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Abstract

Domain-Specific Languages (DSLs) are high level languaggset] for combining expressivity and simplicity by
means of constructs which are close to the problem domainliateht from the intricacies of underlying software
implementation constraints. In contrast with general pegdanguages, DSLs are typically not useful for generic
tasks in multiple application domains. The specificatioa BfSL is a complex task and requires a lot of knowledge
about the domain. In the context of Model Driven Enginee(M®E) metamodeling based techniques are quite
commonplace in the syntax specification of DSLs. The dedinitif their semantics still presents difficulties.

In this paper, a practical experiment is proposed whererAbsState Machines (ASMs) are used as a formal
ground for giving, in a precise and unambiguous way, the dhjogemantics of Session Programming Language
(SPL), a DSL defined for the development of telephony sesvineer the Session Initiation Protocol (SIP). This
experiment is performed in the context of a MDE frameworkethAMMA (Atlas Model Management Architec-
ture). Although still under development, the approach ps&g here illustrates a practical and generic solution to
define the precise dynamic semantics of DSLs.






1 Introduction

Specific metamodels able to capture knowledge and concegigem problem domains play a key role in Model
Driven Engineering (MDE). Thus, the degree of success di succapproach strongly depends on the expressive-
ness and precision of the involved modeling languages anig.tOver the last years, a number of techniques have
been proposed for specifying modeling languages as Do®jpétific Languages (DSL2§]. Such languages are
tailored for a specific problem domain providing concepts@mnectives which are familiar to the domain experts
who do not usually have any knowledge with general purpasguages (GPLs). Unfortunately, the definition of
DSLs suffers from several difficulties, which range from negise domain analysis to language under-specification
and result in an overall reduced effectiveness. While metiting technologies like MORH] or EMF [13] have
been extensively used for syntax specification and can bsidemred commonplace nowadays, the definition of
semantics is still a challenge and often there is not a causefor dealing with this issue (se27] for an inter-
esting discussion on the need of a more popular semantiesjgbing languages still remains a difficult task and
rigour and formality are unavoidable. Furthermore, thea®tin tools being used must provide enough pragmatic
qualities such as modularity, extensibility, ease of mexianhce of the specifications and programming environment
generation to enable the verification of models at earlegest of language design.

This paper helps defining DSLs by means of MDE techniques. AMW] is a MDE framework based on a set
of basic DSLs (e.g. KM31] and ATL [5]) that allows the definition of new DSLs by considering thesrasset of
coordinated models. These mainly consists of a domain tiefimnetamodel and models describing the syntaxes
of the language being defined. In order to cope with the sansaaspects, and not only with most syntactic and
transformation issues, AMMA has to be extended with new &disms.

Some DSLs have semantics describing properties of timeviegpbystems. We refer to this as dynamic
semantics. However, not all DSLs have dynamic semanticthisrpaper Abstract State Machines (ASM8)][
are used for specifying dynamic semantics of DSLs. ASMs laageod combination of formality and pragmatic
gualities and they have been used with success for the siesigpecification of full scale programming languages.
Furthermore, ASMs are executable and several compilersoatsiare available both from academy and industry
supporting the compilation and simulation of ASMs specfftas. The paper proposes a practical experiment by
defining the semantics of Session Processing Language (%8l p DSL designed for implementing telephony
services over the SIP protoc@d].

The structure of the paper is as follows. Sectibprovides the basic definitions and describes the proposed
approach for the specification of DSLs in a model driven eegiiimg setting. Sectiadbriefly reviews the Abstract
State Machines formalism, defines its metamodel writtenMBkand the EBNF for specifying the concrete syntax
accoring to the XASM dialect?]. Section4 proposes the case study where the semantics of SPL is gifear. A
relating the approach with other works, some conclusioag&en in Sectior.

