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Abstract

The border-salient and reentrant points of a discrete set are special points of the
border of the set. When they are given with multiplicity they completely characterize
the set, and without multiplicity they characterize the set if all its 8-components
are 4-connected. The inner-salient and reentrant are defined similarly to the border
ones, but we show that, in general, they do not characterize the set, even if this set
is 4-simply connected. We also show that the genus of a set can be easily computed
from the number of salient and reentrant points.

A discrete set is a finite subset of the integer plane Z
2. Intuitively a discrete

set can be described by its border, but this border can also be characterized by
the points where there is a change of direction. In this paper these points are
said to be salient and reentrant points. In fact we define two types of salient
and reentrant points: the first ones are on the border of the set (the border
points), and the second ones are in the inner of the set (the inner points).

Section 1 of this paper presents some preliminary definitions and properties.
The section 2 is devoted to the border salient/reentrant points: we first prove
that the genus of a set can be computed from the number of salients points and
the number of reentrant points, it is in fact a reformulation of the well known
result that the genus of a set can be locally computed. Then we prove that any
discrete set is completely characterized by its set of border salient/reentrant
points given with multiplicities. If the multiplicities are not given then the set
must satisfy some connectivity constraints to be characterized.

1 Partially supported by the Project EPML-9 of French CNRS.
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Section 3 presents the inner salient/reentrant points. We show that in general
discrete sets are not characterized by their sets of inner salient/reentrant points
even if the points are given with multiplicities and the sets are connected,
nevertheless we show that there is a characterization theorem if the sets are
supposed to satisfy convexity constraints.

1 Preliminaries

1.1 Definitions and Notations

A multiset is a set where each element can be repeated. If E is a multiset,
and M ∈ E we denote by multE(M) the number of repetitions of M in E.
The set of elements of E (where all the elements are counted only one time)
is denoted supp(E). So, formally a multiset E is the function multE : F → N

∗

where F = supp(E).

The cardinal of a set E is denoted |E|. If E is a multiset then |E| is the sum
of the multiplicities of the elements of E. The complementary of a discrete set
E is the set Z

2 \E and is denoted Ec. The symmetrical difference of two sets
E and F is (E \ F ) ∪ (F \ E) and is denoted E∆F .

The half-integer plane denoted by P1/2 is the image of the integer plane by
the translation of vector (1

2
, 1

2
).

P1/2 =
{(

i +
1

2
, j +

1

2

)

: (i, j) ∈ Z
2
}

([1]).

A discrete set E can be seen as a subset C(E) of R
2

C(E) =
⋃

M∈E

(

M +
[

−
1

2
,
1

2

]2
)

.

The border of E is the topological boundary of C(E) and is a finite union
of polygonal closed lines whose edges are all horizontal or vertical and whose
vertices are in P1/2.

A 4-path (resp. an 8-path) is a finite sequence (M0, M1, . . . , Mn) of points of Z
2

such that Mi+1−Mi is in the set {(±1, 0), (0,±1)} (resp. {(±1, 0), (0,±1), (±1,±1)}).
Two points of A and B are said to be k-connected in a set E ⊂ Z

2 (k ∈ {4, 8})
if there is a k-path between A and B and which is included in E. The k-
connectedness is an equivalence relation on the points of E. The equivalence
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classes are the k-components of E. We denote by nk(E) the number of k-
components of E. A set E is said to be k-connected if it has only one k-
component and it is said to be simply k-connected if E is k-connected and Ec

is (12− k)-connected.

The lexicographical order on the points of Z
2 is defined by:

(x, y) ≺ (x′, y′)⇔ x < x′ or (x = x′ and y ≤ y′).

1.2 Odd Border Points

In this paragraph we define special points which will be very linked to the
border-salient/reentrant points of next section.

Definition 1 If E is a discrete set, the set of odd border points (denoted
O(E)) is :

O(E) =
{

(i, j) ∈ P1/2 :
∣

∣

∣

∣

{(

i±
1

2
, j ±

1

2

)}

∩E
∣

∣

∣

∣

∈ {1, 3}
}

The main interest of the definition is that a discrete set is completely charac-
terized by its odd border points:

Proposition 2 If two discrete sets E and F satisfy O(E) = O(F ) then E =
F .

