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Abstract

Domain-Specific Languages (DSLs) are high level languages defined for combining expressivity and simplicity by
means of constructs which are close to the problem domain anddistant from the intricacies of underlying software
implementation constraints. In contrast with general purpose languages, DSLs are typically not useful for generic
tasks in multiple application domains. The specification ofa DSL is a complex task and requires a lot of knowledge
about the domain. In the context of Model Driven Engineering(MDE) metamodeling based techniques are quite
commonplace in the syntax specification of DSLs. The definition of their semantics still presents difficulties.
In this paper, a practical experiment is proposed where Abstract State Machines (ASMs) are used as a formal
ground for giving, in a precise and unambiguous way, the dynamic semantics of Session Programming Language
(SPL), a DSL defined for the development of telephony services over the Session Initiation Protocol (SIP). This
experiment is performed in the context of a MDE framework called AMMA (Atlas Model Management Architec-
ture). Although still under development, the approach proposed here illustrates a practical and generic solution to
define the precise dynamic semantics of DSLs.





1 Introduction

Specific metamodels able to capture knowledge and concepts of given problem domains play a key role in Model
Driven Engineering (MDE). Thus, the degree of success of such an approach strongly depends on the expressive-
ness and precision of the involved modeling languages and tools. Over the last years, a number of techniques have
been proposed for specifying modeling languages as Domain-Specific Languages (DSLs) [28]. Such languages are
tailored for a specific problem domain providing concepts and connectives which are familiar to the domain experts
who do not usually have any knowledge with general purpose languages (GPLs). Unfortunately, the definition of
DSLs suffers from several difficulties, which range from imprecise domain analysis to language under-specification
and result in an overall reduced effectiveness. While metamodeling technologies like MOF [24] or EMF [13] have
been extensively used for syntax specification and can be considered commonplace nowadays, the definition of
semantics is still a challenge and often there is not a consensus for dealing with this issue (see [27] for an inter-
esting discussion on the need of a more popular semantics). Designing languages still remains a difficult task and
rigour and formality are unavoidable. Furthermore, the semantic tools being used must provide enough pragmatic
qualities such as modularity, extensibility, ease of maintenance of the specifications and programming environment
generation to enable the verification of models at earlier stages of language design.

This paper helps defining DSLs by means of MDE techniques. AMMA [9] is a MDE framework based on a set
of basic DSLs (e.g. KM3 [1] and ATL [5]) that allows the definition of new DSLs by considering them as a set of
coordinated models. These mainly consists of a domain definition metamodel and models describing the syntaxes
of the language being defined. In order to cope with the semantics aspects, and not only with most syntactic and
transformation issues, AMMA has to be extended with new formalisms.

Some DSLs have semantics describing properties of time evolving systems. We refer to this as dynamic
semantics. However, not all DSLs have dynamic semantics. Inthis paper Abstract State Machines (ASMs) [11]
are used for specifying dynamic semantics of DSLs. ASMs havea good combination of formality and pragmatic
qualities and they have been used with success for the semantics specification of full scale programming languages.
Furthermore, ASMs are executable and several compilers andtools are available both from academy and industry
supporting the compilation and simulation of ASMs specifications. The paper proposes a practical experiment by
defining the semantics of Session Processing Language (SPL)[14], a DSL designed for implementing telephony
services over the SIP protocol [26].

The structure of the paper is as follows. Section2 provides the basic definitions and describes the proposed
approach for the specification of DSLs in a model driven engineering setting. Section3 briefly reviews the Abstract
State Machines formalism, defines its metamodel written in KM3 and the EBNF for specifying the concrete syntax
accoring to the XASM dialect [7]. Section4 proposes the case study where the semantics of SPL is given. After
relating the approach with other works, some conclusions are given in Section6.

