
HAL Id: hal-00023153
https://hal.science/hal-00023153v1

Preprint submitted on 20 Apr 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Service-Based Component Model: Formalism,
Analysis and Mechanization

Pascal André, Gilles Ardourel, Christian Attiogbé, Henri Habrias, Cédric
Stoquer

To cite this version:
Pascal André, Gilles Ardourel, Christian Attiogbé, Henri Habrias, Cédric Stoquer. A Service-Based
Component Model: Formalism, Analysis and Mechanization. 2006. �hal-00023153�

https://hal.science/hal-00023153v1
https://hal.archives-ouvertes.fr

LABORATOIRE D’INFORMATIQUE DE NANTES-ATLANTIQUE

— Components, Services, Behavioural Interface Description, Interaction Checking —

RESEARCH REPORT

No 05.08

December 2005

A Service-Based Component
Model: Formalism, Analysis

and Mechanization

P. André, G. Ardourel, C. Attiogbé, H. Habrias, C.
Stoquer

Laboratoire d’Informatique de Nantes-Atlantique
2, rue de la Houssinière - B.P. 92208 - 44322 NANTES CEDEX 3

LINA, Université de Nantes – 2, rue de la Houssinière – BP 92208 – 44322 NANTES CEDEX 3
Tél. : 02 51 12 58 00 – Fax. : 02 51 12 58 12 – http://www.sciences.univ-nantes.fr/lina/

logoLINA.eps
logoUnivNantes.eps
logoEMN.eps
logoCNRS.eps

P. André, G. Ardourel, C. Attiogbé, H. Habrias, C. Stoquer

A Service-Based Component Model: Formalism, Analysis and Mechanization

70 p.

Les rapports de recherche du Laboratoire d’Informatique de Nantes-Atlantique sont
disponibles aux formats PostScript® et PDF® à l’URL :

http://www.sciences.univ-nantes.fr/lina/Vie/RR/rapports.html

Research reports from the Laboratoire d’Informatique de Nantes-Atlantique are
available in PostScript® and PDF® formats at the URL:

http://www.sciences.univ-nantes.fr/lina/Vie/RR/rapports.html

© January 2006 by P. André, G. Ardourel, C. Attiogbé, H. Habrias, C. Stoquer

http://www.sciences.univ-nantes.fr/lina/Vie/RR/rapports.html
http://www.sciences.univ-nantes.fr/lina/Vie/RR/rapports.html

A Service-Based Component Model: Formalism,
Analysis and Mechanization

P. André, G. Ardourel, C. Attiogbé, H. Habrias, C. Stoquer

Prenom.Nom@univ-nantes.fr

Abstract

Component-Based Software Engineering (CBSE) is one of the approaches to master the development of large scale
software. In this setting, the verification concern is still a challenge. The objective of our work is to provide the
designer of components-based systems with the methods to assist his/her use of the components. In particular, the
current work adresses the composability of components and their services.
A component model is presented, based on services. An associated simple but expressive formalism is introduced;
it describes the services as extended LTS and their structuring as components. The composition of components is
mainly based on service composition and encapsulation.
The composability of component is defined from the composability of services. To ensure the correctness of
component composition, we check that an assembly is possible via the checking of the composabiblity of the
linked services, and their behavioral compatibility. In order to mechanize our approach, the services and the
components are translated into the MEC and LOTOS formalism. Finally the MEC and LOTOS CADP toolbox is
used to perform experiments.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Design Tools and Techniques—Modules and
interfaces; D.2.4 [Software Engineering]: Software/Program Verification—Formal Methods; D.2.11 [Software
Engineering]: Software Architectures—Languages

General Terms: Components, Services, Behavioural Interface Description, Interaction Checking

Additional Key Words and Phrases: Components, Services, Behavioural Interface Description, Interaction Check-
ing

Contents

1 Introduction 7

2 A Formalism for Specifying Components, Interfaces and Assemblies 8
2.1 Service Specification . 8

2.1.1 Service Interface . 8
2.1.2 Service Behaviour . 9

2.2 Component Specification . 10
2.3 Links, Assembly and Composition of Components . 11

2.3.1 Dependencies between Component Services . 11
2.3.2 Links and Sublinks between Component Services . 11
2.3.3 Component Assembly . 12
2.3.4 Component Composition . 12

3 A Case Study 13
3.1 Problem Statement . 13
3.2 An Architecture Overview: the Component Assembly . 13
3.3 Specification of a Component . 14
3.4 Specification of Services . 16

3.4.1 Specification of the Sub-Services . 18
3.5 Compositions for the ATM . 21

4 Formal Verification of Components and Assemblies 23
4.1 Formal Analysis Aspects . 23
4.2 Composability . 24

4.2.1 Service Composability . 24
4.2.2 Component Composability . 25
4.2.3 Assembly Composability . 25

4.3 Interface Analysis: an overview . 25
4.4 Behavioural Compatibility Analysis . 26
4.5 A Verification Algorithm for behavioural Compatibility . 26

4.5.1 Service Specification Analysis . 26
4.5.2 Interaction Analysis within our Example . 27

4.6 Implementation . 28

5 Translation of Services into Lotos 29
5.1 Introduction to Lotos . 29
5.2 Translating the Service Automata into Lotos Processes . 29
5.3 Data Translation . 31
5.4 Encoding of service into Lotos . 31
5.5 Formalisation . 35
5.6 Encoding Labels of Transitions . 35
5.7 Examples of Complete Encoding into LOTOS . 35
5.8 Using Lotos for the Compatibility Verification . 36
5.9 Implementation . 37

6 Translation of Services into MEC 37
6.1 Aims and Scope . 37
6.2 MEC . 38
6.3 Basic Transformations . 39

6.3.1 Workspace Computation . 39
6.3.2 Translation . 39

6

6.3.3 Verification of Dynamic Properties . 43
6.3.4 Inconsistencies Detection . 43

6.4 Extensions . 45
6.4.1 Guards . 45
6.4.2 Managing Communications and Parameters . 47
6.4.3 Multiple Instances of a Service . 47
6.4.4 Composition . 48
6.4.5 AltaRica . 48

6.5 Implementation . 48
6.6 Conclusion and perspectives . 48

7 An overview of The COSTO Toolbox 49

8 Related Work and Discussion 49

9 Conclusion and Perspectives 50

A The ATM Case Study in MEC 54
A.1 Sequential System . 54

A.1.1 Specification . 54
A.1.2 Results . 55

A.2 Parallel System . 57
A.2.1 Specification . 57
A.2.2 Results . 59

A.3 Inconsistent System . 60
A.3.1 Specification . 60
A.3.2 Results . 62

B Tests 63
B.1 Non déterminism and Inconsistencies in the Communications . 63

B.1.1 Specification of the Synchronous Version . 63
B.1.2 Results of the Synchronous Version . 64
B.1.3 Specification of the Asynchronous Version . 65
B.1.4 Results of the Asynchronous Version . 66

7

This report is a collection of idea, studies and development that mark a step of an ongoing work.
It is considered as a draft version; therefore it is submitted to important modifications on each section.

1 Introduction

The rigorous development of (correct) large systems with methods that scale up and are reusable in various projects
is still a challenging research topic. From this point of view Component-Based Software Engineering (CBSE)
motivates a number of works [32, 23, 11, 19]. Component-Based Software Engineering promotes the (re)use of
components coming from third party developers to build new large systems. But this raises some challenging
problems and many of them are still open issues. The success of the large scale development of component-based
systems depends the availability of:

• reliable components library,

• tools to search for components (in libraries),

• expressive languages of composition of the components and especially tools for checking the good use of
components.

It is important to detect the defects which could lead to a faulty behaviour of the developed system early in the
development. A bad interaction between a called service and the appealing one (from a component) may lead to a
blocking of the whole system. To ensure a good level of correctness of the components and their assemblies, the
formal verification of the service descriptions with respect to the desired properties of the component is necessary;
tests of conformity of the interaction between the components must also be carried out at the time of their assembly.
One can thus guarantee the good functioning of an assembly. Consequently, the specifications of components and
their service behaviours should be abstract and formal. The use of an abstract formal model also makes it possible
to hide the implementation details of the components in order to have general reasoning techniques which are
adaptable to various implementation environments.

The goal of our work is to provide the designer of component-based systems with the methods to assist his/her
use of the components. But we focus more specifically on the last parameter given above: search of an expressive
language accompanied with an experimental toolbox for component study and development.

The general motivation for this work lies on the need of a sound basis for developping correct components
and for studying component composition and for implementing the related tools. Indeed, many works focus on the
behavioural compatibility and deal with simplified abstract component models [11, 15, 10]. On the other hand there
are mechanized approaches such as the Tracta approach [17] or the SOFA approach [26, 27] but their component
models have some limitations. The use of one behaviour protocol is an example of such limitation.

For this purpose, our approach is based on a model (named Kmelia) supported by a simple formalism for
modeling and composing components. A component is viewed and used through the services which constitute its
interface; each service has a behavioural interface. Components are assembled and composed through their ser-
vices. The use of services is central to the verification of composability when assembling components. We define
composability of components by considering the links between their services and the behavioural compatibility
of these services. Therefore, we have the basis for the study of component assemblies and compositions. We
distinguish four levels of conformity test:

• service signatures as in IDL,

• enhanced service signature (when considering that sub-services can be participant of a service),

• contracts (pre/post conditions)

• and behaviour (the interactions -waiting for data, synchronization- between the caller service and the called
service are correct).

8

When the matching of the signature of a service at the time of its call seems a pre-requisite easily verifiable, the
a priori conformity test of the interaction between a service and its appealing, during the running of the service,
is not an easy task. Indeed, the interaction can be either very simple and may resumes to a "call-answer" or it can
be more complex, when the running of the service requires the collaboration of the appealing one. In addition to
the signatures, the description of the behaviours of the services is necessary to the appealing ones. That means
the requirements (waiting for data, synchronization, etc) of one are satisfied by the other and vice versa. In this
work, we explore the means of rigorously carrying out these checks of conformity of interactions by studying
a formal model of components. Practically a behavioural conformity check will make it possible to detect the
incompatibilities of behaviour between components (or services) which interact. For example, a service awaits a
value whereas the other cannot provide some in this state of their joint evolution.

In summary, the contribution of the current work is first, a model for describing component, services, assem-
blies and compositions and second a toolbox for verifying the behavioural compatibility of component assemblies.
This work is supported by a prototype, called COSTO (COmponent Study TOolbox). The prototype under devel-
opment is currently made of a Kmelia analyser and two translation tools kmelia2mec and kmelia2lotos.

This research report shows the current state of the work. It is structured as follows. Section 2 presents the
Kmelia model through the description of services, components and composition. This is illustrated with an exam-
ple of a bank Automatic Teller Machine (ATM) system in Section 3. The Section 4 presents the composability of
services and the composability of components. The latter are used to analyse component assembly and component
composition. Behavioural compatibility between component services is also treated there. In the Section 6 and
the Section 5, we present the mechanization approach undertaken to support the Kmelia model. Experiments are
done with MEC4 and LOTOS CADP. The Section 8 compares our approach with related works and the Section 9
concludes the report.

2 A Formalism for Specifying Components, Interfaces and Assemblies

In the Kmelia model, a component is characterised by: its name (the component identifier); its state (variables and
an invariant predicate on them); its interface made of services provided and required by the component and the
description of the services which constitute the component behaviour(s). Component are either elementary (with
no references to other components) or defined by assembling other components. Assemblies and composition are
described in Section 2.3. A preliminary version of the model is presented in [4].

As usually [2, 23] the interface specifies the component interactions with its environment. We assume that
the service executions are concurrent processes with shared (component) state. But unlike most of the existing
approaches [27, 31, 25] where the only unit of interaction is a message, we also consider services as units of
interaction. Therefore whithin our model a component interface is made of provided services and required services.
A provided service offers a functionality, while a required service is the expression of the need of a functionality.
This need is satisfied when the component is combined with other components (in an assembly), one of them
supplying the corresponding provided service. As the service is central in our approach, we specify it before the
component in this section.

2.1 Service Specification

A service is defined by an interface and a behaviour which specifies the dynamic evolution. A service s of a
component C is specified with 〈Is,Bs〉 where Is is the service interface, and Bs is the extended labelled transition
system (eLTS) which specifies the service behaviour. A required service does not need the same level of detail
as a provided service. Therefore the former does not have a behaviour specification and may not have a pre/post
condition.

2.1.1 Service Interface

The interface Is of a service s is defined by a 5-tuple 〈σ, P, Q, Vs, Ss〉 where:

• σ is the service signature,

9

• P is a precondition,

• Q is a postcondition,

• Vs is a set of local declarations and

• the service dependency Ss is a 4-tuple Ss = 〈subs, cals, reqs, ints〉 of disjoint sets.

Service Dependencies
subs (resp. cals, reqs, ints) is a set of the provided services names (resp. the services required from the caller,
the services required from any component, the internal provided services) in the scope s. Using a required service
r in cals of a service p (as opposed to a component interface) means that r should be provided by the component
which calls p. By having a provided service p in the subs of a service r but not in the component interface, we
express that p is accessible only during an interaction with r.

2.1.2 Service Behaviour

The behaviour Bs of a service s is defined by a 6-tuple 〈S, L, δ, Φ, S0, SF 〉 with

• S the set of the states of s;

• L is the set of transition labels ;

• δ ∈ S × L → S is the transition relation ;

• S0 ∈ S is the initial state ;

• SF ⊆ S is the finite set of final states ;

• Φ : S → subs is a state anotation function.

Branching State
An eLTS is obtained when we allow branching states among the states of an LTS (using the Φ function). A
branching state is the one annotated with sub-service names, which are (sub-)services of the component C that may
be called when the evolution reaches this state (but the control returns to this state when the launched sub-service
is terminated). This provides description flexibility. In the current version of Kmelia, only one type of branching
states is allowed, the optional (sub-)services call. But other forms are possible, like conditional branching states,
mandatory branching states. The latter is in fact associated to transitions, as branching transitions. Formally, the
unfolding of (the branching states and transitions of) an eLTS results in an LTS.

Transitions
The elements of δ have the abstract shape (ss, label, ts) or the concrete Kmelia syntax ss--label-->ts. The
labels are (possibly guarded) combinations1 of actions: [guard] action*. We assume the following (restricted)
usage: for any states, the outgoing transitions labeled by a guard are complentary and exclusive. The actions may
be elementary actions or communication actions.

• An elementary action (an assignment for example) does not involve other services; it does not use a commu-
nication channel.

• A communication action is either a service call/response or a message communication. Service call/re-
sponse is treated as a communication. Therefore communications are matching pairs: send(!)-receive(?),
call service(!!)-wait service start(??), emit service result(!!)-wait service result(??). The Kmelia syntax of a
communication action (inspired by the Hoare’s CSP) is: channel(!|?|!!|??) message(param*).

1We currently implemented sequential combinations of actions but other operators are on the way (parallel, choice, ...).

10

• A branching transition is a (sub-)services of the component C that should be called when the evolution
reaches this transition. This provides description flexibility in collapsing and sharing nested service descrip-
tions. Branching transitions are related to branching states.

Channels
Message communications and external service calls use a channel that is established between services when as-
sembling components. A service call refers to an internal service of the same component or an external service
required by the component. An internal service is a sub-service or a provided service of the component interface.
At the moment one writes a behaviour, one does not know which components will communicate, but one has to
know which channel will be used. The channel is usually named after the required service that represents the
context. The placeholder keyword CALLER is a special channel that stands for the channel opened for a service
call. From the point of view of a provided service p, CALLER is the channel that is open when p is called. From the
point of view of the service that calls p, this channel is named after one of its required service, which is probably
named p. The placeholder keyword SELF is a special channel that stands for the channel of an internal service
call.

2.2 Component Specification

A component (C) is a 8-tuple 〈W , Init,A,N , I,DS , ν, CS〉 with:

• W = 〈T, V, VT , Inv〉 the state space where

– T is a set of predefined types,

– V a set of variables,

– VT ⊆ V × T a set of typed variables,

– Inv is the state invariant;

• Init the VT variable initialisation;

• A a finite set of elementary actions;

• N a finite set of service names;

• I the component interface which is the union of two disjoints finite sets: Ip (resp. Ir) the set of names of the
provided (resp. required) services that are visible in the component environment.

• DS is the set of service descriptions which is partitioned into the provided services (DSp
) and the required

services (DSr
).

• ν : Names → DS is the function that maps service names to service descriptions. Moreover there is a
projection of the I partition on its image by ν:
n ∈ Ip ⇒ ν(n) ∈ DSp

∧ n ∈ Ir ⇒ ν(n) ∈ DSr

• CS is a predicate related to the services of the interface of C in order to constrain (or control) the usage of
the services.

The state of the component is defined by its variable and its invariant. The invariant is a predicate on the state
variables and global definitions (constants, variables, functions). This aspect is not described in the current report
but it relies on state-based formal models like Z [30] or B [1].

According to our model the behaviour of the component relies on the behaviours of its services. When it
is needed in a specific application, CSp

is used to describe conditions on the service usage: it may be either an
ordering of services (a Component Behaviour Protocol in the sense of of [17, 27]) or a logic predicate (to ensure
properties like mutual exclusion). Optionally, behaviours of services can be used to describe component protocols
using a simple extension of the eLTS which is not described here.

11

2.3 Links, Assembly and Composition of Components

In the Kmelia model, the component assembly and the component composition are based on various types of
links between services. For instance we have a sublink when a hidden service is called in the scope of a provided
service. In an assembly, required services are linked to provided services. A composition is an assembly where
some unlinked services are promoted to the composite level. In this section, we provide the formal background for
component assembly and composition.

We use in the following a set theory notation close to that of Z or B where IP X denotes the powerset of X (all
its subsets), X ↔ Y denotes the relation from X to Y (a set of couples), (∀D • P) is a predicate P with declared
types variables D = x : T , id denotes the identity relation; dom and ran denote respectively the domain and the
range of a relation; a 7→ b denotes the couple (a, b).

Let C be a set of Ck components with k ∈ 1..n and
Ck = 〈〈Tk, Vk, VT k, Invk〉, Initk,Ak,Nk, Ik,DSk, νk, CSk〉.

2.3.1 Dependencies between Component Services

Let dependsk a relation between component services defined as a part of the service dependency in a component
Ck:

dependsk : Nk ↔ Nk

∀(n, m) : dependsk • (n ∈ calsm) ∨ (n ∈ reqsm) ∨ (n ∈ subsm)

where sm = νk(m).

2.3.2 Links and Sublinks between Component Services

Let N be a set of service names of C: N =
⋃

k∈1..n

Nk.

Basically, links are 4-tuple of component and service names with the following property: (1) the service names
are those of their component, (2) any component service is not linked to itself.

To simplify the presentation we take some freedom with the notation, for instance the quantification over the
tuples. This is to be considered as a draft (shorthand) notation.

BaseLink : IP (C ×N × C ×N)
(1) ∀(Ci, n1, Cj , n2) : BaseLink • n1 ∈ Ni ∧ n2 ∈ Nj

(2) ∀Ci : C, n1 : Ni • (Ci, n1, Ci, n1) /∈ BaseLink

A link is a basic link over two services of the interface of the components.