Lemma 3 Let E be a discrete set and M /∈ E then O(E∪{M}) = O(E)∆
{

M +
(

±1
2
,±1

2

)}

where ∆ denotes the symmetric difference.

PROOF. Let N be in {M +
(

±1
2
,±1

2

)

}. The point M is not in E so the num-

ber
∣

∣

∣E ∩
{

N +
(

±1
2
,±1

2

)}∣

∣

∣ is odd if and only if
∣

∣

∣(E ∪ {M}) ∩
{

N +
(

±1
2
,±1

2

)}∣

∣

∣

is even. Then the lemma follows from the definition of O. 2

PROOF of Proposition 2. We prove the property by recurrence on |E|.
So we suppose that the property is true for any sets E such that |E| ≤ n
and we suppose that we have two sets E and F such that |E| = n + 1 and
O(E) = O(F ). Let (x, y) ∈ O(E) be the point of P1/2 which is minimum for
the lexicographical order. The point M = (x + 1

2
, y + 1

2
) must be in both E

and F . So we consider E ′ = E \ {M} and F ′ = F \ {M}. By the previous
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lemma:

O(E ′) = O(E)∆
{

M +
(

±
1

2
,±

1

2

)}

= O(F )∆
{

M +
(

±
1

2
,±

1

2

)}

= O(F ′).

So by recurrence E ′ = F ′ and then E = F . 2

2 Border Salient/Reentrant Points

2.1 Definitions

Definition 4 • A corner is a couple (M, N) when M ∈ P1/2 and N ∈ Z
2

and M −N is in {(±1
2
,±1

2
)}.

• A corner (M, N) is a salient corner of E if N ∈ E and M is the extremity of
two edges of the border of E which are also sides of the square N +[−1

2
, 1

2
]2.

• A corner (M, N) is a reentrant corner of E if N ∈ E and M is the ex-
tremities of two consecutive edges of the border E which are not sides of the
square N + [−1

2
, 1

2
]2.

M

N N

M

salient corner reentrant corner

Fig. 1. Corners

Now we can define the border-salient/reentrant points:

Definition 5 The multiset of border-salient ( resp border-reentrant) points of
a discrete set E, denoted SB(E) ( resp RB(E)) is the multiset whose support
is included in P1/2 and such that for any M ∈ P1/2, the number multSB(E)(M)
( resp multRB(E)(M)) is the number of N such that (M, N) is a salient corner
( resp reentrant corner).

The different local configurations are described in figure 2. In particular a
border-salient point can have multiplicity 1 or 2, and a border-reentrant points
has always the multiplicity 1.

We notice that any odd border point is salient or reentrant. The inverse is not
true since the salient points of multiplicity 2 are not odd border points. More
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S S2 R

Fig. 2. Definition of the border salient and reentrant points. (The exponent indicates
the multiplicity)

precisely if:

D(E) =
{

(x, y) ∈ P1/2 : E ∩
{

(x±
1

2
, y ±

1

2
)
}

=

{

(x−
1

2
, y −

1

2
), (x +

1

2
, y +

1

2
)
}

or
{

(x−
1

2
, y +

1

2
), (x +

1

2
, y −

1

2
)
}

}

(1)

then
D(E) = {M ∈ supp(SB(E)) : multSB(E) = 2},

O(E) = (supp(SB(E)) ∪RB(E)) \ D(E).
(2)

2.2 Genus and number of salient/reentrant points

We recall that the 4-genus of a discrete set E (denoted g4(E)) is n4(E) −
n8(E

c) + 1.

A first property of the salient and reentrant points is the computation of the
genus with them:

Proposition 6 If E is a discrete set then g4(E) = 1
4
(|SB(E)| − |RB(E)|). In

particular if E is 4-simply connected then |SB(E)| = |RB(E)|+ 4.

