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Abstract

For the homogeneous Landau equation, we prove regularization properties of the weak

solutions f(v, t) and in particular that it lies in Schwartz space S. This regularity was

already obtained by Desvillettes and Villani [9] using weighted Sobolev spaces. However,

our proof applies to any suitable weak solution, is more elementary and is based on

Littlewood Paley decomposition of the velocity space into annulus parts. Apart from this

decomposition, we only use elementary estimates, such as Cauchy-Schwarz or Young’s

inequalities.

1 Introduction

Landau equation is an important kinetic collisional model used to describe the time evolution

of a system of particles in plasma physics (see [15] for instance). Particles are described

through a distribution function f(t, x, v) depending on time t, particle position x ∈ RN , and

their velocity v ∈ RN (N ≥ 2). In this paper, we shall be exclusively concerned with the

homogeneous case where f(t, x, v) does not depend on x. In this case, the model writes as

∂f

∂t
(v, t) = Q(f, f)(v, t), (1.1)

∗mouhamad.el safadi@univ-orleans.fr
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where the initial datum f(0, v) = f0(v) is a given non negative function.

Landau quadratic operator Q depends on v as follows:

Q(f, f)(v, t) =
1
2

N∑
ω,ω′=1

∂

∂vω
{
∫

Rn

dv∗aωω′(v − v∗)[ f(v∗, t)
∂f

∂vω′
(v, t)− f(v, t)

∂f

∂v∗ω′
(v∗, t) ] },

(1.2)

with

(aωω′(z))1≤ω,ω′≤N = Λ | z |2 χ(| z |)Πωω′(z). (1.3)

Here, we shall always use the convention of implicit summation over repeated indices (ω, ω′).

Above, Λ is some positive constant that we shall normalize to be 1, χ is a non negative

function, and Π(z) is the following non negative symmetric matrix, corresponding to the

orthogonal projection onto z⊥, i.e

Πωω′(z) = δωω′ −
zωzω′

|z|2
.

Landau collision operator (1.2) has the fundamental properties of preserving mass, momen-

tum and energy, that is∫
RN

Q(f, f)φ(v)dv = 0, for φ(v) = 1, v, | v |2 .

Moreover, it satisfies the well known Boltzman’s H theorem, which writes formally as∫
RN

Q(f, f) log(f)dv ≤ 0.

Arsen’ev and Buryak [1] have shown that solutions of the Boltzmann equation converge

towards solutions of the Landau equation when grazing collisions prevail, while the full non

homogeneous case was considered by Alexandre and Villani [5]. On this topic, one can

consult the review paper of Villani [24], giving a lot of references.

We shall assume that the function χ, entering Landau operator, is smooth and satisfies

c(1 + |z|2)
γ
2 ≤ χ(|z|) ≤ C0(1 + |z|2)

γ
2 ,

|∇β(χ(|z|))| ≤ Cβ(1 + |z|2)
γ
2
−β for all integer β, (1.4)

where c is a non negative constant and Cβ a non negative constant depending on β.

Furthermore, we shall restrict herein to so-called hard potentials, meaning that the parameter

γ is in the range 0 < γ ≤ 1. However, note that this assumption could be relaxed to γ ≤ 2,
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and even to any γ > 0, if we make some minor changes on the initial datum.

We shall also consider so-called very hard potentials, that is

χ(| z |) =| z |γ for 0 < γ ≤ 1. (1.5)

This case corresponds to interactions with inverse s-power forces for s > 2N − 1. It differs

slightly from (1.4), due to the singularity around zero.

Relevant existence results in the homogeneous case for weak solutions of (1.1) were obtained

in [1, 7, 9, 10, 11, 22]. A probabilistic framework is also worked out by Meleard and Geurin

[12].

In all the paper, we shall assume that a weak solution to Landau (1.1) has been constructed

and that it satisfies the usual entropic estimate, for a fixed T > 0 (eventually T = +∞)

sup
t∈[0,T ]

∫
RN

f(t, v)(1 + |v|2 + log(1 + f(t, v))dv <∞. (1.6)

Let us mention that for the non homogeneous case, very few results are available, see [14, 25],

and this is so even for the linearized equation [6, 18].