2 Domain-Specific Languages and Models

2.1 Background

Domain-Specific Languages (DSLs) are languages able @ ttaédevel of abstraction beyond coding by specify-
ing programs directly using domain conce@§][ In particular, by means of DSLs the development of systems
can be realized by considering only abstractions and krdyd®ver the considered domain in contrast to general
purpose languages, like C++ or Java, that are supposed &efid tor much more generic tasks in multiple appli-
cation domains. In the former case, the designer does nettbhainow any programming knowledge, i.e. she/he
has not to be aware of implementation intricacies which @tadt from the logic and essentials of the system
being implemented.

Over the years, many DSLs have been introduced in diffeggpit@ation domains (telecommunications, mul-
timedia, database, software architectures, Web manadeetef) each proposing constructs and concepts familiar
to experts and professionals working over those domaingefadly, DSL programs are concise, self-documenting
and can be reusable, even if the development of a DSL is #salfimplex and onerous task. A deep understand-
ing of the domain is required for performing the necessanhais and to elicitate the requirements the language
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Figure 1: Proposed DSLs specification approach

have to meet. As any other language, a DSL consists of cananet abstract syntaxes, and possibly a semantics
definition which is implicitly or explicitly formulated. Aditionally, in MDE a DSL can be viewed as a collection
of coordinated models, each of them specifying one of tHewahg aspects:

Domain definition metamodelThe abstract syntax of a DSL is given by means of a Domain Digfimi
MetaModel (DDMM) which introduces the basic entities of ti@main and their mutual relations. These
descriptions play a central role in the definition of the Dfir,example a DSL for Petri nets will contain the
concepts of places, transitions and arcs. Furthermorepétemodel should state that arcs are only between
places and transitions;

Concrete syntaxesA DSL may have different concrete syntaxes which are defined transformation
model mapping the DDMM onto a display surface metamodetahes of display surface metamodels are
SVG or DOT [18], but also XML. An example of such a transformation for a Pe¢t DSL is the mapping
from places to circles, from transitions to rectangles aachfarcs to arrows. The display surface metamodel
will then have the concepts of Circle, Rectangle and Arrow;

Dynamic semanticdMany DSLs have a dynamic semantics based on the notion diti@rs from state to
state that happen in time. Dynamic semantics may be giverultipte ways, for example, by mapping to
another DSL having itself a dynamic semantics or even by mefa GPL. In this paper we focus on DSLs
with dynamic semantics;

Additional operations over DSL#n addition to canonical execution, there are plenty of pguessible oper-
ations manipulating programs written in a given DSL. Eacly edefined by a similar mapping represented
by a transformation model. For example if one wishes to qiEl programs, a standard mapping of the
DDMM onto Prolog may be useful. The study of these operatawes DSLs presents many challenges and
it is an open research subject.

Taking into account the mentioned aspects, the rest of ttt@adntroduces the proposed approach for the defini-
tion of DSLs by paying more attention to how to specify thgindmic semantics.

2.2

Proposed approach to DSLs specification

As claimed above, designing a DSL is a difficult task as diffeéiaspects have to be taken into account. According
to the proposed approach, Figuréepicts the different parts composing a DSL specificatiomusber of mod-
eling languages are involved for this purpose and each af tten be considered, in turn, a DSL. The description
of the basic entities of the domain and their relations ao®iged by using KM3 {], a metamodeling language
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which presents advantages over MOF and Ecore especialiydieg usability and minimality. In fact, only es-
sential concepts, such &fass, Attribute andReference, are available in KM3. The concrete syntax is described
by models written in EBNF which is a DSL able to bridge the edagtsyntax to the textual one that is going to
be used by the user of the language. Finally, the specifitafithe dynamic semantics has to be provided too.
Unfortunately, there is not a generally accepted formatistechnique for doing it as over the last decades several
semantics have been proposed but none emerged as univetsadramonplace, as for instance happened to the
EBNF for context-free syntaxes.

Since we are interested in language design (rather thanailyzng or in verifying language properties, e.g.
whether a type-system is safe) our attention is devotedrisvlnose mathematical formalisms which present
enough pragmatic qualities and allow the designer to coheethis design decisions into documents being still
able to backtrack, modularize, enhance specificationshitnrespect, Abstract State Machindq][have been
extensively used to give semantics to full scale languagiesh as C 20], C++ [29], Java [12], Oberon p2|
and Prolog 10|, to mention a few. In this paper we proposes ASMs as a framlefar the dynamic semantics
specification of DSLs.

