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Abstract

The class of Q-convex bodies is defined, and the uniqueness result proved by Gardner
and McMullen in 1980 for planar convex bodies is extended to this new class.
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1 Introduction

Let f be a density function from the euclidean plane E
2 in R.The X-ray of

f in a direction p is the function assigning to each straight line parallel to p
the integral of f over the line (when it exists). In this paper we consider the
problem of the determination of an unknown density function in the restricted
class of characteristic functions of subsets of E

2. Hence this subject fits in the
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3 Partially supported by the Project IRMC-EPML-9 of French CNRS



intersection of discrete and geometric tomography. (We recommend [11] and
[6] as comprehensive books on these areas.) It is well known that X-rays
data in a finite number of directions do not permit the determination of all
subsets of E

2. An interesting question proposed by Hammer is how many X-
rays one needs to exactly reconstruct a convex body. There are some papers
that address: the related problem of the existence of a set of directions which
uniquely determine the convex body [8,9]; the approximative reconstruction
of a convex body [12]; the reconstruction of boundary points of convex body
[6,14]; the stability of the reconstruction [13]. As far as we know, none of these
results provide a reconstruction algorithm which gives a complete solution to
any desired accuracy. (see also note 1.2 of [6])

In the discrete case similar results hold for convex lattice sets, and moreover
a reconstruction algorithm is known [1] based on a new class of sets, called
the Q-convex lattice sets. Recently, the authors of this paper have proved
that a convex body is arbitrary close to a convex lattice set whose X-rays
are close enough to the X-rays of the convex body [2]. This result would
permit the reconstruction of convex bodies through their approximative lattice
convex sets. Unfortunately to carry out the reconstruction we should have an
algorithm solving the problem from approximative X-rays, and we have not.
What we have is a reconstruction algorithm from approximative X-rays for Q-
convex lattice sets [3]. In this paper we extend this notion to the continuous
setting and we hope this could help to produce a more efficient algorithm. This
class is more general than the class of convex bodies: while a convex body is
the closure of the convex hull of its exposed points (at which an hyperplane
supports the body), a Q-convex body is the closure of the Q-convex hull of
its “salient” points (at which an “almost semi-plane” supports the body). In
particular we study the uniqueness of Q-convex bodies from their X-rays in a
suitable set of directions. This result represents the first step in the direction
of answering Hammer’s question for Q-convex bodies.

2 Q-convexity and Basic Properties

There are some basic notions of convexity that can be generalized to Q-
convexity. We start with some basic definitions and then we proceed by
showing some properties.

In this paper a direction is given by its equation p(M) = axM + byM . For
each point M = (p(M), q(M)) ∈ E

2 the four quadrants around M determined
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by the set of directions D = {p, q} are defined by the following formulas:

Rpq
0 (M) = {(p(N), q(N)) ∈ E

2 / p(N) ≤ p(M) and q(N) ≤ q(M)},

Rpq
1 (M) = {(p(N), q(N)) ∈ E

2 / p(N) ≥ p(M) and q(N) ≤ q(M)},

Rpq
2 (M) = {(p(N), q(N)) ∈ E

2 / p(N) ≥ p(M) and q(N) ≥ q(M)},

Rpq
3 (M) = {(p(N), q(N)) ∈ E

2 / p(N) ≤ p(M) and q(N) ≥ q(M)}.

A body is a compact subset of E
2 which is the closure of its interior.

Definition 2.1 A body F is Q-convex with respect to D = {p, q}, if Rpq
k (M)∩

F 6= ∅ for all k ∈ {0, 1, 2, 3} implies M ∈ F .

