
HAL Id: hal-00023152
https://hal.science/hal-00023152

Preprint submitted on 20 Apr 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combining B Tools for Multi-Process Systems
Specification

Christian Attiogbé

To cite this version:

Christian Attiogbé. Combining B Tools for Multi-Process Systems Specification. 2006. �hal-00023152�

https://hal.science/hal-00023152
https://hal.archives-ouvertes.fr

LABORATOIRE D’INFORMATIQUE DE NANTES-ATLANTIQUE

— Formal Methods Integration, Reliable Systems —

RESEARCH REPORT

No 06.01

Janvier 2006

Combining B Tools for
Multi-Process Systems

Specification

Christian Attiogbé

Laboratoire d’Informatique de Nantes-Atlantique
2, rue de la Houssinière - B.P. 92208 - 44322 NANTES CEDEX 3

LINA, Université de Nantes – 2, rue de la Houssinière – BP 92208 – 44322 NANTES CEDEX 3
Tél. : 02 51 12 58 00 – Fax. : 02 51 12 58 12 – http://www.sciences.univ-nantes.fr/lina/

logoLINA.eps
logoUnivNantes.eps
logoEMN.eps
logoCNRS.eps

Christian Attiogbé

Combining B Tools for Multi-Process Systems Specification

28 p.

Les rapports de recherche du Laboratoire d’Informatique de Nantes-Atlantique sont
disponibles aux formats PostScript® et PDF® à l’URL :

http://www.sciences.univ-nantes.fr/lina/Vie/RR/rapports.html

Research reports from the Laboratoire d’Informatique de Nantes-Atlantique are
available in PostScript® and PDF® formats at the URL:

http://www.sciences.univ-nantes.fr/lina/Vie/RR/rapports.html

© January 2006 by Christian Attiogbé

http://www.sciences.univ-nantes.fr/lina/Vie/RR/rapports.html
http://www.sciences.univ-nantes.fr/lina/Vie/RR/rapports.html

Combining B Tools for Multi-Process Systems
Specification

Christian Attiogbé

Christian.Attiogbe@univ-nantes.fr

Abstract

We introduce a systematic method that combines process-oriented design and abstract systems to specify multi-
process system using Event B. As far as specification is concerned, the proposed method guides the user to describe
his/her system by considering both process-oriented view and event B style of specification.
With regard to mechanization, the method enforces the conjoined use of both theorem proving technique and model
checking technique with the associated tools: AtelierB and ProB. This method makes it easy the specification in
Event B of multi-process systems and it also fasters the correctness proof. Our proposal is illustrated with a case
study: a multi-process system with the interaction between processes that deal with parts using common resources.

Categories and Subject Descriptors: D.2.1 [Software Engineering]: Requirements/Specification—Methodologies;
D.2.4 [Software Engineering]: Software/Program Verification—Formal Methods; D.2.5 [Software Engineer-
ing]: Testing and Debugging—Testing tools

General Terms: Multi-Process Specification, Event B, Theorem Proving, Model checking

Additional Key Words and Phrases: Multi-Process Specification, Event B, Theorem Proving, Model checking

Contents

1 Introduction 6

2 Event B Method and Tools 6
2.1 Event B: an Overview . 6
2.2 Overview of the ProB Tool . 7

3 A Design Support for Multi-Process Systems 8
3.1 A Case Study . 8
3.2 Practical Limitations of the Separated Approaches . 8
3.3 The Proposed Approach . 9

4 Further Issues 11
4.1 Process-oriented Approach . 11
4.2 Dealing with Nondeterminism . 12

5 Summary of Results 13

6 Conclusion and Perspectives 13

A The ProB Main Interface 14

B A First Version of the Abstract System 14

C A Second Version (consistent but incorrect) 17

D The Correct Version 22

6

1 Introduction

The correct design and development of complex software systems is a major research topic as software systems
are more and more present in everyday life and more and more complex according to their interactions with the
environment. Process-oriented systems are well-suited as they handle the interaction features: concurrency and
synchronization.
Several methods exist that enable the developer to specify and formally analyse her/his systems: finite state ma-
chines approaches, Petri nets, process algebra are the most popular (explicit) state transition system approaches.
They are well researched, they have graphical notations and they are equipped with tools. The latter are often based
on model checking techniques that explore the state space covered by the studied systems.
However the complexity of state transition systems increases quickly for real life systems; this depends on: the
importance of both data and control parts (state space explosion); the number of processes involved in the system;
the constraints on the resources used by the processes (sharing, limited number). Indeed the transition systems
become huge, they are not mentally manageable for human being and their analysis is time-consuming.

Besides, there are the emergence of formal development techniques that emphasize the correct construction of
software systems using refinement techniques: the B method [1] ranges in this category. Further developments of
the B method, known as Event B [2, 4, 3], enable one to build more generally discrete event systems. With the
Event B approach the design of a system begins with an abstract specification. The latter is characterized by a state
space described with predicates and a list of events that describe the behaviour (transitions caused by the events) of
the system. The verification of properties and the refinement of abstract specifications into concrete (executable)
codes are supported by proof of properties: theorem proving techniques are used. The state space explosion is not
a limitation here and infinite systems may be dealt with. The study of a system is a top-down approach going from
an abstract model to a concrete one via refinements and decompositions [3]. This approach is not always trivial
even for small-size systems and it may be very tedious for large and complex systems. It is less intuitive than the
state transition approaches.

The motivation of our work is the search of efficient specification and design methods that combine process-
oriented approach with B method in order to provide more guidance to developer and to get mechanized techniques
that scale well so as to be helpful for large interactive (possibly distributed) applications. An important part of today
software applications, (Internet-)service oriented applications, process control systems are reactive (distributed)
applications. They need to be safe and reliable but formal development techniques help in ensuring these properties.