3 Abstract State Machines

3.1 Overview

ASMs [11] bridge the gap between specification and computation byigirgg more versatile Turing-complete
machines. The ability to simulate arbitrary algorithms logitt natural levels of abstraction, without implementing
them, makes ASMs appropriate for high-level system degigreaalysis. ASMs specifications represents a formal
basis to reason about the properties of systems which atcelgeginto unambiguous way. ASMs form a variant of
first-order logic with equality, where the fundamental ogpids that functions are defined over algednd can be
changed point-wise by means of transition rules. Thé/seeferred to as theuperuniverséin ASM terminology,
always contains the distinct elemeinse, false andundef Apart from thesel/ can contain numbers, strings, and
possibly anything, depending on the application domain.

By means of ASMs, systems can be modeled as sequences dfataidons. The state transitions are captured
by means of ASMs rules that are executed if correspondindjgates are verified. Being slightly more formal, we
define thestate) of a system as a mapping from a signatir@vhich is a collection of function symbols) to actual
functions. We writef, for denoting the function which interprets the symigoh the state\. Subsets of/, called
universes, are modeled by unary functions fildnto {true, false}. Such a function returnisue for all elements
belonging to the universe, afalseotherwise. A functiory from a universé/ to a universé’ is a unary operation
on the superuniverse such that foralk U, f(a) € V or f(a) = undef. The universd8ooleanconsists otrue
andfalse A basic ASMtransition ruleis of the form

[ty . tn) = to

where f(t4,...,t,) andt, are closed terms (i.e. terms containing no free variableghé signature:. The
semantics of such a rule is : evaluate all the terms in thengitegte, and update the function correspondingj &b
the value of the tuple resulting of evaluatiftg, . . . , ¢,,) to the value obtained by evaluating Rules are composed
in a parallel fashion, so the corresponding updates arexeduted at once. Apart from the basic transition rule
shown above, there also exginditionalrules where the firing depends on the evaluated boolean tommdérm,
do-for-all rules which allow the firing of the same rule for all the eletsesf a universe, and lastigxtendrules
which are used for introducing new elements into a univefsansition rules are recursively built up from these
rules.

ASMs have been used with success in numerous applicatiohssm for specifying the semantics of different
languages (like C, Java, SDL, VHDLJ}][ Additionally, ASMs are executable and several compikand tools
are available both from academy and industry supportingtimepilation and simulation of ASMs specification.
For such reasons we have chosen to use ASMs in our approacfoema framework for the specification of
the dynamic semantics of DSLs. Furthermore, in the sequileopaper, ASMs rules are given in the XASH [
dialect compiler.
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Figure 2: General Structure of the abstract machine givémgastics to a DSL

Giving dynamic semantics to a DSL with ASMs consists of thec#firation of an abstract machine that is
able to simulate models defined by means of the given DSL. Tdehine has to be generic enough to express the
behavior of all correct models. As depicted in Figadrine ASMs specification of such a machine is composed of
the following parts:

» Abstract Data Model (ADM)It describes the constructs of the language and all theiaddltelements,
language dependent, that are necessary for modeling dgadlikie environments, states, configurations
etc.). In particular, ADM consists of universes and funetioGenerally, for imperative DSLs the static part
should be automatically generated from the metamodel dbtiguage. Anyway, the obtained abstract data
model has to be refined and extended with the elements cangéhe dynamic part specification on which
the operational semantics of the language is based;

* Instance of the ADMIt encodes the model that has been defined with the given D8Ilthat we want to
verify. The encoding is based on the abstract data modeiqugly described and it gives the initial state of
the abstract machine. Such an encoding should be autotthatibtained by means of model transformation.
Starting from a model conforming to the metamodel of the m@red DSL, an equivalent model conforming
to the ASMs metamodel and based on the ADM can be generated;

» Operational RulesThe meaning of the models defined with the given DSL is spelifiemeans of opera-
tional rules expressed in form of transition rules. Theyagortunely fired starting from the given instance
of the ADM, and they modify the dynamic elements languagesddpnt like environment, state etc. The
evolution of such elements gives the model dynamic sensatid simulate its behavior.