M

R2(M)R3(M)

R0(M) R1(M)

p = p(M)

q = q(M)

(a)

Fig. 1. The four quadrants for the coordinate directions p = x and q = y

(a) (b) (c)

Fig. 2. Q-convex bodies (a,b), and a not-Q-convex body (c) for the coordinate
directions p = x and q = y

Definition 2.2 Let D be any finite set of directions. A body is Q-convex
w.r.t. D, if it is a Q-convex body w.r.t. any pair of directions in D.
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Definition 2.3 An ASP (almost-semi-plane) w.r.t. D is a quadrant Rpq
i (M)

with p, q ∈ D such that for every direction r ∈ D a semi-line of direction r
with starting point M is contained in Rpq

i (M).

The property for Rpq
i (M) to be an ASP does not depend on the point M .

We denote by AD the set of indexes (i, p, q) such that Rpq
i (M) is an ASP.

An ASP is a maximal member ordered by inclusion.

M M

M

M M

M

R
pq

1
(M)

R
pq

3
(M)

R
qr

0
(M)

R
qr

2
(M) R

rp

2
(M)

R
rp

0
(M)

D

Fig. 3. The ASP for D = {p, q, r} with p = x, q = y, r = x + y.

Fig. 4. A Q-convex set for D = {p, q, r} with p = x, q = y, r = x + y.

Q-convexity is very similar to convexity where the semi-planes replaced by
the ASPs. As the intersection of Q-convex sets is also a Q-convex sets the
Q-convex hull of a set F can be defined as:

Definition 2.4 The Q-convex hull of a set F , denoted by Qconv(F ) is the
intersection of all the Q-convex sets containing F .
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Property 2.5 The Q-convex hull of a set F satisfies

Qconv(F ) = {M ∈ E
2 : ∀(i, p, q) ∈ AD, Rpq

i (M) ∩ F 6= ∅}.

If p and q are two lattice directions, we denote by 〈i, j〉p,q (and even 〈i, j〉 if
there is no ambiguity) the point M which satisfies p(M) = i and q(M) = j.

Proof. Let F be a set, and G = {M ∈ E
2 : ∀(i, p, q) ∈ AD, Rpq

i (M)∩F 6= ∅}.
We have that G ⊂ F .

Let M be a point which is not in G, then there exists an ASP, Rpq
i (M),

which does not contain any point of F . So by definition of G, it also does
not contain any point of G. As the ASP Rpq

i (M) contains a quadrant along
any couple of directions in D, this proves that for any point M /∈ G and
any directions p, q ∈ D holds that Rpq

i (M) ∩ G = ∅. So G is a Q-convex set
containing F . We deduce Qconv(F ) ⊆ G.

We are going to prove that G ⊆ Qconv(F ). If D has only two directions
it is clear , so we suppose that card(D) ≥ 3. We suppose that there exists a
point M in G\Qconv(F ). Let Rpq

i (M) be a quadrant which contains no point
of F and which is maximum for the following order:

Rpq
i (M) ≺ Rrs

j (M) iff Rpq
i (M) ⊆ Rrs

j (M) or Rpq
i+2(M) ⊆ Rrs

j (M)

By replacing if necessary p, q by −p,−q, we can suppose that i = 0. The
quadrant Rpq

i (M) is not an ASP because M ∈ G. So there exists a direction
r such that r = αp + βq with αβ > 0. By possibly replacing r by −r, we
can suppose that α > 0, β > 0. By maximality of Rpq

0 (M): i) the quadrants
Rqr

1 (M) ⊂ Rpr
0 (M) and Rpr

1 ⊂ Rqr
0 (M) contain a point of F , and ii) the

quadrant Rqr
2 (M) contains a point of F . By Q-convexity w.r.t the directions

q, r, M /∈ Qconv(F ) implies that Rqr
3 (M) does not contain any point of F .

