXSE2m

.

4 Bounds

In Phase 2 we will try to findx ∈ X such thatz(x) is in the triangle defined by two consecutive nondominated
supported pointsz(xr) andz(xs) in the objective space. We will use lower and upper bounds on objective values
of single objective assignment problems as stopping conditions of our algorithms.

4.1 Lower Bounds

Lower bounds avoid the exploration of solutions that cannotbe efficient. In all Phase 2 algorithms presented until
now the lower bound of [22] is used. Letx ∈ X and letC be the matrix of objective function coefficients of a
single objective AP. We are interested in the objective value that results from fixing a variablexi∗j∗ = 1. In the
algorithmC will be eitherC1, C2 or λ1C1 +λ2C2 with λ1 > 0 andλ2 > 0, or a square submatrix of any of these.

The bounds differ depending on whetherx is optimal for the single objective problem or not.

4.1.1 Lower Bound from an Optimal Solution

Suppose thatx is optimal for the single objective assignment problemminx∈X Cx. Thus we can find a reduced
cost matrixC̄ for this problem with only nonnegative entries. This can be,e.g., the reduced cost matrix given by the
Hungarian method. We suppose that we will imposexi∗j∗ = 1, but inx there areit, jt such thatxitj∗ = xi∗jt

= 1.
Consequently, in the optimal solution of the problem with the fixed variable the value of at least one variable in
row it and one variable in columnjt, other thanxitj∗ andxi∗jt

, will be 1.

• If these two variables coincide, we will havexitjt
= 1 and the change (increase) of the objective value will

be at least̄citjt
.
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• Otherwise the increase will be at least

γ = min
j 6=j∗

c̄itj + min
i6=i∗

c̄ijt
.

Therefore, a lower bound on the objective value after fixing the variablexi∗j∗ = 1 is

α1 = Cx + c̄i∗j∗ + min {c̄itjt
, γ} . (1)

If there is more than one optimal solution, we can compute a lower bound from each of these solutions and
keep the biggest value ofα1.

4.1.2 Lower Bound from a Non-optimal Solution

Suppose thatx is not an optimal solution ofminx∈X Cx. Let C̄ be any reduced cost matrix with respect to some
basis corresponding tox or a dual solution, which verifies̄cij = cij−ui−vj = 0 for all (i, j) with xij = 1. Here,
ui andvj are the usual dual variables corresponding to the constraints. Any such reduced cost matrix̄C contains
some negative entries.

Since the objective function change resulting from fixing a variable to 1 may be negative, the lower bound on
the change is computed using the minimal elements of all rowsand columns of̄C. Consequently, a lower bound
on the objective value after fixing the variable is

α2 = Cx + c̄i∗j∗ + max







∑

i6=i∗

min
j 6=j∗

c̄ij ,
∑

j 6=j∗

min
i6=i∗

c̄ij







. (2)

Because of the negative coefficients, this lower bound can beless efficient than (1) in practice.

4.2 Upper Bounds

Let xr andxs be two consecutive supported efficient solutions and letλ be the weight vector for which bothxr

andxs are optimal solutions of (BAPλ). We derive upper bounds on the objective valueλ1z1(x) + λ2z2(x) for
efficient solutionsx with z(x) in the triangle defined byz(xr) andz(xs). Let ∆(xr , xs) denote (the interior of)
that triangle.

In the Phase 2 algorithms we will explore each triangle defined by two adjacent supported efficient solution
separately. While the algorithms differ in their exploration strategy, all have in common a complete enumeration
of bands in the triangle, i.e., areas in the triangle betweenthe line segmentz(xr)z(xs) and a line parallel to that.
This parallel line will be defined by the upper boundsβi as{z ∈ R

2 : λT z = βi}.
We will use information from points already explored to reduce the bands by shifting the parallel line towards

z(xr)z(xs). We have used different bounds in order to obtain different complete sets. To illustrate the bounds, we
will use as an example a triangle of the instance 2AP30-1A20 (see Section6) defined by the supported efficient
solutionsxr, xs with z(xr) = (82, 63) andz(xs) = (99, 51). The nondominated points in this triangle are (86,61),
(88,60), (91,59), (92,58), (93,56), (95,55), (97,54), (98,52). These points are shown, e.g., in Figure3.

4.2.1 Upper Bound of Tuyttens et al. [20]

In Figure3, the eight nondominated points and the area they dominate are shown. We can see that parallel to
the line segmentz(xr)z(xs) there is a line, so that all points of the triangle dominated by a point on that line are
also dominated by one of the nondominated points. Because this line is parallel toz(xr)z(xs) only one point is
necessary to define it. If we sort the nondominated points (includingz(xr) andz(xs)) by z1 increasing, this line
passes through one of the local nadir points defined by two adjacent solutions.

In the algorithms we work with a set of potentially efficient solutionsXPE identified so far. We denoteZPN

the corresponding set of potentially nondominated points.Let
{

xi : 0 ≤ i ≤ q}
}

beXPE sorted byz1 increasing.
Let γ = maxq

i=1{λ
1z1(xi) + λ2z2(xi−1)}. Thus an upper bound on any nondominated point in the triangle is

β0 := max
{

γ, λ1z1(x0) + λ2z2(xr), λ1z1(xs) + λ2z2(xq)
}

.
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Figure 3: The bound of [20] defines this dotted line which is located in the dominated area.

In Figure3 the maximum is found for the local nadir point (91,60) with value 2112 (an increase of 57 fromxr

andxs).
As all the solutionsx ∈ X, z(x) ∈ ∆(xr , xs) with λ1z1(x) + λ2z2(x) ≥ β0 are dominated, enumeration of

all x ∈ X with z(x) between the two lines yields all nonsupported efficient solutions with z(x) in the triangle,
including the equivalent ones. After exploring all triangles, we will find the maximal complete setXEM

.

4.2.2 Improved Upper Bound

With the bound of [20] we neglect the fact thatz(x) has integer coordinates for allx ∈ X . We can use this fact
to improve the upper bound. If we translate the line defined bythe boundβ0 towards the supported nondominated
points the first point of integer coordinates we can find is either a point which is one unit down and left of a local
nadir point, or one of the potentially nondominated points (Figure4).

Let δ1 = maxq
i=0{λ

1z1(xi) + λ2z2(xi)} be the maximum weighted sum objective for the potential efficient
solutions andδ2 = maxq

i=1{λ
1(z1(xi)− 1) + λ2(z2(xi−1)− 1)} the maximum for the points one unit down and

left of the local nadir points. Then the improved bound is defined by

β1 := max
{

δ1, δ2, λ
1(z1(x0)− 1) + λ2(z2(xr)− 1), λ1(z1(xs)− 1) + λ2(z2(xq)− 1)

}

.