We recall that a 4-simple point of E is a point M = (x, y) ∈ E such that
{x ± 1, y ± 1} ∩ E is 4-connected and {x ± 1, y ± 1} ∩ Ec is 8-connected. A
classical property of simple points is the following: ([4, Proposition 4.1])

Proposition 7 A point M is a simple point of E if and only if n4(E\{M}) =
n4(E) and n8((E \ {M})

c) = n8(E
c).

PROOF of Proposition 6. We will prove the property by recurrence on
the cardinal of the set. Suppose that the property is true for any set F such
that |F | ≤ n− 1 and let E be a set of cardinal n. Let M = (x, y) be the point
of E which is minimum for the lexicographical order. We know that the set
E ′ = E \ {M} satisfies g4(E

′) = 1
4
(|SB(E ′)| − |RB(E ′)|).

By hypothesis the points (x− 1, y − 1), (x− 1, y), (x− 1, y− 1), (x, y − 1) are
not in E, but the other four 8-neighborhoods of M can be in E or not, so
there are 16 possibilities which are grouped in three cases (see Figure 3).
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S′

S′

S S

S′

S

S′ R′

S′

S

S

R

R

S R

S′ R′

S

S′ R/S′2

S R

R/S′2S′

|SB(E′)| = |SB(E)|, |RB(E′)| = |RB(E)|,

n4(E′) = n4(E), n8(E′c) = n8(E
c)

n4(E′) = n4(E), n8(E′c) = n8(E
c)

n4(E′) = n4(E), n8(E′c) = n8(E
c)

n4(E′) = n4(E), n8(E′c) = n8(E
c)

|SB(E′)| = |SB(E)| + 1, |RB(E′)| = |RB(E)| + 1,

|SB(E′)| = |SB(E)| − 2, |RB(E′)| = |RB(E)| − 2,

n4(E′) = n4(E) − 1, n8(E′c) = n8(E
c)

|SB(E′)| = |SB(E)|, |RB(E′)| = |RB(E)|,

n4(E′) = n4(E), n8(E′c) = n8(E
c)

R |SB(E′)| = |SB(E)| − 1, |RB(E′)| = |RB(E)| − 1,

S′

|SB(E′)| = |SB(E)| + 2, |RB(E′)| = |RB(E)| − 2,

n4(E′) = n4(E) + 1, n8(E′c) = n8(E
c) or n4(E′) = n4(E), n8(E

′c) = n8(Ec) − 1

|SB(E′)| = |SB(E)| + 3, |RB(E′)| = |RB(E)| − 1,

n4(E′) = n4(E) + 1, n8(E′c) = n8(E
c) or n4(E′) = n4(E), n8(E

′c) = n8(Ec) − 1

1.

3.a

3.b

2.a

2.b

2.c

2.d

2.e

|SB(E′)| = |SB(E)| − 4, |RB(E′)| = |RB(E)|,

Fig. 3. The different cases in the proof of Proposition 6.

(1) In this case we suppose that the point M is isolated, which means that
the four points (x ± 1, y), (x, y ± 1) are not in E. We have SB(E) =
SB(E ′)∪{x± 1

2
, y± 1

2
} and RB(E) = RB(E ′). A 4-path in E between two

points of E\{M} cannot pass through M since the four points (x±1, y±1)
are not in E, so n4(E) = n4(E

′)+1. An 8-path in E ′c between two points
A, B can pass through M but all the 8-neighborhood of M which are in
Ec can be linked by an 8-path which does not pass through M , so we can
modify the initial 8-path so that it does not pass through M but always
links A and B and is contained in Ec thus n8(E

c) = n8(E
′c). So finally

g4(E) = n4(E)− n8(E
c) + 1

= n4(E
′) + 1− n8(E

′c) + 1

= g4(E
′) + 1

=
1

4
(|SB(E ′)| − |RB(E ′)|) + 1 by the recurrence hypothesis

=
1

4
(|SB(E)| − 4− |RB(E)|) + 1

=
1

4
(|SB(E)| − |RB(E)|)
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(2) We now consider the case where M is a simple point. By Proposition 7
we have n4(E) = n4(E

′) and n8(E
c) = n8(E

′c). By considering all the
possibilities (cases 2. of Figure 3) we can see that (|SB(E)| − |RB(E)|) =
|SB(E ′)| − |RB(E ′)| and so g4(E) = 1

4
(|SB(E)| − |RB(E)|).