Similarly, Rpr
3 (M) does not contain any point of F . As Rqr

2 (M) = Rpr
3 (M) ∪

Rpq
2 (M), the quadrant Rpq

2 (M) contains a point of F . Let A ∈ Rqr
1 (M) ∩ F ,

B ∈ Rpr
1 (M), C ∈ Rpq

2 (M), and N = 〈min(p(B), p(C)), q(M)〉p,q. The four
p, q-quadrants around N contain A or B or C, and so N ∈ F in contradiction
with Rqr

3 (M) ∩ F = ∅. The thesis follows. 2

Remark 2.6 In the discrete plane Z
2, there are two notions of Q-convexity

(“normal” Q-convexity and strong Q-convexity [1,3]) when we consider a set D
of more than two directions, because there is no discrete analogue to Property
2.5.

The notion of exposed point can be generalized by that of salient point.
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Definition 2.7 A salient point is one M of F such that M /∈ Qconv(F \M).

Property 2.8 Here we list some properties that we can deduce from the def-
initions.

• Any point M of F is salient if and only if (i, p, q) ∈ AD exists such that
Rpq

i (M) is a supporting ASP at M , which means Rpq
i (M) ∩ F = {M}.

• Any Q-convex compact set F is the Q-convex hull of its salient points.

Proof.

• The first part of the property is a simple consequence of Property 2.5.

• Let M ∈ Qconv(F ). We must prove that each ASP around M contains
a salient point. So we consider an ASP Rpq

i (M). We can suppose that
i = 0. As F is compact, there is a point N ∈ F ∩Rpq

i (M) which minimizes
p(N)+ q(N), the quadrant Rpq

0 (N) is supporting F , so N is a salient point.

2

It must be noticed that Q-convexity is very linked with restricted-
orientation-convexity. We recall that a set is restricted-orientation-convex
w.r.t. D if its intersection with any line parallel to D is empty or connected
(see [5]).

Property 2.9 Let E be a subset of E
2.

• If E is Q-convex w.r.t. D, then it is restricted-orientation-convex w.r.t. D.

• If E is restricted-orientation-convex w.r.t. D and connected, then E is
Q-convex w.r.t. D.

The inverse of these two assertions is false (see Figures 2(c) and 2(b)).

Proof.

• Let p be a direction of D, and A and B be two points of E such that
p(A) = p(B). For every point in the segment [AB], its four p, q-quadrants
contain either A or B so that the point belongs to E.

• Let p, q be two directions of D and M be any point such that all the p, q-
quadrants around M contain a point of E. We are going to show that
M ∈ E. Let li denote the semi-line Rpq

i (M) ∩Rpq

(i+1)mod4(M). If l3 ∪ l0 does

not contain any point of E, then the two sets E ∩Rpq
0 (M) and E \Rpq

0 (M)
are open relatively to E and non-empty which is in contradiction with the
connectivity of E. So l3 ∪ l0 contains a point of E. Similarly we can prove
that li ∪ li+1 contain a point of E for i = 0, 1, 2. If l0 and l2 contain a point
of E then M is in E otherwise l1 and l3 contain a point E and so M is also

6



in E.

2

3 Uniqueness result for Q-convex bodies

Definition 3.1 The X-ray XpF of a Q-convex body F in direction p is the
function giving the length of each line segment of F parallel to p: XpF (k) =
length(F ∩ {p(M) = k}).

A set of directions D determines a class of sets if for any set of this class,
there does not exist any other set of this class which has the same X-rays in
D.

The main result of this paper concerns the existence of a set of directions
D which determines the Q-convex bodies w.r.t. D:

Theorem 3.2 Let D be a set of directions. The two following assertions are
equivalent:

(a) D determines the Q-convex bodies w.r.t. D.

(b) D determines the convex bodies.

So a set of four directions with a transcendental cross-ratio ([8, Theorem
4]) or the set of directions {(1, 0), (0, 1), (2, 1), (−1, 2)} ([7, Theorem 6.2]) de-
termine the Q-convex bodies w.r.t. the same set of directions.

The rest of the section is devoted to the proof of this theorem that follows
the ideas and schemes of the proofs in [4,7,8],

First we need to recall some definitions:

Definition 3.3 Let D be a set of directions.

• A D-polygon P is a convex polygon such that any line of direction in D
contains zero or two vertices of P .