In the following, this bound will be calledBound 1.
In Figure4 the maximum is found for the nondominated point (91,59) and has value 2095 (an increase of 40

from xr andxs).
All solutionsx ∈ X, z(x) ∈ ∆(xr, xs) with λ1z1 + λ2z2 > β1 are dominated. Therefore, enumeration of all

feasible solutions with(z1(x), z2(x)) between the linesz(xr)z(xs) and{z : λ1z1 +λ2z2 = β1} (inclusive) yields
all nonsupported efficient solutions of the triangle including equivalent ones. Thus, after exploring all triangles,
we will find the maximal complete setXEM

.

4.2.3 An Improved Bound to Find a Complete Set

If only a complete set is aimed at as output of the algorithm, Bound 1 can be revised to yield an improved algorithm.
In this case, it is not necessary to consider the potentiallyefficient solutions when computingβ1, see Figure5.

figures_eps/bound.eps
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Figure 4: Bound 1: A first improvement of the upper bound of [20]

The bound is defined by

β2 := max
{

δ2, λ
1(z1(x0)− 1) + λ2(z2(xr)− 1), λ1(z1(xs)− 1) + λ2(z2(xn)− 1)

}

.

In the following, this bound will be calledBound 2.
Each feasible solutionx ∈ X, z(x) ∈ ∆(xr , xs) with λ1z1(x) + λ2z(x) > β2 is dominated or equivalent

to one of the potentially efficient solutions. Therefore, enumeration of all feasible solutions with(z1(x), z2(x))
between the linesz(xr)z(xs) and{z : λ1z1 +λ2z2 = β1} (inclusive) yields all nonsupported efficient solutions in
that band. In addition we already have some potentially efficient solutions outside the band, which may be proven
efficient at the end of the exploration. Consequently, afterexploring all triangles this way, we will find a complete
setXE .

Further reduction of the bound is not possible, as we could miss some nondominated points, and consequently
keep some dominated ones as nondominated:β2 is a tight bound for an exact method with an enumerative explo-
ration strategy.

In Figure5 the maximum is found for the point (90,59) with value 2083 (anincrease of 28 fromxr andxs).
That means a complete set of efficient solutions in this triangle is obtained with at most 1.36% increase in the value
of zλ.

5 Phase 2: Finding Nonsupported Efficient Solutions

5.1 General Principle of the Original Method

Let xr andxs be two adjacent supported efficient solutions that are not equivalent. And letλ be such that both
xr andxs are optimal solutions of (BAPλ). In Phase 2 we search for feasible solutionsx with z1(xr) < z1(x) <

z1(xs) andz2(xr) > z2(x) > z2(xs).

Obviously, all such solutions are in the triangle∆(xr , xs). [22] propose an enumerative exploration method
to search for these solutions. The idea is to find nonsupported efficient solutions by imposing assignments, i.e.,
settingxij = 1 in (BAPλ), and solving (reoptimizing) the reduced assignment problem that results. In other words,
we search for nonoptimal feasible solutionsx of (BAPλ) starting fromxr andxs by modifying these solutions.

figures_eps/bound1.eps
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The lower boundsα1 andα2 of Section4.1are used to check if imposing an assignment can lead to a solution
in the triangle∆(xr , xs). Otherwise imposingxij = 1 is not necessary. LetL denote the list of pairs(i, j) that
are candidates for variable fixing. By individually imposing each of the assignments ofL, we partially explore the
triangle. It is well-known ([22] and [4]) that it is necessary to simultaneously impose more than one assignment of
L. But no complete description of the procedure for this simultaneous variable fixing has been published.

During this search, the feasible solutions generated are stored in a list of potentially efficient solutionsXPE .
Each new solutionx is compared to the solutions ofXPE , andXPE is updated if necessary. At termination of the
search, i.e., if all solutionsx ∈ ∆(xr , xs) not yet enumerated are guaranteed to satisfyλ1z1(x)+λ2z2(x) > βi for
one of the upper bounds of Section4.2, XPE is a complete set of nonsupported efficient solutions in the triangle.

In the following, we present a complete description of a Phase 2 procedure which follows the original principle.
We search in a depth-first manner, fixing variables accordingto list L one by one until we are sure that no further
efficient solutions can be reached.

5.2 Phase 2: A Complete Description

5.2.1 Imposing and Forbidding Assignments ofL

The main goal of this subsection is to show how finding the samesolutions repeatedly by imposing combinations
of assignments can be avoided.

We will call a set of variables{(ik, jk)|k ∈ K} compatible assignmentsif imposingxikjk
= 1 for all k ∈ K

does not violate the constraints of (BAP). To avoid double indexing we will writexk below instead ofxikjk
.

Before imposing an additional assignment, we will verify that it is compatible with the ones that have already been
imposed.

SupposeL = {x1, x2, x3} and that all assignments are compatible. We propose a depth-first search. Because
imposing{x1, x2} and{x2, x1} will yield the same solution, we can suppose thatL is sorted and that the indices
are in the increasing order. WithL = {x1, x2, x3} we have the following possible sets of variables that can be
fixed to 1:{x1}, {x1, x2}, {x1, x2, x3}, {x1, x3}, {x2}, {x2, x3}, {x3}.

We will find all solutions containingx1 in the four first sets. By imposing{x2}, we may find a solution
containingx1. However, we have already visited it. We can avoid that by fixingx1 = 0 in the fifth set of variables,
i.e., forbiddingx1. This can be done by replacing the cost ofx1 by a very high number. In the same way, we know

figures_eps/bound2.eps
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that after the three first sets, we have all solutions containing x1 andx2, so we can forbidx2 in the fourth set of
assignments{x1, x3}.

In general, suppose we have a set of variablesS = {xi1 , xi2 , . . . , xir
} to be fixed to 1. Then we can forbid

assignmentsxi, i < ir, i.e., fixxi = 0 for i < ir if xi 6∈ S.

5.2.2 The List of AssignmentsL

Initially, we use
L =

{

(i, j)|c̄λ
ij > 0

}

,

whereC̄λ denotes the reduced cost matrix obtained by the Hungarian method for the problem(BAPλ) for which
xr andxs are optimal, i.e., the same initial list of assignments as [22].

We can delete assignments fromL by testing if imposing them yields a point outside∆(xr, xs), as proposed
by [22]. We start from the two supported solutionsxr andxs. To do this, we use the lower bound described in
Section4.1. There will be three tests:

Test 1: Lower boundlλ on zλ compared withzλ(xr) = zλ(xs) (with the reduced costs obtained by the Hungarian
method forzλ).

lλ is the highest of the values ofα1 obtained fromxr andxs in (1). The assignment can be deleted fromL, if
lλ shows that a solution containing this assignment will be beyond the line parallel toz(xr)z(xs) containing
the pointz = (z1(xs)− 1, z2(xr)− 1). The increase ofzλ from the supported efficient solutions toz is

λ1(z1(xs)− 1) + λ2(z2(xr)− 1)− λ1z1(xr)− λ2z2(xr) = λ1λ2 − λ1 − λ2.