The contribution of the current work is a systematic method (practical guidelines) to specify and verify multi-
process systems by combining well-established formal techniques: process-oriented approach, Event B and model
checking. We illustrate the proposed method by a case study with interacting processes. The case study reveals
some interesting features of B specifications: for example, dealing with the dynamically variable number of the
interacting processes.

The article is structured as follows. In the Section 2 we introduce the used methods. The Section 3 is devoted
to the proposed design support. In the Section 5 we summarize the results. In the Section 6 we conclude the article
and we introduce some perspectives.

2 Event B Method and Tools

2.1 Event B: an Overview

Within the Event B framework, asynchronous systems may be developed and structured using abstract systems.
Abstract systems are the basic structures of the so-called event-driven B, and they replace the abstract machines
which are the basic structures of the earlier operation-driven approach of the B method[1].
An abstract system describes a mathematical model of an asynchronous system behaviour1; it is mainly made of
a space state description (constants, properties, variables and invariant) and several event descriptions. Abstract
systems are comparable to Action Systems [7]; they describe a non-deterministic evolution of a system through

1A system behaviour is the set of its possible state transitions beginning from an initial state.

7

guarded actions. Dynamic constraints can be expressed within abstract systems to specify various liveness proper-
ties [4]. Abstract systems may be refined like abstract machines.

SYSTEM S
SETS CS, SS
VARIABLES gv
INVARIANT Inv
INITIALISATION U
EVENTS

ee 1 =̂ /* an event */
ANY bv WHERE

P1
(bv,gv) ∧ P2

(gv)

THEN

GS(gv,bv)

END

; ee 2 =̂
SELECT P(gv)

THEN GS(gv)

END

END

Within the B approach, an event is considered as the
observation of a system transition. Events are sponta-
neous and show the way a system evolves. An event e is
modelled with a guarded substitution: e =̂ eG =⇒ eB
where the predicate eG is a guard and the substitution
eB is an action. It may occur or may be observed only
when its guard holds. The guard may use local variables
(bv) bound to the ANY substitution and global variables
(gv). The shape of an abstract system is given beside.
The semantics of an abstract system lies on its invariant
and is guaranteed by proof obligations. The consistency
of the system is established by proof obligations:
i) the initialization establishes the invariant: [U]Inv; ii)
each event preserves the invariant: Inv ∧ eG =⇒ [eB]Inv.

Moreover the events terminate: I ∧ eG ⇒ fis(eB). The predicate fis(S) expresses that S does not establish
False: fis(S) ⇔ ¬ [S]False. prdv(S) is the before-after predicate of the substitution S; it relates the values of the
state variable just before (v) and just after (v’) the substitution S. The deadlock-freeness should be established for
an abstract system (the disjunction of the event guards should be true).
The event-based semantics of an abstract system (A) is viewed as the event traces of A (traces(A)); the set of finite
event sequences generated by the evolution of A.
As far as practical specification guides are concerned, we introduced in [5, 6] a parallel composition operator
to supplement the classical top-down approach of the Event B. This parallel composition allows communication
through global variable shared by the abstract (sub)systems. This permits a bottom-up approach for the Event B.
This parallel composition is commutative and associative; therefore it is also defined for n systems. More details
on the parallel composition can be found in [6].
The B method is supported by theorem provers which are industrial tools (Atelier-B2 and B-Toolkit3). The Event
B extension has not dedicated tools but the specifications are translated into classical B and the standard B tools
are used.

2.2 Overview of the ProB Tool

The ProB tool [11, 12] is an animator and a model checker for B specifications. It provides functionalities to
display graphical view of automata. It supports automated consistency checking of B specifications (an abstract
machine or a refinement with its state space, its initialization and its operations). The consistency checking is
performed on all the reachable states of the machine. The ProB also provides a constraint-based checking; with
this approach ProB does not explore the state space from the initializations, it checks whether applying one of the
operation can result in an invariant violation independently from the initialization.

The ProB offers many functionalities. The main ones are organized within three categories: Animation, Ver-
ification and Analysis. Several functionalities are provided for each category but here, we just list a few of them
which are used in this article.

As far as the Animation category is concerned, we have the following functionalities:
Random Animation: it starts from an initial state of the abstract machine and then, it selects in a random fashion
one of the enabled operations, it computes the next state accordingly and proceeds the animation from this state
with one of the enabled operations;

2www.clearsy.com
3www.b-core.com

8

View/Reduced Visited States: it displays a minimized graph of the visited states after an animation;
View/Current State: it displays the current state which is obtained after the animation.

In the Verification category, the following functionalities are available:
Temporal Model Checking: starting from a set of initialization states (initial nodes), it systematically explores the
state space of the current B specification. From a given state (a node), a transition is built for each enabled operation
and it ends at a computed state which is a new node or an already existing one. Each state is treated in the same
way.
Refinement Checking: the principle here is based on trace checking. All running traces of the refinement should
be traces of the initial specification. Constraint Based Checking: it checks for invariant violation when applying
operation independently from initialization states.

As far as the Analysis category is concerned, we have the following functionalities:
Compute Coverage: the state space (the nodes) and the transitions of the current specification are checked, some
statistics are given on deadlocked states, live states4, covered and uncovered operations.
Analyse Invariant: it checks if some parts of the current invariant are true or false;
Analyse Properties: the property clause of the current specification is checked.

The ProB tool is used to check liveness properties. Besides, note that if a B prover has been used to perform
consistency proof, the invariant should not be violated; the B consistency proof consists in checking that the
initialization of an abstract machine establishes the invariant and that all the operations preserve the invariant. In
the case where the consistency is not completely achieved ProB can help to discover the faults.

3 A Design Support for Multi-Process Systems

A given system may be efficiently specified and verified in B by combining a process-oriented approach and the
Event B tools ProB and AtelierB. We introduce a case study to illustrate our proposal.