Link ⊆ BaseLink ∧
∀(Ci, n1, Cj , n2) : Link • n1 ∈ Ii ∧ n2 ∈ Ij

A sublink is a basic link over two services, one of them at least is not in the interface of the components.

SubLink ⊆ BaseLink ∧
∀(Ci, n1, Cj , n2) : SubLink • n1 /∈ Ii ∨ n2 /∈ Ij

The Sublink set makes explicit the relation between the services dependencies declared in the interfaces of
the services concerned by a Link. In the following these relations are constrained in order to define a specific
component assembly and component composition.

12

2.3.3 Component Assembly

Assembling components consists in linking pairwise services. A component assembly is a triple A = (C, links, subs)
where C is a set of components, links is a set of links between the services of C and subs is a relation from links
to sublinks.

links ⊆ Link ∧
(1) (∀(Ci, n1, Cj , n2) : links • Ci ∈ C ∧ Cj ∈ C ∧

((n1 ∈ Ipi
∧ n2 ∈ Irj) ∨ (n1 ∈ Iri ∧ n2 ∈ Ipj

)))

subs : Link ↔ SubLink
(2) dom subs = links ∧
(3) (∀((Ci, n1, Cj , n2) 7→ (Ck , n3, Cl, n4)) ∈ subs • Ci = Ck ∧ Cj = Cl) ∧
(4) (∀(Ci, n1, Cj , n2) : ran subs • ((νi(n1) ∈ DSpi

) xor (νj(n2) ∈ DSpj
)))

The components of the links are the components of the assembly (1). The sublinks are related to links (2) that
concern the same components (3). Provided services are linked to required services (1 and 4).

A is a well-formed component assembly if the following property holds: the services in the sublinks are not
from their component’s interface, they are a dependency of the service of their baselink (w.r.t sublinks).

(5) ∀((Ci, n1, Cj , n2) 7→ (Ck, n3, Cl, n4)) ∈ subs •
((n3 7→ n1) ∈ depends∗ ∨ (n4 7→ n2) ∈ depends∗)

where depends∗ is the transitive closure of depends.
Practically a link establishes an implicit communication channel between the involved services. This channel

is also used for the communication between the related sub-services.

Restrictions
The basic component model presented above is restricted with following constraints: a component is both a com-
ponent type and the unique instance of it, a required service can be linked to at most one provided service (no
overloading), single instantiation of a service at any time. This frame has to be extended later to handle the follow-
ing cases: multiple clients, various providers, broadcast communications, etc.

2.3.4 Component Composition

A composition is a well-formed component assembly which is encapsulated within a component. We define an
operator named compose that builds a new component by combining one or several components.
The parameters of the compose operator are:

• an outer component oC (the composite) together with its interface, new services and services of its con-
stituents;

• a well-formed assembly A = (C, links, subs) (see section 2.3.3);

• the desired promotions, they are set of links between the services of oC and those of Ck ∈ C.

The promotion is a relation between a service of the composite oC and an unlinked service of the components
in A, that preserves existing sublinks; such promoted service becomes usable at the composite level.

promotions ⊆ BaseLink ∧
(∀(Ci, n1, Cj , n2) : promotions •

(1) (Ci = oC) ∧ (Cj ∈ C) ∧
(2) ((νoC(n1) ∈ DSpoC

∧ n2 ∈ Ipj
) ∨ (νoC(n1) ∈ DSroC ∧ n2 ∈ Irj)))

The resulting component is an enhancement of oC: it contains every provided and required services of oC
and provides and requires the services that were promoted from other components in C by using promotions. We
consider here that sub-services of the promoted services are also promoted.

13

From the methodological point of view, the composition operator may be used to refine an abstract component
with a component assembly; it may also be used to structure simple components or to provide a more restrictive
interface of an existing component.

3 A Case Study

In this section, we apply our component model to a real-world case, a bank automatic teller machine (ATM). Since
the problem is well known, only a reduced version its statement is presented below2. Hardware and device issues
are out of the scope of the current study.

3.1 Problem Statement

An ATM provides several bank services to customers (withdrawal, deposit, transfer, query) and achieves mainte-
nance and security services. Among them, we focus on the cash dispenser and query services. The query service
is only valid for the (local) bank customer. Both services require the same identification step. The ATM asks the
card holder (user) to insert a card. The card holder introduces the withdrawal (or cash) card in the ATM. The ATM
accepts the card and reads its serial number (card identifier). If the card is readable, the ATM requests the user
password otherwise it rejects the card. The user enters the password. The ATM verifies the given password (com-
pared with the card password). If the verification succeeds, the ATM authenticates the card holder, otherwise the
ATM requests the password again. When the verification fails three times (the number of trials is closely related to
the identification procedure), the ATM swallows the card.

After the card holder identification in the withdrawal service, the ATM requires an authorization from its
ACD/ATM controller (AAC), that represents the bank management. If the AAC accepts the transaction, the ATM
asks for the amount of cash, otherwise the card is ejected and the withdrawal transaction ends. The user enters an
amount which is compared with the current card policy limit. If the allowed amount is lower than the requested or
if the current ATM cash is not sufficient, the ATM asks for the amount of cash again. Otherwise, the ATM asks the
AAC to process the transaction, updates the card limit, dispenses the cash and try to print a receipt if it is requested.
In any case the withdrawal transaction ends after a card ejection.

As fas as the query service is concerned, after the card holder identification, the ATM checks that the card is
related to a local bank account. If the card holder is not a local bank customer the transaction stops and the card is
ejected. Otherwise, the ATM asks the kind of query (last transactions, account balance) to the user and processes
it. Several queries are allowed. The transaction ends with a special "quit" query. Then the card is ejected and the
query transaction ends.

Remember that many aspects (such as screen messages, device operations) are omitted in the above statement.

3.2 An Architecture Overview: the Component Assembly

A component model is the description of the individual components and the component assembly. From a method-
ological point of view, both top-down and bottom-up approach exist. For this case study, we follow a top-down
approach.

Figure 1 shows a simplified component assembly for the ATM. The ATM includes four components: the
central ATM CORE that handles the ATM bank services, the USER INTERFACE component controls the user
access, the AAC stands for the bank management and the LOCAL BANK handles the bank management access.
Remember again that we strongly simplified the model because we only want to illustrate our model and focus on
the withdrawal transactions. For example, AAC and LOCAL BANK could be the same component.

2A detailed version of the problem statement can be found in chapter 8 of [28] or in
http://www.commoncriteriaportal.org/public/files/ppfiles/PP9907.pdf

14

AAC

authorization

LOCAL_BANK

balance ask_
account_balance

withdrawal

account_query

USER_INTERFACE

behaviour

ask_for_money

ATM_CORE

code
ask_code

amountask_amount
account_update

ask_
authorization

debit
eject_card
swallow_card
display query_account

deposit

transfer

provided service required service
link

service call

Figure 1 : Assembly for an ATM System

The following naming conventions hold: component names are uppercase nouns, provided services are lower-
case names, required services are lowercase verbal phrases.

In an assembly, required services are linked to provided services. For example, the ask for money re-
quired service is fulfilled by the provided withdrawal service. Reciprocally, a provided service calls its own
required services to delegate some processing. For example, the withdrawal provided service calls the required
ask code and ask authorization services to check the card holder’s rights. Note that the ask code is a
sub-service because it is not in the provided interface of ATM CORE (see the textual version).

In this example, every required service is linked but this is note a rule because one can use partially a compo-
nent. The component usage is quite flexible: an assembly may be valid for one service only, since its dependency
chain is fulfilled, the sub-services are invoked optionally thus the ask for money service may operate with any
withdrawal protocol (whatever the order for amount and code). A non linked required service prevents the usage
of all the provided services that call it, directly or not. Similarly, unlinked provided services, e.g withdrawal
are free of use. They can be linked at an upper level, if the assembly is encapsulated in a composition.

The USER INTERFACE component offers the (provided)code service only in the interface of the behaviour
service; it means that the USER INTERFACE only gives its code during a withdrawal operation that it has initi-
ated. In such a situation, code is a sub-service. The component services are detailed in the Fig. 2. Note that the
USER INTERFACE may also call a withdrawal service that does not require its code.

3.3 Specification of a Component

The component specification is the description of the state space, the interface and the services (see Section 2.2).
In a component definition there are no assumption on the component (type) that can fulfill the required services or
request the provided services. The following Kmelia source specifies the component ATM CORE of figure 1.

Specification of the ATM_CORE component
Author: Pascal Andre
Date: 11/07/05
#
Note : Only the features of interest for the withdrawal service
are included in the current specification.
#
COMPONENT ATM_CORE
#
The ATM_CORE component is the central component for a bank cashier station.
The main services of such a system are cash withdrawal, account query, deposit money
and transfer bank query.
The current specification focuses only on cash withdrawal.

./FIGURES/gab.modele.eps

15

#
INTERFACE
provides : {withdrawal, account_query, deposit, transfer}
requires : {ask_authorization, ask_account_balance}

TYPES
CashCard : {code:Integer, id:Integer, limit:Integer} # record type

CONSTANTS
available_cash : Integer := 100,
swallowed_size : Integer := 100

VARIABLES
name : String,
swallowed_cards : Set,
available_notes : Integer

PROPERTIES
cash_disp: available_notes >= 0,
card_capacity: size(swallowed_cards) <= swallowed_size
INITIALIZATION
name := "ATM203";
swallowed_cards := emptySet;
available_notes := 10000;

SERVICES
services from external files (currently only in the same directory) can be included
provided external withdrawal
provided external account_query
provided external deposit
provided external transfer

#a fool service for testing dependencies
provided ident ()
Interface

subprovides : {}
calrequires : {}
extrequires : {}

Behavior
init i # i is the initial state
final f # i is a final state
{
i - display("my id") -> e1,
e1 - __CALLER!!ident() -> f

}
end

#required services
required ask_authorization (id : Integer, code : Integer) : Boolean
end
required ask_account_balance (id : Integer) : Integer
end

#internal services
internal debit (c : CashCard, m : Integer)
end
internal eject_card()
end
internal swallow_card()
end
internal display(msg : String)
end

END_SERVICES

end of ATM_CORE

Since component models get complete along the development process, the component specification can also
be seen at several abstraction levels. For instance, at a high abtraction level, the interface and its services may

16

outweigh state considerations and state variables can be optional or limited, handled by internal actions. This is
the case in our current specification: we mainly focus on services.

In its state space, the ATM CORE state includes three variables

1. name, which is the name of the ATM,

2. swallowed cards, which is a collection of swallowed cards,

3. available notes, which is the current amount of available notes,

and two constants

1. available cash, which is the amount of cash necessary to start a withdrawal,

2. swallowed size, which is the number of cards that the swallow area can contain.

The invariant asserts that the swallow area has a limited size and the available cash is positive.
There are four internal services (debit, eject card, swallow card, display). These represent on-

going services definitions. In a top-down modelling approach, ongoing services represent those services that
will be described later in a deeper design. For example, the debit action can be refined by calling the AAC
update account service and the CASH DISPENSER (a new component)dispense cash service (see Sec-
tion 3.5).

All the usage constraints are associated to services and the constraints among services are set in CS . These
constraintes are twofold :

1. Ordering constraints: the provided services can be called in a specific order. This corresponds to a general
component behaviour. We simply model the order as a special service. For example, the behaviour main
service defines the body of USER INTERFACE.

2. Applicability (dynamic) constraints: two provided services may be exclusive, or two required services should
be supplied by the same component...

We did not consider service constraints for the ATM CORE component.

3.4 Specification of Services

The provided withdrawal service of the component ATM CORE of figure 1 is specified as follows:

Specification of the component
Author: Pascal Andre
Date: 11/07/05
#
Component: ATM_CORE
#
#This is a normal provided service: withdrawal

withdrawal (card : CashCard)
Interface

subprovides : {ident}
calrequires : {ask_code, ask_amount} #required from the caller
extrequires : {ask_authorization}

Pre
#service available if there is enough money
available_notes >= available_cash

Variables # local to the service
nbt : Integer, # nbt : number of authorized trials of code entering
c : Integer, # c : input code given by the user
a : Integer, # a : input amount given by the user

17

rep : Boolean, # rep : reply from the authorization request
success : Boolean # success : result of the withdrawal request

Behavior
init i # i is the initial state
final f # i is a final state
{
i - {

nbt:= 3 ;
set the number of authorized trials
success := false
by default the withdrawal fails

} -> e0,
e0 - __CALLER!!ask_code() -> e1,
call the required service ask_code of the caller (implicit)
e1 - {

__CALLER??ask_code(c) ;
input communication: gets the password on the ask_code (service) channel
nbt := nbt -1
the number of trials decreases

} -> e2i,
e2i - __CALLER!rdv() -> e2,
e2 - [c=card.code] rep := _ask_authorization!!ask_authorization(card.id,c) -> e3,
call the required service ask_authorization on the channel ask_authorization
e2 - [c<>card.code && nbt>0] display("Enter your card code, please ")-> e0,

call an internal action
e2 - [c<>card.code && nbt=0] {

display("Card swallowed, sorry");
call an internal action
swallow_card()
call an internal action

} -> e4,
e3 - [rep] display("Enter the cash amount, please ?") -> e5,
the AAC accepts the transaction, the amount is asked
e3 - [not rep] {

the AAC refuses the transaction, the service ends
display("Transaction refused") ;
call an internal action
eject_card()
call an internal action

} -> e4,
e4 - __CALLER!!withdrawal(false) -> f,
the withdrawal fails, the caller is informed from the result on the
withdrawal service channel. The service ends.
e5 - __CALLER!!ask_amount() -> e6,
call the required service ask_amount of the caller (explicit)
e6 - __CALLER??ask_amount(a) -> e7,
input communication: gets the password on the ask_amount (service) channel
e7 - [m<= card.limit] {

debit(c,m);
call an internal action
eject_card()
call an internal action

} -> e8,
e7 - [m > card.limit] display("require too much money, please enter the amount again") -> e3,
call an internal action
e8 - {

success := true ;
the withdrawal succeeds
__CALLER!!withdrawal(success)
the caller is informed from the result on the
withdrawal service channel. The service ends.

} -> f
}
Post

18

available_notes >= pre(available_notes)
(success && (available_notes = pre(available_notes) - m)) ||
((not success) && available_notes = pre(available_notes))

end

The withdrawal starts by an identification step: card insertion, password control, authentication by ACD/ATM
controller (AAC). If the AAC accepts the transaction, the ATM asks for the amount of cash, otherwise the card is
ejected and the withdrawal transaction ends. The user enters an amount which is compared with the current card
policy limit. When the allowed amount is lower than the requested one or if the current ATM cash is not sufficient,
the ATM asks again for the amount of cash. Otherwise the ATM asks the AAC to process the transaction, updates
the card limit, gives the cash and prints a receipt when it is possible. In any case the withdrawal transaction ends
after a card ejection. There are four internal service call (debit, eject card, swallow card, display). The channels
can be omitted and deduced either from the context or from default rules. This syntactic sugar is not currently
implemented in our prototype.

3.4.1 Specification of the Sub-Services

The USER INTERFACE component (figure 2) is quite flexible ; it can operate with any withdrawal protocol what-
ever order and what number is given for amount and code. IN other words, the interaction description is made
very flexible by enabling the calls of sub-services when the evolution reaches given states. The sub-services avail-
able in one state are listed between angle brackets and annotate the (branching) state. The notation e1 <code,
amount> expresses that the services code and amount of the USER INTERFACE component may be called
in the e1 state. The behaviour description remains simple (the LTS is not huge) since the descriptions of the sub-
services are deferred.

Specification of the USER_INTERFACE component
Author: Pascal Andre
Date: 11/07/05
#
Note : Only the features of interest for the ask_for_money required service
are included in the current specification.
#
COMPONENT USER_INTERFACE
#
The USER_INTERFACE component is a client component for a bank cashier station.
The main services of such a system are cash withdrawal, account query, deposit money
and transfer bank query.
The current specification focuses only on the client behavior for a cash withdrawal.
#
INTERFACE

provides : {behavior, amount}
requires : {ask_for_money, query_account}

TYPES
CashCard : {code:Integer, id:Integer, limit:Integer} # record type

VARIABLES
myCard : Card, # user card
myCode : Integer # user code

SERVICES
#This is a client main service: behavior

provided behavior ()
specified as an infinite service: main loop
Interface

subprovides : {code} #, amount
#calrequires : {} #required from the caller
extrequires : {ask_for_money, query_account}

Variables # local to the service

19

b : Integer # balance of my account
Behavior
init e0 # e0 is the initial state
final e0 # e0 is a final state (loop behavior)
{
e0 - {

display("Hello, please insert your card");
read(myCard)
#internal I/O actions

} -> e0,
e0 - _ask_for_money!!ask_for_money(myCard) -> e1,
invocation of the withdrawal service
e0 - _query_account!!query_account(myCard) -> e10,
invocation of the query_account service
e1 <code>, # specifies callable subservices on node e1 , amount
e1 - _ask_for_money?rdv() -> e2,
e2 - _ask_for_money??ask_for_money(myCard) -> e0,
wait for the result of of the ask_for_money service

e10 <code>, # specifies callable subservices on node e10
unspecified yet after e10
e10 - _query_account??query_account(b) -> e0

}
end

provided code () : Integer
answers the code of the user
Interface

#subprovides : {}
calrequires : {getId} #required from the caller
#extrequires : {}

Variables # local to the service
id : Integer # bank id

Behavior
init e0 # e0 is the initial state
final f # f is a final state
{
e0 - {

display("Please enter your card code");
read(myCode) # component variable

} -> e1,
e1 - __CALLER!!getId() -> e2, #__CALLER
e2 - __CALLER??getId(id) -> e3,
e3 - store(id, today) -> e4,
e4 - __CALLER!!code(myCode) -> f
send the code

}
end

provided amount () : Integer
answers the amount of cash that the user wants
Variables # local to the service
a : Integer # amount of cash wanted

Behavior
init e0 # e0 is the initial state
final e0 # e2 is a final state
{
e0 - {

display("Please enter the amount of cash");
read(a) # local variable

} -> e1,
e1 - __CALLER!!amount(a) -> e2
send the amount of cash

}
end

20

#required services
required ask_for_money (card : CashCard) : Boolean
Interface

subprovides : {code}
end
required query_account (card : CashCard) : Integer
end
END_SERVICES

end of USER_INTERFACE

The user (card holder) behaviour is simply to ask for money or query a (local) account ; these are required
services from the user’s point of view. The ATM-user interaction starts by the call of ask for money in
USER INTERFACE. Then amount and code become available services, in the context of the e1 state.