Consequently, the assignment can be deleted if

lλ > zλ(xr) + λ1λ2 − λ1 − λ2.

Test 2: Lower boundl1 onz1 compared withz1(xr) (with the reduced costs obtained by the Hungarian method for
z1 if xr = x1).

l1 is computed either asα1 in (1) or α2 in (2), depending on whetherxr is an optimal solution of (BAP(1,0))
or not. The assignment can be deleted fromL, if l1 shows that the solution will be to the right of a veryical
line throughz(xs), i.e., if

l1 ≥ z1(xr) + λ2.

Test 3: Lower bound onz2 compared withz2(xr) (with the reduced costs obtained by the Hungarian method forz1

if xs = x2).

l2 is computed either asα1 in (1) or α2 in (2), depending on whetherxs is an optimal solution of (BAP(0,1))
or not. The assignment can be deleted ifl2 shows that the solution will be above a horizontal line through
z(xr), i.e., if

l2 ≥ z2(xs) + λ1.

Once the tests are completed andL has been updated accordingly, we can begin the depth-first search. Recall
that to be sure to find all efficient solutions it is necessary to do an enumeration of all optimal solutions of every
reduced problem. However, for each of the problems with fixedvariables we may find many solutions which may
even be repeated several times.

Alternatively, we can to add toL the assignments such thatc̄λ
ij = 0, because this way assignments with

reduced costs zero will be imposed (and forbidden) in the combinations of assignments, and no enumeration will
be necessary. Although the number of combinations will be larger, numerical evidence suggests that avoidance of
redundancy is worth that price, and this alternative is moreefficient computationally. Moreover, we will consider
the obtained solutions one by one, and it will be easy to reusethe lower bounds of Section 4.1 during the depth-first
search as it wil be shown in the next section.
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5.2.3 Stopping Conditions

To solve a reduced assignment problem after fixing a variable, we can either use the cost matrix or the reduced
cost matrix (given by the preceeding optimization). However, with the reduced cost matrix we can use a lot of
zeros from the preceeding solution, and solve the problem faster. Note that each time we add an assignment (say
x′′ is the new optimal solution of the reduced problem resultingfrom imposing an assignment in solutionx′),
zλ(x′′) ≥ zλ(x′). Consequently, ifzλ > βi we cannot find new efficient solutions by imposing more assignments.
This is the first stopping condition.

Note that finding a solution outside of∆(xr, xs) with a reoptimisation does not mean that a subsequent solution
with more imposed assignments will not be in∆(xr, xs) located inside the triangle. To find a solution outside of
the triangle is not a stopping condition.

However, even ifzλ(x′′) ≤ βi not all possible additional variable fixings and reoptimizations are useful. We
can use the lower bounds to test if adding further assignments will give only solutions outside of the triangle or
above the upper boundβi.

Note thatx′ is an optimal solution of a reduced problem (BAPλ), but not necessarily of the reduced problem
with objectivesC1 or C2. Let l′λ, l′1, l

′
2 denote the lower bounds on the objective function valueszλ, z1 andz2,

respectively, of a solution resulting from fixing an additional variable. Reoptimisation can be avoided ifl′λ shows
that we are sure to find a solution in the hashed area in Figure6. Let βλ be the current upper bound onzλ obtained
during the process. Thus, if

l′λ > βλ (3)

there is no need to fix the variable.
In the same way, we can use lower bounds onz1 andz2 to see if a reoptimisation after variable fixing yields

a solution outside of∆(xr, xs). If one of these two lower bounds shows that this will be the case, all solutions
obtained by fixing more variables to 1 will also be outside∆(xr, xs).

Thus if

l′1 ≥ z1(xr) + λ2 or (4)

l′2 ≥ z2(xs) + λ1 (5)

there is no need to fix the variable. So, before fixing a variable, we will check if one of the inequalities (3), (4), or
(5) is verified. This is the second stopping condition.

5.2.4 Description of the Algorithm

We consider one triangle given by two adjacent supported efficient solutions at a time. Ifλ1(z1(xs) − 1) +
λ2(z2(xr)− 1) ≤ λ1z1(xr)− λ2z2(xr) it is not necessary to continue.

figures_eps/stop.eps
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Otherwise we compute the list of assignmentsL which will be used for the depth-first search:L := {(i, j) :
c̄λ
ij ≥ 0}. Tests 1, 2, and 3 are performed for all of these variables (usingisTest 123 in algorithm3). If all pairs

with strictly positive reduced cost are deleted by the tests, it is not necessary to continue.
Otherwise the depth-first search is carried out.L is sorted by increasing value ofα1 obtained with Test 1,

see (1). The depth-first search is a recursive function (see procedureimpose in algorithms3 and4) and fixing
variables to 0 is naturally integrated as shown in Section5.2.1. Before adding an assignment, compatibility with
the other fixed variables is checked (using procedurecompatible in algorithm4).

After each reoptimization, giving a solutionx′, we verify that its value does not violate the upper bound (first
stopping condition). In that case, we verify if it is necessary to updateXPE (using procedureisInTriangle,
isDominated andremoveDominatedSolution in algorithm4) and consequently the upper bound (using
procedurecomputeUpperbound in algorithm4). Finally, we check if it is necessary to add the next compatible
assignment by checking the lower bounds (second stopping condition using procedureNeedtoFixVariable).
If it is, we reiterate the process.

5.3 Seek & Cut Algorithm: An Improvement of Phase 2

5.3.1 Idea of the Algorithm

In the original Phase 2 algorithm we start withXPE = ∅. Therefore the initial upper bound may be bad, and its
decrease during the algorithm slow. The idea of theSeek and Cut algorithmis to search forXPE solutions using a
fast heuristic to obtain a good approximation of the nondominated frontier. These solutions are sorted by triangle,
for which the exact Phase 2 algorithm therefore starts with anonemptyXPE and an improved upper bound.

5.3.2 The Heuristic by Gandibleux et al. [9]

The heuristic proposed by [9] is a population-based heuristic using a path-relinking operator. The heuristic uses
three operators – local search, crossover, and path relinking – performed on a population composed only of poten-
tially efficient solutions. The initial population is a subset of XSE , e.g.,XSE1m

. The heuristic can be used with
different parameters to find approximations ofXE of varying quality with respect to CPU time. The approximation
quality is very sensitive to the path relinking operator. Wehave used three different versions of path relinking.

Path-relinking generates new solutions that connect potentially efficient solutions starting from one solution
(the initiating solution), generating a path through the solution space using a neighborhood structure that leads
toward the other (the guiding) solution [11].