2 Domain-Specific Languages and Models

2.1 Background

Domain-Specific Languages (DSLs) are languages able to raise the level of abstraction beyond coding by specify-
ing programs directly using domain concepts [28]. In particular, by means of DSLs the development of systems
can be realized by considering only abstractions and knowledge over the considered domain in contrast to general
purpose languages, like C++ or Java, that are supposed to be useful for much more generic tasks in multiple appli-
cation domains. In the former case, the designer does not have to know any programming knowledge, i.e. she/he
has not to be aware of implementation intricacies which are distant from the logic and essentials of the system
being implemented.

Over the years, many DSLs have been introduced in different application domains (telecommunications, mul-
timedia, database, software architectures, Web management, etc.) each proposing constructs and concepts familiar
to experts and professionals working over those domains. Generally, DSL programs are concise, self-documenting
and can be reusable, even if the development of a DSL is itselfa complex and onerous task. A deep understand-
ing of the domain is required for performing the necessary analysis and to elicitate the requirements the language
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Figure 1: Proposed DSLs specification approach

have to meet. As any other language, a DSL consists of concrete and abstract syntaxes, and possibly a semantics
definition which is implicitly or explicitly formulated. Additionally, in MDE a DSL can be viewed as a collection
of coordinated models, each of them specifying one of the following aspects:

• Domain definition metamodel.The abstract syntax of a DSL is given by means of a Domain Definition
MetaModel (DDMM) which introduces the basic entities of thedomain and their mutual relations. These
descriptions play a central role in the definition of the DSL,for example a DSL for Petri nets will contain the
concepts of places, transitions and arcs. Furthermore, themetamodel should state that arcs are only between
places and transitions;

• Concrete syntaxes.A DSL may have different concrete syntaxes which are defined by a transformation
model mapping the DDMM onto a display surface metamodel. Instances of display surface metamodels are
SVG or DOT [18], but also XML. An example of such a transformation for a Petri net DSL is the mapping
from places to circles, from transitions to rectangles and from arcs to arrows. The display surface metamodel
will then have the concepts of Circle, Rectangle and Arrow;

• Dynamic semantics.Many DSLs have a dynamic semantics based on the notion of transitions from state to
state that happen in time. Dynamic semantics may be given in multiple ways, for example, by mapping to
another DSL having itself a dynamic semantics or even by means of a GPL. In this paper we focus on DSLs
with dynamic semantics;

• Additional operations over DSLs.In addition to canonical execution, there are plenty of other possible oper-
ations manipulating programs written in a given DSL. Each may be defined by a similar mapping represented
by a transformation model. For example if one wishes to queryDSL programs, a standard mapping of the
DDMM onto Prolog may be useful. The study of these operationsover DSLs presents many challenges and
it is an open research subject.

Taking into account the mentioned aspects, the rest of the section introduces the proposed approach for the defini-
tion of DSLs by paying more attention to how to specify their dynamic semantics.

2.2 Proposed approach to DSLs specification

As claimed above, designing a DSL is a difficult task as different aspects have to be taken into account. According
to the proposed approach, Figure1 depicts the different parts composing a DSL specification. Anumber of mod-
eling languages are involved for this purpose and each of them can be considered, in turn, a DSL. The description
of the basic entities of the domain and their relations are provided by using KM3 [1], a metamodeling language

figures/dslSpec.eps
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which presents advantages over MOF and Ecore especially regarding usability and minimality. In fact, only es-
sential concepts, such asClass, Attribute andReference, are available in KM3. The concrete syntax is described
by models written in EBNF which is a DSL able to bridge the abstract syntax to the textual one that is going to
be used by the user of the language. Finally, the specification of the dynamic semantics has to be provided too.
Unfortunately, there is not a generally accepted formalismor technique for doing it as over the last decades several
semantics have been proposed but none emerged as universal and commonplace, as for instance happened to the
EBNF for context-free syntaxes.

Since we are interested in language design (rather than in analyzing or in verifying language properties, e.g.
whether a type-system is safe) our attention is devoted towards those mathematical formalisms which present
enough pragmatic qualities and allow the designer to conveyher/his design decisions into documents being still
able to backtrack, modularize, enhance specifications. In this respect, Abstract State Machines [11] have been
extensively used to give semantics to full scale languages,such as C [20], C++ [29], Java [12], Oberon [22]
and Prolog [10], to mention a few. In this paper we proposes ASMs as a framewrok for the dynamic semantics
specification of DSLs.