In this work, we are interested in regularization properties of weak solutions of (1.1). Such

results were first shown by Arsen’ev and Buryak [1] for smooth and strongly decreasing

initial data. Then, Villani studies it for Maxwellian molecules in [23]. The recent up to date

results about this regularization question are due to Desvillettes and Villani [9], showing

regularity in S, for not necessarily smooth initial data. However, they needed conservation

of all moments of f to get this regularization property. But, according to their results,

moments on the initial data are propagated along the solution flow and most importantly,

they have also shown immediate appearance of higher moments, demanding only few ones

on the initial data.

Herein, in order to simplify the exposition, we shall assume these moments estimates in L1

space on the initial data, and thus on solutions itself.

Our goal in this paper is to obtain this S regularity, using only very elementary arguments. In

particular, we avoid any use of interpolation inequalities, and most importantly, our method

applies to any (suitable) weak solutions of Landau equation (1.1). Our method is based on

Littlewood-Paley harmonic decomposition.

In a recent work, we have already used this method to prove very simply the immediate reg-

ularity of weak solutions of the homogeneous Boltzmann equation for Maxwellian molecules

[3], showing an optimal C∞ regularity for all time t > 0. The general case of non Maxwellian

molecules is the subject of a work in progress [4]. Similar harmonic ideas are also used in
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[2], in order to get precise functional properties of a linear operator linked with Boltzmann

quadratic operator, which can be used for instance to construct weak solutions for the full

non homogeneous Boltzmann equation. In fact, in all these works, the main point is to

work on small annuli instead of the full frequency space and otherwise we only use truly

elementary analytical arguments.

Basic results about related harmonic analysis ideas can be found in the books of Runst,

Sickel, Stein or Triebel [17, 20, 21].

Before stating our main result, let us firstly point out the basic assumptions and notations

used herein.

Propagation of moments: The propagation of moments of solutions of (1.1)-(1.2) is

proven in [9]. According to their results, we shall assume that

For all s > 0, if || f0 ||L1
s
< +∞, then supt≥0 || f(t) ||L1

s
< +∞. (1.7)

As shown by Desvillettes and Villani, there is in fact immediate appearance of higher mo-

ments. It is possible to adapt the arguments of our work in this case too.

Formulation: In a standard way, other formulations of (1.1) and (1.2) are possible. For

this purpose, we define, for z ∈ RN{
bω(z) = ∂ω′aωω′(z) i.e b(z) = ∇a(z)
c(z) = ∂ωω′aωω′(z) i.e c(z) = ∇2a(z),

(1.8)

and without possible confusion, adopt the following notations,

a = a ∗ f, b = b ∗ f and c = c ∗ f.

Integrating (1.2) by parts, we can then write (1.1) alternatively under the form

∂tf = aωω′∂ωω′f − cf i.e ∂tf = a∇2f − cf. (1.9)

Notations: For all s ≥ 0, we shall use the weighted spaces L1
s and their standard norms

|| f ||L1
s
=

∫
RN

| f(v) | (1+ | v |2)
s
2dv.

Let us recall that
⋂

h≥0,s≥0H
h
s (RN ) is Schwartz’s space S(RN ).

Moreover, we set

M0 =
∫

RN

f0(v)dv, E0 =
1
2

∫
RN

f0(v) | v |2 dv,

H0 =
∫

RN

f0(v) log f0(v)dv,
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for the initial mass, energy and entropy.

Finally, the usual entropic space is

L logL(RN ) = { f ∈ L1(RN );
∫

RN

| f(v) || log(| f(v) |)dv < +∞}.

Our main result is then given by

Theorem 1.1 Let f0 ∈ L1
2+δ ∩LlogL(RN ), for some δ > 0. Let f be any weak non negative

solution of Landau homogeneous equation (1.1), (1.2) satisfying assumptions (1.4) or (1.5)

and (1.7). Then, f lies in C∞([t0,+∞];S(RN )) for all t0 > 0.

2

The paper is organized as follows. Section 2 gives the basic tools needed to apply Littlewood-

Paley theory. Section 3 is devoted to the proof of Theorem 1.1, divided in a few steps, and in

the case of smooth kernels, that is under assumption (1.4). In section 4, we modify slightly

the method of proof and consider the non smooth case, that is under assumption (1.5), thus

concluding the paper. Finally, an appendix is devoted to an estimation of a linear operator

which is crucial during the proof.