A path-relinking operator starts by randomly selectingI1 andI2, two individuals in the current potentially
efficient population of solutions. Because both are potentially efficient, both can be the guiding solution. Let
I1 be the initiating solution andI2 the guiding solution. The path-relinking operator generates a pathI1 =
I0, I1, . . . , I2, such that the distance betweenIi andI2 decreases along the path, where distance is defined as
the number of different positions for tasks assigned inIi andI2. At each iteration, a list LDA (list of different
assignments) reports the tasks assigned to different positions in solutionsIi andI2, and the neighbourhood is
defined by a simple swap: A new solution is built by selecting one task in LDA, and assigning this task to its final
positionj in the guiding solutionI2. To maintain the solution feasible, the task currently in position j in Ii is
moved toj′, the current position of the selected task. The three variations we consider are:

• Pure random path relinking: A new solution is built by randomly selecting one task from LDA. If the solution
is a promising solution (i.e. a solution which is not dominated by one of the local nadir points defined by
adjacent supported points), a local search is performed. Wewill call this procedure(PR1).

• Selected random path relinking. We check each solution which reduces the distance between the initial (or
current) and the guiding solution, to check if some are (possibly new) potentially efficient solutions. The set
of potentially efficient solutions is updated if necessary.Then we choose randomly one of the potentially
efficient solution of the neighborhood of the current solution to continue the path relinking. If there is no
potentially efficient solution in the neighborhood the nextsolution is selected purely randomly. If the new
solution is a promising solution, we perform a local search.This procedure is called(PR2).
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Figure 7: The exploration space is reduced by the new initialbounds (instance 2AP10-1A20).

• Selected random path relinking with local search. This method is the same as(PR2), except that for all the
solutions in the neighborhood of the current solution before the choice, if some are promising solutions, we
perform a local search for the promising ones. We will call this (PR3).

The heuristic proposed by [9] can be used with several stopping conditions. We have triedthe following:
250.000 generations for the heuristic (stopping condition(N1)), and stop after 100.000 generations without im-
provement ofXPE (stopping condition(N2)).

Therefore, we have six parameter settings(PR∗)(N∗), some of which are computationally expensive (in
particular(PR3) and(N2)). However, the time needed by the heuristic is negligible compared to the time needed
by the phase 2 with variable fixing strategy.

5.3.3 Description of the Algorithm

First, we computeXSEM
using Phase 1. The parameters for the heuristic are chosen and the heuristic is run. The

setXPE found by the heuristic is sorted by triangle and kept as initial setXPE in Phase 2. We can now consider
each triangle separately and start Phase 2. Using the initial setXPE we can compute a good initial upper bound
(Figure7). From here the Phase 2 proceeds as before.

5.4 Phase 2 Using a Ranking Approach

In this subection, we propose a different way of explorationof each triangle defined by adjacent supported efficient
solutions in Phase 2. Essentially, we search for solutions with increasing value ofzλ until one of the upper bounds
βi is reached. This can be done using a ranking method, i.e., an algorithm that finds solutions in increasing order
of theirzλ value.

This procedure is a natural choice in Phase 2: As it does not induce a modification of the problem structure
it does not betray the original principle of the two-phase method. The advantages of a ranking algorithm rather
than a variable fixing approach are that redundancy is avoided and that the exploration is ordered, because of the
monotonicity with respect tozλ values.

The strategy requires an efficient ranking algorithm. For the assignment problem, such an algorithm has been
proposed by [2]. Essentially, this algorithm is an application of the binary search tree algorithm published by [12].

figures_eps/seek2.eps
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In the algorithm it is necessary to compute the best and second best solution of a single objective problem. [2]
have shown that the second best solution of a single objective AP is obtained by application of a shortest cycle to
the permutation given the best solution. To obtain this cycle [2] generate a bi-partite graph on which shortest path
algorithms are performed.

We consider the problem (BAPλ) for which adjacent solutionsxr andxs are optimal and we apply an algorithm
to find thek-best solution iteratively. As in the other Phase 2 methods,for each new solution (obtained using
procedureComputeNextK bestSolution in algorithm5), we verify if it is neccessary to updateXPE and
the upper bound. The procedure stops as soon as we first exceedan upper boundβi. If we also apply the lower
boundsαi we avoid enumerating points outside the triangle∆(xr , xs). Due to the ranking approach there is no
need to fix variables to one, however, we will forbid variables whose inclusion in a solution leads to points outside
the triangle by replacing their cost with a very high number.

While Tests 2 and 3 allow to avoid exploration outside the triangle, Test 1 does not reduce the number of
solutions explored. However, the exclusion of assignmentsobtained with Test 1 implies that the graph generated
to compute the second best solution is sparser, and then the ranking algorithm performs slightly faster.

The only stopping condition for this Phase 2 algorithm is given by the upper bound. Note that this way, as the
exploration is naturally ordered, there is no need to removesolutions fromXPE . Each new solution given by the
ranking, which is not dominated at this stage of the process is definitively efficient.

6 Numerical Experiments

6.1 Experimental Environment

A library of numerical instances for multiobjective combinatorial optimization problems is available on the internet
atwww.terry.uga.edu/mcdm/. The name of an instance provides the following characteristics: the number
of objectives, the problem, the sizen, the series, the objective type, and the range of objective function coefficients
in [0, value]. For example, 2AP05-1A20 is a biobjective (2) assignment problem (AP) with5 × 5 variables (05)
from series 1 (1); the coefficients of the objective functionare generated randomly (A) in the range[0, 20] (20).
The coefficients of both objective functions are all generated independently of one another, following a uniform
distribution.

The Instances 2AP05-1A20 through 2AP50-1A20 have been usedin [20]. We have completed these instances
to obtain a series with size fromn = 5 to n = 100 with one instance for each size. In addition, for sizesn = 10 to
n = 100 with an increment of 10, we have generated ten instances eachwith objective function coefficients in the
range[0, 20] and one instance each with ranges[0, 40], [0, 60], [0, 80], [0, 100].

The computer used for the experiments is equiped with a PowerPC G4 1Ghz processor with 512 MB of RAM,
and runs under the OS X operating system. The algorithms havebeen implemented in C. The binary has been
obtained using the compiler gcc with the optimizer option -O3. The exceptions are for a comparison of the Two
Phase method with ranking, using boundβ2 with CPLEX (on a Pentium 4 3.4 GHz processor with 4GB RAM
under Red Hat Linux) and the results from [20] which we report for comparison (on a DEC 3000 Alpha).

We have used the Hungarian method to solve the single-objective assignment problems (an implementation
with the successive shortest path algorithm has given worseresults) and the algorithm of [7] to find all optimal
solutions.