An example describing the definition of DSLs by using the sBmd approach is provided in Sectibwhere main
attention is payed to the description of the dynamic seroanttssentially, the ASMs specification based on the
structure depicted in Figu2will be presented for the Session Processing Language (SBL)

3.2 KM3 metamodel of ASMs

Before the example, some details have to be provided. licpéat, in order to bring Abstract State Machines in
a Model Driven Engineering setting, where everything is alelpan ASMs metamodel has to be defined. This

asm A(a1 : T1,...,an : Tn) = a0 : To
(asm meta information)
is
(universe, function, and subasm declarations)
(initialization rules)

(asm rules)
endasm

Figure 3: General Structure of an XASM machine
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Figure 4: Fragment of the XASM metamodel

enables the definition of ASMs specifications as models. heamore, a bridge from the MDE technical space
to the XASM [7] concrete syntax has to be provided. For such reasons, inetiteof the section, the ASMs
metamodel defined by means of KM3 is presented, and the EBNIelspecifying the XASM concrete syntax is
also described.

The idea of defining a metamodel for ASMs is not new.28 [a first step towards a common abstract represen-
tation of ASMs has been presented. The main motivation efloirk was to define a standard interchange format
for a systematic integration of a number of loosely-coupgé&Ms tools. Building on the work done ir2§] an
adapted ASMs metamodel for our purposes has been develgpadadns of the KM3 formalism. This language
has been very useful in supporting rapid and precise defimitf metamodels for various situations. It is a textual
formalism and even if this seems counter intuitive, in oyvsexience DSL designers have been asking for textual
languages instead of visual languages for the definitiomamndification of metamodels.

Generally, an ASM specification consists of a number of nreehiand if XASM is the compiler used, each
of them has the general structure depicted in Figirdn particular an abstract state machine has a signature
consisting of a name, a list of parameters and a return typalefined in 19] types are not part of the core ASM
language, but in XASM they can be supplied to the declaraif@function and are used to detect static semantic
inconsistencies of the specification. The meta informagiart contains information concerning the role of the
ASM if it is defined as an asset that can be reused by other mashiThe body of the machine is composed of
different portions. In particular, a list of function andiverse declarations is provided together with the list of
other used machines that represents certain parts of thallosfgecification. After the rules that define the initial
state of the machine, the transition rules of the form spetiiin Sec.3.1 are defined. These rules specify the
dynamics of the machine establishing how the value of théaded functions changes eventually invoking some
other machines part of the overall specification. For a tetaind complete description of the structure depicted
in Figure3, interested readers can refer @.[

Starting from the general structure depicted in FigBréhe corresponding metamodel has been defined in
KM3 and a fragment of it is depicted in Figude For readability reason the metamodel is presented in Eyinr
the standard visual notation of class diagrams. The KM3 ofdee complete specification of the metamodel can
be downloaded from¥].
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XAsnSpec ::= Asm

Asm ::= "asnf Signature Metalnformation "is" Body "endasnt
Body ::= Declaration Initialization Rul ex

Conditional Rule ::= "if" Expression "then" Rule

("elseif" Rule)*
("else" Rule)?
"endi f"

Parameter ::= |DENT ":" Type

Figure 5: Fragment of the EBNF model for XASM

3.3 ASM syntax

The metamodel presented above enables the definition of Apktdfication in the MDE technical space. In order
to compile and execute specifications expressed as modsdecification of XASM concrete syntax is required.
For such a purpose an EBNF model has been defined. An excehig ofiodel is given in Figurg.