2 Basic elements of Littlewood Paley decomposition.

This section is devoted to Littlewood-Paley decomposition and some links with Sobolev type

spaces. We use the same decomposition as in the paper of Alexandre and El Safadi [3]. More

details are available in the books of Runst, Sickel, Stein and Triebel [17, 20, 21] and also in

the lecture notes by Tao [19].

We fix once for all in this paper a collection {ψk = ψk(ξ)}k∈N of smooth functions such that

supp ψ0 ⊂ {ξ ∈ RN , | ξ | ≤ 2},

supp ψk ⊂ {ξ ∈ RN , 2k−1 ≤ | ξ | ≤ 2k+1} for all k ≥ 1,

and
+∞∑
k=0

ψk(ξ) = 1 for all ξ ∈ RN .

To simplify some computations, all functions ψk, for k ≥ 1, are constructed from a single

one ψ ≥ 0, i.e. we are given ψ such that supp ψ ⊂ {ξ ∈ RN , 1
2 ≤ | ξ | ≤ 2}, ψ > 0 if
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1√
2
≤ | ξ | ≤

√
2 such that ψk(ξ) ≡ ψ( ξ

2k ), for all k ≥ 1 and ξ ∈ RN .

Then, we define the real Littlewood-Paley projection operators pk, for k ≥ 0, by

p̂kf(ξ) = ψk(ξ)f̂(ξ).

It follows that one has the Littlewood-Paley decomposition

f =
+∞∑
k=0

pkf for all f ∈ S ′.

By construction, we can find a new collection {ψ̃k = ψ̃k(ξ)}k∈N of smooth functions such that

supp ψ̃0 ⊂ {ξ ∈ RN , | ξ | ≤ 4}, supp ψ̃k ⊂ {ξ ∈ RN , 2k−2 ≤ | ξ | ≤ 2k+2} for all k ≥ 1,

and such that ψkψ̃k = ψk, for all integer k.

As before, we define the corresponding operator p̃k, for k ≥ 0, by

̂̃pkf(ξ) = ψ̃k(ξ)f̂(ξ).

All these functions ψ̃k, for k ≥ 1, are constructed from a single one ψ̃ ≥ 0, i.e. we are given

ψ̃ such that supp ψ̃ ⊂ {ξ ∈ RN , 1
22 ≤ | ξ | ≤ 22}, ψ̃ > 0 if 1

2 ≤ | ξ | ≤ 2, such that

ψ̃k(ξ) ≡ ψ̃( ξ
2k ), for all k ≥ 1 and ξ ∈ RN .

Thus, we have the obvious property, for any integer k

pkp̃k = pk. (2.10)

Moreover, using Plancherel formula, these operators have the special property∫
v
f(v)pk (resp. p̃k )g(v)dv =

∫
v
pk (resp. p̃k )f(v)g(v)dv, for all f, g ∈ S ′. (2.11)

Using these operators, we obviously get the following Bernstein inequality, for all f ∈ L1

|| pkf ||L2≤ C 2
Nk
2 || pkf ||L1 , (2.12)

where C is a constant depending on the function ψ̃ (for the proof and more details, see

proposition 3.2 on p.24 of Ref.[13]).

Thanks to this decomposition, we can see that the weighted space L1
s satisfies

∀s > 0, || f ||L1
s
∼

∞∑
j=0

2js || ψjf ||L1 .

Finally, usual weighted Sobolev spaces can be described by the following important result,

see for instance the results quoted in the books [17, 20, 21]
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Lemma 2.1 For all s, j ≥ 0,

||f ||2Hh
s
∼

+∞∑
k=0

+∞∑
j=0

2kh2js||pk(ψjf)||2L2 .

2

3 Proof of Theorem 1.1, under assumption (1.4)

It will be divided into six parts. In the first one, we make some manipulations to simplify

our task and obtain a simple equality to estimate. Then, in the next three parts, we estimate

each term appearing in this equality, and glue all these estimates in the fifth part, getting

a differential inequality. Finally, in the last one, we deduce an estimation of our solution in

Schwartz’s space w.r.t. variable v and C∞ w.r.t. time t.

3.1 Simplification step

We shall use the Landau equation under the form given by (1.9)

∂tf = a∇2f − cf. (3.13)

Next, let k and j be any positive integers. We make the convention that all functions ψj

appearing with negative indices, are equal to zero (in fact we need only ψ−2, ψ−1).