6.2 Analysis

We have analysed the performance of the original Two Phase method (with our depth-first search implementation
of variable fixing), the Two Phase Method with all six variants of the Seek & Cut Algorithm, and the Two Phase
method with ranking. In addition, we have tested the time needed to confirm optimality by providing a minimal
complete setXNEm

as input to Phase 2. Two variants of each method are obtained by using upper boundβ1 or
β2. Finally, we have used CPLEX as an MIP solver to generate a setXSEm

. A dichotomic scheme has been
designed ([8]): the solver is invoked for solving a(BAPλ) with two additional constraintsz1(x) < z1(xs) and
z2(x) < z2(xr), wherexr andxs are two optimal solutions of(BAPλ), for reducing the feasible domain in
objective space. The results on the first test series are given in Tables 2 and 3. The first six rows give the size of the
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various efficient sets, the following the results of all 17 methods (indeed, the tuning(PR3)(N2) has not been used
with Seek & Cut with upper boundβ2 because the tuning(PR3)(N1) is already too expensive). Finally, a row
comparing the Two Phase method with ranking and boundβ2 with CPLEX, and the results from [20] are given.

6.2.1 Results of the Two Phase Method and Seek & Cut Algorithm

Whatever the used bound, CPU time used by the Two Phase methodincreases exponentially with the size of the
problem. In addition the increase in CPU time with upper bound β1 is larger than withβ2 when the size increases.
In fact, at the end of the exploration of a triangle the difference between the objective value of the supported
solution and the upper bound is often near zero (forn > 20). This implies that in most triangles we need only
explore a slim band. Therefore, the improved bound obtainedby Seek & Cut before enumeration is effective. This
explains the difference in CPU time between the Two Phase method and the Seek & Cut algorithm. Note that the
computational effort of using the heuristic only shows advantages over the original Two Phase method for size
n ≥ 50.

Recall that with upper boundβ1, we obtain the maximum complete setXEM
and with upper boundβ2, we

obtain a complete set. With both bounds, considering a minimal complete set contained in these sets we have
obtained the same number of supported efficient solutions, with the same points in objective spaceZN as [3] with
an MIP solver. We can see that the number of equivalent solutions can be large for the largest instances, and that
the equivalent solutions are often nonsupported.

We also observe that the Seek & Cut method is sensitive to the quality of the nondominated frontier obtained
by the heuristic. For example, in the instance 2AP100-1A20,with boundβ2, the improvement to the the two-
phases method is a factor between 4 or 7. However, the CPU timefor boundβ1 is less sensitive to the results of
the heuristic and the gap between the Two Phase method and Seek & Cut is smaller (a factor 2 for the instance
2AP100-1A20). There is a limit to this, namely, if instead ofthe heuristic we provide a minimal complete set
XNEm

as input. We then test the time used by the Two-Phase method toconfirm the results (with boundβ2) or to
confirm and find the equivalent solutions (with boundβ1).

The results with bigger range of objective coefficients havegiven worse results, because the elimination of
solutions from enumeration is more effective with a small range of values (resulting in small triangles) than with
a big range, when the triangles are larger. The difference between the bounds relative to the objective values is
smaller in the case of a bigger range.

6.2.2 Results of the Method Using a Ranking Algorithm

We have done some more tests on the method using ranking on theseries of 10 instances of size10, . . . , 100 with
range[0, 20]. These results are reported in Table5. Here we report the minimum, maximum and average of time
needed to solve the 10 instances of each size for Seek & Cut with parameters (PR2)(N1) and boundβ2 and ranking
with bothβ2 andβ1.

The CPU times obtained with the ranking method are better by afactor 10 to 100. Moreover, this method is
less sensitive to the bound used and the range. This can be explained by the fact that no solution is repeated and
we never consider solutions which exceed the final bound of the exploration. The distribution of the solutions in
the objective space also provides justification that the ranking method is a better approach for solving the (BAP).
The two phase method with ranking has been compared with CPLEX and it seems that one important advantage
of the method is that it is robust with respect to the range of objective function coefficients.

Note that we have not tried to improve the results of the ranking method by using a heuristic to improve the
initial bound because the time needed by the heuristic and bythe ranking method is not very different.

6.2.3 Distribution of Objective Values and its Consequences

The huge improvement in CPU time obtained by the ranking methods can be explained by the huge difference in
the number of enumerated solutions as compared to the original Two Phase Method (with or without heuristic).
We have observed that near the boundary of the convex hull ofY there are relatively few feasible points. The
number of feasible points increases exponentially with increasing objective values. Indeed, we can conjecture that
the distribution of objective function values for a large size follows a normal distribution.
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Figure 8: Counting solutions of an assignment problem obtained by enumeration.

Experimentally, we have enumerated the objective functionvalues of all feasible solutions of an AP with
n = 10. The distribution matches a normal distribution closely. In fact, the mean and variance of a normal
distribution fitted to the experimental distribution matches those predicted by the central limit theorem exactly, see
Figure 8.

Consequently, for largen, the distribution of a biobjective assignment problem empirically follows a twodi-
mentional normal distribution. Under this observation thesupported nondominated points are on the lower left
boundary of the bi-dimensional normal density and the non supported nondominated points are near the hypotenuse
defined by two adajacent supported nondominated points. this explain why the final upper bounds in the explo-
ration of the triangles were so small. This explains why the final upper bounds in the exploration of the triangles
were so small and it also explains the gap between the two proposed methods. With the ranking approach we only
enumerate solutions which are located near the boundary of the triangles, and therefore at the lower end of the
distribution. Any slight increase in values encountered during enumeration can lead to a very large increase in the
number of solutions enumerated.

Another consequence of this distribution is the number of efficient solutions. With a small range, the triangles
defined by the supported nondominated points are often small, and because the other nondominated points are
located near the hypotenuse of the triangle, there are fewernonsupported nondominated points for a small range
and more for a big range. However, the variance of objective values increases with increasing range ofck

ij , so
the number of equivalent solutions decreases. And since theupper bound is an integer the gap between the upper
bound and the value ofzλ for the supported solutions remains the same, so the number of solutions inside this
small band is larger. Consequently, the number of equivalent solutions with a very small range is very large and
this kind of instance can be difficult to solve. In practice, with a range 20, the number of equivalent supported
solutions is still significant.