In order to "pretty-print” the ASMs metamodel to the XASM avate syntax an additional entity is required:
a mapping between the KM3 metamodel and the EBNF model. 8les@utions are available. For instance, an
ATL transformation may be used to translate the parse titeeaim ASMs model and the other way around. The
solution we used is called Textual Concrete Syntax (TCS$.dtDSL for the specification of concrete syntaxes.
A detailed description of TCS and of how to perform this mddekExt translation is however outside of the scope
of this paper, which focuses more on semantics, rather yraax

4 Session Processing Language

4.1 Overview

The Session Processing Language (SRH) s a domain-specific language whose goal is to ease theafaweint
of telephony services based on a Service Logic Executioir@mwent for SIP 26].

The language offers high-level abstractions that freeséhéce developer from low-level programming details
and technical hassles. One of the most important conce@Blins thesessiorconsisting of a set of handlers and
states. The former defines how to deal with a protocol requestents occuring on the platform, while the latter
allows some data to be maintained across a set of handleg®Umlifferent kinds of sessions have been provided
and hierarchically arranged as shown in the example of Ei§ywhich is borrowed from14]). Theservi ce
session is the main session which contains thg st r at i on anddi al og sessions respectively. In particular, the
example shows the implementation of a service that countsdlis that have been forwarded to a secretary when
the SIP user associated with the service is unable to taleathéVhen the user registers in the service the counter
is set to0, increased each time a call is forwarded to the secretadyfiaally logged when the user unregisters.

A session at any level has access to all variables of its &orcesssions. For example, Figusehe external
function| og, declared in the outermogt ocessi ng block, is used in the containedgi st rati on session.
Such a session is created for each user who registers onRhg@a&form by sending thREG STER request. The
session defines thent variable, aREG STER handler that initializes the counter and i egi st er handler
which logs the counter. Finally, the sessitiral og manages a communication between parties: a dialog is dreate
by thel NvI TE request and confirmed by th&K request and terminated with tB¥E request. In the example,
only thel NvI TE handler has been defined which increments the counter whiercaming call is rejected by the
user.

In the sequel, the dynamic semantics to SPL is defined by nafaars abstract machine which is structured
according to Figuré.
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service sec_calls {
processing {
local void log (int);
registration {
int cnt;
response outgoi ng REG STER() {
cnt = 0;
return forward();

}

void unregister() {
log (cnt);

}
di al og {
response incomning | NVITE() {
response r = forward;
if (r !'= /SUCCESS) {
cnt ++;
return forward ’sip:secretary@ist.gov’;
} else
return r;

}
}
}
}
}

Figure 6: An example of SPL program

4.2 Dynamic semantics

In order to specify the dynamic semantics of SPL, we need tinel¢he abstract data model (ADM) which has
to be generated from the metamodel of the language. In pkatjcsince SPL is an imperative language, the
ADM should contain all the information necessary to deserilot only the semantic actions corresponding to
the language primitives, but also how the control flows tigtwut the program and within the constructs. The
specification of the control flow can be given intensionally €ach construct (see for instan@)[in order to
inductively decorate the parse tree with all the infornmatiecessary for the control flow, i.e. establishing how the
control flows from one task to another within the same corstnd from one contruct to another.

In Figure8 a fragment of the abstract data model of SPL is illustrategharticular, the universdrocessing
RegistrationandDialog are defined (see lin@) in order to be extended and initialized according to thesises
specified in an arbitrary SPL program. The different kindstatements provided by the language induces the
definition of the corresponding universes which are subskthe universeStatementas described in the lines
12- 13. The definition of the universes in the line@s10 and15- 17 are based on the availability of declarations
and expressions in SPL.