3.1 A Case Study

The system to be studied comes from Milner [13]. The system is made of jobbers and tools (hammer, mallet)
and some conveying belts. Two jobbers have to treat the incoming parts (coming on an input belt). The jobbers
may use a hammer or a mallet to work the parts. There is only one hammer and only one mallet (they are shared
tools/resources). The task of a jobber is as follows: it gets a part, then it gets one of the (free) tool, it deal with the
part, it frees the used tool and then the jobber becomes available for another task. The already worked parts leave
the system (via an output belt).

We consider an extension of this Jobber processes case study: not only two jobbers are considered but several
ones. Moreover, new jobbers may enter the system at any time. Now think about the complexity of the specification
with a state transition approach. To deal with this complexity, very often state transition approaches make some
restrictions on the data and the number of interacting processes.

The formal specification of the case study is not straightforward using Event B. We have to build an abstract
system (a state space with a set of events that describe the system evolution).

3.2 Practical Limitations of the Separated Approaches

The advantages of each one of the methods involved in the study are underlined above.
State Transitions. Capturing a process behaviour is intuitive but state transition systems lack high level structures
for complex processes. Handling an undefined, variable number of processes is not tractable. Dealing with several
instances of the same processes is not possible. Synchronization of processes should be made explicit.
B Approach. A difficult point is that of completeness with respect to event ordering (liveness properties): did
the specification covers all the possible evolution (event sequences) expressed in the requirement? Indeed one can
have a consistent system (with respect to the stated invariant) which does not meet the desired logical behavioural
requirements. Several works investigate the proof of liveness properties of B specifications [8, 9].

4those already computed

9

In the proposed approach, we show that the combination of both approaches help to fight their practical limita-
tions.

3.3 The Proposed Approach

The focus is on the correct logical behaviour of the given system; its specification should fulfill the stated informal
requirements. Accordingly it should ensure safety and the ordering of the system events should be the one expected.
Several steps are distinguished.
Step 1. Initialize the construction of an abstract system A that is the formal model of the studied system: a state
space S and an event list E are needed. A is a multi-process system; therefore several process types will contribute
to define its behaviour.
Identify the system resources and distinguish the shared ones. For instance we have a set of parts which are
processed: PART; a set of tools TOOL = {hammer, mallet}. The shared resources need a specific access policy.
For each kind of these resources, define an event to get/free the resource. Each event has a guard which expresses
the conditions and the constraints to get/free the resource (getHam, getMal, putHam, putMal).

Identify the set of events that make the system evolves: {inPart, outPart, getPart, processPart, getHam, getMal,
putHam, putMal, · · ·}. These events may be split into classes of events: the general events of the system and those
which correspond to the evolution of the identified processes.
Step 2. Identify the global properties of the resources with an invariant predicate that characterizes S. Complement
the invariant cause of A.
Identify the properties of the behaviour of the whole system; that is a specific ordering of the events occurrence
according to the requirements: liveness property.
Let follow : E ↔ E be a relation that captures the required ordering of the events. It remains to complement follow
according to the classes of events in E.
Step 3. Complement A with the B specifications of the general events; for example inputPart, outputPart. The first
one is specified as follows:

inputPart =̂ /* A new part enters the system */
ANY part WHERE /* input parts and output parts are disjoints */

part ∈ PART ∧ part /∈ outParts
THEN

inParts := inParts ∪ {part}
END

Step 4. Identify the set P of (types of) processes that interact within A. It does not matter the number of the process
of each type. For example we have a process type JOBBER according to the case study.
Step 5. For each process type P ∈ P (consider for illustration P as JOBBER):

1. use a process type variable for the set of processes of this type (jobbers ⊆ JOBBER);

2. identify the subset of E events that make the evolution of P; for the jobbers we have : {getPart, processPart,
getHam, getMal, putHam, putMal}.

3. define an ordering relation on these events by considering the specific requirements on P; this results in
describing a subset of follow related to P. A rather small state transition system may help here. For the
JOBBER process type we have:

followJOBBER

getPart {getHam, getMal}
getHam {processPart}
getMal {processPart}
processPart {finishPart}
finishPart {putMal, putHam}

putMal

getMal

getHam

getPart processPart finishPart

putHam

newJobber

Some process state variables describing disjoint sets of processes are necessary to handle the evolution of
the processes.

./jobberBeh.eps

10

These variables should be subsets of the previous process type variable (with respect to the considered pro-
cess type). They capture the various states of each process. This ensures (using the event guards) that a
process will evolve according to its current state. Several distinct processes may be in the same state; they
are recorded in one set. As a process cannot be in different state (see Fig. 3), the variables are disjoints.
Therefore, for each process state ps, we have a set variable psprocesses.

waitJbrsfreeJobbers readyJbrs

free readywait

processes in this state

getPart

getHam

getMal

processPart

As far as the events are concerned, for a given event ee which leads (a process) to a state psj from a state
psi, the process that provokes this event should be any one process which is in the state psi. Therefore the
specification of the event ee has the shape :

ee =̂
ANY pr WHERE /* one process */

pr ∈ psiprocesses

∧ · · · /* additional predicates */
THEN

psjprocesses := psjprocesses ∪ {pr}
‖ psiprocesses := psiprocesses − {pr}
END

According to the Jobber case study, we have the following variables.
The variable freeJobbers (with freeJobbers ⊆ jobbers) denotes the processes which are entirely free; they
do not have neither tools nor parts.
The variable waitJbrs denotes the jobbers which wait for a tool (they already get a part);
The variables readyJbrs describes the set of processes that get a part and that get one tool (hammer or mallet);
therefore they are ready to process the part.
The variable workingj denotes the processes which are working a part.
Finally termJbrs denotes the jobbers which have terminated their task. Note that each one of these variables
corresponds to only one state of the process.