3 Abstract State Machines

3.1 Overview

ASMs [11] bridge the gap between specification and computation by providing more versatile Turing-complete
machines. The ability to simulate arbitrary algorithms on their natural levels of abstraction, without implementing
them, makes ASMs appropriate for high-level system design and analysis. ASMs specifications represents a formal
basis to reason about the properties of systems which are described into unambiguous way. ASMs form a variant of
first-order logic with equality, where the fundamental concept is that functions are defined over a setU and can be
changed point-wise by means of transition rules. The setU , referred to as thesuperuniversein ASM terminology,
always contains the distinct elementstrue, false, andundef. Apart from these,U can contain numbers, strings, and
possibly anything, depending on the application domain.

By means of ASMs, systems can be modeled as sequences of statetransitions. The state transitions are captured
by means of ASMs rules that are executed if corresponding predicates are verified. Being slightly more formal, we
define thestateλ of a system as a mapping from a signatureΣ (which is a collection of function symbols) to actual
functions. We writefλ for denoting the function which interprets the symbolf in the stateλ. Subsets ofU , called
universes, are modeled by unary functions fromU to {true, false}. Such a function returnstrue for all elements
belonging to the universe, andfalseotherwise. A functionf from a universeU to a universeV is a unary operation
on the superuniverse such that for alla ∈ U , f(a) ∈ V or f(a) = undef . The universeBooleanconsists oftrue
andfalse. A basic ASMtransition ruleis of the form

f(t1, . . . , tn) := t0

wheref(t1, . . . , tn) and t0 are closed terms (i.e. terms containing no free variables) in the signatureΣ. The
semantics of such a rule is : evaluate all the terms in the given state, and update the function corresponding tof at
the value of the tuple resulting of evaluating(t1, . . . , tn) to the value obtained by evaluatingt0. Rules are composed
in a parallel fashion, so the corresponding updates are all executed at once. Apart from the basic transition rule
shown above, there also existconditionalrules where the firing depends on the evaluated boolean condition-term,
do-for-all rules which allow the firing of the same rule for all the elements of a universe, and lastlyextendrules
which are used for introducing new elements into a universe.Transition rules are recursively built up from these
rules.

ASMs have been used with success in numerous applications and also for specifying the semantics of different
languages (like C, Java, SDL, VHDL) [3]. Additionally, ASMs are executable and several compilersand tools
are available both from academy and industry supporting thecompilation and simulation of ASMs specification.
For such reasons we have chosen to use ASMs in our approach as aformal framework for the specification of
the dynamic semantics of DSLs. Furthermore, in the sequel ofthe paper, ASMs rules are given in the XASM [7]
dialect compiler.
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Figure 2: General Structure of the abstract machine giving semantics to a DSL

Giving dynamic semantics to a DSL with ASMs consists of the specification of an abstract machine that is
able to simulate models defined by means of the given DSL. The machine has to be generic enough to express the
behavior of all correct models. As depicted in Figure2 the ASMs specification of such a machine is composed of
the following parts:

• Abstract Data Model (ADM).It describes the constructs of the language and all the additional elements,
language dependent, that are necessary for modeling dynamics (like environments, states, configurations
etc.). In particular, ADM consists of universes and functions. Generally, for imperative DSLs the static part
should be automatically generated from the metamodel of thelanguage. Anyway, the obtained abstract data
model has to be refined and extended with the elements concerning the dynamic part specification on which
the operational semantics of the language is based;

• Instance of the ADM.It encodes the model that has been defined with the given DSL and that we want to
verify. The encoding is based on the abstract data model previously described and it gives the initial state of
the abstract machine. Such an encoding should be automatically obtained by means of model transformation.
Starting from a model conforming to the metamodel of the considered DSL, an equivalent model conforming
to the ASMs metamodel and based on the ADM can be generated;

• Operational Rules.The meaning of the models defined with the given DSL is specified by means of opera-
tional rules expressed in form of transition rules. They areopportunely fired starting from the given instance
of the ADM, and they modify the dynamic elements language dependent like environment, state etc. The
evolution of such elements gives the model dynamic semantics and simulate its behavior.