The control flow specifying the execution order of the statata is defined during an initial static analysis
of the source model and stored with the functions of lip@s22. The dynamic semantics heavily relies on such
functions which are updated together with the system stathétransition rules in order to let the control evolve
through the specified control flow. For uniformity, all thencepts of the abstract data model that have to be

|IF-Statement
if,

S-Expr S-Expr
S1-Stmt

S-id
Identifier Expression Expression
! e, e,

Figure 7: An example of source program encoding

Declaration NextTask

d;

S2-Stmt
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uni ver se Node

uni verse St at enment

uni ver se Expression

uni ver se Session < Node

uni verse Service

uni verse Processing, Registration, Dialog < Session
uni verse Statenent, Expression < Node

uni verse Decl aration < Node

uni verse Vari abl e < Node

uni verse ldentifier < Node

uni verse | f, Assignnent < Statenent
uni ver se Ext Met hodl nvocation < Statenent

uni ver se Forwar dExpr < Expression
uni verse Equal < Expression

uni ver se Request URI < Expression
uni verse User

function CurTask() -> Node
function Next Task(n: Node) -> Node
function TaskType(n: Node) -> NodeType

function S-Expr(x:If)-> Expression
function S1-Stnt(x:1f)-> Statenent
function S2-Stnt(x:1f)-> Statenent

uni ver se Regi strationlnstance

uni ver se Di al ogl nst ance

uni verse Pl at f or mMRespone

uni ver se SuccessResponse={ OK, ACCEPTED, SUCCESS} < Pl atformResponse
uni verse Error Response={ ERROR} < Pl atfornResponse

function Handl er Node(x: String) -> Node

external function getMessage() -> String

external function Eval uat eExpression(e: Expression) -> _
external function ForwardToPlatform(_,_) -> PlatfornResponse
subasm Execut eHandl er ( h: Node)

subasm Assi gnVal ue(x: I dentifier, e:Expression)

function owner(_)->User

function user

Figure 8: Fragment of the Abstract Data Model for SPL

involved in the encoding of the program are considered@de This justify why the universsiode of Figure8is
super-universe of a number of universes according to thairtiey given in the EBNF definition of the language
syntax, e.g. the rule

Stnt ::=1f | Assignnment |

induced an order-sorted relation which states that theeusdf and Assignmenare subsets dflode Further-
more, for each node a number of selectors are provided ir twdget access to its internal structure according to
the corresponding EBNF rule. For example, for any node af Kirthe selector$-Epxy S1-StmandS2-Stmare
defined (see lineg4- 26) according to the occurences of the non terminals inlthaile!. To better understand
such concepts, let's consider the lirigs 20 of the SPL program in Figuré This fragment has been defined by
means of the following SPL productions

Decl aration ::= Type ldentifier "=" Expr
I f o= "iftoo (" Expr ")" Stnmt "else" Stnt

and in Figure7 the corresponding program encoding is depicted and emtialith (simplified) control flow in-
formation. These are essentially based on the fundiiertTaskthat, given the current node of the program
(maintained by the functioBurTasR, returns the node that has to be followed. In the examplier, tfe evaluation
of the declaratiomn, thei f; IF-Statemenhas to be executed.

1The index in theS1-StmandS2-Stmfunction name denotes the first and second occurence of théenminalStmt respectively.
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if (TaskType(CurTask) = Decl aration)
then
Execut eDecl ar ati on( S- Type( Cur Task), S-1d(CurTask),
Eval uat eExpr ( S- Expr ( Cur Task)))

)
Cur Task: =Next Task( Cur Task)
endi f

if (TaskType(CurTask) = If-statenent)
then
if (Eval uat eExpr (' S- Expr (Cur Task)))
then
Cur Task: =S1- St nt
el se
Cur Task: =S2- St nt
endi f
endi f

Figure 9: Choice of the transition rule to be executed

|f (not (exists x in Registrationlnstance : owner(x)=user))
then
i f (ExecuteHandl er(Handl er Node(" REG STER')))
then
if (ForwardToPl atforn{"INVITE", user) = SUCCESS)
then
extend Dial ogl nstance with d
owner (d) : =user
Cur Node: =Next Task( Cur Node)
endext end
endi f
endi f
endi f

Figure 10: Fragment of the INVITE handler semantics

As said above, for each node a corresponding transitiondem®ting the corresponding semantic action has
to be selected and executed. The selection is performeddicgdo the functiorifaskTypevhich return the syn-
tactical category of the node, as shown in the ASM rules ofifé@ where the right transition rule is executed
depending on the type of the current node, subsequentlyalue wf the functiorCurTaskis updated. In the ex-
ample two auxiliary sub-machines have been used, respgctiixecuteDeclaratiowill extend the environment
with a new identifier according to the provided parametets]aerEvaluateExpmiven an expression returns the
corresponding evaluation.