4. describe the event on each transition as a B event (guard and substitution). Use the previous (process state)
variables to express the guard. For example we have:

processPart =̂ /* A part is processed*/
ANY jbr WHERE /* one jobber ready to process its part */

jbr ∈ jobbers ∧ jbr ∈ readyJbrs
∧ jbr ∈ dom(hastool) ∧ jbr ∈ dom(hasPart)
THEN

workingj := workingj ∪ {jbr}
‖ readyJbrs := readyJbrs − {jbr}
END

In the same way, the B specifications are described for all the events.

5. complement A with the previous set of events. The abstract system A is now equipped with the B specifica-
tions of all the events.

./jobberPsv.eps

11

Step 6. Complement and prove the consistency of the A abstract system using Atelier B (theorem proving aspect).
All the proof obligations should be discharged. However we have not yet the way to guarantee the liveness require-
ments captured within follow. We shall prove that traces(A) coincides with the follow relation. That is the role of
the following step.
Step 7. Analyze and improve the A abstract system; this is achieved with the help of animation and model checking
with the ProB tool. First, model-check (see 2.2) the A abstract system to detect deadlocks. Correct the specification
of A accordingly. When A is deadlock-free, check that it fulfills follow. Using the ProB analysis tool (see 2.2) check
that all the events are enabled (this corresponds to no uncovered operations). Moreover, each event (evt) should
enable the events in follow(evt). This is checked by visualizing the reduced visited states (see 2.2). Another way
to check this is by stepwise animations; the ProB displays the operations enabled by each activated operation; we
should have the correspondence with follow. The A abstract system is improved accordingly.

As the follow relation expresses the set of all possible orderings of the events that could happen in the system,
after the Step 7., the logical behaviour analysis is complete and we get a correct specification of A with respect to
the requirements.

Proof: The occurrences of event orderings of A are checked with respect to follow. Formally, the occurrence
of an event e1 =̂ eG1 =⇒ eB1 is: ∃ vi, vi+1.[v := vi]eG1 ∧ [v, v′ := vi, vi+1]prdv(eB1).

The occurrence of a sequence of two events e1.e2 is:
∃ vi, vi+1, vi+2.[v := vi]eG1 ∧ [v, v′ := vi, vi+1]prdv(eB1) ∧ [v := vi+1]eG2 ∧ [v, v′ := vi+1, vi+2]prdv(eB2).

This generalizes easily to sequences of n events and it is traces(A).
Note that the closure of follow (noted follow∗) is the event occurrences that correspond to the requirements captured

by follow. Therefore we have follow∗ = traces(A) .
In the following we consider further issues about the multi-process specification method.

4 Further Issues

In our proposal for multi-process specification, process-oriented approach serves as a basis. Indeed, the latter
seems more intuitive with respect to the specification.

4.1 Process-oriented Approach

Remind that a process is an abstraction of a system behaviour; the latter is described with an alphabet and a set
of process operators. An alphabet is the collection of action names. A communication is an interaction between
several processes to exchange data. There are several operators related to the process-oriented approach.

The widely used operators related to the process-oriented approach are:

• Process definition;

• Inactive process (termination);

• Prefixing;

• Nondeterministic choice (of behaviour);

• Binary parallel composition, n-ary, synchronous or asynchronous communication;

• Process call or recursion;

• Internal action;

• Actions hiding (for synchronisation);

• Conditional;

• Renaming;

12

• Behaviour interruption;

• Binary or multi-way spawning (like the Unix5 fork);

Most of the listed operators are already covered by the event B approach (using event specification): inactive
process (skip); prefixing (constraining the use of guard); Process call or recursion (using guard).

In the following we consider specifically the nondeterministic choice operator. In previous works we have dealt
with the composition of abstract systems [5, 6].

4.2 Dealing with Nondeterminism

The expressivity of follow is sufficient to tackle non-deterministic aspects.
The escape event: for instance an event that may happen at any moment. This situation is simply handled by

considering that the escape event follows all the events. Therefore it should be present in follow(e) for all event e.
The diamond events: consider for example that a jobber may get a tool and then get a part or alternatively get

a part first and then get a tool. In such situation one event trace excludes the other trace.
The general case is expresses à la process algebra as follows (→ denotes the sequence, + denotes the choice).

Consider for events ei, e1, e2 and ef such that we have ei → (e1 → e2 + e2 → e1) → ef .
That is the event e1 follow e2 unless e1 follows e2. That means we have some constraints to be considered.

Consequently, that is to say the guard of the event e2 is not the same according to the evolution traces. Therefore
the substitution that will describe the event e2 after one guard is not the same as the substitution that describes the
event e2 after the other guard. It is not the same event! They should be distinguished. That is a methodological
point.

Consider the situation as sketched in the Fig. 1. One event (e2) has a guard related to the process state si and
the process reaches the state s2. The other event (e2) has a guard related to the process state s1 and the process
reaches the state sf .

e1

ef

e2 e1

e2

ei

si

sf

si

s1 s2

Figure 1: Diamond Events

The lesson for the specification approach: the events should be renamed properly so that they are distinct and
describe the correct situation.

For instance if we modify the preceding case study by considering that a process jobber can get a tool (getTool)
and then get a part (getPart) or vice versa, the specification will be wrong if we have follow(getPart) = getTool
and follow(getTool) = getPart.
The solution is to distinguish the events as shown just before; the wright description is obtained with getPartB4Tool
(i.e get part before the tool), getPartA3Tool (i.e. get part after the tool) and similarly getToolB4Part, getToolA3Part.
Therefore we have simply the same description for the follow relation (that means without constraining the relation
follow) :

5Unix is a trademark of AT&T.

./diamondEvents.eps

13

follow
getPartB4Tool {getToolA3Part}
getToolB4Part {getPartA3Tool}

As far as process algebra are concerned the same situation is captured through the finite state machine that is
computed for a given process. Therefore the evolution of the process is handled with respect to the traces (thus the
correct state).