Multiplying (3.13) by ψj , thanks to the equality ψ̃jψj = ψj , we get

∂tψjf = (aψ̃j)ψj∇2f − (cψ̃j)ψjf. (3.14)

Since supp ∇ψj ⊂ supp ψj , we get

ψj∇2f = ∇2(ψjf)−
j+2∑

m=j−2

(∇2ψj)ψmf−2
j+2∑

m=j−2

(∇ψj)∇(ψmf)+
j+2∑

m=j−2

j+2∑
n=j−2

(∇ψj)(∇ψm)ψnf .

(3.15)

Taking into account (3.15) and the fact (∇ψj)ψ̃j = ∇ψj , equality (3.14) becomes

∂tψjf = (aψ̃j)∇2(ψjf)− (cψ̃j)ψjf −
j+2∑

m=j−2

a(∇2ψj)ψmf

− 2
j+2∑

m=j−2

a(∇ψj)∇(ψmf)
j+2∑

m=j−2

+
j+2∑

n=j−2

a(∇ψj)(∇ψm)ψnf. (3.16)
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Hereafter, for simplicity, we shall use variables m,n to notify a finite summation on m and

n. More precisely, variable m (resp. n) denotes summation on variable m ( resp. n ) ranging

from j − 2 to j + 2.

Applying Littlewood Paley operator pk to (3.16), we get
∂tpk(ψjf) = [ pk, aψ̃j ]∇2(ψjf) + (aψ̃j)∇2pk(ψjf)− [ pk, cψ̃j ]ψjf − (cψ̃j)pk(ψjf)

−[ pk, a∇2(ψj)]ψmf − a∇2(ψj)pk(ψmf)− 2[ pk, a(∇ψj)]∇(ψmf)− 2a(∇ψj)∇pk(ψmf)

+[ pk, a(∇ψj)(∇ψm)]ψnf + a(∇ψj)(∇ψm)pk(ψnf).
(3.17)

After some computations, using integrations by parts, we get

[ pk, aψ̃j ]∇2(ψjf) = [ ∇2pk, aψ̃j ]ψjf − 2[ ∇pk,∇(aψ̃j)]ψjf − 2∇(aψ̃j)∇pk(ψjf)

+[ pk, a∇2(ψ̃j)]ψjf + 2[ pk, b∇(ψ̃j)]ψjf + [ pk, cψ̃j ]ψjf

+a∇2(ψ̃j)pk(ψjf) + 2b∇(ψ̃j)pk(ψjf) + cψ̃jpk(ψjf). (3.18)

and

[ pk, a(∇ψj)]∇(ψmf) = [ ∇pk, a∇ψj ]ψmf − [ pk, b∇(ψj)]ψmf − [ pk, a∇2(ψj)]ψmf

−b∇(ψj)pk(ψmf)− a∇2(ψj)pk(ψmf). (3.19)

Plugging (3.18) and (3.19) into equality (3.17), multiplying the result by pk(ψjf) and inte-

grating w.r.t. variable v, we find the following equality (recall that m and n denotes in fact

a double summation
∑

m

∑
n )

∂t || pk(ψjf) ||2L2 −
1
2

∫
v
aψ̃j∇2pk(ψjf)pk(ψjf)dv (3.20)

=
1
2

∫
v
[ ∇2pk, aψ̃j ](ψjf)pk(ψjf)dv (3.21)

−
∫

v
[ ∇pk, ∇(aψ̃j)](ψjf)pk(ψjf)dv −

∫
v
∇(aψ̃j)∇pk(ψjf)pk(ψjf)dv (3.22)

+
1
2

∫
v
[ pk, a∇2ψ̃j+2b∇ψ̃j ](ψjf)pk(ψjf)dv+

1
2

∫
v
(a∇2ψ̃j+2b∇ψ̃j)pk(ψjf)pk(ψjf)dv (3.23)

−
∫

v
[ ∇pk, a∇ψj ](ψmf)pk(ψjf)dv −

∫
v
a∇ψj∇pk(ψmf)pk(ψjf)dv (3.24)