The approach presented in Figi@&e not enough for specifying complete behavior of SPL prograln fact,
as described in Sectioh1, the control flow can be dynamically affected also by the mgss coming from the
SIP platform. Depending on the received message, the puomeig handler has to be executed. Thus, the ADM
specifies a number of external functions able to interadt aitd provide access to the SIP platform. In particular,
for each service, a queue of message is maintained and tbeoiugetMessage((line 35) is used for extracting
the last incoming message and returning its type (eNyl TE, REG STER, etc.). To execute the right handler, the
functionHandlerNodg(line 34) is defined. Given a message, this external function retinepointer to the node
of the statement that has to be executed. Once obtainegdiniter can be used as parameter in the sub-machine
ExecuteHandle(line 38) that will execute the statements having as first node painyehe parameter.

The dynamic semantics of a given handler, apart from thewehaf the statements defined in its body, is
based also on some pre-conditions which have to be verifigdas depicted in Figure0 when a service receive
anINVITE message the corresponding handler has to verify wheth&khaser sending the message is registered
to the service. If not, the handler invokes RREGISTERhandler (line4), when available, and then proceeds with
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if (ForwardToPl atforn{"REG STER', user) = SUCCESS)
t hen
extend Registerlnstance with r
owner (r): =user
Cur Node: =Next Task( Cur Node)
endext end
endi f

Figure 11: Fragment of the REGISTER handler semantics

if (end_child_session(r))

t hen
Regi sterlnstance(r): =fal se
Cur Node: =Next Task( Cur Node)

endi f
Figure 12: Fragment of the unregister handler semantics

the execution of the handler (lirg if the registration does not fail.

The execution of a handler requires some interaction wighpilatform. This is accomplished by means of
the external functiofrorwardToPlatformable to forward expressions to the platform and to captueedbponse
which is, in turn, a success or a failure as described in thes$0- 22 of Figure8. Such a function is used also for
the semantics definition of tH&lVITE andREGISTEFRhandlers (as shown in Figulé® and Figurell). In fact,
the body of a handler can be executed only if the platformarses withSUCCESS to the request of NVI TE, or
REGQ STERrespectively, performed by a given user.

Finally, concerning the semantics of thieregisterthandler (see Figurg?), if an unregister message arrives and
there are still sessions associated with the given regstrahis will be deleted (lind) only after the completition
of the child sessions (forced by the sub-muchénd_chi | d_sessi on used in line2). After this operation, the
statements of thenregisterhandler will be executed (ling).

5 Related Work

The work presented here is a first experiment in giving dyeasaimantics of DSLs in the context of MDE. The
intention is extend the AMMA framework for supporting thendynic semantics specification of DSLs. In this
direction a more extended experiment has be dongdvjhere the ASM formalism is integrated in AMMA and
the dynamic semantics of ATL is also given.

The work closest to the one presented here is describetisjnmfhere the ASMs formalism (in particular
AsmL [2]) is used as a common semantic framework to define the serrdortiain of domain-specific modeling
languages. The approach is based on basic behavioral @hlsig called semantic units, that are tailored for
the studied problem domain. Semantic units are specifiedS#sA Such semantic units are then anchored to
the abstract syntax of the modeling language being spedifiecheans of model transformations. The major
difference with the work described here is that, in our apphp the ASMs mechanism is integrated in the AMMA
platform. In that way the semantic specifications are moaetsmay be manipulated by operations over models
(e.g. model transformations). In the semantic anchoripy@arh the semantics specification is given outside the
model engineering platform, in this case the Generic Moddlinvironment (GME).