5 Summary of Results

We introduce a pragmatic method to guide the specification of multi-process system. Using the described method,
we build incrementally a correct B abstract specification of the jobber case study. The feedbacks from model
checking help to discover deadlocks and incompleteness of the behaviour obtained with earlier specification ver-
sions. The specification is then improved step by step. The B theorem prover is used to discharge all the proof
obligations according to the invariant. Liveness properties are expressed using the follow relation on events.The
ProB tool is used to establish the correctness with respect to liveness. Moreover we handle the dynamic structure
of the system as processes may enter and take part of the application at any time. The latter aspect is interesting
for studying systems with evolving structure and also for service-oriented systems.

6 Conclusion and Perspectives

We presented a practical method as a design support to guide the specification of multi-process systems. The
proposal is illustrated with the jobbers case study. The obtained specification is proved correct by combining
theorem proving via Atelier B and model checking via the ProB tool.

The specificity of the case study, apart of the multi-process aspect, lies on the fact that it describes a generic
kind of software systems: several interacting processes that share a set of resources. This is frequently encountered
and yet well-known in operating systems: processes accessing the system resources (disks, files, cpu), the dinning
philosophers, the readers/writers, etc. These systems are used as the basic blocks for building various software
applications including Internet service-oriented ones. The proposed method is yet experimented with several other
case studies. We have not consider in this paper refinement of the specification into code, however this step remains
in the scope of the standard B approach. But model checking with the ProB tool may also help to faster discharging
of refinement proof obligations.

Perspectives. The short-term perspective of the work is about fairness properties management. Indeed, the
liveness is established but fairness is not guarantee. This property is important in multi-process systems since a
starved process may decrease the performance of the system. Think about a situation where a process (jobber) has
one tool and then is not enabled to work (due to lack of fairness); then the tool it uses is not released to serve other
processes. We are investigating the works described in [9, 10] as a basis to complement our study with fairness
aspects.
The other short-term perspective is related to the multi-facet analysis beginning from a single abstract reference
model. We are studying a method to generate systematically abstract systems from early process-oriented specifi-
cations. This method helps for a multi-perspective study of the same initial (B) specification.

References

[1] J-R. Abrial. The B Book. Cambridge University Press, .

[2] J-R. Abrial. Extending B without Changing it (for developping distributed systems). Proc. of the 1st Conf.
on the B method, H. Habrias (editor), France, pages 169–190, .

[3] J-R. Abrial. Discrete System Models. Internal Notes (www-lsr.imag.fr/B), February .

14

[4] J-R. Abrial and L. Mussat. Introducing Dynamic Constraints in B. In Proc. of the 2nd Conference on the B
method, D. Bert (editor), volume 1393 of Lecture Notes in Computer Science, pages 83–128. Springer-Verlag,
.

[5] C. Attiogbé. A Mechanically Proved Development Combining B Abstract Systems and Spin. In Proceedings
of the 4th International Conference on Quality Software (QSIC 2004), pages 42–49. IEEE Computer Society
Press, .

[6] C. Attiogbé. A Stepwise Development of the Peterson’s Mutual Exclusion Algorithm Using B Abstract
Systems. In H. Treharne, S. King, M. Henson, and S. Schneider, eds., Proc. of ZB’05, volume 3455 of LNCS,
pages 124–141. Springer-Verlag, .

[7] R.J. Back and R. Kurki-Suonio. Decentralisation of Process Nets with Centralised Control. In Proc. of the
2nd ACM SIGACT-SIGOPS Symp. on Principles of Distributed Computing, pages 131–142. ACM, .

[8] Françoise Bellegarde, Samir Chouali, and Jacques Julliand. Verification of Dynamic Constraints for B Event
Systems under Fairness Assumptions. In D. Bert, J. P. Bowen, M. C. Henson, and K. Robinson, eds., ZB’2002
– Formal Specification and Development in Z and B, volume 2272 of LNCS, pages 477–496. Springer-Verlag,
.

[9] H. R. Barradas and D. Bert. Specification and Proof of Liveness Properties under Fairness Assumptions in
B Event Systems. In Proc. of the Integrated Formal Methods (IFM’2002), volume 2335 of LNCS, pages
360–379, UK, May . Springer-Verlag.

[10] H. R. Barradas and D. Bert. A Fixpoint Semantics of Event Systems with and without Fairness Assumptions.
In J.M.T. Romijn, G.P. Smith, and J.C. van de Pol, eds., Proc. of IFM’2005, volume 3771 of LNCS, pages
327–346, UK, . Springer-Verlag.

[11] M. Leuschel and M. Butler. ProB: A Model Checker for B. In Keijiro A., Stefania G., and Dino M., eds.,
FME 2003: Formal Methods, LNCS 2805, pages 855–874. Springer-Verlag, .

[12] M. Leuschel and E. Turner. Visualizing Larger State Spaces in ProB. In Proc. of ZB’05, volume 3455 of
LNCS, pages 6–23. Springer-Verlag, April .

[13] Robin Milner. Communication and Concurrency. Prentice-Hall, NJ, .

A The ProB Main Interface

The main window (see Fig. 2) of the ProB tool has one text area where the current specification is displayed and
three small working area. The area in the middle shows the currently enabled operations. The user may click on
the desired operation to proceed with an animation.

