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Abstract

The problem of randomly generating Q-convex sets is considered. We present two
generators. The first one uses the Q-convex hull of a set of random points in order
to generate a Q-convex set included in the square [0, n)2. This generator is very
simple, but is not uniform and its performance is quadratic in n. The second one
exploits a coding of the salient points, which generalizes the coding of a border of
polyominoes. It is uniform, and is based on the method by rejection. Experimentally,
this algorithm works in linear time in the length of the word coding the salient
points. Besides, concerning the enumeration problem, we determine an asymptotic
formula for the number of Q-convex sets according to the size of the word coding
the salient points in a special case, and in general only an experimental estimation.

Key words: uniform generator, lattice sets, convexity, salient points

1 Introduction

A lattice set is a non-empty finite subset of the integer plane Z
2. In this pa-

per we address the random generation of a class of special lattice sets, called
Q-convex sets. The class of Q-convex sets generalizes both the class of HV-
convex polyominoes and the one of convex sets. HV-convex polyominoes are
well-known combinatorial objects, and the large interest for this class is testi-
fied by the numerous results concerning the enumeration, the generation, and
the reconstruction [10,11,2]. Convex sets are mainly studied in computational
and discrete geometry [15,16]. The class of Q-convex sets has been introduced
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for its interest in Discrete Tomography ([5,6,8]). Results concerning the recon-
struction and uniqueness problems have been established generalizing the cor-
responding problems for HV-convex polyominoes and convex sets. We present
here two random generators. In Section 3 we describe a very simple algorithm
that generates at random a set in the square [0, n)2, and returns its Q-convex
hull (a generalization of the convex hull). Unfortunately, this algorithm is not
uniform, and so we propose in Section 4 a probabilistic algorithm that achieves
uniformity. This algorithm is based on the method by rejection, that is, con-
sists in uniformly generating an element of an enlarged class of Q-convex sets,
then keeping the element if it is Q-convex or otherwise refusing it and trying
again. The uniformity is not destroyed by filtering out. Hochstattler et al. [11]
designed a probabilistic generator for HV-convex polyominoes using an encod-
ing of the border of the studied polyominoes by a word on an alphabet of two
letters: H(orizontal step), V(ertical step). Since the definition of Q-convex sets
does not refer to the coordinate directions like HV-convex polyominoes, but
to any couple of lattice directions, our generator generalizes the algorithm in
[11] as it uses a coding of “salient points” by a word on an alphabet whose
letters depend on the considered couple of directions. Thus, the efficiency of
the generator depends on the length of the word coding the salient points and
on the fixed couple of directions. We report on the experiments conducted in
order to estimate the success probability.

2 The class of Q-convex sets

In this section we introduce the necessary notations to get the definition of
Q-convex sets. This definition does not refer to the coordinate directions,
but to any couple of lattice directions. A direction is given by its equation
ax + by = constant, and a lattice direction has a and b integers. In the whole
paper two lattice directions p = ax+by and q = cx+dy are fixed, and without
loss of generality we suppose that gcd(a, b) = 1, gcd(c, d) = 1. The vectors ~p
and ~q are defined by ~p = (−b, a) and ~q = (d,−c).

Let δ = | det(p, q)| = |ad − bc|. We denote by 〈i, j〉pq the point M such that
p(M) = i and q(M) = j. It must be noticed that 〈i, j〉pq is not in Z

2 in general.
More precisely there exists κ coprime with δ such that

〈i, j〉pq ∈ Z
2 ⇐⇒ j ≡ κi mod δ

(see for example [9]).

Figure 1 illustrates the case p = x − y and q = 2x + y: with these directions
we have δ = 3 and κ = 2. All the examples in the paper refer to these two
directions (except in subsection 4.3).
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p = 0

p = 1

p = 2

p = 3

q = 0

q = 1
q = 2

q = 3

~p = (1, 1)

~q = (1,−2)

Fig. 1. Directions p = x− y and q = 2x + y.

For any M ∈ R
2, we can define the four quadrants around M along the

directions p and q by:

R0(M) = {N ∈ Z
2 / p(N) ≤ p(M) and q(N) ≤ q(M)}

R1(M) = {N ∈ Z
2 / p(N) ≥ p(M) and q(N) ≤ q(M)}

R2(M) = {N ∈ Z
2 / p(N) ≥ p(M) and q(N) ≥ q(M)}

R3(M) = {N ∈ Z
2 / p(N) ≤ p(M) and q(N) ≥ q(M)}

(see Fig. 2).

~p

~q

R0(M)

M

R1(M)

R2(M)

R3(M)

Fig. 2. The four quadrants

Definition 1 The Q-convex hull of a lattice set E is the set of points M ∈ Z
2

such that Rk(M) ∩E 6= ∅ for all k.

We denote the Q-convex hull of a set E ⊂ Z
2 by Q(E).

Definition 2 A lattice set E is Q-convex (quadrant-convex) if E = Q(E).

In this paper we refer to this definition even if usually we derive it from
the following one: a lattice set E is Q-convex if Rk(M) ∩ E 6= ∅ for all
k ∈ {0, 1, 2, 3} implies M ∈ E.