• A D-sequence is a sequence (Ak)k∈Fm
of m points of E

2 such that m is even
and for any p in D there is an s ∈ Fm such that

p(As−1) < p(As−2) < · · · < p(As−m
2
)

q q q

p(As) < p(As+1) < · · · < p(As+ m
2
−1)

Theorem 3.2 can be precised as follows:
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Theorem 3.4 Let D be a set of directions. The following assertions are equiv-
alent:

(i) D does not determine the convex bodies.

(ii) There exists a D-polygon.

(iii) D does not determine the Q-convex bodies w.r.t. D.

(iv) There exists a D-sequence.

The equivalence (i) ⇔ (ii) is in [8], [7, theorem 6.1]. The implication (iv) ⇒
(ii) is an extension of [4, Lemmas 27,28] to any directions, since the proof
does use the fact that only lattice-directions are considered. The implication
(i) ⇒ (iii) is clear because every convex body is Q-convex along any set of
directions, (ii) ⇒ (iv) is also clear since any D-polygon is a D-sequence. So
we only have to prove (iii) ⇒ (iv).

In the following we suppose that case (iii) arises.

Let F+ and F− be two Q-convex bodies having same X-rays in the direc-
tions of D. We define E+ = interior(F+) \ F− and E− = interior(F−) \ F+.
So, E+ and E− are open.

For any point M ∈ E+ and any direction p ∈ D, the set E+ ∩{p = p(M)}
is an open interval (by Q-convexity of F+ and F−) and XpE

+(p(M)) > 0.
Since XpE

+ = XpE
−, E− ∩ {p = p(M)} is an interval which is a translate of

E+ ∩ {p = p(M)}. We shall denote the image of M by such a translation by
Mp ∈ E−.

We will need the following order (extension of an order by inclusion) among
the quadrants:

(1) Rpq
i (M) < Rrs

j (M ′) iff Rpq
i (O) ⊆ Rrs

j (O)

where M, M ′ and O = (0, 0) are points and p, q, r, s are directions in D.

The area of a measurable subset E is the Lebesgue measure of E and is
denoted λ(E).

In the following we shall list some lemmas.

Lemma 3.5 For every point M ∈ E+ there exists one and only one (i, p, q) ∈
AD such that Rpq

i (M) ∩ E− = ∅.

For the sake of simplicity, here (and in the following) we state the lemma
for M ∈ E+ but the lemma holds exchanging E+ and E−.

Proof. Since F− is Q-convex and M /∈ F−, a quadrant exists having empty
intersection with E−. Let us consider Rpq

i (M) the maximal quadrant w.r.t. to

8



the order (1) having empty intersection with E−, and suppose that (i, p, q) /∈
AD. Let us assume without lost of generality that i = 0: by (0, p, q) /∈ AD

follows that a direction r ∈ D exists such that the straight line parallel to
r through M intersects Rpq

0 (M) into M only, and that p(M) < p(Mq) and
q(M) < q(Mp). Consider Mr ∈ E−:

• if p(Mr) < p(M), then Rpr
1 (M)∩E− = ∅ because otherwise a point N exists

such that M ∈ Qconvpr(Mr, N, Mp) but M ∈ E+.

• if p(Mr) > p(M), then Rqr
3 (M)∩E− = ∅ because otherwise a point N exists

such that M ∈ Qconvqr(Mr, N, Mq) but M ∈ E+.

Both cases contradict the maximality of Rpq
0 (M) w.r.t. inclusion. Therefore

we conclude that (0, p, q) ∈ AD.

Suppose there are two ASP having empty intersection with E−. Then, they
contain a straight line through M parallel to a direction r in D contradicting
the fact that F+ and F− have same X-rays in direction r. 2

Let E+
ipq ⊂ E+ whose points M satisfy Rpq

i (M) ∩ E− = ∅ and E−

ipq ⊂ E−

whose points M satisfy Rpq
i (M) ∩ E+ = ∅, for any (i, p, q) ∈ AD. We can

partition E+ and E− as:

E+ = ∪(i,p,q)∈AD
E+

ipq, E− = ∪(i,p,q)∈AD
E−

ipq.