In the context of MDE some other approaches for semantiasfggion have been proposed. The approach
of Xactium [16, 6] follows the canonical scheme for the specification of seiinamf programming languages. In
this scheme the semantics is defined by specifying mappkmgsup as semantic mappings) from abstract syntax
to semantic domain. Both the abstract syntax and the secrdmtinain are given as metamodels. The semantic
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mapping is specified by model elements (mostly associgtidrgs approach has become known as denotational
metamodeling. The work presented Ri] extends the denotational metamodeling approach by dgfikieta
Relations as a mechanism for specifying semantic mappietygden the abstract syntax and the semantic domain.
The dynamic semantics specification (part of the semanticaily) is given by graph transformation rules. This
approach is called Dynamic Metamodeling. In our approaehsémantic domains and semantic mappings are
defined as parts of ASMs. Dynamic aspect is defined by trangitiles.

The language Kermet28§] is a metamodeling language that contains constructs feeipng operations of
metamodel elements. These operations may be used fory@pgdifie operational semantics of metamodels and
thus the semantics of DSLs expressed in Kermeta. In our apprihe operational semantics expressed in ASMs
is clearly separated from the metamodel (abstract syntax).

6 Conclusions and Future Work

First generation MDE platforms were usually based on fixethmedel tools. A typical example is a UML CASE

tool with Java code generation facilities. In second gai@r&DE platforms, we find variable metamodel tools,
i.e. tools where the metamodels are not hardwired. Thishibifyaallows to deal with a variety of DSLs, in a
regular organization. A typical example is the AMMA platfor

As we learn to build and to use these new MDE platforms, wegeize their capabilities to solve many
problems, e.g. code generation, program verification, id¢gration, etc. However these environments are still
limited to syntactical interoperability. This paper hapoded an initial experiment to bring semantic capab#itie
to such an environment. AMMA is a framework based on a set df<D&hd allows to define new DSLs. The
motivating example of telephony service development hamiped us to show how the three AMMA's basic
DSLs (KM3, ATL, and TCS) can cope with most syntactic and ¢farmation issues. In order to broaden the
approach to semantics definition, AMMA should be extenddt generic facilities. One way is to use ASMs as
has been presented in this paper.

One of the lessons learned by this experiment is that ASMafpeopriate for the specification of the dynamic
semantics of a wide range of DSLs in the model driven engingem fact the obtained specifications can be used
both for having readable documentations of the DSL and feinigeexecutable descriptions useful for reasoning
in the early stages of the language development.

The experimental work presented in this paper remains totemded in a number of ways. On one hand,
the complete semantics of SPL has to be defined and, on the lwhd, the efforts have to be devoted in the
definition of model to text translations (based on TCS) faaobing XASM code from models conforming to the
proposed ASMs metamodel. In this way the ASMs specificatimmsbe compiled with the XASM compiler and
then executed. Furthermore, other experimental works eeeled to completely proof the suitability of ASMs
in AMMA for the dynamic semantics specification of DSLs andctampare the approach with other semantic
frameworks.
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Abstract

Domain-Specific Languages (DSLs) are high level languagiset for combining expressivity and simplicity by
means of constructs which are close to the problem domaidiataht from the intricacies of underlying software
implementation constraints. In contrast with general pagdanguages, DSLs are typically not useful for generic
tasks in multiple application domains. The specificatioa BfSL is a complex task and requires a lot of knowledge
about the domain. In the context of Model Driven Enginee(M@E) metamodeling based techniques are quite
commonplace in the syntax specification of DSLs. The dedinitif their semantics still presents difficulties.

In this paper, a practical experiment is proposed whereraAbsState Machines (ASMs) are used as a formal
ground for giving, in a precise and unambiguous way, the dyoaemantics of Session Programming Language
(SPL), a DSL defined for the development of telephony sesvineer the Session Initiation Protocol (SIP). This
experiment is performed in the context of a MDE frameworksthAMMA (Atlas Model Management Architec-
ture). Although still under development, the approach ps&gl here illustrates a practical and generic solution to
define the precise dynamic semantics of DSLs.
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