B A First Version of the Abstract System

This version is consistent but not correct with respect to the requirements

/*
B Solution of the jobber case (by Milner)
C. Attiogbe - NaBLa Project
December 2005
Version 0 is consistent but incorrect
*/

MACHINE
jobber0

SETS

15

Figure 2: Main ProB Window

PART
; JOBBER
; TOOL = {t1, t2}
CONSTANTS

mm, MM

PROPERTIES
mm : TOOL

& MM : TOOL
& mm = t1
& MM = t2
VARIABLES

jobbers
, freeJobbers /* free jobbers */
, occJobbers /* occupied jobbers */
, waitJbrs /* the jobbers which wait for tools */
, tools
, freeTools
, parts
, hasPart /* jobbers which have part */
, hasTool
, curPart

./ecranAnim1.ps

16

, workingj

INVARIANT
jobbers <: JOBBER

& freeJobbers <: JOBBER
& occJobbers <: JOBBER
& freeJobbers <: jobbers
& occJobbers <: jobbers
& freeJobbers /\ occJobbers = {}
& waitJbrs <: JOBBER
& tools <: TOOL
& freeTools <: TOOL
& freeTools <: tools
& parts <: PART /* the available parts */
& hasPart : jobbers +-> BOOL
& hasTool : jobbers +-> TOOL
& curPart : jobbers +-> PART
& workingj <: JOBBER /* the jobbers which are working */

INITIALISATION

ANY jbrs WHERE
jbrs <: JOBBER

& jbrs /= {}
THEN

jobbers := jbrs
|| freeJobbers := jbrs
|| hasPart := jbrs*{FALSE}
END
|| occJobbers := {}
|| tools := {mm,MM}
|| freeTools := {mm,MM}
|| parts := {}
|| hasTool := {}
|| curPart := {}
|| waitJbrs := {}
|| workingj := {}

OPERATIONS

inputPart = /* a part enters the system */
ANY part
WHERE
part : PART
THEN
parts := parts \/ {part}
END
;
takePart = /* take a part to be processed */
ANY part, jbr
WHERE part : parts
& jbr : freeJobbers
THEN
parts := parts -{part}
|| hasPart(jbr) := TRUE
|| curPart(jbr) := part
|| waitJbrs := waitJbrs \/ {jbr}
END
;
processPart = /* one jobber processes a part */
ANY jbr
WHERE
jbr : jobbers
& jbr : freeJobbers

17

& ((hasTool(jbr) = mm) or (hasTool(jbr) = MM))
& hasPart(jbr) = TRUE
THEN
workingj := workingj \/ {jbr}
END
;
getHammer = /* one jobber gets a part */
ANY jbr, ham
WHERE
jbr : jobbers
& jbr : waitJbrs
& ham : freeTools
& ham = MM
& jbr : waitJbrs
THEN
freeTools := freeTools - {ham}
|| hasTool(jbr) := ham
|| waitJbrs := waitJbrs - {jbr}
END
;

getMallet = /* one jobber gets a part */
ANY jbr, mal
WHERE
jbr : jobbers
& jbr : waitJbrs
& mal : freeTools
& mal = mm
& jbr : waitJbrs
THEN
freeTools := freeTools - {mal}
|| hasTool(jbr) := mal
|| waitJbrs := waitJbrs - {jbr}
END
;
putHammer = /* one jobber gets a part */
ANY jbr
WHERE
jbr : jobbers
& jbr : workingj
& hasTool(jbr) = MM
THEN
hasTool := hasTool -{ jbr|-> MM}
|| workingj := workingj - {jbr}
END
;
outputPart = /* a (processed) part is output */
ANY jbr, tt
WHERE
jbr : workingj
& tt : tools
& hasTool(jbr) = tt
THEN
freeTools := freeTools \/ {tt}
|| hasTool := {jbr} <<| hasTool
|| waitJbrs := waitJbrs \/ {jbr}
END

END

C A Second Version (consistent but incorrect)

This version is also consistent but not correct with respect to the requirements.
The event outputPart is incorrect! but the abstract system is consistent, proved by AtelierB). We find the ’bugs’

18

using ProB and we correct the abstract system.
For example, we perform an animation for which we have the following coverage (using Analyse/Compute

Coverage).

live:10
open:9
total:19
TOTAL_OPERATIONS
26
COVERED_OPERATIONS
setup_constants:1
initialise_machine:3
takePart:3
getHammer:1
getMallet:1
processPart:3
putHammer:1
outputPart:1
inputPart:12
UNCOVERED_OPERATIONS
putMallet

Note that there is one operation which is not covered : putMallet. This is symptomatic of a possible error. In
this case, we check the current state of the system (Animate/View/Current State) and we analyse it (see Fig. 3).

inputPart

jobbers={JOBBER1},freeJobbers={},tools={mallet,hammer},
freeTools={mallet},parts={PART1,PART2},hasTool={},

waitJbrs={},workingj={},hasPart(JOBBER1,TRUE),
curPart(JOBBER1,PART2)

Figure 3: A reached state during animation

/*
B Solution of the jobber case (by Milner)
C. Attiogbe - NaBLa Project
December 2005, January, 2006
*/

MACHINE
jobber1

SETS
PART

; JOBBER
; TOOL = {mallet, hammer}
CONSTANTS

mm, MM
PROPERTIES

mm : TOOL
& MM : TOOL
& mm = mallet
& MM = hammer
VARIABLES

jobbers
, freeJobbers
, waitJbrs /* the jobbers which wait for a tool */
, tools
, freeTools

./currState1.ps

19

, parts
, hasPart
, hasTool
, curPart
, workingj /* the working jobbers ; have tool and part */

INVARIANT
jobbers <: JOBBER

& freeJobbers <: JOBBER
& workingj <: JOBBER /* the jobbers which are working */
& freeJobbers <: jobbers
& waitJbrs <: JOBBER
& workingj <: jobbers
& freeJobbers /\ workingj = {}
& freeJobbers /\ waitJbrs = {}
& tools <: TOOL
& freeTools <: TOOL
& freeTools <: tools
& parts <: PART /* the available parts */
& hasPart : jobbers +-> BOOL
& hasTool : jobbers +-> TOOL
& curPart : jobbers +-> PART
& mm /= MM