7 Conclusions and Future Research

In this paper, we have presented a complete study of the two-phase method for the bi-objective assignment problem.
We can conclude that the use of a ranking algorithm in Phase 2 implies a huge improvement of the performance
of the method in comparison to the variable fixing strategy. This is validated by our experiments and by our
observation of the distribution of objective values. We obtain a method which outperforms all existing methods

figures_eps/normal4.eps
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1

instance 2AP05-1A20 2AP10-1A20 2AP15-1A20 2AP20-1A20 2AP25-1A20 2AP30-1A20 2AP35-1A20 2AP40-1A20
#

XEm
8 16 39 55 74 88 81 127

XSEm
3 6 12 13 25 27 27 54

XNEm
5 10 27 42 49 61 54 73

XEM
8 20 39 59 92 113 97 217

XSEM
3 7 12 14 25 30 30 65

XNEM
5 13 27 45 67 83 67 152

(1
)

2p
h β2 0 0.01 0.16 0.85 3.19 10.66 17.9 60.58

β1 0 0.02 0.19 0.93 3.43 12.58 20.72 116.36

S
ee

k
&

C
ut

β
2 (PR1)(N1) 0.8 1.77 5.96 11.16 10.96 19.8 27.16 45.51

(PR1)(N2) 0.47 1.04 3.5 6.75 10.71 19.31 26.71 52.95
(PR2)(N1) 0.86 2.15 7.36 12.89 14.65 26.21 33.99 57.56
(PR2)(N2) 0.51 1.29 6.08 8.07 9.62 22.15 29.38 58.56
(PR3)(N1) 1.31 4.19 21.94 44.92 36.5 87.57 90.46 130.04

S
ee

k
&

C
ut

β
1

(PR1)(N1) 0.78 1.72 5.92 11.26 11.18 21.24 29.29 84.21
(PR1)(N2) 0.46 1.04 3.56 6.95 11.18 21.16 29.4 92.27
(PR2)(N1) 0.8 2.12 7.37 12.9 14.89 28.09 36.61 96.84
(PR2)(N2) 0.49 1.27 5.92 7.91 9.72 23.5 31.51 96.72
(PR3)(N1) 1.26 4.14 21.88 44.93 36.70 89.29 92.94 168.48
(PR3)(N2) 0.78 2.5 13.31 27.29 29.98 71.59 59.9 189.99

X
N

E
m β1 0 0 0.13 0.51 2.05 5.32 11.21 63.72

β2 0 0 0.1 0.42 1.79 3.4 8.62 24.29

ra
nk β1 0 0.01 0.06 0.19 0.46 1.01 1.8 4.71

β2 0 0.01 0.06 0.16 0.49 1.05 1.87 4.04

(2
)

C
pl

ex CPLEX 9.0 0.02 0.14 0.72 1.71 3.13 5.63 7.02 12.21
rankingβ2 0 0 0.02 0.07 0.18 0.39 0.73 1.55

(3
)

(4
) # E 8 16 39 54 71 88 92 126

CPUt 5 10 14 61 102 183 384 1203

Table 1: (1) PowerPC G4 1 Ghz, 512 MB of RAM, under OS X system. (2) P4 EE 3,4 Ghz, RAM 4 GB, under Red Hat WS 3 Linux. (3) DEC 3000 alpha.
(4) [20].
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instance 2AP45-1A20 2AP50-1A20 2AP60-1A20 2AP70-1A20 2AP80-1A20 2AP90-1A20 2AP100-1A20

#

XEm
114 163 128 174 195 191 223

XSEm
43 67 44 60 69 83 101

XNEm
71 96 84 114 126 108 122

XEM
170 406 234 413 694 947 1167

XSEM
52 100 53 82 123 236 286

XNEM
118 306 181 331 571 711 881

(1
)

2p
h β2 110.36 270.99 661.57 1980.15 3881.63 10181.73 14049.17

β1 170.48 703.09 1416.83 5726.72 13002.79 27916.14 61973.58

S
ee

k
&

C
ut

β
2 (PR1)(N1) 65.83 101.3 214.5 507.64 1057.23 1721.6 3188.85

(PR1)(N2) 80.4 113.67 237.88 554.5 1078.08 1650.48 2730.15
(PR2)(N1) 76.95 118.73 232.08 505.26 946.39 1676 2251.72
(PR2)(N2) 100.98 187.35 366.64 639.35 1208.98 1590.71 2130.31
(PR3)(N1) 152.57 259.74 325.95 647.44 1188.29 1803.19 2977.79

S
ee

k
&

C
ut

β
1

(PR1)(N1) 97.22 315.73 516.93 1951.02 4512.73 8395.28 31970.92
(PR1)(N2) 114.87 331.40 539.33 2032.45 4516.04 7517.66 31565.47
(PR2)(N1) 111.52 328.14 529.78 2029.92 4447.64 8439.2 31648.29
(PR2)(N2) 133.3 392.77 619.34 2160.05 4537.33 7459.02 29330.84
(PR3)(N1) 180.63 469.16 591.29 2064.43 4732.15 7740.68 31266.37
(PR3)(N2) 180.76 627.5 690.96 2263.56 5543.77 8434.74 31446.25

X
N

E
m β1 68.48 267.1 362.83 1631.07 3857.59 6026.9 26815

β2 37.53 57.25 112.17 230.49 528 877.6 546.91

ra
nk β1 5.71 19.18 13.91 50.86 119.55 201.98 461.36

β2 5.4 13.56 11.63 40.32 76.99 120.53 228.26

(2
)

C
pl

ex CPLEX 9.0 12.45 23.09 36.17 72.2 120.48 135.74 200.63
rankingβ2 1.99 5.16 4.36 15.02 28.34 44.22 85.58

(3
)

(4
) # E 113 156

CPUt 3120 3622

Table 2: (1) PowerPC G4 1 Ghz, 512 MB of RAM, under OS X system. (2) P4 EE 3,4 Ghz, RAM 4 GB, under Red Hat WS 3 Linux. (3) DEC 3000 alpha.
(4) [20].
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3

size 10 20 30 40 50 60 70 80 90 100

R
an

g
e

4
0

#
XEm

21 66 109 186 216 253 331 355 432 429
XSEm

9 18 28 36 55 62 69 71 85 114
XNEm

12 48 81 150 161 191 262 284 347 315
XEM

21 68 119 195 324 323 437 458 711 666
XSEM

9 18 32 37 62 72 75 74 92 123
XNEM

12 50 87 158 262 251 362 384 619 543

(1
) S & C (PR2)(N1)β2 2.79 10.76 26.76 92.19 341.9 716.52 1788.91 2800.62 9131.49 17441.35

ra
n

k β2 0.02 0.34 1.57 8.32 19.19 38.85 70.71 124.26 176.88 225.06
β1 0.02 0.34 1.58 8.39 19.61 41.43 76.79 129.74 210.19 284.31

(2
)