An example describing the definition of DSLs by using the proposed approach is provided in Section4 where main
attention is payed to the description of the dynamic semantics. Essentially, the ASMs specification based on the
structure depicted in Figure2 will be presented for the Session Processing Language (SPL)DSL.

3.2 KM3 metamodel of ASMs

Before the example, some details have to be provided. In particular, in order to bring Abstract State Machines in
a Model Driven Engineering setting, where everything is a model, an ASMs metamodel has to be defined. This

Figure 3: General Structure of an XASM machine

figures/absMachine.eps
figures/xasmAsm.eps
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Figure 4: Fragment of the XASM metamodel

enables the definition of ASMs specifications as models. Furthermore, a bridge from the MDE technical space
to the XASM [7] concrete syntax has to be provided. For such reasons, in therest of the section, the ASMs
metamodel defined by means of KM3 is presented, and the EBNF model specifying the XASM concrete syntax is
also described.

The idea of defining a metamodel for ASMs is not new. In [25] a first step towards a common abstract represen-
tation of ASMs has been presented. The main motivation of this work was to define a standard interchange format
for a systematic integration of a number of loosely-coupledASMs tools. Building on the work done in [25] an
adapted ASMs metamodel for our purposes has been developed by means of the KM3 formalism. This language
has been very useful in supporting rapid and precise definition of metamodels for various situations. It is a textual
formalism and even if this seems counter intuitive, in our experience DSL designers have been asking for textual
languages instead of visual languages for the definition andmodification of metamodels.

Generally, an ASM specification consists of a number of machines and if XASM is the compiler used, each
of them has the general structure depicted in Figure3. In particular an abstract state machine has a signature
consisting of a name, a list of parameters and a return type. As defined in [19] types are not part of the core ASM
language, but in XASM they can be supplied to the declarationof a function and are used to detect static semantic
inconsistencies of the specification. The meta informationpart contains information concerning the role of the
ASM if it is defined as an asset that can be reused by other machines. The body of the machine is composed of
different portions. In particular, a list of function and universe declarations is provided together with the list of
other used machines that represents certain parts of the overall specification. After the rules that define the initial
state of the machine, the transition rules of the form specified in Sec.3.1 are defined. These rules specify the
dynamics of the machine establishing how the value of the declared functions changes eventually invoking some
other machines part of the overall specification. For a detailed and complete description of the structure depicted
in Figure3, interested readers can refer to [7].

Starting from the general structure depicted in Figure3, the corresponding metamodel has been defined in
KM3 and a fragment of it is depicted in Figure4. For readability reason the metamodel is presented in Figure4 in
the standard visual notation of class diagrams. The KM3 codeof the complete specification of the metamodel can
be downloaded from [4].

figures/asmMeta.eps
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1 XAsmSpec ::= Asm
2

3 Asm ::= "asm" Signature MetaInformation "is" Body "endasm"
4

5 Body ::= Declaration Initialization Rule*
6

7 ConditionalRule ::= "if" Expression "then" Rule
8 ("elseif" Rule)*
9 ("else" Rule)?
10 "endif"
11

12 Parameter ::= IDENT ":" Type

Figure 5: Fragment of the EBNF model for XASM

3.3 ASM syntax

The metamodel presented above enables the definition of ASMsspecification in the MDE technical space. In order
to compile and execute specifications expressed as models, aspecification of XASM concrete syntax is required.
For such a purpose an EBNF model has been defined. An excerpt ofthis model is given in Figure5.