INITIALISATION

ANY jbrs WHERE
jbrs <: JOBBER
THEN
jobbers := jbrs
|| freeJobbers := jbrs
|| hasPart := jbrs*{FALSE}
END
|| tools := {mm,MM}
|| freeTools := {mm,MM}
|| parts := {}
|| hasTool := {}
|| curPart := {}
|| waitJbrs := {}
|| workingj := {}

OPERATIONS

inputPart = /* input of a part to be treated */
ANY part
WHERE
part : PART
THEN
parts := parts \/ {part}
END
;
takePart = /* A free jobber (without tool) takes a part to be processed */
ANY part, jbr
WHERE part : parts
& jbr : freeJobbers
THEN
parts := parts -{part}
|| hasPart(jbr) := TRUE
|| curPart(jbr) := part
|| waitJbrs := waitJbrs \/ {jbr}
|| freeJobbers := freeJobbers - {jbr}
END
;
processPart = /* A jobber (with a tool and a part) processes a part */
ANY jbr

20

WHERE
jbr : jobbers
& jbr /: freeJobbers
& jbr : dom(hasTool) /* ((hasTool(jbr) = mm) or (hasTool(jbr) = MM))*/
& hasPart(jbr) = TRUE
THEN
workingj := workingj \/ {jbr}
END
;
getHammer = /* A jobber (with a part) gets the hammer */
ANY jbr, ham
WHERE
jbr : jobbers
& jbr : waitJbrs /* ie it has a part */
& ham : freeTools
& ham = MM
& jbr /: dom(hasTool)
THEN
freeTools := freeTools - {ham}
|| hasTool(jbr) := ham
|| waitJbrs := waitJbrs - {jbr}
/* jbr is ready, not waiting */
END
;

getMallet = /* A jobber gets the mallet */
ANY jbr, mal
WHERE
jbr : jobbers
& jbr : waitJbrs /* ie it has a part */
& mal : freeTools
& mal = mm
& jbr /: dom(hasTool)
THEN
freeTools := freeTools - {mal}
|| hasTool(jbr) := mal
|| waitJbrs := waitJbrs - {jbr}
/* now jbr is ready, */
END
;
putHammer = /* free the hammer, when the job is terminated */
ANY jbr
WHERE
jbr : jobbers
& jbr : workingj
& hasTool(jbr) = MM
THEN
hasTool := hasTool - {jbr|-> MM}
|| workingj := workingj - {jbr}
END
;
putMallet = /* free the mallet, avant de finir?? */
ANY jbr
WHERE
jbr : jobbers
& jbr : workingj
& hasTool(jbr) = mm
THEN
hasTool := hasTool - {jbr|-> mm}
|| workingj := workingj - {jbr}
END
;
outputPart = /* output of a part already treated, this free the jobber/tool */
ANY jbr, tt
WHERE
jbr : workingj

21

/* may finish jbr */
& jbr /: waitJbrs
& tt : tools
& hasTool(jbr) = tt
THEN
freeTools := freeTools \/ {tt}
|| workingj := workingj - {jbr}
|| freeJobbers := freeJobbers \/ {jbr}
|| hasTool := {jbr} <<| hasTool
END

END

The following (see Fig. 4) is a (reduced) graph from an animation.

takePart()

putHammer()

getMallet()

takePart()

inputPart()

processPart()

inputPart()

inputPart()

getMallet()

getMallet()

processPart()

getMallet()

getHammer()

inputPart()

takePart()

getHammer()

takePart()

outputPart()

inputPart()

inputPart()

inputPart()

putHammer()

processPart()

takePart()

processPart()

processPart()

takePart()

inputPart()

getMallet()

getMallet()

inputPart()

inputPart()

inputPart()

inputPart()

getMallet()

initialise_machine(_,_,_,_,_,_,_,_,_,_)

outputPart()

processPart()

getHammer()

setup_constants(_,_)

26

16

6

25

15

5

24

14

4

23

13

2

22

12

21

11

20

10

19

9

18

8

17

7

Figure 4: A graph from an animation

./trace1.eps

22

D The Correct Version

/*
B Solution of the jobber case (by Milner)
C. Attiogbe - NaBLa Project
*/

MACHINE
jobber

SETS
PART

; JOBBER
; TOOL = {mallet, hammer}
CONSTANTS

mm, MM
PROPERTIES

mm : TOOL
& MM : TOOL
& mm = mallet
& MM = hammer
VARIABLES

jobbers
, freeJbrs
, waitJbrs /* the jobbers which wait for tools et/ou part */
, readyJbrs /* the jobbers which are ready for processing */
, termJbrs /* the jobbers which have terminated their jobs*/
, tools
, freeTools
, inParts
, outParts
, hasPart
, hasTool
, curPart
, workingj /* the working jobbers ; have tool and part */

INVARIANT
jobbers <: JOBBER

& freeJbrs <: JOBBER
& workingj <: JOBBER /* the jobbers which are working */
& readyJbrs <: JOBBER
& termJbrs <: JOBBER
& freeJbrs <: jobbers
& waitJbrs <: JOBBER
& workingj <: jobbers
& freeJbrs /\ workingj = {}
& freeJbrs /\ waitJbrs = {}
& tools <: TOOL
& freeTools <: TOOL
& freeTools <: tools
& inParts <: PART /* the available parts */
& outParts <: PART /* the available parts */
& inParts /\ outParts = {}
& hasPart : jobbers +-> BOOL
& hasTool : jobbers +-> TOOL
& curPart : jobbers +-> PART
& mm /= MM

INITIALISATION

ANY jbrs WHERE
jbrs <: JOBBER
THEN
jobbers := jbrs
|| freeJbrs := jbrs
|| hasPart := jbrs*{FALSE}