C
p

le
x CPLEX 9.0 0.2 3.01 10.91 43.88 68.63 146.13 230.5 328.16 481.5 512.96

rankingβ2 0 0.13 0.64 3.44 7.26 14.78 26.92 46.55 66.36 83.63

R
an

g
e

6
0

#

XEm
17 66 139 259 304 374 460 498 571 585

XSEm
9 14 30 54 45 58 67 70 85 97

XNEm
8 52 109 205 259 316 393 428 486 488

XEM
17 66 148 279 341 425 522 591 696 685

XSEM
9 14 31 57 47 59 69 70 87 103

XNEM
8 52 117 222 294 366 453 521 609 582

(1
) S & C (PR2)(N1)β2 2.3 11.01 29.02 159.69 310.12 1269.92 3146.15 9563.08 20371.83 38553.18

ra
n

k β2 0.02 0.49 2.6 10.3 23.44 52.43 100.98 175 351.31 399.65
β1 0.02 0.55 2.62 10.52 24.03 53.14 102.85 178.85 359.91 415.7

(2
)

C
p

le
x CPLEX 9.0 0.17 4.23 21.25 79.66 181.17 332.06 520.79 716.82 1172.82 1730.65

rankingβ2 0 0.2 1 4.12 9.06 20.03 38.39 65.64 131.8 149.73

Table 3: (1) PowerPC G4 1 Ghz, 512 MB of RAM, under OS X system. (2) P4 EE 3,4 Ghz, RAM 4 GB, under Red Hat WS 3 Linux.
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4

size 10 20 30 40 50 60 70 80 90 100
R

an
g

e
8

0

#

XEm
25 94 158 218 375 431 477 677 691 845

XSEm
8 23 23 36 48 56 66 79 101 102

XNEm
17 71 135 182 327 375 411 598 590 743

XEM
25 95 161 250 396 458 513 773 759 1050

XSEM
8 23 23 40 48 56 66 79 101 106

XNEM
17 72 138 210 348 402 447 694 658 944

(1
) S & C (PR2)(N1)β2 3.11 12.28 31.70 151.11 528 1430.81 3644.27 13224.91 20411.17 53747.45

ra
n

k β2 0.02 0.52 2.59 10.63 29.6 64.16 118.03 278.04 329.27 721.08
β1 0.02 0.54 2.67 10.67 29.74 64.88 120.33 282.33 338.74 774.85

(2
)

C
p

le
x CPLEX 9.0 0.24 5.45 34.31 79.33 271.04 630.10 851.87 1631.91 1918.06 3766

rankingβ2 0 0.2 1.07 4.3 11.5 24.73 44.93 104.27 124.44 274.06

R
an

g
e

1
0

0 #

XEm
13 82 169 243 301 470 573 671 722 947

XSEm
7 17 25 35 33 55 69 77 83 85

XNEm
6 65 144 208 268 415 504 594 639 859

XEM
13 83 169 247 312 485 641 726 774 1046

XSEM
7 17 25 36 34 55 73 77 84 89

XNEM
6 66 144 211 278 430 568 649 690 957

(1
) S & C (PR2)(N1)β2 1.99 13.71 39 150.76 345.17 2455.2 4433.13 13209.98 26378.03 60227.31

ra
n

k β2 0.01 0.25 3.52 10.37 21.68 98.76 144.37 257.59 370.09 711.97
β1 0.01 0.29 3.59 10.51 21.81 100.34 147/35 263.81 380.96 739.32

(2
)

C
p

le
x CPLEX 9.0 0.1 5.28 49.17 131.16 295.77 786.79 1252 1883.22 2732 4822

rankingβ2 0 0.11 1.45 4.2 8.56 38.24 55.67 99.11 142.22 275.09

Table 4: (1) PowerPC G4 1 Ghz, 512 MB of RAM, under OS X system. (2) P4 EE 3,4 Ghz, RAM 4 GB, under Red Hat WS 3 Linux.
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Seek & Cut (PR2)(N1)β2 Rankingβ2 Rankingβ1

size min max mean min max mean min max mean
10 1.52 2.93 2.26 0 0.02 0.01 0 0.02 0.01
20 6.75 15.52 10.33 0.08 0.25 0.16 0.08 0.26 0.18
30 20.75 29.96 23.88 0.80 1.91 1.10 0.89 2.02 1.19
40 45.28 69.74 57.15 2.23 5.73 3.40 2.46 6.98 4.44
50 92.89 155.05 138.70 5.57 11.14 9.22 5.90 12.53 10.50
60 262.68 379.11 304.76 14.83 32.71 21.68 18.07 49.19 28.34
70 394.94 749.68 521.76 25.36 46.4 34.76 34.71 58.13 46.40
80 627.78 1139.57 964.80 31.20 85.11 54.19 42.7 199.89 86.18
90 1201.10 2325.85 1614.93 54.32 112.36 85.18 85.32 158.23 125.15

100 1711.96 4049.85 2755.75 115.55 194.08 137.18 179.11 290.42 220.07

Table 5: CPU time in seconds for instances with range 20.

and which is very robust with respect to the range of objective coefficients. Our new goals are now to generalize
the two-phase method to three objectives and more, and to extend our observations on the objective values to other
kinds of instances.
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Algorithm 1 procedureBAP Phase1

Parameters↓ : The cost matricesC1 andC2

Parameters↑ : The setXSEM

--| Compute the lexicographically optimal solutionx1 for (z1, z2)

solveAP ( C1 ↓, x1′ ↑, C̄ ↑ )
--| Consider (BAPλ), the single objective optimisation problem with the cost matrix
--| C1′

=
[

λ1c1
ij + λ2c2

ij

]

with λ1 = z2(x1′

) + 1 and λ2 = 1

solveAP ( C1′

↓, x1 ↑, C̄ ↑ )

--| Compute the lexicographically optimal solutionx2 for (z2, z1)

solveAP ( C2 ↓, x2′ ↑, C̄ ↑ )
--| Consider (BAPλ), the single objective optimisation problem with the cost matrix
--| C2′

=
[

λ1c1
ij + λ2c2

ij

]

with λ1 = 1 and λ2 = z1(x2′

) + 1

solveAP ( C2′

↓, x2 ↑, C̄ ↑ )

--| ComputeXSEM

S ← { x1, x2 }; solveRecursion( x1 ↓ , x2 ↓ , S l ); XSEM
← S

Comment. In the algorithms, the symbols↓, ↑ andl specify the transmission mode of a parameter to a procedure;
they correspond respectively to the mode IN, OUT and IN OUT. The symbol --|marks the beginning of a comment
line.
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Algorithm 2 proceduresolveRecursion