The Q-convex hull of E can be easily computed by starting from E (see also
[7]). Let ∆ = {(i, j) ∈ Z

2 : min p(E) ≤ i ≤ max p(E), min q(E) ≤ j ≤
max q(E)} and let (Vk(i, j))(i,j)∈∆ be the array of boolean variables defined
by:

Vk(i, j) = 1 if Rk(〈i, j〉pq) ∩ E 6= ∅, else 0,

3
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2

S3
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Fig. 3. A Q-convex set. The encircled points are the salient points of the set.

for k = 0, 1, 2, 3. We can compute these arrays by the induction:

V0(i, j) = V0(i− 1, j) ∨ V0(i, j − 1) ∨ “〈i, j〉pq ∈ E”

V1(i, j) = V1(i + 1, j) ∨ V1(i, j − 1) ∨ “〈i, j〉pq ∈ E”

V2(i, j) = V2(i + 1, j) ∨ V2(i, j + 1) ∨ “〈i, j〉pq ∈ E”

V3(i, j) = V3(i− 1, j) ∨ V3(i, j + 1) ∨ “〈i, j〉pq ∈ E”.

Finally the Q-convex hull of E is obtained by the formulas:

Q(E) = {〈i, j〉pq ∈ ∆ : V0(i, j) ∧ V1(i, j) ∧ V2(i, j) ∧ V3(i, j)},

and the computation requires a number of operations proportional to the size
of ∆, i.e., O((max p(E)−min p(E)) · (max q(E)−min q(E))) operations.

Definition 3 Let E be any lattice set. A point M ∈ E is a salient point of E
if M /∈ Q(E \ {M}).

The set of salient points of E is denoted by S(E).

If M is a salient point of E, then there exists k such that Rk(M)∩E = {M}.
So S(E) = S0(E) ∪ S1(E) ∪ S2(E) ∪ S3(E) where Sk(E) = {M ∈ E :
Rk(M) ∩E = {M}}.

4



The set of salient points of a lattice set can be easily computed as we have:

S0(E) = {〈i, j〉pq ∈ E : V0(i− 1, j) ∧ V0(i, j − 1)}
S1(E) = {〈i, j〉pq ∈ E : V1(i + 1, j) ∧ V1(i, j − 1)}
S2(E) = {〈i, j〉pq ∈ E : V2(i + 1, j) ∧ V2(i, j + 1)}
S3(E) = {〈i, j〉pq ∈ E : V3(i− 1, j) ∧ V3(i, j + 1)}

where V0, V1, V2, V3 are the negations of the arrays of boolean variables
defined above.

We recall Proposition 5 and Theorem 6 of [7]:

Proposition 4 For any lattice set E: Q(E) = Q(S(E)) and S(E) =
S(Q(E)).

From this proposition we can deduce:

Corollary 5 For any lattice sets E and F :

S(E) = S(F )⇐⇒ Q(E) = Q(F ).

Therefore, every Q-convex set is characterized by its set of salient points.

3 A simple but non-efficient generator

In this section we study a very simple generator. This generator produces a
lattice set that is Q-convex with respect to the two directions p and q and
included in the square {0, . . . , n−1}2, for a given n. The idea of the algorithm
is the following: the generated set F is the Q-convex hull of an ordinary set E.
Therefore, first the algorithm generates E and then it computes Q(E). (This
idea is quite common for the classes stable by intersection, see for example
[17]). We suppose that rand is a function that returns a real in [0, 1[ and that
is uniform, i.e. the probability of rand < α with 0 ≤ α < 1 is α.

GENQ1(n)
E ← ∅

for x← 0 to n− 1 do

for y ← 0 to n− 1 do

if rand < 1
2

then

E ← E ∪ {(x, y)}
end if

end for

end for

F ← Q(E)
return(F )

5



By Corollary 5, given a Q-convex set F ∈ [0, n − 1]2, the procedure GENQ1
outputs F if and only if the intermediate set E satisfies S(F ) ⊂ E ⊂ F . For
example the set of Fig. 3 is produced by any set E which contains the encircled
points and is contained in the set. So each Q-convex set F has a probability to
be produced which is proportional to 2card(F )−card(S(F )). It implies that GENQ1
is not uniform.

We can transform this generator in an uniform but probabilistic generator:

GENQ2(n)
F ← GENQ1(n)
if rand < 1

2card(F )−card(S(F )) then

return(F )
else

return(FAILURE)
end if

The probability of success of this generator is given by the mean of
1

2card(F )−card(S(F )) on the produced sets F weighted with the probability of F
to be produced. We can also compute this mean by considering the interme-
diate sets E of GENQ1 which have all the same probability so:

psuccess(GENQ2) =
1

2n2

∑

E

1

2card(Q(E))−card(S(E))

On each line p = cste there are at most two salient points, so card(S(E)) ≤
M · n where p = ax + by, M = 2(|a|+ |b|). It implies that:

psuccess(GENQ2) ≤ 2M ·n

2n2

∑

E

1

2card(Q(E))
≤ 2M ·n

2n2

∑

E

1

2card(E)

=
2M ·n

2n2

n2
∑

k=0

(
n2

k

)

2k
(variable change k = card(E))

=
2M ·n

2n2

n2
∑

k=0

(

n2

k

)(
1

2

)k

1n−k =
2M ·n

2n2

(
1

2
+ 1

)n2

= 2M ·n
(

3

4

)n2

.

Thus, the probability of success converges exponentially to zero as n tends to
∞.