(3) It remains the case where M is neither simple nor isolated. By Proposition
7 we know that

n4(E) 6= n4(E
′) or n8(E

c) 6= n8(E
′c). (3)

Let A = (x, y+1), B = (x+1, y), C = (x+1, y+1), D = (x−1, y−1). We
have A, B ∈ E and C, D ∈ Ec (cases 3. of Figure 3). The 4-components
of E which do not contain neither A nor B are also 4-components of E ′,
similarly the 8-components of Ec which do not contain neither C or D
are 8-components of E ′c. So

n4(E) ≤ n4(E
′) ≤ n4(E) + 1 and n8(E

′c) ≤ n8(E
c) ≤ n8(E

′c) + 1. (4)

If A and B are 4-connected in E ′, then we have n4(E) = n4(E
′) and so by

(3) and (4) we have n8(E
c) = n8(E

′c)+1. If A and B are not 4-connected
in E ′ then by considering the border of the 4-component of E ′ containing
A we can prove that C and D are 8-connected in Ec (see border following
algorithm BF4 in [4, p626]). Then n4(E) = n4(E

′) − 1 and n8(E
c) =

n8(E
′c). So in the two cases we have n4(E)−n8(E

c) = n4(E
′)−n8(E

′c)−1.
Moreover we have |SB(E ′)| − |RB(E ′)| = |SB(E)| − |RB(E)|+ 4 (see the
two cases 3.a, 3.b of Figure 3). So g4(E) = 1

4
(|SB(E)| − |RB(E)|). 2

Remark 8 In [5, Proposition 2.7.1] it is proved that g4(E) = |E|−e1−e2 +f
with:

e1 = |{(x, y) : |E ∩ {(x, y), (x + 1, y)}| = 2},

e2 = |{(x, y) : |E ∩ {(x, y), (x, y + 1)}| = 2},

f = |{(x, y) : |E ∩ {(x, y), (x + 1, y), (x, y + 1), (x + 1, y + 1)}| = 4}.

In fact the proofs of these two propositions are very similar. Moreover we can
deduce one from each other: Let k1, . . . , k16 be the number of occurrences of
each configuration in Figure 4 (notice that k1 =∞ and the other ki are finite).
By considering the configurations which have a common bar we have:

k2 + k6 + k10 + k14 = k5 + k6 + k7 + k8,

k3 + k7 + k11 + k15 = k9 + k10 + k11 + k12,

k4 + k8 + k12 + k16 = k13 + k14 + k15 + k16,

k2 + k4 + k10 + k12 = k3 + k4 + k7 + k8,

k5 + k7 + k13 + k15 = k9 + k10 + k13 + k14,

k6 + k8 + k14 + k16 = k11 + k12 + k15 + k16.

7



k1 k2 k3 k4

k5 k6 k7 k8

k9 k10 k11 k12

k13 k14 k15 k16

Fig. 4. The possibilities for the intersection of a discrete set and a 2× 2 square.

We deduce that:
k10 = k5 + k7 + k15 − k9 − k14,

k4 = −k8 − k3 + k5 + k13 + k15,

k12 = k3 + k14 − k5,

k6 = −k8 + k11 + k3 − k5 + k15,

k2 = −k15 + k9 + k8.

(5)

We have:

|E| = k2 + k4 + k6 + k8 + k10 + k12 + k14 + k16,

e1 = k4 + k8 + k12 + k16,

e2 = k6 + k8 + k14 + k16,

f = k16,

|SB(E)| = k2 + k3 + k5 + k9 + 2(k7 + k10),

|RB(E)| = k8 + k12 + k14 + k15

(6)

By combining (5) and (6) we have:

|SB(E)| − |RB(E)| = −4k15 + 4k9 + 4k10

|E| − e1 − e2 + f = k10 + k9 − k15.

and so 1
4
(|SB(E)| − |RB(E)| = |E| − e1 − e2 + f .