!result(myCode)

<code, amount>

ask_code?result(c:Integer)

ask_code()

!result(false)

ask_for_money?result(b)

ask_for_money(myCard)

ATM_CORE.withdrawal(card : CashCard) =

USER_INTERFACE.code () =

USER_INTERFACE.behaviour() =

e0

e1

e2

e0

e1

e2

e4

f

nbt := 3

i

; nbt := nbt - 1[c<>card.code
& nbt >0]
display(...)

e3

[c=card.code]
rep:=ask_authorization
(card.id, c)

[c<>card.code & nbt = 0]
display(...) ; swallow_Card()

[not rep] display(...) ;
eject_card()

e5

[rep] display(...)

e6

ask_amount()

e8

[m <= card.limit]
debit(c,m);
eject_card()

!result(true)

[m > cart.limit]
display(...)

!result(a)

USER_INTERFACE.amount () =

a := acceptAmount()
e7

 ask_amount?result
(m:Integer)

<code>

e10

Figure 2 : Behaviours of Component Services

The above specifications have a visual representation which is more user-friendly. Figure 2 is a partial visu-
alization of the services of interest (for a verification). The behaviour of a service is a finite state machine. The
sub-services available in one state are quoted by state labels using angle brackets:
the notation e1 <ask code>,<ask amount> means that these services can be called in that state only. In

./FIGURES/gab.retraitbis.eps

21

practice, this shortens the graph by collapsing ring sequences of transitions. Bloc transitions are those transitions
in which labels include the sequential ";" operator, which is also a notation abbreviation.

3.5 Compositions for the ATM

The composition operator is used to define component assemblies (verification goal) or to refine specifications
(structuration).

Assembly Composition In Kmelia, an assembly is specified using the composition operator. For example, let
define a component that includes only the USER INTERFACE and ATM CORE components.

// Specification of the ATM_SYSTEM composite component
// Author: Pascal Andre
// Date: 11/07/05
//
// Note : Only the features of interest for the withdrawal service
// are included in the current specification.
//
COMPONENT ATM_SYSTEM
//
// The ATM_SYSTEM component represents an assembly with the ATM_CORE and USER_INTERFACE components
// the unsolved required services are the system required services
// the unsolved provided services are the system provided services
//
INTERFACE
provides : {behavior}
requires : {ask_authorization, ask_account_balance} //loaded but unused

SERVICES
END_SERVICES

// -------------
// the contents of the "assembly"
// -------------

COMPOSITION
// list of components included in ATM_SYSTEM
// the following line looks for ATM_CORE.cmp and USER_INTERFACE.cmp
{ATM_CORE USER_INTERFACE},

// list of links between services
{
(p-r ATM_CORE.withdrawal, USER_INTERFACE.ask_for_money
//sublinks
(r-p ATM_CORE.ask_code, USER_INTERFACE.code)
(r-p ATM_CORE.ask_amount, USER_INTERFACE.amount)
//TODO subsublink
(p-r ATM_CORE.ident, USER_INTERFACE.getId)
)
// the service withdrawal of the ATM_CORE is connected to
// the service ask_for_money required by USER_INTERFACE

(p-r ATM_CORE.account_query, USER_INTERFACE.query_account
//sublinks
(r-p ATM_CORE.ask_code, USER_INTERFACE.code)
//TODO subsublink
(r-p USER_INTERFACE.getId, ATM_CORE.ident)
)
// the service account_query of the ATM_CORE is connected to
// the service query_account required by USER_INTERFACE

(p-p USER_INTERFACE.behavior, SELF.behavior)
// the provided service behavior is connected to the provided service behavior of USER_INTERFACE

22

// this line defines the behavior of behavior unless specified (which is not the case here),
// the interface of behavior is the same as USER_INTERFACE.behavior
// this link use the optional prefix (p-p)

(r-r ATM_CORE.ask_authorization, SELF.ask_authorization)
// the required service ask_authorization is connected to the required service ask_authorization

of ATM_CORE
// this link use the optional prefix (r-r)

(r-r ATM_CORE.ask_account_balance, SELF.ask_account_balance)
// the required service ask_account_balanceis connected to the required service ask_account_balance

of ATM_CORE
// this link use the optional prefix (r-r)

// -------------
// incompleteness of the "assembly"
// -------------
// The following provided services are left unsatisfied
// ATM_CORE.deposit
// ATM_CORE.transfer
// Indeed, they are not useful for the target assembly.

}

This approach provides a means for verifying the composability of assemblies. In the following we focus
on the withdrawal provided service which is linked to the required ask for money service, called by the
behaviour service. This triple constitutes a service context for a service verification (see section 4.2.1).

Structuration Composition The composition operator is used to structure component specifications (bottom-up
approach) or to refine specifications (top-down approach). In the ATM case study, we refine the current specifi-
cation of assembly figure 1 in delimiting the context for an ATM system. In particular, we make some internal
actions explicit. The display internal action is delegated to a SCREEN component. The swallow card
and eject card internal actions are delegated to a CARD DEVICE component. The debit internal action is
delegated both to an internal CASH DISPENSER component and the update account required service. The
display internal action is delegated to a SCREEN component. The composition is presented in figure 3.

The CASH DISPENSER, CARD DEVICE et SCREEN components are defined as follows.

Component CASH_DISPENSER
interface
provided : {cash_dispense, ...}
required : {}

constants
available_cash : Integer = 100 ;
...

variables
available_notes : Dictionary ; ...

invariant
available_notes := empty;

...
initialisation

available_notes.sum >= 0
...

services
cash_dispense : (amount : Integer) =
PRE (amount > 0) &

(available_notes.sum >= amount)
SPEC

{e0 - ...
- available_notes :=

available_notes.dispense(montant) ...
eX - ... --> f

}
POST old(available_notes).sum -

(available_notes.sum) - amount = 0
// no holes

end

Component CARD_DEVICE
interface

provided : {card_swallowing, card_ejection}
required : {}

services
card_swallowing = ...
card_ejection = ...

end
Component SCREEN
interface

offerts : {display}
requis : {}

services
display (m:String)= ...

end

23

Now, the ATM component is defined using the compose operator and the componentsATM CORE, CASH DISPENSER,
CARD DEVICE et SCREEN.

ATM_CORE

update_account

ask_account_balance

withdrawal

account_query

ATM

ask_code

ask_amount

SCREEN

display display

CARD_DEVICE

card_swallor swallow_card

eject_cardcard_ejection

CASH_DISPENSER

cash_dispense
dispense_cash

Consulter

ask_authorization

update_account

ask_account_balance

Retirer

Code

Montant

ask_authorization

Figure 3 : The new ATM is a composite component

4 Formal Verification of Components and Assemblies

The specifications of components, compositions and assemblies should be formally analysed to ensure the quality
of the developped systems. The formal analysis may be performed according to various aspects. First, in section
4.1 we overview the main issues of component analysis (formal verification) and certification. Second, we focus
on one specific property: the composability of components and its verification. The composability is the correct
interaction between components. Its definition is given in section 4.2. This definition covers a wide range of
properties, thus its verification is quite complex.

In the remaining of the report, we address the problem of the verification of the behavioural compatibility
of component assemblies. We explore several ways for implementing a verification rules: in the section 4.5 we
present a verification algorithm; then in the section 5 and 6 we reuse existing verification tools or environments.

4.1 Formal Analysis Aspects

There are several aspects on which verification may be conducted. Specifically, verification aspects of components
include:

• (Static) Interoperability properties: compatibility of signatures and interfaces (naming and typing); do a
component gives enough information about its interface(s) in order to be (re)usable by other components;

• Architectural properties: that means the availability of the required components, the availability of the
needed services (completeness), the correctness of the links between interfaces of components (providers
and callers);

• Behavioural compatibility: it is about the correct interaction between two or more components which are
combined. Several points need to be considered: various kinds of interaction, synchronous or not, atomic
actions or non atomic ones.

• Correctness of functional properties: do the components do what they must do? These properties may be
checked independently on the components which are used and also on the composition of the components;

./FIGURES/gab.composter.eps

24

• Flexibility of maintenance (modifiability, evolution): that means the components should be simply updated
on needs, without affecting drastically the third party components which use it. The update of a component
includes, the modification of the implementation of its service(s), the remove/adding of a service, etc.

• Heterogeneity: within the CBSE approach, the components coming from various providers may be compos-
able to develop large systems. This is a challenging concern because the components may have different
models.

• Compositionality is also an important concern: the properties of a global system should be inferred from the
properties of the composed components.

In the following we study a property which is central to any combination of components: the composability
of components in an assembly. This is a quite complex property that covers static and dynamic aspects of the
specification. Hence, the first three categories of properties are related to composability.

4.2 Composability

A property to be proved needs first to be formally expressed. In this section, we define the correctness of a
component assembly, the composability property. The links are central here (since they are used for assemblies).
A link defines the context of a service composability. Therefore, the composability is basically defined on services
and generalized to the components. In the following, both static aspect (interface) and dynamic aspect (behaviour)
are considered to check composability.

Definition 4.1 (Service Context)
Let A = (C, links, subs) be a component assembly, and Ci and Cj two components of A (Ci ∈ C ∧ Cj ∈ C). A
service context is a triple SCA = (spCi

, srCj
, spCj

) such that

1. spCi
is a provided service of the component Ci (spCi

∈ DSpi
)

with spCi
= 〈〈σp, Pp, Qp, Vsp, Ssp〉,Bsp〉,

2. srCj
is a required service of a component Cj (srCj

∈ DSrj)
with srCj

= 〈〈σr , Pr, Qr, Vsr, Ssr〉,Bsr〉,

3. spCj
is a provided service of a component Cj (spCj

∈ DSpj
),

4. there is a link between srCj
and spCi

in A:
∃(Ci, n1, Cj , n2) ∈ links •
(νi(n1) = spCi

∧ νj(n2) = srCj
) ∨ (νj(n2) = spCi

∧ νi(n1) = srCj
)

5. srCj
is required by spCj

(srCj
∈ reqspCj

).

The service context is a basis for the definition of service composability. The service spCi
is called the refer-

ence service.

4.2.1 Service Composability

The service composability consists to check that a provided service can be fullfilled by a provided service w.r.t a
link: their interfaces are compatible and their behaviour are compatible through the link (for each provided service
that calls the required service the interactions between two provided services do not lead to errors).

Definition 4.2 (Service Composability)
Let A = (C, links, subs) be a component assembly, and Ci and Cj two components of A (Ci ∈ C ∧ Cj ∈
C). A provided service spCi

= 〈〈σp, Pp, Qp, Vsp, Ssp〉,Bsp〉 of a component Ci and a required service srCj
=

〈〈σr , Pr, Qr, Vsr, Ssr〉,Bsr〉 of a component Cj are s-composable (noted s-composable(spCi
, srCj

)) w.r.t a link
(Ci, n1, Cj , n2) ∈ links (or a link (Cj , n2, Ci, n1) ∈ links) when n1 is the name of spCi

(νi(n1) = spCi
), n2 is

the name of srCj
(νj(n2) = srCj

and srCj
is required in at least one provided service s of Cj (srCj

∈ reqspCj
),

if:

25

1. the interfaces of spCi
and srCj

are compatible; that is,

(a) their signatures are matching (no type conflict: σp and σr are type compatibles3),

(b) the assertions (pre/postconditions) are consistent
(pre(srCj

) ⇒ pre(spCi
) ∧ post(spCi

) ⇒ post(srCj
)) and

(c) their service dependency are (deeply) compatible: the inner required-provided relationship is pre-
served (recursion on interface compatibility including the sublinks of A, w.r.t subs).

2. for each service context SCA = (spCi
, srCj

, spCj
) where srCj

∈ reqspCj
, the behaviour of spCi

and spCj

are compatible: compatible(BspCi p
,BspCj

); that is, their eLTSs are matching; either they evolve indepen-
dently or they perform complementary communication actions until a termination without a deadlock.

We currently treat the interface compatibility by a static analysis, without checking property 1.b. The compat-
ibility of behaviours is dealt with in more details in the remaining of the report, using mechanized techniques.

4.2.2 Component Composability

The composability of two (or more) components is a generalization of the composability of their linked services.

Definition 4.3 (Component Composability) Let A = (C, links, subs) be a component assembly, and Ci and
Cj two components of A (Ci ∈ C ∧ Cj ∈ C). The components Ci and Cj are c-composable if all the links between
srCj

and spCi
in A are defined between composable services:

c-composable(Ci, Cj) ⇔
∀(Ci, n1, Cj , n2) ∈ links • s-composable(νi(n1), νj(n2)) ∨ s-composable(νi(n1), νj(n2)).

Note that the disjonction ∨ handles the direction of the s-composable relation (provided-required).

4.2.3 Assembly Composability

The composability of an assembly is a generalization of the composability of the pairs of components.

Definition 4.4 (Assembly Composability) A component assembly A = (C, links, subs) be a component assem-
bly is composable if each couple of components of A are c-composable:
composable(A) ⇔ ∀Ci ∈ C, CjC •c-composable(Ci, Cj).

4.3 Interface Analysis: an overview

We define composability at different related levels (4.2): service level and component level. In our Kmelia compo-
nent formalism, the interface of a component contains the sets of provided and required services (with the naming
and typing informations); additionally, informations on required or called sub-services are attached to the interface.
In a similar way, these informations are available for the service descriptions.

Accordingly, the static analysis of the interface of a component is achieved by using: i) simple correspondence
checking algorithms and possibly standard typing algorithms; ii) deep investigation on the availability of required
or called sub-services. The definitions given above are used to perform this static level analysis. At this stage,
some incompatibilities may be detected. We cover by the way a main part of (static) interoperability properties
and architectural properties.

In the case of properties 1.a, 1.c, the static analysis of the interface of a component may be achieved by using
simple correspondance checking algorithms and eventually standard typing algorithms.

In the case of property 1.b, proofs on the assertion are necessary. One way to deal with the interface analysis
is to translate our component into existing frameworks (FSM, Z, B, Process Algebra) and reuse the tools of these
frameworks to tackle the analysis. This is now the standard way.

3Note that the service and parameter names can be different.

26

4.4 Behavioural Compatibility Analysis

In the following we focus on the behavioural compatibility aspect. The classical safety and liveness aspects apply
obviously to software components. The safety is more concerned with the functionnal properties of the compo-
nents. That means the correctness with respect to the needs. Temporal behaviour (liveness) is also an aspect related
to correctness; a system should evolve and should perform its tasks in time.

But these properties should be adapted to component features, for example behavioural compatibility. The
behavioural compatibility amongst components is a widely studied topic [35, 15, 9, 13]. behavioural introspection
(discovering the component behaviour) is one way to deal with behavioural compatibility; but one has to prove
compatibility. Checking behavioural compatibility often rely on checking the behaviour of a (component based)
system through the construction of a finite state automata. However the state explosion limitation is a flaw of this
approach.

The main concern is to check that a given component interacts correctly with another one (which may be
provided by a third party developer). The interaction between components may involve not only two but many
components. Assume that a verification of the architectural properties is already performed for a given component.
This implies that each service of this component is completely described. Remind that each service is described
with an eLTS where the transitions are labelled with guarded elementary actions and communication actions (see
2.1).

The component interacts correctly with its environment if its services are composable with the other services.
But we consider only one caller service and one called service at time. We check that Bp a given eLTS matches
with Br a second eLTS: compatible(Bp, Br). A complete interaction between the services of several components
results in a pairwise local analysis between the LTS of a caller and that of the called service. The eLTSs are unfold
to obtain LTSs. Therefore, two services interact until a terminal state if the labels of their associated LTS are in
correspondence according to a protocol that we have defined. The protocol that defines compatible is a set of
rules based on the labels of the transitions going from a current state to the following states (output transitions).
The rules indicate the correct evolutions according to the current states of two involved services: from a current
state considered in each LTS, we explore the labels on the output transitions. In the case of elementary actions
on the labels, each LTS evolves independently, their current states are updated. In the case of communication
actions on the labels, the transitions match if for the considered services (hence the appropriate channels), we have
the matching pairs: send(!)-receive(?), call service(!!)-wait service start(??), emit service result(!!)-wait service
result(??). In this case each LTS evolves in its next state. If the labels do not match, an incompatibility or a
deadlock is detected.

After a final state of a called service, the caller may continue with independent transitions or with transitions
that imply other (sub-)services. When the final states are reached without deadlock, the services are compatible.

4.5 A Verification Algorithm for behavioural Compatibility

4.5.1 Service Specification Analysis

In [5] we formally defined the compatibility between components by considering the interaction between the
services of the involved components. We show on the studied exemple, how this analysis is achieved. Remind that
the behavior (named B) of a service is specified with an LTS 〈S, L, δ, Φ, S0, SF 〉 (see section 2.1.2).

Therefore the evolution of a service is exactly that of its LTS. We assume some working hypotheses. When
a service is called, its initial state becomes the current state (local to this service). The service is then an active
service.

Several services may be simultaneously active; each one has its current state. When a service calls another
one, both can interact by exchanging communication messages (emission or reception). Apart from the communi-
cations, the active services evolve one independently from the other.
From any state of the behavior of a system, one can carry out an internal action, a block of actions, a call to a
service, a communication action, and a block of guarded actions.

Algorithm We built an algorithm to check the conformity of the interactions between services of the components.
The algorithm is built starting from a set of rules. We defined the following rules for the evolution of the behaviors

27

of the services:
Rambig a: From a current state ec, when there is more than one transition labelled with internal actions or with
calls from service, there is an ambiguity. The analysis is not continued.
Ract: From a current state ec where there is only one transition labelled by l representing an internal action α, the
action α is carried out and the behavior of the service continues in the state es = δ(ec, l).
Rcall: From a current state ec where there is only one transition labelled by l representing a service call, one
checks that this service exists in one of the components of the environment, that this behavior has an initial state
and a final state, then the behavior of the service continues in the state es = δ(ec, l).
Rcomm: From a current state ec where there are one or more transitions labelled by a communication action of
the ?c type or the !c type, one checks that there exists an active service in the environment, which proposes the
same communication actions: either !c or ?c; when it is the case, two symmetrical actions, one of each service, are
carried out in the same time; the behavior of each implied service thus continues in the state es = δ(ec, c). Here c
indicates the communication action which is carried out.
Rblock acts: From a current state ec where there is only one transition labelled by a block of actions ba, one
observes inductively the previous rules; the behavior of the service continues in the state es = δ∗(ec, ba). Here, δ∗

indicates a successive application of δ (compared to the actions contained in ba).
Rguard acts: From a current state ec where there are one or more transitions labelled by a block of guarded
actions g acts, one applies inductively the preceeding rules to the block of actions located after the guard, and
for each transition. It results therefore to the rule Rblock acts.

The skeleton of the algorithm is as follows:

ALGORITHM VerifInteraction(B) = /* B is a transition system */
BEGIN

ec := CurrentState(B)
DO

Apply one of the rules in
{ Ract, Rcall, Rcomm, Rblock acts, Rguard acts}

UNTIL

no rule is applicable OR

an error occurred
DONE

END

4.5.2 Interaction Analysis within our Example

We apply the algorithm starting from the call to the service Retrait(carte) from the component BASEGAB.

1. The service is called by Retrait() from the component IHM CLIENTR. The call of the service
Retrait(maCarte) is performed from the initial state e0 of IHM CLIENTR.

2. The rule Rappel is applied, the transition system assocated to Retrait(carte : Carte) exists, this
service becomes active and its current state is i.