In order to ”pretty-print” the ASMs metamodel to the XASM concrete syntax an additional entity is required:
a mapping between the KM3 metamodel and the EBNF model. Several solutions are available. For instance, an
ATL transformation may be used to translate the parse tree into an ASMs model and the other way around. The
solution we used is called Textual Concrete Syntax (TCS). Itis a DSL for the specification of concrete syntaxes.
A detailed description of TCS and of how to perform this modelto text translation is however outside of the scope
of this paper, which focuses more on semantics, rather than syntax.

4 Session Processing Language

4.1 Overview

The Session Processing Language (SPL) [14] is a domain-specific language whose goal is to ease the development
of telephony services based on a Service Logic Execution Environment for SIP [26].

The language offers high-level abstractions that frees theservice developer from low-level programming details
and technical hassles. One of the most important concepts inSPL is thesessionconsisting of a set of handlers and
states. The former defines how to deal with a protocol requestor events occuring on the platform, while the latter
allows some data to be maintained across a set of handlers. InSPL different kinds of sessions have been provided
and hierarchically arranged as shown in the example of Figure 6 (which is borrowed from [14]). The service
session is the main session which contains theregistration anddialog sessions respectively. In particular, the
example shows the implementation of a service that counts the calls that have been forwarded to a secretary when
the SIP user associated with the service is unable to take thecall. When the user registers in the service the counter
is set to0, increased each time a call is forwarded to the secretary, and finally logged when the user unregisters.

A session at any level has access to all variables of its ancestor sessions. For example, Figure6 the external
functionlog, declared in the outermostprocessing block, is used in the containedregistration session.
Such a session is created for each user who registers on the SIP platform by sending theREGISTER request. The
session defines thecnt variable, aREGISTER handler that initializes the counter and anunregister handler
which logs the counter. Finally, the sessiondialog manages a communication between parties: a dialog is created
by theINVITE request and confirmed by theACK request and terminated with theBYE request. In the example,
only theINVITE handler has been defined which increments the counter when anincoming call is rejected by the
user.

In the sequel, the dynamic semantics to SPL is defined by meansof an abstract machine which is structured
according to Figure2.
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1 service sec_calls {
2 processing {
3 local void log (int);
4 registration {
5 int cnt;
6 response outgoing REGISTER() {
7 cnt = 0;
8 return forward();
9 }

10 void unregister() {
11 log (cnt);
12 }
13 dialog {
14 response incoming INVITE() {
15 response r = forward;
16 if (r != /SUCCESS) {
17 cnt++;
18 return forward ’sip:secretary@nist.gov’;
19 } else
20 return r;
21 }
22 }
23 }
24 }
25 }

Figure 6: An example of SPL program

4.2 Dynamic semantics

In order to specify the dynamic semantics of SPL, we need to define the abstract data model (ADM) which has
to be generated from the metamodel of the language. In particular, since SPL is an imperative language, the
ADM should contain all the information necessary to describe not only the semantic actions corresponding to
the language primitives, but also how the control flows throughout the program and within the constructs. The
specification of the control flow can be given intensionally for each construct (see for instance [8]) in order to
inductively decorate the parse tree with all the information necessary for the control flow, i.e. establishing how the
control flows from one task to another within the same construct and from one contruct to another.

In Figure8 a fragment of the abstract data model of SPL is illustrated. In particular, the universesProcessing,
RegistrationandDialog are defined (see line6) in order to be extended and initialized according to the sessions
specified in an arbitrary SPL program. The different kinds ofstatements provided by the language induces the
definition of the corresponding universes which are subsetsof the universeStatementas described in the lines
12-13. The definition of the universes in the lines8-10 and15-17 are based on the availability of declarations
and expressions in SPL.