We can transform GENQ2 in a generator which does not fail:

GENQ3(n)
repeat

F ← GENQ2(n)
until F 6= FAILURE
return(F )
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By standard results on the geometric distribution, the number of iterations in

the repeat loop is 1
psuccess(GENQ2)

≥ 1
2M·n

(
4
3

)n2

on average, and so GENQ3(n)
has an average time-complexity which is exponential.

4 A fast uniform generator

In this section we present a probabilistic algorithm that uniformly generates
Q-convex sets. This algorithm adopts the well known approach of studying
the language defined on the boundary of the sets of the class in examination.
In the first part we show that this language uses an alphabet whose letters
are determined by the directions p and q, and whose cardinality is δ + 1.
(Recall that δ = | det(p, q)|). The encoding passes through two steps: since a
Q-convex set is characterized by its salient points, and couples of consecutive
salient points can be seen as vectors, we first decompose these vectors into
“primitive vectors” in such a way that each primitive vector can be encoded
by a letter; then we determine a word encoding the boundary of the Q-convex
set as a concatenation of letters. In the second part we provide the algorithm
generating a word of the language of length n and an integer α. From these
information the algorithm attempts to generate a Q-convex set.

4.1 Consecutive salient points, and salient-word

Let E be a Q-convex set. Thus, it is the Q-convex hull of its salient points,
that is, E = S(E). We now focus on the subsets S0(E),S1(E),S2(E),S3(E)
of S(E).

Two points A and B of S0(E) are said to be 0-consecutive if R0(C) ∩ E = ∅

with C = 〈max(p(A), p(B))− 1, max(q(A), q(B))− 1〉. This gives to S0(E) a
graph relation. It is easy to see that this graph is a chain. More precisely S0(E)
can be written as {S0

1 , S
0
2 , S

0
3 , . . . , S

0
m0
} with S0

j , S
0
j+1 consecutive, p(S0

1) =
min p(E), q(S0

m0
) = min q(E). Besides, 0-consecutive points have the property

that S0
j+1 ∈ R◦

1(S
0
j ), where, more in general, R◦

k(M) is the quadrant Rk(M)
without its border: R◦

k(M) = Rk(M) \ (R(k−1)%4(M) ∪ R(k+1)%4) (x%y is the
reminder in the division of x by y).

Analogously we can define the k-consecutivity between two points of Sk(E);
Sk(E) = {Sk

1 , Sk
2 , Sk

3 , . . . , Sk
mi
} with Sk

j , Sk
j+1 k-consecutive, for j = 1, . . . , mj

and k = 1, 2, 3, and q(S0
m0

) = q(S1
1) = min q(E), p(S1

m1
) = p(S2

1) =
max p(E), q(S2

m2
) = q(S3

1) = min q(E), p(S3
m3

) = p(S0
1) = min p(E). Be-

sides, k-consecutive points have the property that Sk
j+1 ∈ R◦

(k+1)%4(S
k
j ), for

j = 1, . . . , mj and k = 1, 2, 3 (see Fig. 3).
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The sequence of the salient points is the concatenation of the four previous
defined sequences:

(S) = (S0
1 , . . . , S

0
m0

, S1
1 , . . . , S

1
m1

, S2
0 . . . , S2

m2
, S3

1 , . . . , S
3
m3

, S0
1). (1)

We are going to encode (S) by a word on the alphabet A = {0, 1, 2, . . . , δ}.
Hereafter let us denote the set of words on A by A∗, and the concatenation
of w1, w2 ∈ A∗ by w1 ⋄ w2.

A sequence of salient points can be seen as a path of oriented steps, the
latter defined by couples of consecutive points. Thus, by definition, every step
is a vector, and the vectors leave the lattice set on their left-hand side. We
distinguish among the vectors those “primitive” ones. We need to introduce
some additional notions. Let us define two functions χ, χ′ : A → A by χ(0) =
χ′(0) = δ, χ(δ) = χ′(δ) = 0, χ(i) = (κi)%δ, χ′(i) = δ − χ(i) for 0 < i < δ.
Let O = (0, 0) be the origin, and consider lattice vectors in the origin. The
set of primitive vectors is the set V = {~u = 〈up, uq〉pq 6= 0 : |up| ≤ δ, |uq| ≤
δ, and (|up|, |uq|) 6= (δ, δ)} = {±1

δ
(up~q + χ(up)~p)} ∪ {±1

δ
(up~q − χ′(up)~p)}.

A primitive vector ~u is simply encoded by a word consisting of one letter:
c(~u) = |p(~u)| ∈ A. In particular, c(~p) = 0 and c(~q) = δ.

For the general case we decompose any vector ~v as a sum of primitive vectors
as follows.