Additionally:

Bpq(C, ε) = {M ∈ E
2 : |p(M) − p(C)| < ε and |q(M) − q(C)| < ε}.

Lemma 3.6 E+
ipq is open.

Proof. Let C be a point in E+
ipq and suppose i = 0. We have that q(Cp) >

q(C) and p(Cq) > p(C). Since E+ is open, there exists ε such that the ball
Bpq(C, ε) is included in E+. Let M be any point in Bpq(C, ε). We show that M
is in E+

ipq too. This immediately follows if p(Mq) > p(M) and q(Mp) > q(M).

Suppose that p(Mq) < p(M) (analogously, for the case q(Mp) < q(M)).
As Mq /∈ Rpq

0 (C) we have q(M) > q(C) and then 〈p(C), q(M)〉 ∈
Qconvpq(Mq, Cp, Cq) contradicting that Bpq(C, ε) is included in E+.

This concludes the proof. 2

Definition 3.7 Two points A, B ∈ E+
ipq are equivalent if a point NAB exists

such that A, B ∈ Rpq
i (NAB) ∈ AD and Rpq

i (NAB)∩E− = ∅. (We write A ∼ B).

9



E−

E+

C

Bpq(C)

MMq
q = const.

p = const.

Cp

Cq
region which contains
no point of E− by
hypothesis.

Fig. 5. Illustration for Lemma 3.6

Notice that if A, B ∈ E+
0pq we have to look at NAB =

〈max(p(A), p(B)), max(q(A), q(B))〉. (Analogously, for a different value of i.)

Lemma 3.8 ∼ is an equivalence relation on E+.

Proof. We shall prove that if A, B, C ∈ E+
ipq, and A ∼ B and B ∼ C, then

A

C

B

M

p = const.

q = const.
point of E+

point of E−

NAB NAC

NBCregion which contains
no point of E− by
hypothesis.

Fig. 6. Illustration for Lemma 3.8

A ∼ C. Without lost of generality we suppose i = 0. Thus we have to show
that Rpq

0 (NAB) ∩E− = ∅ and Rpq
0 (NBC) ∩E− = ∅ imply Rpq

0 (NAC) ∩E− = ∅,
where NAC = 〈max(p(NAB), p(NBC)), max(q(NAB), q(NBC))〉. When NAC is
equal to NAB or NBC , the wished claim is clear. So we can suppose the case in
which q(A) > q(B) > q(C), p(C) > p(B) > p(A) and hence q(NAB) ≥ q(NBC)
and p(NAB) ≤ p(NBC).

Suppose by contradiction that Rpq
0 (NAC) ∩ E− 6= ∅. Since E+ is open,
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λ(Rpq
0 (B) ∩ E+) = µ > 0. Let us choose M ∈ E− ∩ Rpq

0 (NAC) such that
λ(Rpq

0 (M) ∩ E−) < µ

2
. We have that p(B) < p(M) < p(C) and q(A) >

q(M) > q(B) and hence Rpq
0 (B) ⊂ Rpq

0 (M). Since F+ and F− have the same
X-rays in directions p, q, we deduce that

λ(Rpq
0 (M) ∩ E+) + λ(Rpq

1 (M) ∩ E+) = λ(Rpq
0 (M) ∩ E−) + λ(Rpq

1 (M) ∩ E−)

and

λ(Rpq
2 (M) ∩ E+) + λ(Rpq

1 (M) ∩ E+) = λ(Rpq
2 (M) ∩ E−) + λ(Rpq

1 (M) ∩ E−).

Thus, we obtain

λ(Rpq
2 (M)∩E+) = λ(Rpq

2 (M)∩E−)+λ(Rpq
0 (M)∩E+)−λ(Rpq

0 (M)∩E−) > µ/2.