23

END
|| tools := {mm,MM}
|| freeTools := {mm,MM}
|| inParts := {}
|| outParts := {}
|| hasTool := {}
|| curPart := {}
|| waitJbrs := {}
|| workingj := {}
|| readyJbrs := {}
|| termJbrs := {}

OPERATIONS

inputPart = /* input of a part to be treated */
ANY part
WHERE
part : PART & part /: outParts
THEN
inParts := inParts \/ {part}
END
;
getPart = /* A free jobber (without tool) takes a part to be processed */
ANY part, jbr
WHERE part : inParts
& jbr : freeJbrs
THEN
inParts := inParts -{part}
|| hasPart(jbr) := TRUE
|| curPart(jbr) := part
|| waitJbrs := waitJbrs \/ {jbr}
|| freeJbrs := freeJbrs - {jbr}
END
;
getHammer = /* A jobber (with a part) gets the hammer */
ANY jbr, ham
WHERE
jbr : jobbers
& jbr : waitJbrs /* ie it has a part */
& ham : freeTools
& ham = MM
& jbr /: dom(hasTool)
THEN
freeTools := freeTools - {ham}
|| hasTool(jbr) := ham
|| waitJbrs := waitJbrs - {jbr}
|| readyJbrs := readyJbrs \/ {jbr}
END
;

getMallet = /* A jobber gets the mallet */
ANY jbr, mal
WHERE
jbr : jobbers
& jbr : waitJbrs /* ie it has a part */
& mal : freeTools
& mal = mm
& jbr /: dom(hasTool)
THEN
freeTools := freeTools - {mal}
|| hasTool(jbr) := mal
|| waitJbrs := waitJbrs - {jbr}
|| readyJbrs := readyJbrs \/ {jbr}
END
;
processPart = /* A jobber (with a tool and a part) processes a part */

24

ANY jbr
WHERE
jbr : jobbers
& jbr : readyJbrs
& jbr /: freeJbrs
& jbr : dom(hasTool) /* ie ((hasTool(jbr) = mm) or (hasTool(jbr) = MM)) */
& hasPart(jbr) = TRUE
THEN
workingj := workingj \/ {jbr}
|| readyJbrs := readyJbrs -{jbr}
/* || may finish(jbr) */
END
;
finishPart = /* A jobber */
ANY jbr,cp
WHERE
jbr : workingj
& cp : PART
& cp = curPart(jbr)
& cp /: inParts
THEN
termJbrs := termJbrs \/ {jbr}
|| workingj := workingj - {jbr}
|| outParts := outParts \/ {cp}
END
;
putHammer = /* free the hammer, when the job is terminated */
ANY jbr
WHERE
jbr : jobbers
& jbr : termJbrs
& jbr /: workingj
& jbr /: waitJbrs
& hasTool(jbr) = MM
THEN
hasTool := hasTool - {jbr|-> MM}
|| termJbrs := termJbrs - {jbr}
|| freeTools := freeTools \/ {MM}
|| tools := tools \/ {MM}
|| freeJbrs := freeJbrs \/ {jbr}
|| curPart := {jbr} <<| curPart
END
;
putMallet = /* free the mallet, avant de finir?? */
ANY jbr
WHERE
jbr : jobbers
& jbr : termJbrs
& jbr /: workingj
& jbr /: waitJbrs
& hasTool(jbr) = mm
THEN
hasTool := hasTool - {jbr|-> mm}
|| termJbrs := termJbrs - {jbr}
|| freeTools := freeTools \/ {mm}
|| tools := tools \/ {mm}
|| freeJbrs := freeJbrs \/ {jbr}
|| curPart := {jbr} <<| curPart
END
;
outputPart = /* output of an already treated part, this frees the jobber/tool */
ANY tp
WHERE
tp : outParts
THEN

25

outParts := outParts -{tp}
END
;
inJobber =
ANY jbr
WHERE
jbr : JOBBER
& jbr /: (jobbers \/freeJbrs)
& jbr /: waitJbrs
THEN
jobbers := jobbers \/ {jbr}
|| freeJbrs := freeJbrs \/ {jbr}
END
END

LABORATOIRE D’INFORMATIQUE DE NANTES-ATLANTIQUE

Combining B Tools for Multi-Process
Systems Specification

Christian Attiogbé

Abstract

We introduce a systematic method that combines process-oriented design and abstract systems to specify multi-
process system using Event B. As far as specification is concerned, the proposed method guides the user to describe
his/her system by considering both process-oriented view and event B style of specification.
With regard to mechanization, the method enforces the conjoined use of both theorem proving technique and model
checking technique with the associated tools: AtelierB and ProB. This method makes it easy the specification in
Event B of multi-process systems and it also fasters the correctness proof. Our proposal is illustrated with a case
study: a multi-process system with the interaction between processes that deal with parts using common resources.

Categories and Subject Descriptors: D.2.1 [Software Engineering]: Requirements/Specification—Methodologies;
D.2.4 [Software Engineering]: Software/Program Verification—Formal Methods; D.2.5 [Software Engineer-
ing]: Testing and Debugging—Testing tools

General Terms: Multi-Process Specification, Event B, Theorem Proving, Model checking

Additional Key Words and Phrases: Multi-Process Specification, Event B, Theorem Proving, Model checking

LINA, Université de Nantes
2, rue de la Houssinière

B.P. 92208 — F-44322 NANTES CEDEX 3

	Introduction
	Event B Method and Tools
	Event B: an Overview
	Overview of the ProB Tool

	A Design Support for Multi-Process Systems
	A Case Study
	Practical Limitations of the Separated Approaches
	The Proposed Approach

	Further Issues
	Process-oriented Approach
	Dealing with Nondeterminism

	Summary of Results
	Conclusion and Perspectives
	The ProB Main Interface
	A First Version of the Abstract System
	A Second Version (consistent but incorrect)
	The Correct Version