Parameters↓ : xr, xs

Parametersl : S

--| Compute the setR of optimal solutionsx of (BAPλ):
--| min{λ1z1(x) + λ2z2(x) : x ∈ X}
--| whereλ1 = z2(xr)− z2(xs), andλ2 = z1(xs)− z1(xr).
--| cλ

ij = λ1c1
ij + λ2c2

ij , i = 1, . . . , n; j = 1, . . . , n

solveAP ( Cλ ↓, x ↑, C̄λ ↑ ) ; enumerate ( C̄λ ↓, x ↓, R ↑ ) ; R← R ∪ {x}
S ← S ∪R

if {zλ(x) : x ∈ R} ∩ z(xr)z(xs) = ∅ then
--| Case a)
--| Let xt1 andxt2 , the solutions ofR with respectively the min. and max. value onz1

solveRecursion ( xr ↓ , xt1 ↓ , S l ) ; solveRecursion ( xt2 ↓ , xs ↓ , S l )
end if

--| if {zλ(x) : x ∈ R} ⊂ z(xr)z(xs) then
--| Case b) : nothing to do



30

Algorithm 3 procedureBAP Phase2

Parameters↓ : C1, C2, XSEm

Parameters↑ : S which isXNE or XNEM
depending on the upper bound (β1 or β2) selected

S ← ∅
for all xr, xs adjacent inXSEm

do
--| Compute one optimal solutioñx of (BAPλ) with the cost matrix
--| Cλ =

[

λ1c1
ij + λ2c2

ij

]

with λ1 = z2(xr)− z2(xs) andλ2 = z1(xs)− z1(xr)

solveAP ( Cλ ↓, x̃ ↑, C̄λ ↑ )

--| Let C̄λ be a reduced cost matrix ofzλ for the problem (BAPλ)
--| C̄1 be a reduced cost matrix ofz1 for the solutionxr

--| C̄2 be a reduced cost matrix ofz2 for the solutionxs

--| XPE be the list of potentially efficient solutions of the triangle
--| vUB be the initial value for the upper bound

L← {(i, j) | c̄λ
ij > 0}

XPE ← . . . --| Empty or initialised with a heuristic (Section5.3)
if XPE 6= ∅ then
computeUpperBound(XPE ↓, vUB l)

else
vUB ← zλ(xr) + λ1λ2 − λ1 − λ2

end if

if vUB > zλ(xr) then

--| Test if the assignments give a solution outside of the triangle
for all (i, j) ∈ L do

if not( isTest 123( C̄λ ↓, C̄1 ↓, C̄2 ↓, xr ↓, xs ↓, (i, j) ↓) ) then
L← L \ {(i, j)}

end if
end for

if L 6= ∅ then
--| begin to impose assignments
L← L ∪ {(i, j) | c̄λ

ij = 0}
for all (i, j) ∈ L do

if NeedtoFixVariable( C̄λ ↓, C̄1 ↓, C̄2 ↓, xr ↓, xs ↓, (i, j) ↓) then
impose( {(i, j)} ↓, L ↓, vUB l, XPE l)

end if
C̄λ(xi)←∞; C̄1(xi)←∞; C̄2(xi)←∞; C1(xi)←∞; C2(xi)←∞

end for
end if

end if
S ← S ∪XPE

end for
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Algorithm 4 procedureimpose

Parameters↓ : LIST , L
Parametersl : vUB, XPE

--| Let Cλr be the costs matrix of(BAPλ) after the new imposition
--| Let C̄λr, C̄1r, C̄2r be reduced costs matrix after the new imposition
--| Let LIST be the assignments to impose
solveAP(Cλr ↓, x ↑, C̄λr ↑)
if (zλ(x) ≤ vUB) then

if isInTriangle(xr ↓, xs ↓, x ↓) and not( isDominated(x ↓, XPE ↓) ) then
XPE ← XPE ∪ {x}
removeDominatedSolution(XPE l)
computeUpperBound(XPE ↓, vUB l)

end if

--| Let i be the index of the last assignment (pair) inLIST

for all j > i according toL do
if compatible(xj ↓, LIST ↓) then

if NeedtoFixVariable( C̄λr ↓, C̄1r ↓, C̄2r ↓, x ↓, xj ↓) then
LIST ← LIST ∪ {xj}
impose(LIST ↓, L ↓, vUB l, XPE l)
LIST ← LIST \ {xj}

end if
- -| for the following assignments, it is necessary to placexj at its place in the reduced problem
C̄λr(xj)←∞; C̄1r(xj)←∞,;C̄2r(xj)←∞; C1r(xj)←∞; C2r(xj)←∞

end if
end for

end if
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Algorithm 5 procedureBAP Phase2 ranking

Parameters↓ : C1, C2, XSEm

Parameters↑ : S which isXNE or XNEM
according to the upper bound (β1 or β2) selected

S ← ∅
for all xr, xs adjacent inXSEm

do
--| Compute one optimal solutioñx of (BAPλ) with the cost matrix
--| Cλ =

[

λ1c1
ij + λ2c2

ij

]

with λ1 = z2(xr)− z2(xs) andλ2 = z1(xs)− z1(xr)

solveAP ( Cλ ↓, x̃ ↑, C̄λ ↑ )

--| Let C̄λ be a reduced cost matrix ofzλ for the problem (BAPλ)
--| C̄1 be a reduced cost matrix ofz1 for the solutionxr

--| C̄2 be a reduced cost matrix ofz2 for the solutionxs

L← {(i, j) : c̄λ
ij > 0}

R← ∅ --| R, the list of efficient solutions in the triangle
vUB ← zλ(xr) + λ1λ2 − λ1 − λ2 --| vUB, the initial value for the upper bound
if vUB > zλ(xr) then

--| Test if the assignments give a solution outside of the triangle
for all (i, j) ∈ L do

if not( isTest 123( C̄λ ↓, C̄1 ↓, C̄2 ↓, xr ↓, xs ↓, (i, j) ↓) ) then
cλ
ij ←∞

end if
end for

if L 6= ∅ then
--| begin the ranking
K ← 0
while (zλ(xK) ≤ vUB) do

K ← K + 1
ComputeNextK bestSolution(K ↓, Cλ ↓, xK ↑)
if isInTriangle(xr ↓, xs ↓, xK ↓) and not( isDominated(xK ↓, R ↓) ) then

R← R ∪ {xK}
computeUpperBound(R ↓, vUB l) --| according toβ1 or β2

end if
end while

end if
end if
S ← S ∪R

end for
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Abstract

In this paper we present a synthesis of the two phase method for the biobjective assignment problem. The method,
which is a general technique to solve multiobjective combinatorial optimization (MOCO) problems, has been
introduced by Ulungu in 1993. However, no complete description of the method to find all efficient solutions of
the biobjective assignment problem (that allows an independent implementation) has been published.
First, we present a complete description of a two phase method for the biobjective assignment problem, with
an improved upper bound. Second, a combination of this method with a population based heuristic using path
relinking is proposed to improve computational performance. Third, we propose a new technique for the second
phase with a ranking approach.
All of the methods have been tested on instances of varying size and range of objective function coefficients. We
discuss the obtained results and explain our observations based on the distribution of objective function values.
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