+
1
2

∫
v
[ pk, a∇2ψj + 2b∇ψj ](ψmf)pk(ψjf)dv +

1
2

∫
v
(a∇2ψj + 2b∇ψj)pk(ψmf)pk(ψjf)dv

(3.25)

+
1
2

∫
v
[ pk, a∇ψj∇ψm](ψnf)pk(ψjf)dv +

1
2

∫
v
a∇ψj∇ψmpk(ψnf)pk(ψjf)dv. (3.26)
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Hereafter, C denotes any positive constant not depending on the integers k or j that will

appear in the proof of our results below. If we need to mention its dependence with respect

to any parameter β, then we shall use the notation Cβ . Again, let us recall that variables

m and n appearing in this work, are a shorthand notation to signify a summation on these

variables between the two integers j − 2 and j + 2.

3.2 Lower bounds

Firstly, integrating by parts, the second term of (3.20) becomes

−1
2

∫
v
(aψ̃j)∇2pk(ψjf)pk(ψjf)dv =

1
2

∫
v
∇(aψ̃j)∇pk(ψjf)pk(ψjf)dv +

1
2

∫
v
(aψ̃j)∇pk(ψjf)∇pk(ψjf)dv. (3.27)

We want to estimate from below the second term on the right hand side of (3.27), and here

we shall use the ellipticity of the matrix aωω′ , see [9] (proposition 4). The degeneracy of the

matrix Πωω′ entails a loss of order 2 in the exponent w.r.t. | v |. However, their proof, which

is given for X (| v |) =| v |γ , holds true also for X (| v |) = (1+ | v |2)
γ
2 .

Thus, one has

aωω′(v)ξωξω′ ≥ K(1+ | v |2)
γ
2 | ξ |2 ∀ξ ∈ RN ,

where K is a non negative constant depending only on the initial moment M0, energy E0,

entropy H0 and γ. Taking into account the support of our basic functions, we obtain

aψ̃j∇pk(ψjf)∇pk(ψjf) ≥ KC
γ
2
j ψ̃j∇pk(ψjf)∇pk(ψjf) where Cj = (1 + 22j).

But, using the fact, ψ̃jψj = ψj , we get

ψ̃j∇pkψjf = ∇(pkψjf)− [∇pk, ψ̃j ]ψjf.

Then, after some computations, integrating by parts, we get

1
2

∫
v
aψ̃j∇pk(ψjf)∇pk(ψjf)dv ≥ KC

γ
2
j

∫
v
∇pk(ψjf)∇pk(ψjf)dv (3.28)

+KC
γ
2
j

∫
v
[ ∇2pk, ψ̃j ]ψjfpk(ψjf)dv − KC

γ
2
j

∫
v
(∇ψ̃j)∇pk(ψjf)pk(ψjf)dv. (3.29)

As a consequence of this section, we have obtained a term bounded from below (that is,

the second integral of (3.28)) which will be written on the left-hand side of the last equality,

while for all the other terms, adding the two integrals of (3.29) and the first integral of (3.27),

we shall find an upper bound for each one to finally obtain a differential inequality.
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3.3 Estimates: Upper bounds

We divide this section into three parts. In the first one, we give an estimation of the matrix

a, defined in (1.3), (1.8) and its derivatives, which will be useful in the next parts. Then, in

the second, we introduce two lemmas giving upper bounds which will be useful to implement

an iteration step and finally, we estimate the remaining terms of the equality from section 2.

3.3.1 Estimates for a and b.

Firstly, let us note that under assumption (1.4), since χ is taken very smooth, it follows that

a belongs to C∞(RN ). Taking into account notations (1.8), one has, for all v ∈ RN

b(v) = (1−N)vχ(| v |),

∇βa(v) = (1−N)[ (N + β − 2)∇β−2(χ(| v |)) + v∇β−1(χ(| v |))], for all integer β ≥ 2.

In view of the convolution structure, using the following inequality

∀v, v∗ ∈ RN (1+ | v − v∗ |2)
γ
2 ≤ (1+ | v |2)

γ
2 (1+ | v∗ |2)

γ
2 ,

we get

| a(v) |≤ C(1+ | v |2)
γ+2
2 , | b(v) |≤ C(1+ | v |2)

γ+1
2 ,

| ∇β(a(v)) |≤ CCβ(1+ | v |2)
γ
2 ∀β ≥ 2,

for a constant C depending here only on || f ||L1
γ+2

.