• If ~v ∈ R0(O), i.e. ~v = 〈−vp,−vq〉pq = 1
δ
(−vq~p− vp~q) with vp, vq ≥ 0, then

~v =
1

δ
(−~p− ~p . . .− ~p
︸ ︷︷ ︸

⌊ vq
δ
⌋times

+〈−vp%δ,−vq%δ〉pq−~q − ~q . . .− ~q
︸ ︷︷ ︸

⌊ vp
δ
⌋times

)

The encoding c(~v) of ~v is:

c(~v) =







00 . . . 0
︸ ︷︷ ︸

⌊ vq
δ
⌋times

δδ . . . δ
︸ ︷︷ ︸

⌊ vp
δ
⌋times

if vp%δ = 0

00 . . . 0
︸ ︷︷ ︸

⌊ vq

δ
⌋times

(vp%δ) δδ . . . δ
︸ ︷︷ ︸

⌊ vp

δ
⌋times

if vp%δ > 0
(2)

• If ~v ∈ R1(O), i.e. ~v = 〈vp,−vq〉pq with vp, vq ≥ 0, then

~v =
1

δ
(+~q + ~q . . . + ~q
︸ ︷︷ ︸

⌊ vp

δ
⌋times

+〈−vp%δ, +vq%δ〉pq−~p− ~p . . .− ~p
︸ ︷︷ ︸

⌊ vq

δ
⌋times

).
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The encoding c(~v) of ~v is:

c(~v) =







δδ . . . δ
︸ ︷︷ ︸

⌊ vp

δ
⌋times

00 . . . 0
︸ ︷︷ ︸

⌊ vq

δ
⌋times

if vp%δ = 0

δδ . . . δ
︸ ︷︷ ︸

⌊ vp
δ
⌋times

(vp%δ) 00 . . . 0
︸ ︷︷ ︸

⌊ vq
δ
⌋times

if vp%δ > 0
(3)

• If ~v ∈ R2(O) i.e. ~v = 〈vp, vq〉pq with vp, vq ≥ 0, then c(~v) is defined by the
formula (2).
• If ~v ∈ R3(O) i.e. ~v = 〈−vp, vq〉pq with vp, vq ≥ 0, then c(~v) is defined by the

formula (3).

Remark 6 A vector ~v is uniquely determined by the word c(~v) and the quad-
rant Rk(O) containing ~v.

Now we are in the position to extend the encoding from the vectors to the
oriented path. Let (Mk)1≤k≤m = (M1, M2, . . . , Mm) be a sequence of points.
We define the encoding of the sequence by:

c((Mk)1≤k≤m) = c(
−−−−→
M1M2) ⋄ c(

−−−−→
M2M3) ⋄ . . . ⋄ c(

−−−−−−→
Mm−1Mm).

Therefore a sequence of salient points is encoded by a word of A∗. Notice that
the length of the sequence is in general lower than the length of its encoding
word, while this latter is equal to the number of primitive vectors in the
decomposition.
Actually for our application we are interested in the converse: given a word of
A∗, is it an encoding of a sequence of salient points? In other words, we wonder
if the encoding provides a bijection between the set of salient points and a
word of A∗. Let Sj be the set of the finite sequences of points (Mk)1≤k≤m =
(M1, M2, . . . , Mm) such that

M2 ∈ R◦
j (M1) ∪ (Rj(M1) ∩R(j−1)%4(M1) \ {M1})

Mk+1 ∈ R◦
j (Mk) for 1 < k < m− 1

Mm ∈ R◦
j (Mm−1) ∪ (Rj(Mm−1) ∩ R(j+1)%4(Mm−1) \ {Mm−1})

(see Fig. 4). In particular the subsequence (Sj−1
1 , Sj−1

2 , . . . , Sj−1
mj

) of the se-

quence (1) is in Sj for j ∈ {0, . . . , 3}. We also denote by S
N
j the set of sequences

(M) ∈ S
N
j such that M1 = N . By looking at c as the function mapping S

N
j

into A∗, we can state the following:

Lemma 7 For every j ∈ {0, 1, 2, 3} and every point N ∈ Z
2 the function c

restricted to S
N
j is a bijection from S

N
j to A∗.

PROOF. We suppose for example j = 0. Let w be a word of A∗. This word
can be uniquely written as w = s1 ⋄ s2 ⋄ . . . sl where every sub-word sk is given

9



~p

~q

R2

M1

M2
M3

M4

M5

M6 = Mm

Fig. 4. A sequence of S2

by (2). By Remark 6 each word sk encodes an unique vector ~vk ∈ R0(O), and
so the unique sequence (M) such that c((M)) = w is given by M1 = N and
Mk+1 = Mk + ~vk 2

Remark 8 Let w = w1 . . . wn a word of A∗. The sequence (Mk) ∈ S
N
0 such

that c((Mk)) = w is computed by the following algorithm:
1: M ← N ; M1 ← N ; k ← 1
2: for i← 1 to n do

3: if i > 1 and wi−1 6= 0 and wi 6= δ then

4: Mk ← M ; k ← k + 1
5: end if

6: M ← M − 1
δ
(wi~q + χ(wi)~p)

7: end for

8: Mk ←M

The reconstruction of a sequence in S
N
j with j 6= 0 can be done by a similar

algorithm (the same with the lines 3 and/or 6 modified).

Definition 9 The salient-word of a Q-convex set E is c((S)), where (S) is
the ordered sequence of its salient points defined by the equation (1).

The salient-word of a Q-convex set E is denoted by c(E). Figure 5 illustrates
a Q-convex set and its salient-word.

Proposition 10 A Q-convex set E is completely determined by its salient
point S0

1 ∈ S0(E) minimizing p, the integer min q(E) and the salient-word
c(E) ∈ A∗.