See also [6, exercise G.4.c] for another similar property to Proposition 6.

2.3 Characterization of a set by its salient/reentrant points

A direct consequence of Proposition 2 and Formula (2) is:

8



Proposition 9 Let E and F be two discrete sets. If SB(E) = SB(F ) and
RB(E) = RB(F ) then E = F .

Figure 5 shows that this proposition becomes wrong if SB(E) is given without
multiplicity. Nevertheless the two next propositions show that there is also a
characterization property if we make supplementary hypothesis on the sets:

Proposition 10 If n4(E) = n8(E), n4(E
c) = n8(E

c), n4(F ) = n8(F ), n4(F
c) =

n8(F
c) and supp(SB(E))∪ supp(RB(E)) = supp(SB(F ))∪ supp(RB(F )) then

E = F .

Lemma 11 If n4(E) = n8(E) and n4(E
c) = n8(E

c) and D(E) is defined by
(1) then D(E) is empty.

PROOF. Consider L ∈ N such that E ⊂ [−(L − 1), (L − 1)]2, and F =
[−L, L]2 \ E.

g4(E) = n4(E)− n8(E
c) + 1

g4(F ) = n4(F )− n8(F
c) + 1

= n4(E
c)− (n8(E) + 1) + 1

We have n4(E) = n8(E) and n4(E
c) = n8(E

c) so

g4(E) + g4(F ) = 1 (7)

We have |SB(E)| = |RB(F )|+ 2|D| and |SB(F )| = |RB(E)|+ 2|D|+ 4. So

|D(E)| =
|SB(E)| − |RB(F )|+ |SB(F )| − |RB(E)| − 4

4
by Formula (2)

=
4g4(E) + 4g4(F )− 4

4
by Proposition 6

= 0 by Formula (7). 2

PROOF of Proposition 10. By Lemma 11, D(E) = D(F ) = ∅, so O(E) =
supp(SB(E))∪RB(E) = supp(SB(F ))∪RB(F ) = O(F ) and the result follows
from Proposition 6 2

Proposition 12 If n4(E) = n8(E), n4(F ) = n8(F ), supp(SB(E)) = supp(SB(F )),
supp(RB(E)) = supp(RB(F )) then E = F .

PROOF. We take the abbreviations S = supp(SB(E)) = supp(SB(F )) and
R = supp(RB(E)) = supp(RB(F )). We will construct the border of E from

9



S and R. Precisely we will construct a sequence (Bk
i )0≤k≤n−1

0≤i≤lk−1
of points of P1/2

such that for a fixed k the sequence Bk = (Bk
i )0≤i≤lk−1 is the sequence of

consecutive vertices of one of the polygonal closed lines of the border of E.

Suppose that we have constructed the sequence B0, B1, . . . , Bk−1. If S ∪ R =
{Bk

i : 0 ≤ k ≤ k−1 and 0 ≤ i ≤ lk−1} then the integer n is defined to be k.
Otherwise we define Bk

0 as the minimum point (x, y) for the lexicographical
order of the set (S∪R)\{Bk

i : 0 ≤ k ≤ k−1 and 0 ≤ i ≤ lk−1}. The symbol
S ′ will denote one of the set S and R which contains Bk

0 and R′ will denote the
other set. Now we define the sequence Bk by a recurrence using an auxiliary
sequence of vectors (ui). Intuitively the points of the sequence (Bk) follow a
mobile point which goes in the direction ui. When this mobile point meets a
salient point it turns 90 degrees on one side and when it meets a reentrant
point it turns 90 degrees on the other side. Formally we have u0 = (1

2
, 0) and

the following recurrence equation:

Bk
i+1 = Bk

i + tui

ui+1 = r(ui) if Bk
i ∈ S ′

= r−1(ui) if Bk
i ∈ R′

where t = min{t > 0 : Bk
i + tui ∈ S ∪ R}, r(x, y) = (y,−x), r−1(x, y) =

(−y, x). The number lk is defined to be min{i > 0 : Bk
i = Bk

0}. We can see by
recurrence on i that (Bk

i+1, B
k
i+1−ui +ui+1) is a salient corner if Bk

i+1 ∈ S and
(Bk

i+1, B
k
i+1 − ui − ui+1) is a reentrant corner if Bk

i+1 ∈ R. By definition there
is no salient or reentrant point in each segment [Bk

i , Bk
i+1] so the polygonal

closed line (Bk
0 , Bk

1 , . . . , B
k
lk−1, B

k
0 ) is a component of the border of E.

So at the end of this process we have n components B0, B1, . . . , Bn−1 of the
border of E, whose elements cover all S ∪R. If there was another component
in the border of E, then a vertex M of such component would belong to
two polygonal lines. So M must be a salient point with multiplicity 2. Then
E ∩

{

M +
(

±1
2
,±1

2

)}

= {A, B} where A = M + (−1
2
,−1

2
), B = M + (1

2
, 1

2
)

or A = M + (−1
2
, 1

2
), B = M + (1

2
,−1

2
). Then A and B would not be not

4-connected in E, but they are 8-connected so we would have n4(E) 6= n8(E).
So the border of E is the union of the polygonal lines B0, B1, . . . , Bn−1, but it
depends only on S and R so it is equal to the border of F and then E = F . 2
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but n4(F1) 6= n8(F1)

but n4(Ec

2
) 6= n8(Ec

2
)

supp(SB(E1)) = supp(SB(F1))

supp(RB(E1)) = supp(RB(F1))

supp(SB(E2)) ∪ supp(RB(E2)) =

supp(SB(E2)) ∪ supp(RB(E2))

supp(SB(E3)) = supp(SB(F3))

supp(RB(E3)) = supp(RB(F3))

and E3,F3 have the same topology

E1 F1

E2 F2

Fig. 5. Pairs of sets which have near border salient/reentrant points.

3 Inner Salient/Reentrant Points

3.1 General sets

Definition 13 The multiset of inner-salient ( resp inner-reentrant) points of
a discrete set E, denoted SI(E) ( resp RI(E)) is the multiset whose support is
included in Z

2 and such that for any N ∈ Z
2 the number multSI(E)(N) ( resp

multRI(E)(N)) is the number of M such that (M, N) is a salient corner ( resp
reentrant corner).

Figure 6 shows the different local configurations.

Proposition 14 If E is a discrete set then |SI(E)| = |SB(E)|, |RI(E)| =
|RB(E)|.

PROOF. The multisets SI(E) and SB(E) are in bijection with the set of
salient corners of E. In the same way the multisets RI(E) and RB(E) are in

11



S2S R R2

SR R3 S4 R4

R2

Fig. 6. Inner-salient/reentrant points. (The points outside the dashed boundary can
be in E or Ec)

bijection with the set of reentrant corners of E. 2

In particular the formula computing the genus is also true for inner salient/reentrant
points: g4(E) = 1

4
(|SI(E)| − |RI(E)|).

The inner salient/reentrant points do not determine the discrete sets even for
the 4-simply connected sets (see figure 7).

S2

S2 S2

S2
S2

S2 S2

E1
F1

SI(E1) = SI(F1) and RI(E1) = RI(F1)

S2

S2

SS

S

RR

R2SR R2

S S

R R S2

SR R2 S2

S2R

S S

R RR S2

E2 F2

SI(E2) = SI(F2) and RI(E2) = RI(F2)

S

S2

S2

S2

S2

S2

R2

R2

SR

SR SR

SR

S2

S2

S2

S2 R2

R2

SI(E3) = SI(F3) and RI(E3) = RI(F3)