3. The state of the service Retrait() is nowe1. Note that from this state, the labelling <Code> <Montant>
indicates that one can eventually invocates the services <Code> or <Montant> from the IHM CLIENTR
component.

4. Let us follow the evolution with the Retrait(carte : Carte) service.

5. From the i state we reach the e0 state with the Ract rule.

6. From the e0 state we reach the e1 state with the Rappel rule, therefore Code() is activated and its initial
state is considered.

28

7. From e1, we reach the e2 state using the Rblock acts rule; we proceed with an intermediary state which
involve a simultaneous transition (the Rcomm) rule from Code, this one terminates; the control is now in
the state e1 of Retrait().

8. From e2, there are three guarded state; therefore we apply the Rgard acts rule to reach the e0 state or the e3
state, or the e4 one. The guarded state are call to servicess; these services are available in the environement,
we do not go to more details.

9. From the e3 state, Rgard acts is applied again, we reach either the e4 state, or the e5 one according to the
considered transition.

10. From e4 we reach the f state with the rule Rcomm, simultaneously with a transition from e1 to e2 in
Retrait. The latter is terminated.

11. From the e5 state, we reach the e6 state using Rappel. The Montant service is then activated; it interacts
with Retrait.

12. From e6, we reach e7 using Rcomm, with a communication action (resmontant) performed simultane-
ouslyt with the Montant service.

13. From the e7 state, we apply Rgard acts to reach the e3 state.

14. From the state e7, we apply Rgard acts to reach e8.

15. Finally from e8, we reach the final state f using Rcomm, simulatneously with an action performed in
Retrait.

In short, for our example, the interactions are in conformity; there was no error. If not, one could thus have
corrected them.

We generalized this algorithm in order to check independently the conformity of the interactions of the envi-
ronment of the components.
The principle (see [5] for the details) is as follows: for a given service, we defined in a general way the behavior
which is necessary for a correct interaction; any behavior similar to this necessary behavior is thus in conformity.

The necessary behavior is defined according to the labels of the transitions; for example, a reception action is
necessary for an emission action and vice versa; a service call requires a (sub)system of transition associated with
this service, etc.

This approach makes it possible to be ensured of the compatibility of the interactions in the assemblies of
components and to avoid also the problem of the state explosion.

4.6 Implementation

A first implementation [33] of the algorithm is achieved using Java. In this implementation, we develop a prototype
which considers only independant services. Each service is given within a separated text file.
The prototype is made of three modules:

• a syntatic analyser based on antlr,

• a graph structure manager and

• the compatibility verifier.

Some tests are performed with this prototype. They are quite satisfactory according to the considered version of
the Kmelia formalism.

This experimentation demonstrates the feasability of the analyis with correct complexity (it is polynomial on
the graph size) of the Java program.

However, this first implementation is done according to a preliminary Kmelia formalism. The latter is now
considerably improved, therefore the prototype should be upgraded.

29

5 Translation of Services into Lotos

5.1 Introduction to Lotos

Lotos [21] is an ISO standard formal specification language. It is initially designed for the specification of networks
interconnection (OSI) but is also suitable for concurrent and distributed systems. Lotos extends the process algebra
CCS and CSP and integrates (algebraic) abstract datatypes. Hence Lotos is a process algebra; a Lotos specification
is structured with process behaviours. It has the main behaviour description operators of the basic process algebra
CCS and CSP. Lotos uses the "!" and "?" operators of CSP which denote respectively emission and reception.

The salient features of Lotos are: the powerful multi-way synchronisation; the use of communication channels
called gates; the synchronous interaction of processes; the use of algebraic data types to model data part of systems;
the availability of a toolbox (CADP [16]).

A process is the description in the time, of the observational behaviour of a given system. The description is
given as the non-deterministic combination of the sequence of events feasible by the system. The set of events of
a behaviour is called the alphabet of the process.

In a process specification, a sequence of events is denoted with ";"; the choice between alternative behaviours
B and C is described with "B [] C"; [Bterm] -> B describes a process behaviour B guarded with a boolean
term Bterm; the inaction is denoted with stop; a successful termination is denoted with exit; the sequential
composition of behaviours B and C is described with B >> C.

Three parallel composition operators are used to compose processes: ||| is used for the interleaving behaviour
of the composed processes; || is used for the strict (on all the events) synchronisation of the involved processes;
|[L]| where L is a synchronisation list (of events) is used to synchronise the processes on the events within the
list L; when L is empty this results on a interleaving.

Both synchronous and asynchronous communications may be described in Lotos.
A Lotos event stands for a synchronisation between two or more processes. An event is atomic. There are

three kinds of synchronisation: the pure synchronisation where no value are exchanged between the involved
processes; the value establishment where one or more processes supply a value passed to other processes; the
value negotiation where one or more processes agree with a set of value.

The ISO Lotos has an operational semantics in terms of labelled transitions systems. The semantic rules define
the behaviour of the Lotos processes and their communication. For the data part, algebraic term rewriting is
considered to evaluate data terms and each variable may be instantiated by the values corresponding to its type.

5.2 Translating the Service Automata into Lotos Processes

An output transition of a given state is a transition going from this state to another one. An input transition is a
transition coming from any one state and entering another considered state.

Remind that each service of a component is described with a transition system. The transitions are labelled
with: service calls, elementary actions, guarded actions, communication actions. Each state has an identifier. Some
of the states are additionally labelled with a list of action names (those actions which can be called when the current
evolution reaches the concerned state).
In order to manage flexibility of interaction and also to tackle service complexity, sub-services are accessible by
means of branching from some nodes which are annotated with the name of sub-services.

The general principle of the translation is that the transition system which describes a service is expressed with
one or several Lotos processes: one main process is associated to the service and one or several subprocesses are
associated to the former one.

Basically, each state is translated into a process. From each state of the service there are one or several tran-
sitions going to other states. This is translated by a choice between as many process behaviour as possible in the
Lotos process.

The behaviour of a component service is expressed as a combination of actions which can be: internal actions,
service calls or communications. These actions label the transition from one state to another one. Therefore from
each state we translate the related transitions.

30

General Translation Principle

We give here the main principles which are detailed in the subsequent subsections. The considered hypotheses for
the translation of service automata are the following.

i) To deal with the communication, each service has a default channel made by prefixing the service name
with the word "chan ". Thus a service which is named serv for example, has a channel named chan serv.
This channel is used as a parameter of the process corresponding to the service. In the same way, the channels
associated to the services with which a service serv communicates (service calls appearing in the behavior) are
listed as parameters.

ii) We treat the activation of a service with a communication (to enter the initial state of the called service). A
process corresponding to a service waits for a call. The caller service sends a call.

Initially each service (the associated process) waits for a communication using its default channel.
A caller service calls a service by sending a message (with the called name as parameter) on the default channel

of the called service. The parameters are also sent using the default channel of the called process.
As a process describes a state machine, the translation from a state machine to a process is quite straightforward.

Each state is described by a process. The behaviour of the latter describes the transitions which are attached to the
corresponding state.

In our case (with Lotos processes) the translation procedure is performed as follows: each service state gives
a Lotos process; the translation is then achieved by considering each state of the service. Each output transition
of the service corresponds to an action in the Lotos process. It may be followed by the translation of the reached
state.

A state with several output transitions is translated with a nondeterministic choice of the translation of each
output transition.

A state with more than one input transition is translated with a subprocess. Indeed, having more than one input
transitions means that the state can be reached from several transitions, therefore the subprocess is reused from
different state translations.

A state annotated with a list of service names is translated by a nondeterministic choice between several sub-
processes. Each subprocess corresponds to the interaction with one of the listed services.
Service calls are treated by means of a communication: an emission statement. We distinguish the communication
operators used for service from the classical ones; therefore !! and ?? are respectively used for an emission
statement and a reception statement. When calling a service, the name is passed as a parameter; thus a call to a
service without a parameter results in sending the action name on the channel: called chan!!called name. Likewise
the result of a service is also passed by means of a communication. The caller service waits on the default channel;
the called service sends the appropriate value(s) on the same channel.
An elementary action is translated with a symbolic (or an internal) action. As far as the guarded actions are
concerned, first the guard are abstracted as an atomic element and then the guarded action gives a sequence of
actions.
Communication actions are translated with Lotos communication actions.

To enable a new call of a terminating service from one or several services, we complement the behaviour of the
process by a looping transition labelled with the internal action i which reaches the initial state. Thus the process
can be called again.

According to the preceding statements, rather than a straightforward translation, we have a specific semantic
encoding (namely LotosEncoding) of the service specifications. Briefly, the encoding into Lotos of service
specifications is inductively performed by considering:

• service interface without formal parameters,

• service interface with formal parameters,

• service states (initial, final, intermediary and annotated) and

• service transitions.

31

The encoding is mainly achieved by considering first the state of the service specifications and then the treat-
ment of transitions.

The data used within the description of services are also considered within the encoding into Lotos.

5.3 Data Translation

The following policies are considered to manage data during the translation into Lotos.

• We use enumerated or byte types to express data; accordingly the data are reduced, but we avoid the state
explosion problem.

• For each service ServName, we define a Lotos datatype named MsgTypeServName. It has a constructor
which named with respect to the service; this permits the call of the service. Besides, all the messages which
are sent to the default channel associated to a service are used as constructors of the data type associated to
this service.

• Enumerated data are translated with constructors of abstract data types.

• The expressions used within action are translated as a simple actions in the Lotos process. The expressions
are not evaluated.

• Each guard is encoded as a simple action; therefore each guarded transition has a corresponding behaviour
(sequence of actions) in the Lotos process. The guards are not evaluated.

5.4 Encoding of service into Lotos

We define a set of semantic encoding rules to support the translation into Lotos of the component services. These
semantic rules permit a systematic translation.
Three kinds of encoding rules are defined: service interface translation, state translation rules (denoted by the
LotosEncoding procedure) and transition labels translation rules (denoted by the LotosEncodingL procedure).
We do not give a full description of these rules, but we give some of them to illustrate the used approach. All the
rules are formalised using Structural Operational Semantic (SOS) rules.

Encoding Service Interfaces (rule SI)

A service without formal parameters is called by sending its name in the channel attached to the service. Hence a
service servName() is encoded by

process servName[servName_chan, ...]: exit :=
servName_chan? snx: MsgTypeservName;[snx = servName];

A service with some formal parameters is encoded by a process which waits for the name of the service that
is encoded and all the parameters on the channel dedicated to the service (its default channel and the channels of
the services with which it communicates). Hence a service servName(p1: T1, p2: T2, ...) is encoded
with:

process servName[servName_chan, ...]: exit :=
servName_chan? snx: MsgTypeservName;

? p1: MsgTypeservName;
?p2: msgTypeservName; [snx = servName] ->

...

32

s0

init

(a)

act
s0 s1

(b)

ServName= ServName=

Figure 1: Initial and simple transitions

s0
<subserv1>,<subserv2, ... <subserv1>, <subserv2>, ...>

act1

s0

s1
(a)

(b)

Figure 2: Branching Node

Encoding Service States (rule SS)

The encoding into Lotos of the state described in the Figure 1.(a) is as follows. This corresponds to the initial state
of the process of a service.

Process ServName[ServName_chan, ...]: exit :=
ServName_chan? msg: msgTypeServName [msg = servName] ; exit

Endproc

Encoding Terminal States (rule TS)

The encoding of a terminal state is:

i; exit

To enable the recalling of a service after a terminating call, the behaviour returns into the initial state with the
>> operator.

(i; exit) >> servName[ServName_chan, ...]

Note that this encodes a non-exiting Lotos process. A variant of this encoding enables us to have an terminating
process. This one is used to perform analysis of the generated code: it either terminates or loops.

(i; exit [] servName[ServName_chan, ...])

Encoding Branching States (rule BS)

The encoding of ’branching node’ (see Fig. 2) is achieved according to the default channel of the services which
appear on the annotated nodes. Consider that a given state ss is annotated with <subserv1> and <subserv2>.
If the service subserv1 is called, then the current service proceeds within the subserv1 at its initial state. In
the following let initState(serv) denotes the initial state of a service serv.

The encoding into Lotos of a branching node (see Fig. 2.(a)) is as follows:
LotosEncoding(s0) =

Process SP_Process_s0[...]: exit =
(chan_subserv1?fprm: MsgTypesubserv1 [fprm = subserv1];

LotosEncoding(initState(subserv1))
[] chan_subserv2?fprm: MsgTypesubserv2 [fprm = subserv2];

./LOTOS/diag_rule_init.eps
./LOTOS/diag_rule_subgraph.eps

33

act1

s0 sf1

(b)

act2

act1

act2

(a)

sf2

is1

is2

sf1

Figure 3: State sharing transitions

LotosEncoding(initState(subserv2))
)

Endproc

The encoding into Lotos of the behaviour of the Figure 2.(b) is : LotosEncoding(s0) is

Process SP_Process_ss[...]: exit =
(chan_subserv1?fprm: MsgTypesubserv1 [fprm = subserv1];

LotosEncoding(initState(subserv1))
[] chan_subserv2?fprm: MsgTypesubserv2 [fprm = subserv2];

LotosEncoding(initState(subserv2))
[] act1; LotosEncoding(s1)
)

Endproc

Transition Labels Translation Rules : LotosEncodingL

An elementary action (act) is translated with an abstract action (aa). Informally LotosEncodingL(act) = aa
where aa is an abstraction (i.e. an element of the process alphabet) of the action act.

As far as the guarded actions are concerned, first the guard is abstracted as an abstract action and then the action
behind the guard is encoded; this gives a sequence of actions. The formal SOS rule is as follows:

[guard] act ∈ L ∧
absguard = LotosEncodingL(guard) ∧

aa = LotosEncodingL(act)

LotosEncodingL([guard] act) = absguard; aa
rule GA

A service call (using !!) is treated by means of a communication: an emission statement (using !). Likewise the
result of a service (using ??) is treated by means of a communication (using ?). The caller service waits on the
default channel; the called service sends the appropriate value(s) on the same channel.

Communication actions are simply translated with Lotos communication actions using appropriate channels.

Encoding Service Transitions (rule ST)

The encoding into Lotos of the transition in the Figure 1.(b) is achieved as follows:

LotosEncodingL(act); LotosEncoding(s1)

Note that if s1 is a terminal state we will have the encoding act; exit for the service depicted in Figure
1.(b). To symplify, we may consider LotosEncodingL(act)=act.

The encoding into Lotos of the transitions in the Figure 3.(a) corresponds to the encoding of s0. The result is
as follows:
LotosEncoding(s0) =

./LOTOS/diag_rule_fork.eps

34

act1

s0 fs1 fs2

act3

act2

Figure 4: Looping transitions

(
LotosEncodingL(act1); LotosEncoding(fs1)

[]
LotosEncodingL(act2); LotosEncoding(fs2)

)

The encoding into Lotos of the transitions in the Figure 3.(b) corresponds to the encoding of is1 and is2.
This results in:

LotosEncoding(is1) =

Process SP_Process_is1[...]: exit =
LotosEncodingL(act1); LotosEncoding(sf1)

Endproc

and
LotosEncoding(is2) =

Process SP_Process_is2[...]: exit =
LotosEncodingL(act2); LotosEncoding(sf1)

Endproc

Encoding Looping Transitions (rule LT)

The encoding of a looping transition (see Fig. 4) is like the other transitions except that the final state of a given
transition is already treated. According to the schema described in the Figure 4, we have the following encoding:

LotosEncoding(s0) =

Process SP_Process_s0[...]: exit =
LotosEncodingL(act1); LotosEncoding(fs1)

Endproc

and
LotosEncoding(fs1) =

Process SP_Process_fs1[...]: exit =
(
LotosEncodingL(act2); LotosEncoding(fs2)

[]
LotosEncodingL(act3); SP_Process_s0[...]

)
Endproc

Encoding Final Transition (rule FT)

This encoding results from the application of previous encoding rules: transition encoding and final state encoding.
Thus the encoding of the transition of the Figure 5 results from the combination of LotosEncoding(s0) and
LotosEncoding(s1). This gives:

act; exit

./LOTOS/diag_rule_loop.eps

35

act

s0 s1

Figure 5: Final transition

5.5 Formalisation

All the previous encoding rules should be formalised. We give here the main lines of the formalisation process.
Consider in the following the services of a component. For a service serv, let δ denotes the function which

gives the behaviour of a service serv; states denotes the function which gives the states of a service serv;
initial states denotes the function which gives the set of initial states; final states denotes the function which
gives the final states.
The encoding of a state is of a transition of serv is formalised with:

(is, act, fs) ∈ δ(serv) ∧ SP Process fs = LotosEncoding(fs)

LotosEncoding(is) = act; SP Process fs
rule ST

The formalisation of the previous terminal state encoding rule is the following.

fs ∈ states(serv) ∧ fs ∈ final states(sf)

LotosEncoding(sf) = i; exit
rule TS

The other rules are formalised in the same way.

5.6 Encoding Labels of Transitions

We examine here the encoding of the actions which label the transitions of the service behaviour.

rule LabA: An elementary action (assignment, ...) is encoded by a simple Lotos action. The name of the latter
is generated from a dummy string used for the alphabet of the current service.

rule LabG: A guard [boolterm] is also encoded by a simple action. It is not evaluated. In the same way as
for elementary action, the name of the action is generated from a dummy string used for the alphabet of the current
service.

rule LabE: An emission action chanName!term is encoded in the the same way in the corresponding Lotos
process.

rule LabR: A reception action chanName?term is encoded in the the same way in the corresponding Lotos
process.

rule SC: A service call ServName!!term is encoded with an emission action (that is a communication) on
the default channel of the service, except that the channel name is modified according to the default channel name
of the service: ServNname chan!term

rule SW: A waiting for a service call ServName??term is encoded with a reception action (that is a com-
munication) on the default channel of the service, except that the channel name is modified according to the default
channel name of the service: ServNname chan?term

5.7 Examples of Complete Encoding into LOTOS

The service Code() depicted in the figure 6 is translated as follows:

./LOTOS/diag_rule_final.eps

36

Code () = AskMoney () =

<Code>

withdrawal?result(b:Boolean)

withdrawal(myCard)

e0

e1

e2

<Amount>
!result(myCode)

Figure 6: Example of Services

PROCESS Code [Chan_Code,Chan_withdr] : exit :=
Chan_Code?xmsg: MsgTypeCode [xmsg=Code] ;

SP1_Code [Chan_Code,Chan_withdr]
ENDPROC

PROCESS SP1_Code [Chan_Code,Chan_withdr] : exit :=
Chan_Code!resCode ! idCod1 ;

(i ; exit [] Code[Chan_Code, Chan_withdr])
ENDPROC

The service AskMoney() depicted in the Figure 6 is translated as follows:

PROCESS AskMoney [Chan_DR, Chan_withdr, Chan_Code, Chan_Amount]: exit:=
Chan_DR ? xmsg : MsgTypeAskMoney [xmsg = AskMoney] ;
(*e0*) SP1_AskMoney [Chan_withdr, Chan_Code, Chan_Amount]

WHERE
PROCESS SP1_AskMoney[Chan_withdr, Chan_Code, Chan_Amount] : exit :=
(*e0*)
Chan_withdr!withdrawal !idcard1 ; (*e1*)

SP2_AskMoney[Chan_withdr, Chan_Code, Chan_Amount]
ENDPROC

PROCESS SP2_AskMoney [Chan_withdr, Chan_Code, Chan_Amount]: exit :=
(*e1*)
(Chan_withdr ?xmsg: MsgTypeRetrait ? b: Bool [xmsg = result]; exit
[] Chan_Code?xmsg: MsgTypeCode [xmsg=Code] ;

SP1_Code [Chan_Code, Chan_withdr]
[] Chan_Amount?xmsg: MsgTypeAmount [xmsg = Amount] ; i ;

SP1_Amount[Chan_Amount, Chan_withdr]
)>> (i; exit [] SP2_AskMoney[Chan_withdr, Chan_Code, Chan_Amount])
(*e2*)
ENDPROC

ENDPROC (* of AskMoney *)

5.8 Using Lotos for the Compatibility Verification

The behavioural compatibility checking is based on LOTOS processes communication. We use the |[L]| com-
position operator. The compatibility verification turns in checking that the processes that represent the services
communicate perfectly. As far as simple actions are concerned, each process evolves independently from the
other. But communication actions should be coordinated. An emission action should correspond to a reception
action and vice versa.