PROOF. Let c(E) = w = w1w2 . . . wn be the salient-word of E. Since the jth
letter wj corresponds to one of the vectors in {±1

δ
(wj~q+χ(wj)~p)}∪{±1

δ
(wj~q−

χ′(wj)~p)}, we have
∑n

j=1 wj = 2(max p(E)−min p(E)) = lp. The knowledge of
S0

1 ∈ S0(E), and the integer min q(E) permits to decompose w = s1⋄s2⋄s3⋄s0

10
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3
0
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3
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1

1

20

0

0
2

3

0

2

2

2

q = qmin

α = 2

Fig. 5. The salient-word of this Q-convex set is 22211103030112000230.

such that each sub-word si necessarily codes a subsequence of the salient points
which is in Si.

Precisely s1 = w1w2 . . . wn1 is such that −∑n1
i=1 χ′(wj) = min q(E) − q(S0

1),
s2 = wn1+1 . . . wn2 is such that

∑n2
i=1 wi = lp. Let γ = min q(E)+

∑n2
i=n1+1 χ(wi).

Then s3 = wn2+1 . . . wn3 and s4 = wn3+1 . . . wn are such that q(S0
1) +

∑n
i=n3+1 χ(wi) = γ +

∑n3
i=n2

χ(wi).

As a consequence of Lemma 7, the sequence (S) of salient points satisfies

(S) = (c−1
1 (s1), c

−1
2 (s2), c

−1
3 (s3), c

−1
4 (s0)) where c1 is c restricted to S

S0
1

1 , and ck

for k 6= 1 is c restricted to S
Nk

k where Nk is the last point of c−1
(k−1)%4(s(k−1)%4),

and so the salient points only depend on the word w, min p(E) and S0
1 . But

by Corollary 5 any Q-convex set is determined by its salient points, so any
Q-convex set E only depends on the word w, min q(E) and S0

1 . 2

4.2 The probabilistic algorithm

The algorithm is derived from the proof of Proposition 10 and Remark 8. In
input we are given the length n of the salient-word of the generated set. Since,
in combinatorics, sets up to a translation are of interest, we can suppose
that the generated set always satisfies S0

1 = (0, 0). By Proposition 10, it is
sufficient to generate an integer α = q(S0

1) − min q(E) which is always in
the set {0, 1, . . . , ⌊nδ

2
⌋ − 1} and the word w = c(E) on A∗ of size n in order

to produce a set E. After generating α and w, the algorithm reconstructs the
salient points coded by w, and then it checks if they characterize the Q-convex
set obtained as their Q-convex hull.

Salient points are recognized from w using the algorithm in Remark 8. Con-
sider the decomposition w = s1 ⋄s2 ⋄s3 ⋄s0 of the proof of Proposition 10. The
salient points in S0 and S1 are computed by scanning the letters of s1 and
then s2 with the algorithm of Remark 8. Then the salient points in S2 and S3
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are computed simultaneously reading the word s3 ⋄ s0 from the left hand side
for S2 and from the right hand side for S3.

The last step of the algorithm consists in checking if the sequence
(S0, S1, S2, S3) is really the sequence of salient points of any Q-convex set.
It is sufficient to check if any two consecutive points of the sequence Sk are
two k-consecutive salient points. Suppose for example to check if S0

i and S0
i+1

are 0-consecutive. If the quadrant R◦
0(〈p(S0

i+1), q(S
0
i )〉) contains a point of E,

then it must contain a point of the sequence (S2). Let j be the largest inte-
ger such that q(S2

j ) < q(S0
i ). Suppose that S2

j /∈ R◦
0(〈p(S0

i+1), q(S
0
i )〉). Then

p(S2
j ) ≥ p(S0

i+1), so for any other point S2
j′ we have q(S2

j′) ≥ q(S0
i ) if j′ > j

and p(S2
j′) > p(S2

j ) ≥ p(S0
i+1) if j′ < j. Thus S0

i and S0
i+1 are 0-consecutive

if and only if S2
j /∈ R◦

0(〈p(S0
i+1), q(S

0
i )〉). This can be done for all the couples

(S0
i , S

0
i+1) and since j is decreasing when i is increasing, the time required for

the check of the points of S0 is linear in the size of S0 and S2. The same
approach can be made for the points of S1, S2, S3.

Now we present the algorithm. If (M) = (M1, . . . , Mn) is a finite sequence
of points and if N is any point then appendl((M), N) = (N, M1, . . . , Mn),
appendr((M), N) = (M1, . . . , Mn, N), size((M)) = n, supp((M)) =
{M1, . . . , Mn}.

GENQ4(n)
Generate a word w = w1w2 . . . wn in A∗ of length n.
Generate a non-negative integer α < nδ

2

if
∑n

i=1 wi is not even then

return(FAILURE)
end if

{The algorithm would work without the following check, since in the failure
case, the point (0, 0) is not in S0(E) (see also Remark 12)}
if w1 = 0 and α 6= 0 then

return(FAILURE)
end if

lp← 1
2

∑n
i=1 wi; M ← (0, 0); S0 ← (M); i← 1

{Computation of S0(E) with the sub-word s1}
while q(M) > −α and i ≤ n do

if i > 1 and wi−1 6= δ and wi 6= 0 then

(S0)← appendr((S0), M)}
end if

M ←M + 1
δ
(wi~q − χ′(wi)~p); i← i + 1

end while

{At this point i is equal to the number n1+1 of the proof of Proposition 10}
if q(M) 6= −α then

return(FAILURE)
end if

12



(S0)← appendl((S0), M); (S1)← ()
{Computation of S1(E) with the sub-word s2}
while p(M) < lp and i ≤ n do