Since every quadrant of M ∈ E− has non-empty intersection with E+, we get
a contradiction. 2

By Lemma 3.6 follows that:

Lemma 3.9 Any equivalence class C is open.

For every class C, there exist (i, p, q) ∈ AD, and a point N such that
C = (E+ ∪ E−) ∩ Rpq

i (N).

Lemma 3.10 If A, B ∈ E+ and a point NAB exists such that A, B ∈
Rpq

i (NAB) and Rpq
i (NAB) ∩ E− = ∅, then A ∼ B.

Proof. Let (i, p, q) be maximal w.r.t. the order (1). Assume i = 0 and then
NAB = 〈max(p(A), p(B)), max(q(A), q(B))〉. If (0, p, q) /∈ AD, then a direction
r ∈ D exists such that the straight line parallel to r through NAB intersects
Rpq

0 (NAB) in NAB only. Moreover we can suppose that r = αp + βq with
α, β > 0.

If NAB = A or NAB = B the proof follows the same considerations as those
exhibited in the proof of Lemma 3.5.

Otherwise two cases can arise: NAB = 〈p(B), q(A)〉 and NAB =
〈p(A), q(B)〉. Let us consider the first one. If p(A) > p(Ar) and p(B) < p(Br),
or p(A) < p(Ar) and p(B) > p(Br):

• If r(A) ≤ r(B), then B ∈ Qconvpr(Br, Bp, Ar) contradicting that B ∈ E+.

• If r(A) ≥ r(B), then A ∈ Qconvqr(Ar, Aq, Br) contradicting that A ∈ E+.

Therefore we deduce that (Rpr
0 (A)∪Rpr

0 (B))∩E− = ∅ or (Rqr
0 (A)∪Rqr

0 (B))∩
E− = ∅. In the first case, take N ′

AB = 〈max(p(A), p(B)), max(r(A), r(B))〉p,r:

11



Rpr
0 (N ′

AB) ∩ E− = ∅ contradicts that (0, p, q) is maximal w.r.t. the order (1).
Second case is completely similar. 2

Lemma 3.11 Let A and B be two points of E+
ipq such that A ∼ B. For every

point M of E+ such that r(A) ≤ r(M) ≤ r(B), r ∈ D, there holds that
M ∼ A ∼ B.

Proof. Let us suppose i = 0. If M ∈ Rpq
0 (NAB), the thesis immediately

follows. Hence we study the other case. By Q-convexity it follows that
p(Mr) > p(M) (or equivalently q(Mr) > q(M)). If p(M) > max(p(A), p(B)),
as q(M) ≥ min(q(A), q(B)), we have A ∈ Rpq

0 (M) or B ∈ Rpq
0 (M). Similarly

if q(M) > max(q(A), q(B) then we have also A ∈ Rpq
0 (M) or B ∈ Rpq

0 (M).

In order to conclude we have to show that Rpq
0 (M) ∩ E− = ∅ or, equiv-

alently, that p(Mq) > p(M) and q(Mp) > q(M). Indeed if q(Mp) < q(M)
then M ∈ Qconvpr(Mp, Mr, Ap, Bp) and if p(Mq) < p(M) then M ∈
Qconvqr(Mq, Mr, Aq, Bq). 2

Remark 3.12 In particular, the lemma states that for any line {r = r(M)}
parallel to r ∈ D intersecting an equivalence class C in E+

ipq, {r = r(M)} ∩
(E+ \ C) = ∅.

Lemma 3.13 Let r ∈ D. If A ∼ B, then Ar ∼ Br.

Proof. Suppose that A, B ∈ E+
0pq and r = αp + βq, α ≤ 0 and β ≥ 0, and

r(A) < r(B).

Let i, j such that Rpq
i (Ar) ∩ E+ = ∅ and Rpq

j (Br) ∩ E+ = ∅.