Therefore, we obtain, using the precise support sets of ψj and ψ̃j , the following inequalities,

for all j ∈ N 
| aψj |≤ CC

γ+2
2

j , | a∇ψj |≤ CC
γ+1
2

j , | a∇2ψj |≤ CC
γ
2
j ,

| bψj |≤ CC
γ+1
2

j , | b∇ψj |≤ CC
γ
2
j

and | ∇β(aψj) |≤ CCβC
γ
2
j , ∀β ≥ 2,

(3.30)

for a constant C depending on || f ||L1
γ+2

and the bound L∞ of ψ and their derivatives. Of

course, these inequalities also hold true if we change ψj by ψ̃j .

3.3.2 Integral operators estimates

This subsection is concerned with a linear operator having the form [ ∇rpk, φ], for orders

r = 0, 1, 2, where pk is the Littlewood-Paley operator (see section 2) and φ is any smooth

function. We will introduce two lemmas, which will play an essential role in order to obtain

the needed upper bounds.
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Before that, let us do some computations concerning the operator p̃k which will be useful in

the sequel for our bounds into the lemmas.

According to section 2, we know that ̂̃pkg is supported in 2k−2 ≤ |ξ| ≤ 2k+2, for any function

g ∈ L1. This implies, by the Littlewood decomposition, that

̂̃pkg = ̂pk−3(p̃kg) + ̂pk−2(p̃kg) + ̂pk−1(p̃kg) + ̂pk(p̃kg) + ̂pk+1(p̃kg) + ̂pk+2(p̃kg) + ̂pk+3(p̃kg).

Again, all operators indexed by negative indices are set to zero (that is here p−3, p−2, p−1).

Thanks to the commutativity property of operator pk, we have

̂̃pkg = ̂p̃k(pk−3g) + ̂p̃k(pk−2g) + ̂p̃k(pk−1g) + ˜̂pk(pkg) + ̂p̃k(pk+1g) + ̂p̃k(pk+2g) + ̂p̃k(pk+3g).

Hence, by Parseval’s inequality, we get

||p̃kg||L2 ≤
k+3∑

l=k−3

||p̃k(plg)||L2

≤ C

k+3∑
l=k−3

||plg||L2 (3.31)

where C =|| ψ̃ ||L∞ .

We begin with the following estimate:

Lemma 3.1 Let r ∈ N∗ and k ∈ N. Let φ be a bounded continuous function together with

its derivatives. Then, for a function f ∈ L1, we have the following estimate,∣∣∣∣ ∫
v
[ ∇2pk, φ]fpkfdv

∣∣∣∣ ≤ C || ∇r+1φ ||L∞
2k(r−1)

|| f ||L1 2
Nk
2 || pkf ||L2 +βr

k+3∑
l=k−3

|| plf ||L2 || ∇pkf ||L2

where

βr = C{|| ∇1φ ||L∞ + || ∇2φ ||L∞ + · · ·+ || ∇rφ ||L∞},

and C is a constant not depending on the variable k.

Proof: We shall use iterations provided by the adjoint property (2.11) of pk, and apply it

several times. This method allows us to get negative exponents of k which play an essential

role to obtain our regularity. After r iterations, this term writes∫
v
[∇2pk, φ]fpkfdv =

∫
v
T̃ r,2

k (f)pkfdv +
r−1∑
m=0

∫
v
T̃m,2

k (p̃kf)pkfdv. (3.32)
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where

T̃ τ,2
k =

τ︷ ︸︸ ︷
[p̃k, [p̃k, [p̃k, · · ·, [∇2pk, φ] ] ] ] for all τ ∈ N.

Using the result quoted in the Appendix, this linear operator has an Lp estimate, for 1 ≤
p ≤ ∞, as follows

||T̃ τ,2
k ||Lp→Lp ≤ C ′τ

2k(l−1)
, with C ′τ = C||∇τ+1ϕ||L∞ . (3.33)

As regards the first term of the right hand side of (3.59), we have∣∣∣∣∫
v
T̃ r,2

k (f)pkfdv

∣∣∣∣ ≤ ||T̃ r,2
k (f)||L1 ||pkf ||L∞ (Holder inequality)

≤ ||T̃ r,2
k (f)||L12

Nk
2 ||pkf ||L2 (Bernstein inequality 2.12)