if (size((S1)) = 0 or wi−1 6= 0) and wi 6= δ then

(S1)← appendr((S1), M), }
end if

M ←M + 1
δ
(wi~q + χ(wi)~p); i← i + 1

end while

{At this point i is equal to the number n2+1 of the proof of Proposition 10}
if p(M) 6= lp then

return(FAILURE)
end if

(S1)← appendr((S1), M); M ′ ← (0, 0); i′ ← n; (S2)← (); (S3)← ()
{Parallel computation of S2(E) and S3(E) with the sub-word s3s0}
while i ≤ i′ do

if q(M) < q(M ′) then

if (size((S2)) = 0 or wi−1 6= δ) and wi 6= 0 then

(S2)← appendr((S2), M)
end if

M ←M + 1
δ
(−wi~q + χ′(wi)~p); i← i + 1

else

if (size((S3)) = 0 or wi′+1 6= δ) and wi′ 6= 0 then

(S3)← appendl((S3), M ′)}
end if

M ′ ← M ′ + 1
δ
(wi′~q + χ(wi′)~p); i′ ← i′ − 1

end if

end while

{At this point i is equal to n3 + 1 and i′ is equal to n3}
if M 6= M ′ then

return(FAILURE)
end if

if size((S2)) = 0 or wi′ 6= δ then

(S2)← appendl((S2), M)
end if

if size((S3)) = 0 or wi 6= δ then

(S3)← appendl((S3), M)
end if

if CHECKSALIENT(S0, S1, S2, S3) then

return((S0, S1, S2, S3))
else

return(FAILURE)
end if
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CHECKSALIENT((S0), (S1), (S2), (S3))

{ Check if (S0, S1, S2, S3) is the sequence of the salient points of E with
E = Q(supp((S0)) ∪ supp((S1)) ∪ supp((S2)) ∪ supp((S3))).}
j ← size((S2))
for i← 1 to size((S0))− 1 do

while q(S2
j ) ≥ q(S0

i ) and j > 1 do

j ← j − 1
end while

if p(S2
j ) < p(S0

i+1) and q(S2
j ) < p(S0

i ) then

return(FALSE)
end if

end for

j ← size((S0))
for i← 1 to size((S2))− 1 do

while q(S0
j ) ≤ q(S2

i ) and j > 1 do

j ← j − 1
end while

if p(S0
j ) > p(S2

i+1) and q(S0
j ) > p(S2

i ) then

return(FALSE)
end if

end for

j ← size((S3))
for i← 1 to size((S1))− 1 do

while p(S3
j ) ≤ p(S1

i ) and j > 1 do

j ← j − 1
end while

if p(S3
j ) > p(S1

i ) and q(S3
j ) < p(S1

i+1) then

return(FALSE)
end if

end for

j ← size((S1))
for i← 1 to size((S3))− 1 do

while p(S1
j ) ≥ p(S3

i ) and j > 1 do

j ← j − 1
end while

if p(S1
j ) < p(S3

i ) and q(S1
j ) > p(S3

i+1) then

return(FALSE)
end if

end for

return(TRUE)

Algorithm GENQ4 either fails (α and w do not correspond to any set), or
returns the sequence ((S0, S1, S2, S3)) of salient points of a Q-convex set.
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This representation of a Q-convex set has the advantage to have a linear size
in n and permits to compute the corresponding binary image by using the
Q-convex hull (even if this operation takes a quadratic time in n).

Anyway every Q-convex set has the same probability to be generated given
by 1/(⌊nδ

2
⌋(δ + 1)n).

If we consider that an arithmetical operation and the function rand take a
constant time, the algorithm GENQ4 takes a linear time. We summarize the
results in the following:

Theorem 11 GENQ4(n) is a uniform random generator of Q-convex sets
and has linear running time in n.

Like in the previous section, we can transform this probabilistic algorithm in
an algorithm which never fails:

GENQ5(n)
repeat

F ← GENQ4(n)
until F 6= FAILURE
return(F )

This generator has been implemented using Java language. An example of a
generated set is given by Figure 6 (always with the directions p = x − y and
q = 2x + y.)

Fig. 6. A Q-convex set produced by GENQ5(1000).

The average time-complexity of GENQ5 is O( n
p(n)

) where p(n) is the success

probability of GENQ4. Since p(n) = qn

⌊nδ
2
⌋(δ+1)n , where qn is the number of

Q-convex sets encoded by a word of length n, the complexity of the algorithm
depends on qn. In next sections we will derive an asymptotic formula for qn for
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Q-convex sets with respect to the coordinate directions, while for any couple
of directions we will experimentally estimate p(n).

4.3 Estimation of the success probability for the directions {x, y}

In this subsection we suppose that p = x and q = y. We use the notations
l(E) = maxM∈E xM −minM∈E xM and h(E) = maxM∈E yM −minM∈E yM . As
the sets are all considered up-to a translation, all the lattice sets E of this
subsection will satisfy minM∈E xM = minM∈E yM = 0.

The set of primitive vectors is V = {(−1, 0), (0,−1), (1, 0), (0, 1)} and hence
E has a salient-word of size n if and only if n = 2(l(E) + h(E)). We are going
to estimate the number of Q-convex sets E with respect to {x, y} such that
l(E) + h(E) = m.