A pair of services is involved in a compatibility check, the caller and the called one; for example behaviour
and withdrawal in our case (see Fig. 2). Note that the withdrawal is required by behaviour via the name
ask for money. A renaming of withdrawal with ask for money is performed.
These two services (the caller and the called) are translated into LOTOS processes (say Lbehaviour and Lask for money);

./LOTOS/code_retrait_uk.eps

37

each process has its alphabet (alphabet in the phollowing); the processes are then composed using the |[L]|
operator to get a resulting process called Res in the following. L is instantiated with the list of channels used for
the communication between both services as illustrated above.

Res = Lbehaviour[alphabet]
|[chan_behaviour, chan_ask_code, chan_ask_amount]|

Lask_for_money [alphabet]

Consequently, the services are compatible if the obtained Res process has no conflict according to the compo-
sition operator.
As far as the running example is concerned, we check that USER INTERFACE and ATM CORE are composable
according to the services (ask for money, withdrawal): the interface checking is easy. The behaviours of
ask for money and withdrawal are compatible.

5.9 Implementation

To make it easy the experimentation of our component model, we develop a prototype (named kml2lotos) to
translate the component services into LOTOS is also developed using Java. The kml2lotos module is a part of
the general toolbox under development to support our model. The current translator uses the output of an analyser
module.
Given an input component specification (in kmelia), the analyser parses the specification and generates the corre-
sponding internal structure. The latter is read by the kml2lotos prototype; it generates communicating LOTOS

processes which are used as input to the CADP toolbox. As far as the previous ATM case study is concerned (see
Section 2), the experiment deals with an assembly of components. Specific services (a caller with a called one,
branching node with the sub-services) are checked. The CADP raises failures when there are lack of channels,
wrong channels, incompatible types, blocking or incompatible behaviours. The experiment using CADP helps us
to discover specification errors; for example when a wrong communication channel is used. When the errors are
recovered and the communications are fine, the CADP caesar utility generates the (execution) graph correspond-
ing to the system. The graph is very large in the case of brute translation; but when we erase independent alphabet
actions and minimise the generated graph, we get a graph with less than hundred states. Stepwise simulation (using
CADP executor utility) is performed to analyse the evolution of the system.

6 Translation of Services into MEC

This section reports experimentations on verification of behavioural compatibility using the MEC verification tool
for state transition systems. The behavioural compatibility is the property of correct interaction between two
services in a service context (see Section 4.2). The verification is twofold: translation into MEC, verification of
the properties by the MEC model-checker.

This section is organized in two parts: short overview of MEC, basic transformations and extensions. A
subsection is dedicated to each part, respectively sections 6.3 and 6.4. In each case, we study the translation into
MEC and the dynamic properties proofs. Section 6.3.4 is to prove inconsistencies in the case study.

6.1 Aims and Scope

We do not check an overall component model. The goal is to check the behavioural compatibility of each provided
service

1. against all the required services that call it: peer to peer component behavioural compatibility (this is a local
property),

2. against all the services that it requires: the service is fully and correctly specified (this is a global property).

The same translation can be used in both case. What varies is the workspace.

38

In the following we focus on the first verification only. The behavioural compatibility of each provided service
(the reference service) is checked in the context of one of its caller (component requiring this service through
an assembly). The (verification) service context is made of a reference service, a calling service, a required
service that links them, and the components that include them. In the ATM case study, the reference service is
withdrawal, the calling service is behaviour, the link is (withdrawal, ask money), and the context
includes the USER INTERFACE and ATM CORE components This context is given in figure 4.

withdrawal
USER_INTERFACE

behavior

ask_money

ATM_CORE

code

ask_code

amount
ask_amount

ask_
authorization

debit
eject_card
swallow_card
display

Figure 4 : A behavioural Verification for an ATM System

In short, the behavioural peer to peer compatibility verification processes as follows:

f o r each l i n k (ps , r s) do
/ * ps = p r o v i d e s e r v i c e and r s = r e q u i r e d s e r v i c e * /

begin
p : = component (ps) ;

/ * t h e component p h o l d s t h e p r o v i d e d s e r v i c e ps * /
q : = component (r s) ;

/ * t h e component q h o l d s t h e r e q u i r e d s e r v i c e r s * /
i f (p < > q) then

/ * on ly e x t e r n a l l i n k s a r e e x p l o r e d f o r b i n a r y c o m p a t i b i l i t y * /
begin

f o r each cs in c a l l i n g (r s) do
/ * t h e b e h a v i o u r depends on t h e c a l l i n g c o n t e x t * /

begin
c h e c k _ b e h a v i o u r (ps , r s , cs , p , q)
/ * checks p e e r to p e e r b e h a v i o u r c o m p a t i b i l i t y * /

end ;
end ;

end ;

The rest of the section is dedicated to the implementation of the check behaviour procedure in MEC.

6.2 MEC

MEC [7] is a model checker for labeled transition systems (LTS) (or state machines). MEC LTS are either simple
LTS or synchronization systems of LTS.

• A simple LTS is defined by a list of transitions, the union of the source states and target states of the transi-
tions defines the set of states. States and transitions are annoted by boolean parameters or properties called
marks. Each mark hence defines a subset of transitions or a subset of states. For example, initial defines
the set of initial states.

• A synchronization system is a synchronized product of transition systems4. The synchronized product is
a cartesian product restricted to the transition labels belonging to the synchronization constraints (synchro-
nization vector). MEC computes the synchronization products.

4A synchronized product of transition systems and synchronization systems would be more powerful and helpful.

./MEC/FIGURES/gab.verif.eps

39

Model checking with MEC is to compute properties (marks) on transitions or synchronization systems. Each
property is defined as a set of states or transitions, those annoted by the mark of this property. MEC includes
powerful graphs algorithms, including fixpoints computation and user-defined functions.

We currently work with the MEC 4 model checker. A new release, called MEC 5 is available with the Altarica
tool [8]. It is discussed in section 6.4.5.

6.3 Basic Transformations

This section describes the transformation of service behaviours into MEC transition systems and service contexts
into synchronization systems. The translation algorithm is detailed in section 6.3.2, then the specification properties
are explored in section 6.3.3. The proposal is illustrated on the ATM example.

6.3.1 Workspace Computation

The workspace is the set of services which are concerned by the verification of a service. For a global service
verification it includes all the services called by the reference service, the service context and the related sub-
services.. For a peer to peer verification the workspace includes the reference service, the calling service, the link
between them and all the secondary services (belong to the component of the calling service and are called by the
reference service). This context is shown in figure 4. In any case, the semantic interpretation is communicating
processes, each service execution is a process. Each service of the workspace maps to a process and is translated
into a MEC transition system.

Each service call that do not belong to the workspace is considered to be simple action and treated as such. Thus
the search space is limited to a finite number of processes. In our example, the required service ask authorization
is supposed to be correct5.

6.3.2 Translation

The formalism of service behaviours is more expressive than the one of MEC, thus the translation is not so im-
mediate. Some service behaviour concepts can translated by the combination of several MEC concepts (channels,
branching states and transitions). Others cannot be translated easily (guards, parameters). The translation is based
on an algorithmic approach and (customizable) translation rules. The current algorithm is applied manually, an im-
plementation will be coded once the grammar of the source model will be operational. The translation is presented
by difficulty level and by step.

Translation of the Model Kernel
Each service of the workspace is interpreted as a process and translated by a transition system. The service
parameters (definition and call) are omitted because there a no simple way to translate them into MEC. The model
kernel also ignores the guards and the communication parameters and results. We assume that each service is
instanciated once and each provided service ends by a final state. Handling several instances of a service is studied
in section 6.4.3.

Syntactic conventions are held during the translation because MEC does not accept some characters (spaces,
quotes, parenthesis, punctuation marks, numbers, signs...). For example, the dotted notation is replaced by a ’ ’
notation. We can also limit the length of labels to 15 characters.

1. We assume that the services are identified by their names and not their signature (name + parameters). Each
service behaviour is translated by a MEC transition system whom name is composed from the component
name and the service name. The service ATM CORE. withdrawal(card:CashCard) is translated
by the LTS ATM CORE withdrawal.

• An initialization transition, labeled by start concatenates with the service name, is added to syn-
chronize the service call. The new initial state is named init.

5In fact, it will be checked later, when verifying the authorization service

40

• The transitions that target to the final state are treated as ordinary transitions.

• For each state, an empty transition e (that represents the empty action ε) is explicitely added. It is used
in the synchronization constraint to make the LTSs evolve independentdly when no communication
occurs.

2. Each service state is translated into a LTS state (naming rules applied for special characters).

• The initial states are marked to be initial (at least one for MEC).

• The final states are marked to be final in MEC. It is used to keep them away from deadlock states.

3. Each transition is translated into a LTS transition:

• The initialization transition is labeled by start concatenates with the service name.

• The transitions corresponding to internal actions are labeled

(a) sequentially (t1, t2...) using a map table between labels and full original names. In this solution, a
LTS is hardly readable.

(b) by renaming labels according to the MEC naming rules. The problem is to handle conflicting
renamings, using a table of identifiers.

The second solution has been choosen for our experimentation.

• Service calls are transitions labeled by the required service name. The link between a required service
and a provided service is solved in the assembly translation, see section 6.3.2.

• A communication includes a service name (gate), a direction (? ou !) and a message. The following
translation convention are adopted: a communicationserv!msg is translated to an emit serv msg,
a communication serv?msg is translated to an rcv serv msg. The default gate name is the refer-
ence service. Recall that parameters are omitted. The correspondence between emissions and recep-
tions (notion of synchronization and communication in the component model) is explained in section
6.3.2.

In our example, the state e2 of service behaviour of the component USER INTERFACE is considered to
be final. This makes the termination properties more easy to compute.

Flat LTS
The service behaviour allows branching states and transitions. Since MEC does not support hierarchical LTS the
state machine has to be flattened. Three cases occurs:

• the branching (or compound) transitions (regular expressions of labels) are extended and generate new in-
termediate states

– a sequential operator leads to a sequence of transitions, each intermediate state is labeled by the source
state suffixed by an arbitrary sequential number. For example, a transition e20 - a ; b ; c ->
e21 is translated into 3 flat transitions e20 - a -> e20 1, e20 1 - b -> e20 2 and e20 2
- c -> e21.

– a colateral operator leads to a parallel composition of sequential transitions (in any order. For example,
a transition e20 - a , b , c -> e21 is translated into 6 sequential transitions e20 - a ; b
; c -> e21, e20 - a , c , b -> e21, e20 - b , a , c -> e21... Each sequential
transition is translated along the previous rule. For sake of simplicity, each colateral operator can be
simplified by a sequential one.

Note that the intermediate states have no empty transitions since we assume that the branching transition is
atomic.

41

• The branching states (nested (sub)services attached to the states) are a shortcut for ring transitions whom
initial source state and final state are the related state. The branching states are expanded according to the
following rules:

– The initial source state and final state are the related state.

– The new intermediate states are labeled by the source state suffixed by an arbitrary sequential number
(see the coumpound sequential transition above).

In our case study, the service behaviour of the component USER INTERFACE is expanded on the state
e1 to include the state machines of the subservices code.

• The synchronous service calls (:=) are translated by a sequential branching transition: call, result reception,
assignment (internal action). It is treated as a sequential branching transition.

Synchronization Constraint (vector)
The synchronization vector indicates what actions should be synchronous. For more information on communicat-
ing state machines see [6, 7] or the chapter 5 of [3]. A similar concept exists for communicating process (see the
LOTOS experiments in section 5). In MEC, the synchronizations apply to labels and not transitions themselves.
During our experiments, we consider two situations: sequential system, parallel system. The differences are shown
below.

Sequential System
Only one action occurs at each time in the system. This action may concern several LTS and thus synchronizes
their ’local’ actions. If a LTS is not concerned, an empty transition (the predefined ’e’ label is a naming convention
for the usual ε-transitions in non-deterministic LTS) occurs on it. The following rules hold:

• Each internal action i of a service behaviour A leads to to a (synchronization) line in the synchronization
vector (also called the synchronization constraint) such that the cell for A is labeled by i and the other cells
are labeled by the empty action e.

• Each service call call S of a service behaviour A is synchronized with a service initialization start S
of a service behaviour S, the other cells are labeled by the empty action e. The initialization of the calling
service (behaviour) in our example, is assumed to be an internal action to begin the verification.

• Each message reception rcv S msg of a service behaviour A is synchronized with a message emission
emit S’ msg of a service behaviour A’ and the other cells are labeled by the empty action e.

Note that the correspondence between the names call S of a required service and start S of a provided service
S is solved by the links of the assembly. The MEC specification of the sequential approach is given in appendix
A.1.1.

Parallel System
In the parallel version, several actions may occur simultaneously, since each service executes only one action (no
conflict in the synchronization vector). It means that the services are sequential but the global system is parallel. We
can compute automatically the synchronization vector of the parallel version by a recursive combination algorithm
:

SSV : = s e q u e n t i a l s y n c h r o n i z a t i o n v e c t o r
PSV [1] : = SSV / * s y n c h r o n i z a t i o n v e c t o r * /
i : = 2 / * i t e r a t i o n v a r i a b l e : number of a c t i o n s in p a r a l l e l * /
repeat

PSV[i] : = un ion (PSV[i −1] , combine (PSV[i −1] ,SSV))
/ * combine t r i e s to sum each l i n e PSV[i] with each l i n e of SSV

t h e sum i s v a l i d i f t h e r e i s no c o n f l i c t ,

42

i . e . empty a c t i o n combines with any a c t i o n * /
u n t i l PSV[i] = PSV[i − 1] ; / * f i x p o i n t * /

We illustrate the idea by the following example. Let a synchronization system SSseq composed from two
LTS TS A and TS B, synchronized by a sequential synchronization constraint.

transition_system TS_A < width = 0 >;
init |- e -> init,

action_a -> e0;
e0 |- e -> e0,

action_a -> e0,
stop_a -> e1;

< initial = { init } ; final = {e1} >.

transition_system TS_B < width = 0 >;
init |- e -> init,

action_b -> e0;
e0 |- e -> e0,

action_b -> e0,
stop_b -> e1;

< initial = { init } ; final = {e1} >.

synchronization_system SSseq < width = 2 ;
list = (TS_A , TS_B) >;

(action_a . action_b);
* action_a and action_b are synchronous *\
(stop_a . e);
* start_a is asynchronous *\
(e . stop_b).
* fin_b is asynchronous *\

To get the parallel version, we combine the lines of the sequential synchronization vector: line 1 cannot be
combined with line 2 because there is a conflict on TS A, line 1 cannot be combined with line 3 because there is
a conflict on TS B, line 2 can be combined with line 3 because there is no conflict in the synchronization vector.
There are no other combination. The remaining parallel synchronization system is:

synchronization_system SSpar < width = 2 ;
list = (TS_A , TS_B) >;

* one action only *\
(action_a . action_b);
* action_a and action_b are synchronous *\
(stop_a . e);
* start_a is asynchronous *\
(e . stop_b);
* fin_b is asynchronous *\
* two actions *\
(stop_a . stop_b).
* combined line *\

The resulting state machine is shown in shown in figure 5. The gray part represents what is added in the
sequential machine (black) to build the parallel version.

43

e1,e1e0, e0

action_a, action_b

init, init

e,e

action_a,
action_b

e,e
e0, e1

e1, e0

stop_a, stop_b

e, stop_b

stop_a, e

e, stop_b

stop_a, e

Figure 5 : A Parallel Synchronization

Note that the paralleling always adds only transitions but no states, whatever transition system we have. The
synchronization is completed by new lines, grouped by number of parallel actions: one action, two actions, three
actions...

In the ATM case study, only internal actions can be merged, the other combinations lead to a conflict. The
resulting system is presented in appendix A.2.1.

6.3.3 Verification of Dynamic Properties

MEC is a model checker, it means that MEC computes every situation (every reachable state for the system) and
computes properties on these situations. For short, MEC computations are based on graph algorithms and set
operations that mark the states and transitions by properties. The result of a MEC computation is a set of state or
transitions, which is interpreted in a first order logic.

• Structural Properties
The synchronized product computes a global synchronization system, in respect with the synhronization
constraint. By construction, the synchronization systems are finite and they can be non-deterministic.

• Behavioural Properties
In the ATM case study, there are no deadlock (the final states are not supposed to be blocking) for the
withdrawal service in the context of the behaviour calling service. Obviously, the system has not a
liveness property, since it can not ne reinitialized: when we require a service, we hope it to end ! The result
of the sequential (resp. parallel) version is detailed in appendix A.1.2 (resp. appendix A.2.2). There are no
difference between the two versions because nothing happends between asking the amount and waiting for
the amount (state e6 in the service withdrawal).

6.3.4 Inconsistencies Detection

In this section, we arbitrarily introduced inconsistencies to check that MEC detects them. In section 6.3.4 a protocol
inconsistency occurs in the withdrawal service, then the problem of non-determinism in communications is
studied in section 6.3.4.

Behavioural Inconsistency
The model of figure 2 is enriched by a communication related to the card exchange. The behaviour service of
the USER INTERFACE component of figure 2 is modified from state e1 to recover the card:

...
e1 -- ask_money?recoverCard(c:CashCard) --> e2 ,

// get the updated card
e2 -- ask_money?result(b:Boolean) --> e3,

// wait for the result of the withdrawal
...

MEC/FIGURES/ssseq.eps

44

The provided service withdrawal of the component ATM CORE of figure 2 is updated to get back the card:
a communication replaces the internal action.

...
e3 -- [rep] display("Enter the cash amount, please ?") --> e5,

// the AAC accepts the transaction, the amount is asked
e3 -- [not rep] { // the AAC refuses the transaction, the service ends

display("Transaction refused") ; // calls an internal action
!recoverCard(c) // gets back the card

}--> e4 ,
...

e7 -- [m <= card.limit] {
debit(c,m) // calls a internal action
!recoverCard(c) // gets back the card
}--> e8 ,

...