We can prove that i = j by considering all the cases. For example in the
case i = 2, j = 1, then Brp ∈ E+ ∩ Rpq

2 (Ar) or Arp ∈ E+ ∩ Rpq
1 (Br). (see the

proof of Lemma 19 of [4] for the other cases).

Let us consider the case i = j = 2. Assume by contradiction that a point
M of E+ exists in Rpq

2 (NArBr
). By Lemma 3.11 M ∼ A ∼ B and M ∈ E+

0pq.
As Rpq

2 (〈p(Ar), q(Br)〉) ∩ E+ = ∅, we shall choose M in such a way that
λ(Rpq

0 (M) ∩ E+) > µ and λ(Rpq
2 (M) ∩ E+) ≤ µ

2
. Since F+ and F− have the

same X-rays in directions p, q, we deduce that

λ(Rpq
0 (M) ∩ E+) + λ(Rpq

1 (M) ∩ E+) = λ(Rpq
0 (M) ∩ E−) + λ(Rpq

1 (M) ∩ E−)

and

λ(Rpq
2 (M) ∩ E+) + λ(Rpq

1 (M) ∩ E+) = λ(Rpq
2 (M) ∩ E−) + λ(Rpq

1 (M) ∩ E−).
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Thus, we obtain

λ(Rpq
0 (M)∩E−) = λ(Rpq

2 (M)∩E−)+λ(Rpq
0 (M)∩E+)−λ(Rpq

2 (M)∩E+) >
µ

2
,

contradicting that M ∈ E+
0pq.

The cases i = j = 1 and i = j = 3 are similar with moreover the use of
Lemma 3.10 to finally prove that Ar ∼ Br.

The special cases r = p, r = q can also be easily checked. 2

Let C+
ipq be the set of equivalence classes on E+

ipq, C
+ = ∪(i,p,q)∈AD

C+
ipq and

C = C+ ∪ C−.

For every class C ∈ C+ and direction r ∈ D a class (C)r ∈ C− exists, and
C and (C)r have the same X-rays. If C1 and C2 are any two classes, we say
that C1 <p C2 if p(M1) < p(M2) for all M1 ∈ C1 and M2 ∈ C2.

Lemma 3.14 For any (i, p, q) ∈ AD, the class Cipq is non-empty.

Proof. Suppose i = 0 and suppose that C0pq is empty. This means that for
every class C and point M we have: (C ∩ Rpq

0 (M)) ∩ E− 6= ∅. Therefore
Cp <q C or Cq <p C otherwise C ⊂ C0pq. Suppose that Cq <p C. Then,
consider the sequence of classes defined by C0 = C, Cn+1 = ((Cn)q)p. No class
of the sequence is in C0pq, and hence Cn+1 <p Cn and Cn+1 <q Cn. So, the
sequence consists of an infinite number of classes having the same area. This
is not possible, and hence C0pq is non-empty. 2

Thanks to this lemma we can choose one class Ci,p,q in each Ci,p,q. Let E be
the smallest set of the classes which contains all the Ci,p,q and closed by the
relations C 7→ Cp. (This construction is essentially the same as in the proof
of [8, Lemma 4].)

Lemma 3.15 The set E is finite.

Proof. Any class of E is Lebesgue-measurable because it is open and bounded.
Let E ′ be the subset of E of the classes which area is equal to the area of one
Ci,p,q. The set E ′ is also closed by the relations C 7→ Cp, so by minimality of
E we have E = E ′. So if E was infinite then it E would have an infinite area
which is impossible because E is a body. 2

Lemma 3.16 The classes of E can be ordered such that the corresponding
sequence of their gravity-centers is a D-sequence.

Proof. The proof is exactly the same as in Lemmas 21,22,24,25 of [4] after
replacement of C by E . 2

13



This last lemma proves the implication (iii) ⇒ (iv) of Theorem 3.4. So
Theorem 3.4 is totally proved.
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