We recall that a polyomino is a lattice set which is 4-connected. If its inter-
section with any horizontal or vertical line is also a polyomino, it is called
HV-convex. A SW-directed convex polyomino (resp. NE-directed) is a HV-
convex polyomino containing the source point (minM∈E xM , minM∈E yM) (resp.
(maxM∈E xM , maxM∈E yM)). A parallelogram polyomino is a polyomino which
is SW-directed and NE-directed.

In [10], it is proved that the number cm of the HV-convex polyominoes E such
that l(E) + h(E) = m (with m ≥ 2) is 1

cm = (2m + 7)4m−2 − 4(2m− 3)

(

2(m− 2)

m− 2

)

(4)

= 4m

(

m

8
−
√

m

2
√

π
+

7

16
+ O

(

1√
m

))

.

An HV-convex polyomino is always a Q-convex set (Proposition 2.3 of [5]),
and so to enumerate the Q-convex sets we only have to count the Q-convex
sets which are not HV-convex polyominoes.

For this we consider the following generating function

QNC(X, Y ) =
∑

E Q-convex
not HV-convex polyomino

X l(E)Y h(E).

Consider a Q-convex set which is not a HV-convex polyomino: it has at least

1 The precise link between the number p2n of [10, Theorem 1.1] and cm is cm =
p2m+4 because here points instead of cells are considered.
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two 4-components. Since a horizontal or vertical line cannot intersect two
distinct 4-components of E by convexity, we can order the 4-components
by increasing abscissa. Let E1, E2, . . . , Ek be the 4-components in this or-
der. Suppose that there are three components Ei1 , Ei2, Ei3 with i1 < i2 < i3
and three points A1 ∈ Ei1 , A2 ∈ Ei2 , A3 ∈ Ei3 such that yA1 > yA2 <
yA3 (or yA1 < yA2 > yA3). By Q-convexity the point (xA2 , max(yA1, yA3))
((xA2 , min(yA1, yA3)), resp.) is in E and connects two components of E. So
there are two kinds of Q-convex sets: the Q-convex sets whose components
are in increasing order with respect to the ordinates and those whose compo-
nents are in decreasing order with respect to the ordinates. By symmetry the
number of Q-convex sets for each kind are equal, so we can suppose that the
components are of the first kind.

By Q-convexity it is easy to see that E1 is a SW-directed polyomino, Ek is
NE-directed polyomino and that E2, . . . , Ek−1 are parallelogram polyominoes.
Conversely if a sequence of polyominoes E1, E2, . . . , Ek has this property and
is increasing with respect to the ordinates, then the union of this components
is Q-convex (see Fig. 7).

~q

~pE1

E2

E3

E4

Fig. 7. A Q-convex set which is not an HV-convex polyomino.

We recall that the generating function of the parallelogram polyominoes ([4,
page 12])) is:

P =
∑

E parallelogram

X l(E)Y h(E)

=
1−X − Y −

√
1− 2X − 2Y − 2XY + X2 + Y 2

2XY

and that of the directed polyominoes ([14, formula (25)]) is:

D =
∑

E SW-directed

X l(E)Y h(E) =
∑

E NE-directed

X l(E)Y h(E)

=
1√

1− 2 X − 2 Y − 2 XY + X2 + Y 2

17



The vector joining the NE-extremity of the component Ei and the SW-
extremity of the component Ei+1 is any lattice vector in R◦

2(O). The generating
function of these vectors is:

J =
∑

x,y>0

XxY y =
XY

(1−X)(1− Y )
.

Hence the generating function of the Q-convex sets which have k + 2 4-
components is 2 D J (P J)k D. (The factor 2 comes from the two kinds of Q-
convex-sets).

The generating function of the Q-convex sets which are not HV-convex poly-
ominoes is:

QNC =
∞∑

k=0

2 D J (P J)k D

= 2D J
1

1− P J
D

=
4XY

R(X, Y ) (1− 2 X − 2 Y − 2 XY + X2 + Y 2)

where R(X, Y ) =
(

1− Y −X + 2 XY +
√

1− 2 X − 2 Y − 2 XY + X2 + Y 2
)

.
If we substitute X and Y by T we obtain:

QNC(T, T ) =
∑

E Q-convex
not HV-convex polyomino

T l(E)+h(E) =
4T 2

(

1− 2 T + 2 T 2 +
√

1− 4 T
)

(1− 4 T )
.

The singularity of QNC with the smallest modulus is 1
4

and the asymptotic
expansion around 1

4
is QNC(T, T ) = 2

5(1−4t)
+O( 1√

1−4t
) so the number am of Q-

convex sets E which are not HV-convex polyominoes such that l(E)+h(E) =
m satisfies:

am = 4m

(

2

5
+ O(

1√
m

)

)

.

Finally the number bm of Q-convex sets E such that l(E)+h(E) = m satisfies:

bm = q2m = cm + am = 4m

(

m

8
−
√

m

2
√

π
+

67

80
+ O

(

1√
m

))

.

As a result, we have an asymptotic expansion of the success-probability of the
generator GENQ4 for any even size n:

p(n) =
bn

2

n
2
2n

=
1

8
− 1√

2πn
+

67

40n
+ O(

1

n
√

n
) (5)
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Remark 12 We could multiply this success probability by 4
n
2

n
2
+1

by modifying

a little bit algorithm GENQ4:

• The number of 0’s of w is always even when the algorithm succeeds, so the
last letter wn of w can be omitted, multiplying by two the success probability.