E3 F3

E3 is H-convex and 4-connected but
F3 is not H-convex

S2

S2

S2

S2

R2

R2

S

S

R

R

S2

S2

E4
E4

they are not V-convex.
E4 and F4 are H-convex and 4-connected but
supp(RI(E4)) = supp(RI(F4))
supp(SI(E4)) = supp(SI(F4)) and

Fig. 7. Pairs of sets which have near inner salient/reentrant points.
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Nevertheless, given two multisets S and R we can look for all the sets E such
that SI(E) = S and RI(E) = R. Algorithm 1 does this, but restrictively for
the class of the 4-simply connected sets. The idea of the algorithm is to find
the border of the set, following the ideas of the proof of Proposition 12: we
begin with the most left-bottom point of S and we draw the border of the set
by consider a mobile point which can turns left when it meets a salient point
on its left, and can turns right when it meets a reentrant point. The problem is
that sometimes there can be many possibilities for the mobile point (see figure
8). This case did not happen for border salient/reentrant points because the
turn was always made at the first met salient/reentrant point. Algorithm 1
simply considers all the possibilities, so in fact it has an exponential complexity
even if there is only one solution (see example of figure 9). We do not know if
the construction of a discrete set from its salient/reentrant points can be done
in polynomial time.

R R

S

M

S M

M

u
v

R

S

Fig. 8. The choices in Algorithm 1.

3.2 Characterization of H-convex sets by Inner Salient Reentrant Points

In this section and the following one, we will see that discrete sets can be
determined by their salient/reentrants points if we impose some convexity
constraints.

Definition 15 A set is H-convex (resp. V-convex) if the intersection of the
set with any horizontal (resp. vertical) line is 4-connected. A discrete set is
HV-convex if it is H-convex and V-convex.

Proposition 16 Let E and F two H-convex sets. If SI(E) = SI(F ) and
RI(E) = RI(F ) then E = F .

PROOF. Let E be a H-convex set. For any y ∈ Z we define xmin(y) =
min{x : (x, y) ∈ E} and xmax(y) = max{x : (x, y) ∈ E} with the
conventions min ∅ = +∞ and max ∅ = −∞. The set E is H-convex so it is
completely determined by the functions xmin and xmax. For any y we define

13



Algorithm 1. An algorithm to display the possible borders of a 4-simply connected
set from its inner-salient/reentrant points

bords(S, R)

M0 ← lexicographical minimum of S
bords1(S \ {M0}, R, [ ], M0 − (1

2
, 1

2
), (1

2
, 0), (0, 1

2
))

bords1(S, R, B, M, u, v)

if S, R = ∅ and M = B0 then
display(B)
return

end if
if ¬cross(B, M) then

return
end if
B ← [B0, . . . , Blength(B)−1, M ]
S ′ ← {M + tu : t > 0 and M + v + tu ∈ S}
R′ ← {M + tu : t > 0 and M − v + tu ∈ R}
for all M ′ ∈ S ′ ∪ R′ do
{The next vertex is chosen in this loop.}
if M ′ ∈ S ′ then

bords1(S \ {M ′ + v}, R, B, M ′ + u, v,−u)
end if
if M ′ ∈ R′ then

bords1(S, R \ {M ′ − v}, B, M ′ − u,−v, u)
end if

end for
cross(B, M)

l ← length(B)
for i ∈ {0, . . . , l − 2} do

if [Bi, Bi+1] ∩ [Bl−1, M ] 6= {Bi, Bi+1} ∩ {Bl−1, M} then
return true

end if
end for
return false

S(y), R(y), SU(y), RU(y) as the multisets of integers defined by:

multS(y)(x) = multSI(E)(x, y)

multR(y)(x) = multRI(E)(x, y)

multSU(y)(x) = multSI(E)(x, y)−
∣

∣

∣

∣

{

x′ ∈ {x−
1

2
, x +

1

2
} : ((x′, y′ −

1

2
), (x, y)) is a salient corner of E

}
∣

∣

∣

∣

multRU(xy)(x) = multRI(E)(x, y)−
∣

∣

∣

∣

{

x′ ∈ {x−
1

2
, x +

1

2
} : ((x′, y′ −

1

2
), (x, y)) is a reentrant corner of E

}∣

∣

∣

∣
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Fig. 9. The set (on the left) takes Θ(2n) time to be reconstructed with Algorithm
1. The closed-line (on the right) is the first closed line given by the algorithm, but
not all the points have been used, so the the previous choice must be changed.