The straight translation into MEC provides the specification of section A.3.1. When the user recovers his card,
the ATM gets back the card. Its execution is given in section A.3.2. The state (e1,e4) is locked: the user waits
for the card which has been swallowed.

Non determinism and Inconsistencies
We show an inconsistency due to the local non-determinism. Let the (partial) transition systems of figure 6.

c!a()

ProcB() =

e0

e1

f

e2

c!b()c?a()

ProcA() =

e0

e1

f

e2

c?b()

i

i i
i

Figure 6 : Mismatch of Service behaviour

The straight translation into MEC provides the specification of section B.1.1. Only the consistent communica-
tions are allowed, the global synchronization system includes 8 states. The result of the MEC execution is given
in section B.1.2. There are no deadlock because the inconsistent communications (e.g. emitting the message a on
the service c and the reception of the message b on the service c) are ignored by the synchronization constraint.

In order to make the detection of inconsistencies more powerful, we must describe finer communications. For
example, the channel (gate, service) can be distinguished from the message sending. In our translation algorithm,
it means that a communication is interpreted as a compound sequential transition: select the channel (service) and
the mode (in/out), send or receive the message. In such a case, one can detect inconsistent messages on the same
channel (emit one message and receive another one). The straight translation into MEC provides the specification
of section B.1.3. The result of the MEC execution is given in section B.1.4. MEC detects two erroneous cases (two
"deadlocks"):

• sending the message a on the service c and receiving the message b on the service c,

• emitting the message b on the service c and receiving the message a on the service c.

./MEC/FIGURES/testChoix.eps

45

More inconsistencies are detected, but the translation is more heavy.
Last, one can also enrich the description when considering an additionnal level: channel selection, communica-

tion mode choice, message invocation. Having three level communication primitives improves the error detection
by adding two error cases6: both service emit (or receive) a message.

6.4 Extensions

In this section, we study some concepts of the component model that were not translatable directly in MEC,
especially the guards, the value passing and the necessity of multiple instances for one service definition.

6.4.1 Guards

The service definition allows conditions for the transition but MEC does not accept guards nor dynamic evaluation
of programs.

A Restricted Semantics for the Guards
A first solution consists in restricting the usage of guards. In section 2.1.2, we assume that for any states, the out-
going transitions labeled by a guard are complentary and exclusive. We cannot check it, but under this asumption,
the translation is no more than a guard naming in the current transition translation.
The transition guards are named in a map table and their name are added as prefix to the label string issuing from
the current transition translation.

For example, the provided service withdrawal of the component ATM CORE of figure 2 is updated to get
back the card: a communication replaces the internal action.

...
e2 -- [c=card.code] rep := ask_authorization(card.id, c) --> e3 ,

// call the required service ask_authorization
e2 -- [c<>card.code & nbt > 0] display("Enter your card code, please ") --> e0 ,

// call an internal action
e2 -- [c<>card.code & nbt = 0] {

display("Card swallowed, sorry") ; // call an internal action
swallow_card() // call an internal action

} --> e4 ,
...

is translated by

...
e2 |- e -> e2,

g1_rep_ask_authorization -> e3,
g2_display -> e0,
g3_display -> e2_1; * sequential transition *\

e2_1 |- swallow_card -> e4;
...

There are no ambiguities.

Static Evaluation of the Guards
To explore the execution traces, a second solution consists in adding a static evaluation for each guard by two
values guardIsTrue et guardIsFalse. This may happend when no asumptions is set on the different guards
issuing from the same state. The guards are treated apart. The problem is that in many examples there’s a relation
between these guards, in our examples g1, g2 and g3 are exclusive. A solution is to propose a guard language
to the specifier to provide a limited but nice set of logic operators (not, and, or) and atomic guard names. The

6Which are not considered as errors by LOTOS.

46

advantage is to check the previous asumptions (determinism) without providing a full language for evaluating
expressions (integers, reals, records...).

For example the guards issuing from the state e2 the provided service withdrawal of the component
ATM CORE of figure 2 are named as follows:

g_e2_1 == (c = carte.code)
g_e2_2 == (nbe > 0)

Note that in the last transition, the initial specification is complete only if nbe is a natural number.
The transitions are written as follow:

...
e2 -- [g_e2_1] rep := ask_authorization(card.id, c) --> e3 ,

// calls the required service ask_authorization
e2 -- [(not g_e2_1) and g_e2_2] display("Enter your card code, please ") --> e0 ,

// calls an internal action
e2 -- [(not g_e2_1) and (not g_e2_2)] {

display("Card swallowed, sorry") ; // calls an internal action
swallow_card() // calls an internal action

} --> e4 ,
...

The translation into MEC is twofold:

1. adding explicit transitions for evaluating the guards first,

2. prefixing the transition labels by the guard expressions.

The problem with the first solution is that it can introduce deadlocks. For example, a guard can be true but the
associated communication action fails i.e. a message send cannot be send because there are no reception in the
corresponding service.

The above example is translated into

...
e2 |- e -> e2,

g_e2_1_rep_ask_authorization -> e3,
not_g_e2_1_and_g_e2_2_display -> e0,
not_g_e2_1_and_not_g_e2_2_display -> e2_1; * sequential transition *\

e2_1 |- swallow_card -> e4;
...

This work needs further experimentations. One issue is to use a symbolic model checker (for example, MEC 5
includes guards on state values, but not on parameters). Another issue is to combine the guard evaluation with the
tool used for verifying the assertions (pre/post conditions). An experimentation with B [1] is under study.

Delayed Guard Handling by Removing Unreachable States
The unreacheable deadlock states are the (reachable) states of the synchronized product that cannot be reached
when taking the semantics of the guards into account. The translation algorithm cannot avoid them, but the verifi-
cation process can handle them interactively (the specifier decides which deadlock is a true or false deadlock).

w r i t e or modify t h e s e r v i c e s p e c i f i c a t i o n (1)
t r a n s l a t e i n t o MEC (2)
u n r e a c h a b l e _ d e a d s : = empty / * s t o r e s t h e u n r e a c h e a b l e d e a d l o c k s t a t e s * /
t r u e _ d e a d s : = empty / * s t o r e s t h e r e a c h e a b l e d e a d l o c k s t a t e s * /
repeat

d e a d l o c k : = run t h e MEC e v a l u a t i o n
n o _ m o r e _ u n r e a c h a b l e _ d e a d s : = t rue

47

f o r each s : S t a t e in (d e a d l o c k − u n r e a c h a b l e _ d e a d s) do
answer : = read (" I s s t a t e " , s , " an u n r e a c h a b l e d e a d l o c k

when c o n s i d e r i n g t h e g u a r d s ? ")
i f answer then

u n r e a c h a b l e _ d e a d s : = add (s , u n r e a c h a b l e _ d e a d s) ;
/ * s becomes i n v a l i d f o r t h e v e r i f i c a t i o n * /
n o _ m o r e _ u n r e a c h a b l e _ d e a d s : = f a l s e

e l s e
t r u e _ d e a d s : = add (s , t r u e _ d e a d s)

e n d i f
e n d f o r

u n t i l n o _ m o r e _ u n r e a c h a b l e _ d e a d s ; / * f i x p o i n t * /

The above ad-hoc solution is a post specification processing since it does not change the initial specification.
Sometimes several unreachable deadlock states share a same property. Thus, in order to treat them collectively

(to avoid an individual processing), one can mark the LTS states directly in the MEC specification.
Note that the steps (1) and (2) can be set inside the repeat loop to remove the true deadlocks too.

u n r e a c h a b l e _ d e a d s : = empty
repeat

w r i t e or modify t h e s e r v i c e s p e c i f i c a t i o n (1)
t r a n s l a t e i n t o MEC (2)
d e a d l o c k : = run t h e MEC e v a l u a t i o n
f o r each s : S t a t e in (d e a d l o c k − u n r e a c h a b l e _ d e a d s) do

answer : = read (" I s s t a t e " , s , " an u n r e a c h a b l e d e a d l o c k
when c o n s i d e r i n g t h e g u a r d s ? ")

i f answer then
u n r e a c h a b l e _ d e a d s : = add (s , u n r e a c h a b l e _ d e a d s)
/ * s becomes i n v a l i d f o r t h e v e r i f i c a t i o n * /

e n d i f
e n d f o r

u n t i l d e a d l o c k = u n r e a c h a b l e _ d e a d s ; / * f i x p o i n t * /

This work needs further experimentations.

6.4.2 Managing Communications and Parameters

The parameters are used for the guards and for the component state changes. Since no symbolic evaluation is done
for this cases, the management of parameters has no sense in MEC.

6.4.3 Multiple Instances of a Service

Until now, each service is instanciated once: each service terminates (on final states). What happens for multiple
instance of service ?

In a first approach, we can consider several sequential instanciations: that means that each service has a unique
instance at any time, but several instances during the program execution. Such a recurrent service call is easily
implemented by reinitialization transitions (the final state becomes an initial state).

Handling multiple instances of service requires the naming of on-going service and in somewhat implemen-
tation a scheduler for running them. In MEC, each (running) service is represented by a column in the synchro-
nization constraint. Thus all the invocable services are statically known (no dynamic creation, no recursive service
call). The several instances of one service are distinguished by their column number. This implicit identification
has to be maintained by the MEC translator to keep the consistency between the service interaction.

This problem is still open in the Kmelia component model.

48

6.4.4 Composition

MEC 4 does not allow hierachical composition of LTS: there are two levels LTS and systems. Since systems are
not LTS, no composition is possible. We think that MEC could be easily extended to composition by naming the
lines of the synchronization constraint without theoretical problems.

6.4.5 AltaRica

The Altarica tool [8] uses a new release of MEC, called MEC 5. MEC 5 is implemented by Binary Decision
Diagrams (BDD), one of the symbolic model checking techniques. According to the authors, MEC 4 specifications
can be inputs of MEC 5 but "nothing useful can be extracted from them with MEC 5 yet".

Altarica is both a dataflow language and a state transition system. We assume the second interpretation. The
states are not explicit names (as in MEC 4) but they are the (implicit) cartesian product of state variables, in which
types are restricted to integers, booleans and enumerated types. The Altarica guards are conditions on these state
variables so that the source state of a transition is the result of guard expression. Of course a MEC 4 LTS can be
translated into Mec 5 by a single state variable, in which type is an enumerated type. Altarica transitions have no
parameter.

This short description shows that the above extensions cannot be simply improved by AltaRica: no parameters,
no powerful usage of Mec 5 states, reduced guards application. Thus the generated specification would be far from
the service behaviour and less readable.

6.5 Implementation

The above ideas have been inplemented in our automated environment called COSTO. This specification environ-
ment currently accepts component specification and handled various functionalities on the resulting code. It is
implemented in ANTLR and Java.

• The Kml2mec class implements the translator. The translator accepts as input a Kmelia description of a
composition together with a service context. It generates a Mec file.

• The Mec file is evaluated under Mec 4, using the load(file); command. It generates a model checking
result file.

• The Mec2Dot class implements a translator from MEC 4 model checking result file into a Dot file (for
visual description).

We experimented the sequential approach on the ATM case study. The Mec translation operates in the following
context :

• service to check : withdrawal

• calling service : behaviour

• required service : ask for money

There are four LTS one per service and one for the provided services (amount, id) that are called by re-
quired subservices. The final STS includes 1153 states and 2669 transitions. There are no deadlocks, the triple
withdrawal-behaviour-ask for money is therefore behaviourally consistent.

6.6 Conclusion and perspectives

Since Kmelia is more powerful than MEC, some Kmelia features cannot map to MEC concepts e.g. guards,
parameters, results... Nevertheless, MEC asserts a first (basic) level of behavioural compatibility. MEC ensures a
first confidence level, when the constraints on the symbolic aspects of the specification are lightened (no guard and
parameters). Other experiments with state transition system could be led using other model checker such as SPIN,
or PVS, or with other theories like the π-calculus.

49

7 An overview of The COSTO Toolbox

Our proposal is made with the sake of mechanization. We start the development of a prototype named COSTO
(Component Study Toolbox) to support all the steps of component analysis and developement.

The prototype already integrates:

• the Kmelia specification parsers,

• a translator to LOTOS,

• a translator to MEC,

• the static interoperability checkers,

• the dynamic interoperability checkers,

• a translator of Kmelia services into dot (for the visualisation of service behaviours).

However we lack a graphical interface to guide and assist the user. This is subject to current developement.
The figure 7 gives an overview of the main parts of the COSTO toolbox.

Parser

Kmelia internal

model

LPreprocessing

MPreprocessing

kml2lotos

kml2mec /
Checker

Intermediate

structure

MEC
Package

Intermediate

structure

CADP

Specification

Kmelia

grammar
Kmelia

(antlr)

Specification

Lotos

Figure 7: An overview of the COSTO

8 Related Work and Discussion

We have presented an abstract component model and a formalism (Kmelia) that permits the flexible description of
interacting services which are defined as extended labelled transition systems.
We have proposed a behavioural verification algorithm to check the compatibility between service behaviours.

From the practical point of view, our proposal follows the mechanized approaches like Darwin/Tracta [22, 17]
or SOFA [27].
Darwin [22] is an architecture description language that describes systems in terms of components. The latter ones
manage the implementation of services. A system has an hierarchical structure including primitive components and
composites. The primitive components are equipped with a behaviour expressed as a labelled transition system. A
composite behaviour is the parallel composition of the primitive behaviour.
Tracta [17] is a compositional reachability analysis approach; it is used in combination with Darwin to analyse
distributed systems. The component behaviours are described with finite state processes.

In the SOFA component model[26], components are either primitive or composed. A primitive component
contains functionality (described as methods) and no subcomponents. A composed component contains subcom-
ponents and no functionality. The methods of a component is used in various forms called events (emission,
recepetion and their results) SOFA components are linked with connectors. A SOFA component has a behaviour
protocol defined with a regular-like expression made of the events built using the component methods.

./FIGURES/costo_fwk1.eps

50

The Fractal Component Model [14] is an extensible component model dedicated to design, implementation
and deployment. It can be used used with various programming languages, systems, applications. In the Fractal
approach a component has a controller that gives the bahaviour of the particular component. Therefore our proposal
is different of Fractal.

Unlike most of existing approaches [35, 26, 9, 13] where a component has a behaviour, we argue for a model
were the provided services defined as LTS have behaviour. This moves up the granularity for the use of components
and increases the usability of components by considering service level. When our service behaviours are reduced
to combinations of messages, we get the low level of usability found in the aforementioned approaches.
In our approach, the composition of the services is the support of component compositions; it is performed by
considering their interfaces and their behaviours. We can extract several collaborations à la Yellin&Strom [35]
from a single of our service behaviours which interweaves collaborations on different channels and allows optional
calls of services.
At the behavioural verification level, the union a the collaboration à la Yellin&Strom is a subset of the possible
interactions that we can verify.

Unlike the works presented in [9, 20], our approach works at the abstract specification level; it offers a more
flexible formalism than the ones proposed by [35, 9] for the description of interacting services. We adopt a pairwise
verification approach that avoids state explosion like in [9].
Tracta and SOFA already provide many analysis tools; but we have a different component model that needs deep
investigation before tool reuse and development. However we can build on the experiences gained with these
works.

Most of the approaches that integrate behavioural specifications to components [27, 25, 31] work at a protocol
(or component) level while our approach is mainly on the services, the protocol level is handled by a constraint
in our model. Moreover, their communication actions refer only to messages and not to services (no service call
or result). The non-regular protocols of [31] can be represented in Kmelia using guards and nested states, but
using algebraic grammar provides a more efficient solution for the given applications. The work of [25] addresses
assemblies and implementation issues in Java but does not deal with composition.

The study of compatibility at the component behaviour level is central to CBSE approaches and motivated
number of works [35, 15, 9, 13] and application to web-services [12]. We build on these works but we extend
the study to encompass the granularity considered here for services and components. Our approach allows for a
local verification of the behavioural compatibility between composed services. Experiments are performed with
the approach using existing toolboxes (Lotos CADP and MEC).

9 Conclusion and Perspectives

We have presented a formal abstract component model based on services. These latter are described through their
behavioural specifications using extended labelled transition systems. We have not deal with component based
programming and the related models such as EJB, .net, Corba Component Model, etc.

We proposed a behavioural verification algorithm to check the compatibility between service behaviours. The
algorithm is adapted to the parallel composition and communication offered by Lotos and Mec in order to conduct
rapid experimentations. An ATM example is used to illustrate the proposed approach along the report .

We have proposed a simple formalism to describe components and their composition. A general composition
operator is defined to build large systems from simple components. For the simplicity of the model and the
proposed component specification formalism, the model uses only components, there is no connector as in the other
approaches [29, 24]. We then have an homogeneous treatment of component compositions. The main features of
our proposal are: simplicity and homogenity. Indeed our basic structure is the service (which is accessible via the
components); we defined operators to handle services (via the assemblies or the compositions).

An experimental framework is associated to this model so as to study various related aspects: interface com-
patibility, behavioural compatibility, correctness (safety, liveness) and maintenance.

A component is formalised with a model-based state space which may be modified with a set of labelled
transition systems that describe the services. Only one service is active at time. The services communicate syn-
chronously or asynchronously.

51

We investigate a set of formal analysis topics for the study of components. We specifically focus on behavioural
conformity analysis. We elaborate an interaction verification algorithm based on consistency rules.

We conduct two main experimentations for mechanizing the analysis of the interaction between components.
One experimentation is achieved using the LOTOS/CADP framework. We systematically translate the services
behaviour into LOTOS processes and then the CADP tools are used to check the interaction between the processes.
CADP provides several powerful tools to analyse processes. The current results are quite satisfactory; we can detect
interaction flaws.

The second experimentation is achieved in a similar way: the component services are systematically translated
into the MEC/Altarica framework. The description in MEC is more user friendly but MEC is less powerful with
respect to the need of services.

Perspectives. Many exciting investigations remain to do. Whatever the component model, the compositionality is
still a challenge [34].

Ongoing works cover: the extension of our component description language, the implementation of some
translators (into LOTOS and MEC) in order to support the mechanization with the related tools.

More generally we are building a component study toolbox (COSTO) to support the full processof modeling,
analysis and implementation of components. COSTO is a framework that already integrates some parsers and
some analysers which generate labelled transition systems. We are working on the process generators to build the
bridges with the external tools (CADP and MEC).

The concrete plan for the perspectives of the current work is the following:

• the extension of the bridges with existing component frameworks and formal COSTO analysis toolbox; the
prototype already integrates parsers, translators to LOTOS and MEC, static and dynamic interoperability
checkers. However we lack a graphical interface to guide and assist the user. Then we will propose an open
source delivery of the toolbox.

• the enhancement of the dynamic aspects of component analysis (behavioural interaction).

• the construction of concrete components from the abstract ones: exploiting refinement techniques;

• the study of the heterogeneity of components (how to treat properly the components coming from various
providers).