• When α 6= 0 the first letter w1 is always 1, so we can omit this letter if we
add the possibility α = n

2
which in fact codes α = 0 and w1 = 0. This trick

multiplies the success probability by 2
n
2

n
2
+1

.

In fact this shrewdness is used in the generator of HV-convex polyominoes of
[11], and with them, GENQ4 has the same asymptotic success-probability: 1

2
.

Notice that for a general set of directions, the first improvement cannot be
done because there are more than two letters, and that the second improvement

multiplies the success probability by
(δ+1)⌊n

2
⌋

⌊n
2
⌋+1

by coding the case α = 0 and

w1 = i 6= 0 by α = ⌊n
2
⌋+ i.

Remark 13 If a couple of directions (p, q) satisfies δ = det(p, q) = 1, then
there is a linear bijection from Z

2 to Z
2 which maps (p, q) in (x, y), so the

estimation (5) is also true in this case.

Remark 14 If n is odd, since n = 2(l(E) + h(E)) we have p(n) = 0. This
property is not true for a general couple of directions (see Fig. 8).

3

3

2

0

0

20
~p

~q

Fig. 8. The salient-word of this Q-convex set (3200203) has an odd size

4.4 Experimental estimation of the success probability

In this section we are going to estimate p(n), the success probability of
GENQ4, since the average time-complexity of GENQ5 depends on p(n).

The algorithm GENQ4 behaves as a Bernoulli trial and hence the number of
calls to GENQ4 to halting GENQ5 has a geometric distribution with same pa-
rameter p(n). So, we decided to estimate p(n) as a parameter of the Bernoulli
distribution. In this case the mean is p(n) and the variance is p(n)(1− p(n)),
and an estimation of p(n) is provided by the success frequency, that is, num-
ber of successes on number of attempts. It is possible to show that the success
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frequency maximizes the joint probability mass function for the Bernoulli dis-
tribution, since the data are independent. (So it gives the maximum probabil-
ity of obtaining the observed data of our experiment). In order to assess the
precision of this estimation we construct a confidence interval for p(n). The
test data were obtained as follows. We have chosen three couples of directions
having different values of δ: {x, y}, {x + y, x − y}, {x − y, 2x + y}. For ev-
ery couple of directions, GENQ4 was executed l = 10000 times on an Athlon
2000+ for each of the different sizes n = 10, 20, 50, 100, 200, 201, 400+ 200k of
the generated word w. The results are summarized in the Figures 9 and 10.
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Fig. 9. The time between two successes of the generator GENQ4 in function of n.
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Fig. 10. The success proportion of the generator GENQ4 in function of n.

Figure 9 shows the average time between two successes of the generator

20



GENQ4 in function of n. So it gives an estimation of the time-complexity
of the generator GENQ5. The curves show the power-regression of this data.
Since the exponent of this approximation is near 1, it suggests that the time-
complexity of the generator GENQ5 is linear.

Figure 10 illustrates the ratio k
l

of the number k of successes on the number
l = 10000 of attempts. The intervals around each points are the 99% confid-
ance intervals, that is, the proportion of intervals covering p(n). These intervals
can be computed as the success frequencies are asymptotically normally dis-
tributed, with parameters mean p(n) and variance σ2 = p(n)(1−p(n))

l
. So, for

large l, the 99% confidence interval for p(n) is given by [k
l
−2.576

√
k
l
(1− k

l
)

l
,k

l
+

2.576

√
k
l
(1− k

l
)

l
. We refer to [13, p.367-371] for an exhaustive treatment of esti-

mation of parameters in probability distributions.

The results suggest that p(n) tends to a constant (which looks to be approxi-
matively 0.048 for the directions {x+ y, x− y}, and 0.033 for {x− y, 2x+ y}).
We know that p(n) = qn

⌊nδ
2
⌋(δ+1)n so we can also use the estimation of p(n) to

derive an estimation of the number qn of Q-convex sets encoded by a word of
length n:

Conjecture 15 If δ ≥ 2 then the ratio qn

n(δ+1)n tends to a non-null constant
when n tends to infinity.

For δ = 1, we have proved in the last subsection that q2m+1 = 0 and q2m

m(δ+1)2m

tends to 1
8
.

5 Conclusion and perspectives

The main contribution of this paper is a uniform probabilistic generator for
the class of Q-convex sets generalizing the algorithm in [11]. Our generator
runs in time linear in the size of the word coding its salient points.

This algorithm allowed to estimate the number of elements of this class ac-
cording to the size of the word coding the salient points. While an asymptotic
formula for the case of coordinate directions is provided, the enumeration in
the general case is an open problem. We conjectured that qn ∼ Cn(δ + 1)n

where C only depends on the pair of directions.

An interesting perspective would consist in a generalization of the generator
for Q-convex sets along more than two directions ([6,5]) because the class of
convex sets can be seen as the limit of the class of Q-convex sets when the
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set of directions tends to the set of all the lattice directions, and a few papers
have studied the convex sets from a combinatorial point of view ([12,1]).

Dedication

In October 2000, Alberto Del Lungo told us that we should try to extend the
generator of [11] to the class of Q-convex sets which we had just introduced.

This paper is dedicated to his Memory. His advices and enthusiasm always
made us believe in our work.
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