The control flow specifying the execution order of the statements is defined during an initial static analysis
of the source model and stored with the functions of lines20-22. The dynamic semantics heavily relies on such
functions which are updated together with the system state by the transition rules in order to let the control evolve
through the specified control flow. For uniformity, all the concepts of the abstract data model that have to be

Figure 7: An example of source program encoding

figures/cfEnc.eps
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1 universe Node
2 universe Statement
3 universe Expression
4 universe Session < Node
5 universe Service
6 universe Processing, Registration, Dialog < Session
7 universe Statement, Expression < Node
8 universe Declaration < Node
9 universe Variable < Node
10 universe Identifier < Node
11

12 universe If, Assignment < Statement
13 universe ExtMethodInvocation < Statement
14

15 universe ForwardExpr < Expression
16 universe Equal < Expression
17 universe RequestURI < Expression
18 universe User
19

20 function CurTask() -> Node
21 function NextTask(n:Node) -> Node
22 function TaskType(n:Node) -> NodeType
23

24 function S-Expr(x:If)-> Expression
25 function S1-Stmt(x:If)-> Statement
26 function S2-Stmt(x:If)-> Statement
27

28 universe RegistrationInstance
29 universe DialogInstance
30 universe PlatformRespone
31 universe SuccessResponse={OK, ACCEPTED, SUCCESS} < PlatformResponse
32 universe ErrorResponse={ERROR} < PlatformResponse
33

34 function HandlerNode(x:String) -> Node
35 external function getMessage() -> String
36 external function EvaluateExpression(e:Expression) -> _
37 external function ForwardToPlatform(_,_) -> PlatformResponse
38 subasm ExecuteHandler(h:Node)
39 subasm AssignValue(x:Identifier, e:Expression)
40 function owner(_)->User
41 function user

Figure 8: Fragment of the Abstract Data Model for SPL

involved in the encoding of the program are considered asNode. This justify why the universeNode of Figure8 is
super-universe of a number of universes according to the hierarchy given in the EBNF definition of the language
syntax, e.g. the rule

Stmt ::= If | Assignment | ...

induced an order-sorted relation which states that the universesIf andAssignmentare subsets ofNode. Further-
more, for each node a number of selectors are provided in order to get access to its internal structure according to
the corresponding EBNF rule. For example, for any node of kind If the selectorsS-Epxr, S1-StmtandS2-Stmtare
defined (see lines24-26) according to the occurences of the non terminals in theIf rule1. To better understand
such concepts, let’s consider the lines15-20 of the SPL program in Figure6. This fragment has been defined by
means of the following SPL productions

Declaration ::= Type Identifier "=" Expr
If ::= "if" "(" Expr ")" Stmt "else" Stmt

and in Figure7 the corresponding program encoding is depicted and enriched with (simplified) control flow in-
formation. These are essentially based on the functionNextTaskthat, given the current node of the program
(maintained by the functionCurTask), returns the node that has to be followed. In the example, after the evaluation
of the declarationd1, theif1 IF-Statementhas to be executed.

1The index in theS1-StmtandS2-Stmtfunction name denotes the first and second occurence of the non-terminalStmt, respectively.
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1 ...
2 if (TaskType(CurTask) = Declaration)
3 then
4 ExecuteDeclaration(S-Type(CurTask), S-Id(CurTask),
5 EvaluateExpr(S-Expr(CurTask)))
6 )
7 CurTask:=NextTask(CurTask)
8 endif
9

10 if (TaskType(CurTask) = If-statement)
11 then
12 if (EvaluateExpr(S-Expr(CurTask)))
13 then
14 CurTask:=S1-Stmt
15 else
16 CurTask:=S2-Stmt
17 endif
18 endif
19 ...

Figure 9: Choice of the transition rule to be executed

1 ...
2 if (not (exists x in RegistrationInstance : owner(x)=user))
3 then
4 if (ExecuteHandler(HandlerNode("REGISTER")))
5 then
6 if (ForwardToPlatform("INVITE",user) = SUCCESS)
7 then
8 extend DialogInstance with d
9 owner(d):=user

10 CurNode:=NextTask(CurNode)
11 endextend
12 endif
13 ...
14 endif
15 endif
16 ...

Figure 10: Fragment of the INVITE handler semantics

As said above, for each node a corresponding transition ruledenoting the corresponding semantic action has
to be selected and executed. The selection is performed according to the functionTaskTypewhich return the syn-
tactical category of the node, as shown in the ASM rules of Figure 9 where the right transition rule is executed
depending on the type of the current node, subsequently the value of the functionCurTaskis updated. In the ex-
ample two auxiliary sub-machines have been used, respectively: ExecuteDeclarationwill extend the environment
with a new identifier according to the provided parameters, while EvaluateExprgiven an expression returns the
corresponding evaluation.