• some experiments with the B method (theorem proving correctness properties) are also envisaged; we are
investigating the verification of functional properties of services,

• to reinforce the correctness properties of component with supplementary study of correctness of components
and services with regard to their environment.

References

[1] Jean-Raymond Abrial. The B-Book Assigning Programs to Meanings. Cambridge University Press, .
ISBN 0-521-49619-5.

[2] R. Allen and D. Garlan. A Formal Basis for Architectural Connection. ACM Transactions on Software
Engineering and Methodology, 6(3):213–249, July .

[3] Pascal André and Alain Vailly. Conception de systèmes d’information, Panorama des méthodes et des tech-
niques, volume 1 of Collection Technosup. Editions Ellipses, . ISBN 2-7298-0479-X.

[4] P. André, G. Ardourel, and C. Attiogbé. Behavioural Verification of Service Composition. In ICSOC 2005
Workshop on Engineering Service Compositions, .

[5] P. André, G. Ardourel, C. Attiogbé, H. Habrias, and C. Stoquer. Vérification de conformité des interactions
entre composants. Technical report RR04.11, LINA - FRE CNRS 2729 - Nantes, December .

52

[6] André Arnold. Systèmes de transitions finis et sémantique des processus communiquants. Collection Etudes
et recherches en informatique. Masson, . ISBN 2-225-82746-X.

[7] André Arnold, Paul Crubillé, and Didier Bégay. Construction and Analysis of Transition Systems with MEC.
AMAST Series in Computing: Vol. 3. World Scientific, . ISBN 981-02-1922-9.

[8] André Arnold, Alain Griffault, Gérald Point, and Antoine Rauzy. The altarica formalism for describing
concurrent systems. Fundamenta Informaticae, 40:109–124, .

[9] P. C. Attie and D. H. Lorenz. Correctness of Model-based Component Composition without State Explosion.
In ECOOP 2003 Workshop on Correctness of Model-based Software Composition, .

[10] P. C. Attie and D. H. Lorenz. Establishing Behavioral Compatibility of Software Components without State
Explosion. Technical report NU-CCIS-03-02, College of Computer and Information Science, Northeastern
University, .

[11] K. Bergner, A. Rausch, M. Sihling, A. Vilbig, and M. Broy. A Formal Model for Componentware. In G. T.
Leavens and M. Sitaraman, eds., Foundations of Component-Based Systems, pages 189–210. Cambridge
University Press, New York, NY, .

[12] L. Bordeaux, G. Salaün, D. Berardi, and M. Mecella. When are Two Web Services Compatible? In TES,
pages 15–28, .

[13] A. Bracciali, A. Brogi, and C. Canal. A Formal Approach to Component Adaptation. Journal of Systems and
Software, 74(1):45–54, .

[14] E. Bruneton, T. Coupaye, and J.B. Stefani. Recursive and Dynamic Software Composition with Sharing. In
ECOOP 2002 Workshop on Component-Oriented Programming (WCOP02, Spain), .

[15] L. de Alfaro and T. A. Henzinger. Interface Automata. In Proceedings of the Ninth Annual Symposium on
Foundations of Software Engineering (FSE), pages 109–120. ACM Press, .

[16] J-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and M. Sighireanu. CADP: A Protocol
Validation and Verification Toolbox. In R. Alur and T. A. Henzinger, eds., Proc. of the 8th Conference on
Computer-Aided Verification (CAV’96), volume 1102 of LNCS, pages 437–440. Springer Verlag, .

[17] D. Giannakopoulou, J. Kramer, and S.C. Cheung. Behaviour Analysis of Distributed Systems Using the
Tracta Approach. Autom. Softw. Eng., 6(1):7–35, .

[18] T. Gschwind, U. Aßmann, and O. Nierstrasz, eds.. Software Composition, 4th Int. Workshop, SC 2005,
Edinburgh, UK, volume 3628 of Lecture Notes in Computer Science. Springer, .

[19] G. T. Heineman, I. Crnkovic, H. W. Schmidt, J. A. Stafford, C. A. Szyperski, and K. C. Wallnau, eds..
Component-Based Software Engineering, 8th International Symposium, CBSE 2005, USA, May, 2005, vol-
ume 3489 of LNCS. Springer, .

[20] P. Inverardi, A. L. Wolf, and D. Yankelevich. Static Checking of System Behaviors using Derived Component
Assumptions. ACM Transactions on Software Engineering and Methodology, 9(3):239–272, .

[21] ISO LOTOS. A Formal Description Technique Based on The Temporal Ordering of Observational Behaviour.
International Organisation for Standardization - Information Processing Systems - Open Systems Intercon-
nection, Geneva, .

[22] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying Distributed Software Architectures. In
W. Schafer and P. Botella, eds., Proc. 5th European Software Engineering Conf. (ESEC 95), volume 989,
pages 137–153, Sitges, Spain, . Springer-Verlag, Berlin.

53

[23] N. Medvidovic and R. N. Taylor. A Classification and Comparison Framework for Software Architecture
Description Languages. IEEE Transactions on Software Engineering, 26(1):70–93, january .

[24] Nikunj R. Mehta, Nenad Medvidovic, and Sandeep Phadke. Towards a taxonomy of software connectors. In
ICSE ’00: Proceedings of the 22nd international conference on Software engineering, pages 178–187. ACM
Press, .

[25] S. Pavel, J. Noyé, P. Poizat, and J.C. Royer. A Java Implementation of a Component Model with Explicit
Symbolic Protocols. In GSCHWINDet al. [18], pages 115–124.

[26] F. Plasil, D. Balek, and R. Janecek. SOFA/DCUP: Architecture for Component Trading and Dynamic Updat-
ing. In ICCDS’98, IEEE CS Press, .

[27] F. Plasil and S. Visnovsky. Behavior Protocols for Software Components. IEEE Transactions on SW Engi-
neering, 28(9), .

[28] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and William Lorensen. Object-
Oriented Modelling and Design. Prentice Hall International, .

[29] M. Shaw and D. Garlan. Software Architecture: Perspective on an Emerging Discipline. Prentice Hall, .

[30] Mike Spivey. The Z notation: a Reference Manual. International Series in Computer Science. Prentice-Hall,
.

[31] M. Südholt. A Model of Components with Non-regular Protocols. In GSCHWINDet al. [18], pages 99–113.

[32] C. Szyperski. Component Software: Beyond Object-Oriented Programming. AddisonWesley Publishing
Company, .

[33] A. Vaillant and S. Rodier. Vérification de la conformité des interactions entre composants. Technical report
TER M1.2004/2005, LINA - FRE CNRS 2729 - Nantes, .

[34] F. Xie and J. C. Browne. Verified Systems by Composition from Verified Components. In ESEC/FSE-11:
Proc. of the 9th European software engineering conference, pages 277–286, New York, NY, USA, .
ACM Press.

[35] D.M. Yellin and R.E. Strom. Protocol Specifications and Component Adaptors. ACM Transactions on
Programming Languages and Systems, 19(2):292–333, .

54

A The ATM Case Study in MEC

This appendix includes the MEC specifications and results for the ATM Case Study.

A.1 Sequential System

A.1.1 Specification

*
Author: P. ANDRE
Project: COLOSS
Experimentation : model-checking of services with MEC
Case study : service Retrait du BASEGAB

Version 1 : Systeme sequentiel sans gardes et parametres

Creation date: 05/04/05
Modification date: 05/04/05

load(gabretraitSeq);
*\

transition_system IHM_CLIENTR_DemRetrait < width = 0 >;
init |- e -> init,

start_DemRetrait -> e0;
e0 |- e -> e0,

call_Retrait -> e1; * transition d’initialisation *\
e1 |- e -> e1,

start_Code -> e1_1, * inclusion du service Code *\
start_Montant -> e1_2, * inclusion du service Montant *\
rcv_Retrait_resRetrait -> e2; * e2 est suppose final *\

e1_1 |- e -> e1_1, * developpement du service Code *\
emit_Code_resCode -> e1;

e1_2 |- e -> e1_2, * developpement du service Montant *\
saisie_sel -> e1_3;

e1_3 |- e -> e1_3,
emit_Montant_resMontant -> e1;

e2 |- e -> e2;
< initial = { init } ; final = {e2} >.

transition_system BASEGAB_Retrait < width = 0 >;
init |- e -> init, * transition d’initialisation *\

start_Retrait -> i;
i |- e -> i,

nbe3 -> e0;
e0 |- e -> e0,

call_Code -> e1;
e1 |- e -> e1,

rcv_Code_resCode -> e1_1; * transition sequentielle *\
e1_1 |- nbe_nbe_1 -> e2;
e2 |- e -> e2,

msg -> e0,
rep_VerifAuth -> e3,
msg -> e2_1; * transition sequentielle *\

e2_1 |- avalerCarte -> e4;
e3 |- e -> e3,

msg -> e5,
msg -> e3_1; * transition sequentielle *\

e3_1 |- restituerCarte -> e4;
e4 |- e -> e4,

emit_Retrait_resRetrait -> f;
e5 |- e -> e5,

call_Montant -> e6;
e6 |- e -> e6,

55

rcv_Montant_resMontant -> e7;
e7 |- e -> e7,

msg -> e3,
debiter -> e7_1; * transition sequentielle *\

e7_1 |- restituerCarte -> e8;
e8 |- e -> e7,

emit_Retrait_resRetrait -> f;
< initial = { init } ; final = {f} >.

synchronization_system Verif_BASEGAB_Retrait < width = 2 ;
list = (IHM_CLIENTR_DemRetrait, BASEGAB_Retrait) >;

* action relative au lancement du service appelant *\
(start_DemRetrait . e);
* actions interne de l’automate IHM_CLIENTR_DemRetrait *\
(saisie_sel . e);
* actions interne de l’automate BASEGAB_Retrait *\
(e . nbe3);
(e . nbe_nbe_1);
(e . msg);
(e . rep_VerifAuth);
(e . avalerCarte);
(e . restituerCarte);
(e . debiter);
* invocations de services *\
(call_Retrait . start_Retrait);
(start_Code . call_Code);
(start_Montant . call_Montant);
* communications sur Retrait *\
(rcv_Retrait_resRetrait . emit_Retrait_resRetrait);
* communications sur Code *\
(emit_Code_resCode . rcv_Code_resCode);
* communications sur Montant *\
(emit_Montant_resMontant . rcv_Montant_resMontant).

function inevitable(Y:trans ; X:state) return Z:state;
begin
Z = X \/ (src(Y /\ rtgt(Z)) - src(Y /\ rtgt(*-Z)))
end.

sync(Verif_BASEGAB_Retrait, Verif_BASEGAB_Retrait);
dts(Verif_BASEGAB_Retrait);
finaux := final[1] /\ final[2];
dead := (* - src(*)) - finaux;
deadlock:=inevitable(*,dead);
boucle := loop(*,*);
log(gabretraitSeqLog);
version();
dts(Verif_BASEGAB_Retrait);
wts(*,*);
stoplog();

A.1.2 Results

version();
//MEC 4 version alpha 3.4dts(Verif_BASEGAB_Retrait);
//Current St : Verif_BASEGAB_Retrait
//-- States :
// * : 18
//initial : 1
//finaux : 1
//dead : 0
//deadlock : 0
//-- Transitions :
// * : 21

56

//boucle : 9
//wts(*,*);
//transition_system Verif_BASEGAB_Retrait
//< width = 2; list = (IHM_CLIENTR_DemRetrait, BASEGAB_Retrait)>;
//
//
//e(init.init) |-
// (start_DemRetrait.e) -> e(e0.init);
//
//e(e0.init) |-
// (call_Retrait.start_Retrait) -> e(e1.i);
//
//e(e1.i) |-
// (e.nbe3) -> e(e1.e0);
//
//e(e1.e0) |-
// (start_Code.call_Code) -> e(e1_1.e1) < property = (boucle) >;
//
//e(e1_1.e1) |-
// (emit_Code_resCode.rcv_Code_resCode) -> e(e1.e1_1) < property = (boucle) >;
//
//e(e1.e1_1) |-
// (e.nbe_nbe_1) -> e(e1.e2) < property = (boucle) >;
//
//e(e1.e2) |-
// (e.msg) -> e(e1.e0) < property = (boucle) >,
// (e.rep_VerifAuth) -> e(e1.e3),
// (e.msg) -> e(e1.e2_1);
//
//e(e1.e3) |-
// (e.msg) -> e(e1.e5) < property = (boucle) >,
// (e.msg) -> e(e1.e3_1);
//
//e(e1.e2_1) |-
// (e.avalerCarte) -> e(e1.e4);
//
//e(e1.e5) |-
// (start_Montant.call_Montant) -> e(e1_2.e6) < property = (boucle) >;
//
//e(e1.e3_1) |-
// (e.restituerCarte) -> e(e1.e4);
//
//e(e1.e4) |-
// (rcv_Retrait_resRetrait.emit_Retrait_resRetrait) -> e(e2.f);
//
//e(e1_2.e6) |-
// (saisie_sel.e) -> e(e1_3.e6) < property = (boucle) >;
//
//e(e2.f) |- ;
//
//e(e1_3.e6) |-
// (emit_Montant_resMontant.rcv_Montant_resMontant) -> e(e1.e7) < property = (boucle) >;
//
//e(e1.e7) |-
// (e.msg) -> e(e1.e3) < property = (boucle) >,
// (e.debiter) -> e(e1.e7_1);
//
//e(e1.e7_1) |-
// (e.restituerCarte) -> e(e1.e8);
//
//e(e1.e8) |-
// (rcv_Retrait_resRetrait.emit_Retrait_resRetrait) -> e(e2.f);
//<
//initial = { e(init.init) },
//finaux = { e(e2.f) },

57

//dead = { },
//deadlock = { }
//>.
//stoplog();
//

A.2 Parallel System

A.2.1 Specification

*
Author: P. ANDRE
Project: COLOSS
Experimentation : model-checking of services with MEC
Case study : service Retrait du BASEGAB

Version 1 : Systeme sequentiel sans gardes et parametres

Creation date: 05/04/05
Modification date: 05/04/05

load(gabretraitPar);
*\

transition_system IHM_CLIENTR_DemRetrait < width = 0 >;
init |- e -> init,

start_DemRetrait -> e0;
e0 |- e -> e0,

call_Retrait -> e1; * transition d’initialisation *\
e1 |- e -> e1,

start_Code -> e1_1, * inclusion du service Code *\
start_Montant -> e1_2, * inclusion du service Montant *\
rcv_Retrait_resRetrait -> e2; * e2 est suppose final *\

e1_1 |- e -> e1_1, * developpement du service Code *\
emit_Code_resCode -> e1;

e1_2 |- e -> e1_2, * developpement du service Montant *\
saisie_sel -> e1_3;

e1_3 |- e -> e1_3,
emit_Montant_resMontant -> e1;

e2 |- e -> e2;
< initial = { init } ; final = {e2} >.

transition_system BASEGAB_Retrait < width = 0 >;
init |- e -> init, * transition d’initialisation *\

start_Retrait -> i;
i |- e -> i,

nbe3 -> e0;
e0 |- e -> e0,

call_Code -> e1;
e1 |- e -> e1,

rcv_Code_resCode -> e1_1; * transition sequentielle *\
e1_1 |- nbe_nbe_1 -> e2;
e2 |- e -> e2,

msg -> e0,
rep_VerifAuth -> e3,
msg -> e2_1; * transition sequentielle *\

e2_1 |- avalerCarte -> e4;
e3 |- e -> e3,

msg -> e5,
msg -> e3_1; * transition sequentielle *\

e3_1 |- restituerCarte -> e4;
e4 |- e -> e4,

emit_Retrait_resRetrait -> f;
e5 |- e -> e5,

call_Montant -> e6;

58

e6 |- e -> e6,
rcv_Montant_resMontant -> e7;

e7 |- e -> e7,
msg -> e3,
debiter -> e7_1; * transition sequentielle *\

e7_1 |- restituerCarte -> e8;
e8 |- e -> e7,

emit_Retrait_resRetrait -> f;
< initial = { init } ; final = {f} >.

synchronization_system Verif_BASEGAB_Retrait < width = 2 ;
list = (IHM_CLIENTR_DemRetrait, BASEGAB_Retrait) >;

* action relative au lancement du service appelant *\
(start_DemRetrait . e);
* actions interne de l’automate IHM_CLIENTR_DemRetrait *\
(saisie_sel . e);
* actions interne de l’automate BASEGAB_Retrait *\
(e . nbe3);
(e . nbe_nbe_1);
(e . msg);
(e . rep_VerifAuth);
(e . avalerCarte);
(e . restituerCarte);
(e . debiter);
* invocations de services *\
(call_Retrait . start_Retrait);
(start_Code . call_Code);
(start_Montant . call_Montant);
* communications sur Retrait *\
(rcv_Retrait_resRetrait . emit_Retrait_resRetrait);
* communications sur Code *\
(emit_Code_resCode . rcv_Code_resCode);
* communications sur Montant *\
(emit_Montant_resMontant . rcv_Montant_resMontant);
* --------------- *\
* 2 actions en parallèles *\
* --------------- *\
(saisie_sel . nbe3);
(saisie_sel . nbe_nbe_1);
(saisie_sel . msg);
(saisie_sel . rep_VerifAuth);
(saisie_sel . avalerCarte);
(saisie_sel . restituerCarte);
(saisie_sel . debiter).

function inevitable(Y:trans ; X:state) return Z:state;
begin
Z = X \/ (src(Y /\ rtgt(Z)) - src(Y /\ rtgt(*-Z)))
end.

sync(Verif_BASEGAB_Retrait, Verif_BASEGAB_Retrait);
dts(Verif_BASEGAB_Retrait);
finaux := final[1] /\ final[2];
dead := (* - src(*)) - finaux;
deadlock:=inevitable(*,dead);
boucle := loop(*,*);
log(gabretraitParLog);
version();
dts(Verif_BASEGAB_Retrait);
wts(*,*);
stoplog();

59

A.2.2 Results

version();
//MEC 4 version alpha 3.4dts(Verif_BASEGAB_Retrait);
//Current St : Verif_BASEGAB_Retrait
//-- States :
// * : 18
//initial : 1
//finaux : 1
//dead : 0
//deadlock : 0
//-- Transitions :
// * : 21
//boucle : 9
//wts(*,*);
//transition_system Verif_BASEGAB_Retrait
//< width = 2; list = (IHM_CLIENTR_DemRetrait, BASEGAB_Retrait)>;
//
//
//e(init.init) |-
// (start_DemRetrait.e) -> e(e0.init);
//
//e(e0.init) |-
// (call_Retrait.start_Retrait) -> e(e1.i);
//
//e(e1.i) |-
// (e.nbe3) -> e(e1.e0);
//
//e(e1.e0) |-
// (start_Code.call_Code) -> e(e1_1.e1) < property = (boucle) >;
//
//e(e1_1.e1) |-
// (emit_Code_resCode.rcv_Code_resCode) -> e(e1.e1_1) < property = (boucle) >;
//
//e(e1.e1_1) |-
// (e.nbe_nbe_1) -> e(e1.e2) < property = (boucle) >;
//
//e(e1.e2) |-
// (e.msg) -> e(e1.e0) < property = (boucle) >,
// (e.rep_VerifAuth) -> e(e1.e3),
// (e.msg) -> e(e1.e2_1);
//
//e(e1.e3) |-
// (e.msg) -> e(e1.e5) < property = (boucle) >,
// (e.msg) -> e(e1.e3_1);
//
//e(e1.e2_1) |-
// (e.avalerCarte) -> e(e1.e4);
//
//e(e1.e5) |-
// (start_Montant.call_Montant) -> e(e1_2.e6) < property = (boucle) >;
//
//e(e1.e3_1) |-
// (e.restituerCarte) -> e(e1.e4);
//
//e(e1.e4) |-
// (rcv_Retrait_resRetrait.emit_Retrait_resRetrait) -> e(e2.f);
//
//e(e1_2.e6) |-
// (saisie_sel.e) -> e(e1_3.e6) < property = (boucle) >;
//
//e(e2.f) |- ;
//
//e(e1_3.e6) |-
// (emit_Montant_resMontant.rcv_Montant_resMontant) -> e(e1.e7) < property = (boucle) >;
//