Intuitively SU(y) and RU(y) are the set of abscissas of the salient and reen-
trant points whose corresponding corners are directed up.

We will prove that the functions xmin and xmax only depend on SI(E) and
RI(E). For this we will give a definition of xmin(y), xmax(y) by recurrence on
y. For y < min(x,y′)∈E(y′) we have xmin(y) = +∞ and xmax(y) = −∞. Suppose
we know xmin(y

′), xmax(y
′) until y′ ≤ y − 1. Then we can compute SU(y − 1),

RU(y− 1) from these values. To compute xmin(y), we consider four cases (see
Figure 10):

• If (SU(y − 1) = ∅ or xmin(y) 6= min(SU(y − 1))) and (S(y) = ∅ or
min S(y) ≥ xmin(y)) then xmin(y) = xmin(y − 1).
• If SU(y − 1) 6= ∅, RU(y − 1) 6= ∅ and xmin(y − 1) = min(SU(y − 1)) then

xmin(y) = min RU(y − 1).
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• If S(y) 6= ∅ and min S(y) < xmin(y) then xmin(y) = min S(y).
• If SU(y − 1) 6= ∅ and RU(y − 1) = ∅ then xmin(y) = min S(y).

Similar considerations permit to compute xmax(y). So the functions xmin and
xmax only depend on SI(E) and RI(E) which proves the proposition. 2

S R

S R

S S

S S y

y − 1

xmin(y)

xmin(y − 1) xmin(y − 1) xmin(y − 1)xmin(y − 1)

xmin(y) xmin(y)xmin(y)

Fig. 10. The four cases in the proof of Proposition 16

Remark 17 This proposition becomes false, if the sets of salient and reentrant
points are considered instead of the multisets. (see last example of Figure 7)

3.3 Characterization of HV-convex 8-connected sets by Inner Salient Points

We will see in this paragraph that the 8-connected HV-convex sets are com-
pletely characterized by only their salient inner points without multiplicity.

Proposition 18 Let E and F be two 8-connected HV-convex sets then supp(SI(E)) =
supp(SI(F )) implies E = F .

PROOF. Let S = supp(SI(E)) = supp(SI(F )). For any M ∈ Z
2 we define:

R0(M) = {(x, y) ∈ Z
2 / x ≤ xM and y ≤ yM},

R1(M) = {(x, y) ∈ Z
2 / x ≥ xM and y ≤ yM},

R2(M) = {(x, y) ∈ Z
2 / x ≥ xM and y ≥ yM},

R3(M) = {(x, y) ∈ Z
2 / x ≤ xM and y ≥ yM}.

If R0(M)∩E 6= ∅ then we see that the lexicographical minimum of R0(M)∩E
is in S. As S ⊂ E we have R0(M) ∩ S 6= ∅ =⇒ R0(M) ∩ E 6= ∅. In the same
way we can prove that for any i ∈ {0, . . . , 3}

Ri(M) ∩ S 6= ∅ =⇒ Ri(M) ∩E 6= ∅. (8)

In [2] it is proved that any HV-convex and 8-connected set E is Q-convex
along the horizontal and vertical directions which means that

E = {M ∈ Z
2 : ∀i ∈ {0, . . . , 3}Ri(M) ∩E 6= ∅}
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and so by (8)

E = {M ∈ Z
2 : ∀i ∈ {0, . . . , 3}Ri(M) ∩ S 6= ∅}

which only depends on S. 2

Remark 19 The definition of the salient points in [3] is equivalent with the
inner salient/reentrant points for HV-convex 8-connected sets, but they do not
correspond for general sets.
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