The approach presented in Figure9 is not enough for specifying complete behavior of SPL programs. In fact,
as described in Section4.1, the control flow can be dynamically affected also by the messages coming from the
SIP platform. Depending on the received message, the corresponding handler has to be executed. Thus, the ADM
specifies a number of external functions able to interact with and provide access to the SIP platform. In particular,
for each service, a queue of message is maintained and the function getMessage()(line 35) is used for extracting
the last incoming message and returning its type (e.g.INVITE, REGISTER, etc.). To execute the right handler, the
functionHandlerNode(line 34) is defined. Given a message, this external function returnsthe pointer to the node
of the statement that has to be executed. Once obtained, thispointer can be used as parameter in the sub-machine
ExecuteHandler(line 38) that will execute the statements having as first node pointed by the parameter.

The dynamic semantics of a given handler, apart from the behavior of the statements defined in its body, is
based also on some pre-conditions which have to be verified, e.g. as depicted in Figure10 when a service receive
anINVITEmessage the corresponding handler has to verify whether theSIP user sending the message is registered
to the service. If not, the handler invokes theREGISTERhandler (line4), when available, and then proceeds with
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1 ...
2 if (ForwardToPlatform("REGISTER",user) = SUCCESS)
3 then
4 extend RegisterInstance with r
5 owner(r):=user
6 CurNode:=NextTask(CurNode)
7 endextend
8 endif
9 ...

Figure 11: Fragment of the REGISTER handler semantics

1 ...
2 if (end_child_session(r))
3 then
4 RegisterInstance(r):=false
5 CurNode:=NextTask(CurNode)
6 ...
7 endif
8 ...

Figure 12: Fragment of the unregister handler semantics

the execution of the handler (line6) if the registration does not fail.
The execution of a handler requires some interaction with the platform. This is accomplished by means of

the external functionForwardToPlatformable to forward expressions to the platform and to capture the response
which is, in turn, a success or a failure as described in the lines20-22 of Figure8. Such a function is used also for
the semantics definition of theINVITE andREGISTERhandlers (as shown in Figure10 and Figure11). In fact,
the body of a handler can be executed only if the platform responses withSUCCESS to the request ofINVITE, or
REGISTER respectively, performed by a given user.

Finally, concerning the semantics of theunregisterhandler (see Figure12), if an unregister message arrives and
there are still sessions associated with the given registration, this will be deleted (line4) only after the completition
of the child sessions (forced by the sub-muchineend child session used in line2). After this operation, the
statements of theunregisterhandler will be executed (line5).

5 Related Work

The work presented here is a first experiment in giving dynamic semantics of DSLs in the context of MDE. The
intention is extend the AMMA framework for supporting the dynamic semantics specification of DSLs. In this
direction a more extended experiment has be done in [17] where the ASM formalism is integrated in AMMA and
the dynamic semantics of ATL is also given.

The work closest to the one presented here is described in [15] where the ASMs formalism (in particular
AsmL [2]) is used as a common semantic framework to define the semantic domain of domain-specific modeling
languages. The approach is based on basic behavioral abstractions, called semantic units, that are tailored for
the studied problem domain. Semantic units are specified as ASMs. Such semantic units are then anchored to
the abstract syntax of the modeling language being specifiedby means of model transformations. The major
difference with the work described here is that, in our approach, the ASMs mechanism is integrated in the AMMA
platform. In that way the semantic specifications are modelsand may be manipulated by operations over models
(e.g. model transformations). In the semantic anchoring approach the semantics specification is given outside the
model engineering platform, in this case the Generic Modeling Environment (GME).