60

//e(e1.e7) |-
// (e.msg) -> e(e1.e3) < property = (boucle) >,
// (e.debiter) -> e(e1.e7_1);
//
//e(e1.e7_1) |-
// (e.restituerCarte) -> e(e1.e8);
//
//e(e1.e8) |-
// (rcv_Retrait_resRetrait.emit_Retrait_resRetrait) -> e(e2.f);
//<
//initial = { e(init.init) },
//finaux = { e(e2.f) },
//dead = { },
//deadlock = { }
//>.
//stoplog();
//

A.3 Inconsistent System

A.3.1 Specification

*
Author: P. ANDRE
Project: COLOSS
Experimentation : model-checking of services with MEC
Case study : service Retrait du GAB

Version 1r : Systeme sequentiel sans gardes et parametres
avec erreur

Creation date: 05/04/05
Modification date: 11/04/05

load(gabretraitSeqErr);
*\

transition_system IHM_CLIENTR_DemRetrait < width = 0 >;
init |- e -> init,

start_DemRetrait -> e0;
e0 |- e -> e0,

call_Retrait -> e1; * transition d’initialisation *\
e1 |- e -> e1,

start_Code -> e1_1, * inclusion du service Code *\
start_Montant -> e1_2, * inclusion du service Montant *\
rcv_Retrait_recupCarte -> e2;

e1_1 |- e -> e1_1, * developpement du service Code *\
emit_Code_resCode -> e1;

e1_2 |- e -> e1_2, * developpement du service Montant *\
saisie_sel -> e1_3;

e1_3 |- e -> e1_3,
emit_Montant_resMontant -> e1;

e2 |- e -> e2, * fin du service Retrait *\
rcv_Retrait_resRetrait -> e3;

e3 |- e -> e3; * e3 est suppose final *\
< initial = { init } ; final = {e3} >.

transition_system GAB_Retrait < width = 0 >;
init |- e -> init, * transition d’initialisation *\

start_Retrait -> i;
i |- e -> i,

nbe3 -> e0;
e0 |- e -> e0,

call_Code -> e1;
e1 |- e -> e1,

61

rcv_Code_resCode -> e1_1; * transition sequentielle *\
e1_1 |- nbe_nbe_1 -> e2;
e2 |- e -> e2,

msg -> e0,
rep_VerifAuth -> e3,
msg -> e2_1; * transition sequentielle *\

e2_1 |- avalerCarte -> e4;
e3 |- e -> e3,

msg -> e5,
msg -> e3_1; * transition sequentielle *\

e3_1 |- emit_Retrait_restituerCarte -> e4;
e4 |- e -> e4,

emit_Retrait_resRetrait -> f;
e5 |- e -> e5,

call_Montant -> e6;
e6 |- e -> e6,

rcv_Montant_resMontant -> e7;
e7 |- e -> e7,

msg -> e3,
debiter -> e7_1; * transition sequentielle *\

e7_1 |- emit_Retrait_restituerCarte -> e8;
e8 |- e -> e7,

emit_Retrait_resRetrait -> f;
< initial = { init } ; final = {f} >.

synchronization_system Verif_GAB_Retrait < width = 2 ;
list = (IHM_CLIENTR_DemRetrait, GAB_Retrait) >;

* action relative au lancement du service appelant *\
(start_DemRetrait . e);
* actions interne de l’automate IHM_CLIENTR_DemRetrait *\
(saisie_sel . e);
* actions interne de l’automate GAB_Retrait *\
(e . nbe3);
(e . nbe_nbe_1);
(e . msg);
(e . rep_VerifAuth);
(e . avalerCarte);
(e . debiter);
* invocations de services *\
(call_Retrait . start_Retrait);
(start_Code . call_Code);
(start_Montant . call_Montant);
* communications sur Retrait *\
(rcv_Retrait_resRetrait . emit_Retrait_resRetrait);
(rcv_Retrait_recupCarte . emit_Retrait_restituerCarte);
* communications sur Code *\
(emit_Code_resCode . rcv_Code_resCode);
* communications sur Montant *\
(emit_Montant_resMontant . rcv_Montant_resMontant).

function inevitable(Y:trans ; X:state) return Z:state;
begin
Z = X \/ (src(Y /\ rtgt(Z)) - src(Y /\ rtgt(*-Z)))
end.

sync(Verif_GAB_Retrait, Verif_GAB_Retrait);
dts(Verif_GAB_Retrait);
finaux := final[1] /\ final[2];
dead := (* - src(*)) - finaux;
deadlock:=inevitable(*,dead);
boucle := loop(*,*);
log(gabretraitSeqErrLog);
version();
dts(Verif_GAB_Retrait);

62

wts(*,*);
stoplog();

A.3.2 Results

version();
//MEC 4 version alpha 3.4dts(Verif_GAB_Retrait);
//Current St : Verif_GAB_Retrait
//-- States :
// * : 19
//initial : 1
//finaux : 1
//dead : 1
//deadlock : 2
//-- Transitions :
// * : 21
//boucle : 9
//wts(*,*);
//transition_system Verif_GAB_Retrait
//< width = 2; list = (IHM_CLIENTR_DemRetrait, GAB_Retrait)>;
//
//
//e(init.init) |-
// (start_DemRetrait.e) -> e(e0.init);
//
//e(e0.init) |-
// (call_Retrait.start_Retrait) -> e(e1.i);
//
//e(e1.i) |-
// (e.nbe3) -> e(e1.e0);
//
//e(e1.e0) |-
// (start_Code.call_Code) -> e(e1_1.e1) < property = (boucle) >;
//
//e(e1_1.e1) |-
// (emit_Code_resCode.rcv_Code_resCode) -> e(e1.e1_1) < property = (boucle) >;
//
//e(e1.e1_1) |-
// (e.nbe_nbe_1) -> e(e1.e2) < property = (boucle) >;
//
//e(e1.e2) |-
// (e.msg) -> e(e1.e0) < property = (boucle) >,
// (e.rep_VerifAuth) -> e(e1.e3),
// (e.msg) -> e(e1.e2_1);
//
//e(e1.e3) |-
// (e.msg) -> e(e1.e5) < property = (boucle) >,
// (e.msg) -> e(e1.e3_1);
//
//e(e1.e2_1) |-
// (e.avalerCarte) -> e(e1.e4);
//
//e(e1.e5) |-
// (start_Montant.call_Montant) -> e(e1_2.e6) < property = (boucle) >;
//
//e(e1.e3_1) |-
// (rcv_Retrait_recupCarte.emit_Retrait_restituerCarte) -> e(e2.e4);
//
//e(e1.e4) |- ;
//
//e(e1_2.e6) |-
// (saisie_sel.e) -> e(e1_3.e6) < property = (boucle) >;
//
//e(e2.e4) |-
// (rcv_Retrait_resRetrait.emit_Retrait_resRetrait) -> e(e3.f);

63

//
//e(e1_3.e6) |-
// (emit_Montant_resMontant.rcv_Montant_resMontant) -> e(e1.e7) < property = (boucle) >;
//
//e(e3.f) |- ;
//
//e(e1.e7) |-
// (e.msg) -> e(e1.e3) < property = (boucle) >,
// (e.debiter) -> e(e1.e7_1);
//
//e(e1.e7_1) |-
// (rcv_Retrait_recupCarte.emit_Retrait_restituerCarte) -> e(e2.e8);
//
//e(e2.e8) |-
// (rcv_Retrait_resRetrait.emit_Retrait_resRetrait) -> e(e3.f);
//<
//initial = { e(init.init) },
//finaux = { e(e3.f) },
//dead = { e(e1.e4) },
//deadlock = { e(e1.e2_1), e(e1.e4) }
//>.
//stoplog();
//

B Tests

This appendix shows the detection of some protocol error by MEC.

B.1 Non déterminism and Inconsistencies in the Communications

B.1.1 Specification of the Synchronous Version

*
Author: P. ANDRE
Project: COLOSS
Experimentation : model-checking of services with MEC
Case study : non déterminisme des échanges

Version 1 : Systeme sequentiel sans gardes et parametres

Creation date: 11/04/05
Modification date: 11/04/05

load(testChoix);
*\

transition_system ProcA < width = 0 >;
e0 |- e -> e0,

rcv_c_a -> e1,
rcv_c_b -> e2;

e1 |- e -> e1,
i -> f; * f est suppose final *\

e2 |- e -> e2,
i -> f; * f est suppose final *\

f |- e -> f;
< initial = { e0 } ; final = {f} >.

transition_system ProcB < width = 0 >;
e0 |- e -> e0,

emit_c_a -> e1,
emit_c_b -> e2;

e1 |- e -> e1,
i -> f; * f est suppose final *\

64

e2 |- e -> e2,
i -> f; * f est suppose final *\

f |- e -> f;
< initial = { e0 } ; final = {f} >.

synchronization_system testChoix < width = 2 ;
list = (ProcA, ProcB) >;

* actions interne de l’automate ProcA *\
(i . e);
* actions interne de l’automate ProcB *\
(e . i);
* communications sur c *\
(rcv_c_a . emit_c_a);
(rcv_c_b . emit_c_b).

function inevitable(Y:trans ; X:state) return Z:state;
begin
Z = X \/ (src(Y /\ rtgt(Z)) - src(Y /\ rtgt(*-Z)))
end.

sync(testChoix, testChoix);
dts(testChoix);
finaux := final[1] /\ final[2];
dead := (* - src(*)) - finaux;
deadlock:=inevitable(*,dead);
boucle := loop(*,*);
log(testChoixLog);
version();
dts(testChoix);
wts(*,*);
stoplog();

B.1.2 Results of the Synchronous Version

version();
//MEC 4 version alpha 3.4dts(testChoix);
//Current St : testChoix
//-- States :
// * : 8
//initial : 1
//finaux : 1
//dead : 0
//deadlock : 0
//-- Transitions :
// * : 10
//boucle : 0
//wts(*,*);
//transition_system testChoix
//< width = 2; list = (ProcA, ProcB)>;
//
//
//e(e0.e0) |-
// (rcv_c_a.emit_c_a) -> e(e1.e1),
// (rcv_c_b.emit_c_b) -> e(e2.e2);
//
//e(e1.e1) |-
// (e.i) -> e(e1.f),
// (i.e) -> e(f.e1);
//
//e(e2.e2) |-
// (e.i) -> e(e2.f),
// (i.e) -> e(f.e2);
//
//e(e1.f) |-

65

// (i.e) -> e(f.f);
//
//e(f.e1) |-
// (e.i) -> e(f.f);
//
//e(e2.f) |-
// (i.e) -> e(f.f);
//
//e(f.e2) |-
// (e.i) -> e(f.f);
//
//e(f.f) |- ;
//<
//initial = { e(e0.e0) },
//finaux = { e(f.f) },
//dead = { },
//deadlock = { }
//>.
//stoplog();
//

B.1.3 Specification of the Asynchronous Version

*
Author: P. ANDRE
Project: COLOSS
Experimentation : model-checking of services with MEC
Case study : non déterminisme des échanges dissocié

Version 1 : Systeme sequentiel sans gardes et parametres

Creation date: 11/04/05
Modification date: 11/04/05

load(testChoixND);
*\

transition_system ProcA < width = 0 >;
e0 |- e -> e0,

rcv_c -> e0_1,
rcv_c -> e0_2;

e0_1 |- e -> e0_1,
a -> e1;

e0_2 |- e -> e0_2,
b -> e2;

e1 |- e -> e1,
i -> f; * f est suppose final *\

e2 |- e -> e2,
i -> f; * f est suppose final *\

f |- e -> f;
< initial = { e0 } ; final = {f} >.

transition_system ProcB < width = 0 >;
e0 |- e -> e0,

emit_c -> e0_1,
emit_c -> e0_2;

e0_1 |- e -> e0_1,
a -> e1;

e0_2 |- e -> e0_2,
b -> e2;

e1 |- e -> e1,
i -> f; * f est suppose final *\

e2 |- e -> e2,
i -> f; * f est suppose final *\

f |- e -> f;

66

< initial = { e0 } ; final = {f} >.

synchronization_system testChoix < width = 2 ;
list = (ProcA, ProcB) >;

* actions interne de l’automate ProcA *\
(i . e);
* actions interne de l’automate ProcB *\
(e . i);
* communications sur c *\
(rcv_c . emit_c);
(rcv_c . emit_c);
* échanges sur c *\
(a . a);
(b . b).

function inevitable(Y:trans ; X:state) return Z:state;
begin
Z = X \/ (src(Y /\ rtgt(Z)) - src(Y /\ rtgt(*-Z)))
end.

sync(testChoix, testChoix);
dts(testChoix);
finaux := final[1] /\ final[2];
dead := (* - src(*)) - finaux;
deadlock:=inevitable(*,dead);
boucle := loop(*,*);
log(testChoixNDLog);
version();
dts(testChoix);
wts(*,*);
stoplog();

B.1.4 Results of the Asynchronous Version

version();
//MEC 4 version alpha 3.4dts(testChoix);
//Current St : testChoix
//-- States :
// * : 12
//initial : 1
//finaux : 1
//dead : 2
//deadlock : 2
//-- Transitions :
// * : 14
//boucle : 0
//wts(*,*);
//transition_system testChoix
//< width = 2; list = (ProcA, ProcB)>;
//
//
//e(e0.e0) |-
// (rcv_c.emit_c) -> e(e0_1.e0_1),
// (rcv_c.emit_c) -> e(e0_1.e0_2),
// (rcv_c.emit_c) -> e(e0_2.e0_1),
// (rcv_c.emit_c) -> e(e0_2.e0_2);
//
//e(e0_1.e0_1) |-
// (a.a) -> e(e1.e1);
//
//e(e0_1.e0_2) |- ;
//
//e(e0_2.e0_1) |- ;
//

67

//e(e0_2.e0_2) |-
// (b.b) -> e(e2.e2);
//
//e(e1.e1) |-
// (e.i) -> e(e1.f),
// (i.e) -> e(f.e1);
//
//e(e2.e2) |-
// (e.i) -> e(e2.f),
// (i.e) -> e(f.e2);
//
//e(e1.f) |-
// (i.e) -> e(f.f);
//
//e(f.e1) |-
// (e.i) -> e(f.f);
//
//e(e2.f) |-
// (i.e) -> e(f.f);
//
//e(f.e2) |-
// (e.i) -> e(f.f);
//
//e(f.f) |- ;
//<
//initial = { e(e0.e0) },
//finaux = { e(f.f) },
//dead = { e(e0_1.e0_2), e(e0_2.e0_1) },
//deadlock = { e(e0_1.e0_2), e(e0_2.e0_1) }
//>.
//stoplog();
//

LABORATOIRE D’INFORMATIQUE DE NANTES-ATLANTIQUE

A Service-Based Component Model:
Formalism, Analysis and Mechanization

P. André, G. Ardourel, C. Attiogbé, H. Habrias, C. Stoquer

Abstract

Component-Based Software Engineering (CBSE) is one of the approaches to master the development of large scale
software. In this setting, the verification concern is still a challenge. The objective of our work is to provide the
designer of components-based systems with the methods to assist his/her use of the components. In particular, the
current work adresses the composability of components and their services.
A component model is presented, based on services. An associated simple but expressive formalism is introduced;
it describes the services as extended LTS and their structuring as components. The composition of components is
mainly based on service composition and encapsulation.
The composability of component is defined from the composability of services. To ensure the correctness of
component composition, we check that an assembly is possible via the checking of the composabiblity of the
linked services, and their behavioral compatibility. In order to mechanize our approach, the services and the
components are translated into the MEC and LOTOS formalism. Finally the MEC and LOTOS CADP toolbox is
used to perform experiments.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Design Tools and Techniques—Modules and
interfaces; D.2.4 [Software Engineering]: Software/Program Verification—Formal Methods; D.2.11 [Software
Engineering]: Software Architectures—Languages

General Terms: Components, Services, Behavioural Interface Description, Interaction Checking

Additional Key Words and Phrases: Components, Services, Behavioural Interface Description, Interaction Check-
ing

LINA, Université de Nantes
2, rue de la Houssinière

B.P. 92208 — F-44322 NANTES CEDEX 3

	Introduction
	A Formalism for Specifying Components, Interfaces and Assemblies
	Service Specification
	Service Interface
	Service Behaviour

	Component Specification
	Links, Assembly and Composition of Components
	Dependencies between Component Services
	Links and Sublinks between Component Services
	Component Assembly
	Component Composition

	A Case Study
	Problem Statement
	An Architecture Overview: the Component Assembly
	Specification of a Component
	Specification of Services
	Specification of the Sub-Services

	Compositions for the ATM

	Formal Verification of Components and Assemblies
	Formal Analysis Aspects
	Composability
	Service Composability
	Component Composability
	Assembly Composability

	Interface Analysis: an overview
	Behavioural Compatibility Analysis
	A Verification Algorithm for behavioural Compatibility
	Service Specification Analysis
	Interaction Analysis within our Example

	Implementation

	Translation of Services into Lotos
	Introduction to Lotos
	Translating the Service Automata into Lotos Processes
	Data Translation
	Encoding of service into Lotos
	Formalisation
	Encoding Labels of Transitions
	Examples of Complete Encoding into LOTOS
	Using Lotos for the Compatibility Verification
	Implementation

	Translation of Services into MEC
	Aims and Scope
	MEC
	Basic Transformations
	Workspace Computation
	Translation
	Verification of Dynamic Properties
	Inconsistencies Detection

	Extensions
	Guards
	Managing Communications and Parameters
	Multiple Instances of a Service
	Composition
	AltaRica

	Implementation
	Conclusion and perspectives

	An overview of The COSTO Toolbox
	Related Work and Discussion
	Conclusion and Perspectives
	The ATM Case Study in MEC
	Sequential System
	Specification
	Results

	Parallel System
	Specification
	Results

	Inconsistent System
	Specification
	Results

	Tests
	Non déterminism and Inconsistencies in the Communications
	Specification of the Synchronous Version
	Results of the Synchronous Version
	Specification of the Asynchronous Version
	Results of the Asynchronous Version