In the context of MDE some other approaches for semantics specification have been proposed. The approach
of Xactium [16, 6] follows the canonical scheme for the specification of semantics of programming languages. In
this scheme the semantics is defined by specifying mappings (known as semantic mappings) from abstract syntax
to semantic domain. Both the abstract syntax and the semantic domain are given as metamodels. The semantic
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mapping is specified by model elements (mostly associations). This approach has become known as denotational
metamodeling. The work presented in [21] extends the denotational metamodeling approach by defining Meta
Relations as a mechanism for specifying semantic mappings between the abstract syntax and the semantic domain.
The dynamic semantics specification (part of the semantic domain) is given by graph transformation rules. This
approach is called Dynamic Metamodeling. In our approach the semantic domains and semantic mappings are
defined as parts of ASMs. Dynamic aspect is defined by transition rules.

The language Kermeta [23] is a metamodeling language that contains constructs for specifying operations of
metamodel elements. These operations may be used for specifying the operational semantics of metamodels and
thus the semantics of DSLs expressed in Kermeta. In our approach the operational semantics expressed in ASMs
is clearly separated from the metamodel (abstract syntax).

6 Conclusions and Future Work

First generation MDE platforms were usually based on fixed metamodel tools. A typical example is a UML CASE
tool with Java code generation facilities. In second generation MDE platforms, we find variable metamodel tools,
i.e. tools where the metamodels are not hardwired. This capability allows to deal with a variety of DSLs, in a
regular organization. A typical example is the AMMA platform.

As we learn to build and to use these new MDE platforms, we recognize their capabilities to solve many
problems, e.g. code generation, program verification, dataintegration, etc. However these environments are still
limited to syntactical interoperability. This paper has reported an initial experiment to bring semantic capabilities
to such an environment. AMMA is a framework based on a set of DSLs and allows to define new DSLs. The
motivating example of telephony service development has permitted us to show how the three AMMA’s basic
DSLs (KM3, ATL, and TCS) can cope with most syntactic and transformation issues. In order to broaden the
approach to semantics definition, AMMA should be extended with generic facilities. One way is to use ASMs as
has been presented in this paper.

One of the lessons learned by this experiment is that ASMs areappropriate for the specification of the dynamic
semantics of a wide range of DSLs in the model driven engineering. In fact the obtained specifications can be used
both for having readable documentations of the DSL and for having executable descriptions useful for reasoning
in the early stages of the language development.

The experimental work presented in this paper remains to be extended in a number of ways. On one hand,
the complete semantics of SPL has to be defined and, on the other hand, the efforts have to be devoted in the
definition of model to text translations (based on TCS) for obtaining XASM code from models conforming to the
proposed ASMs metamodel. In this way the ASMs specificationscan be compiled with the XASM compiler and
then executed. Furthermore, other experimental works are needed to completely proof the suitability of ASMs
in AMMA for the dynamic semantics specification of DSLs and tocompare the approach with other semantic
frameworks.
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Semantics to a DSL for Telephony Services
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Abstract

Domain-Specific Languages (DSLs) are high level languages defined for combining expressivity and simplicity by
means of constructs which are close to the problem domain anddistant from the intricacies of underlying software
implementation constraints. In contrast with general purpose languages, DSLs are typically not useful for generic
tasks in multiple application domains. The specification ofa DSL is a complex task and requires a lot of knowledge
about the domain. In the context of Model Driven Engineering(MDE) metamodeling based techniques are quite
commonplace in the syntax specification of DSLs. The definition of their semantics still presents difficulties.
In this paper, a practical experiment is proposed where Abstract State Machines (ASMs) are used as a formal
ground for giving, in a precise and unambiguous way, the dynamic semantics of Session Programming Language
(SPL), a DSL defined for the development of telephony services over the Session Initiation Protocol (SIP). This
experiment is performed in the context of a MDE framework called AMMA (Atlas Model Management Architec-
ture). Although still under development, the approach proposed here illustrates a practical and generic solution to
define the precise dynamic semantics of DSLs.
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