≤ C ′r
2(r−1)k

||f ||L12
Nk
2 ||pkf ||L2 (see 3.44). (3.34)

For the second estimation, one has∣∣∣∣∣
r−1∑
m=1

∫
v
T̃m,2

k (p̃kf)pkfdv

∣∣∣∣∣ ≤
r−1∑
m=1

||T̃m,2
k (p̃kf)||L2 ||pkf ||L2 (Cauchy Schwarz inequality)

≤ β′r2
k||p̃kf ||L2 ||pkf ||L2 (see 3.44) (3.35)

where β′r = C
∑r−1

m=0 || ∇m+1φ ||L∞ .

Taking into account the inequality || ∇pkf ||L2≥ C2k || pkf ||L2 obtained by Plancherel

formula, using (3.31), the last term (3.35) has the following upper bound

β′r

k+3∑
l=k−3

||plf ||L2 ||∇pkf ||L2 . (3.36)

Thanks to (3.34) and (3.36), we get the lemma.

2

Next, let us take any integer r such that r > 0. Its value will be choosen exactly later.

Applying Lemma 3.1 to the first integral of (3.29), we obtain

KC
γ
2
j

∣∣∣∣∫
v
[ ∇2pk, ψ̃j ]ψjfpk(ψjf)dv

∣∣∣∣ ≤
CrC

γ
2
j

2k(r−1)
|| ψjf ||L1 2

Nk
2 || pk(ψjf) ||L2 (3.37)

+ CrC
γ
2
j

k+3∑
l=k−3

|| pl(ψjf) ||L2 || ∇pk(ψjf) ||L2 .(3.38)
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Here, Cr is a constant depending only on K, || ψ̃ ||L∞ and on variable r.

For any constant ε > 0, by Young’s inequality, each term of (3.38) writes, for l = k − 3, k −
2, k − 1, k, k + 1, k + 2, k + 3

CrC
γ
2
j

ε
|| pl(ψjf) ||L2 ε || ∇pk(ψjf) ||L2≤

CrCγ
j

2ε2
|| pl(ψjf) ||2L2 +

ε2

2
|| ∇pk(ψjf) ||2L2 . (3.39)

Concerning the integral (3.21), using Lemma 3.1 and (3.30), we obtain

1
2

∣∣∣∣∫
v
[ ∇2pk, aψ̃j ](ψjf)pk(ψjf)dv

∣∣∣∣ ≤
CrC

γ
2
j

2k(r−1)
|| ψjf ||L1 2

Nk
2 || pk(ψjf) ||L2 (3.40)

+ CrC
γ+1
2

j

k+3∑
l=k−3

|| pl(ψjf) ||L2 || ∇pk(ψjf) ||L2 .(3.41)

Again, as for (3.39), for any constant η > 0, thanks to Young’s inequality, the term (3.41)

has the following upper bound

CrC
γ+1
2

j

η
|| pl(ψjf) ||L2 η || ∇pk(ψjf) ||L2≤

CrCγ+1
j

2η2
|| pl(ψjf) ||2L2 +

η2

2
|| ∇pk(ψjf) ||2L2 .

(3.42)

The following Lemma is the counterpart of the previous one, but for lower order derivatives.

Lemma 3.2 Let r ∈ N∗, k ∈ N and h = 0, 1. Let φ a bounded continuous function together

with its derivatives. Then, for a function f ∈ L1, we have the following estimate∣∣∣∣∫
v
[ ∇hpk, φ]fpkfdv

∣∣∣∣ ≤ C || ∇r+1φ ||L∞
2k(r+1−h)

|| f ||L1 2
Nk
2 || pkf ||L2 +βr[

k+3∑
l=k−3

|| plf ||2L2 + || pkf ||2L2 ],

where

βr = C{|| ∇1φ ||L∞ + || ∇2φ ||L∞ + · · ·+ || ∇rφ ||L∞},

and C is a constant not depending on the variable k.

Proof: Taking into account property (2.11), we can write, after r iterations∫
v
[ ∇hpk, φ]fpkfdv =

∫
v
T̃ r,h

k (f)pkfdv +
r−1∑
m=0

∫
v
T̃m,h

k (p̃kf)pkfdv, (3.43)

where

T̃ τ,h
k =

τ︷ ︸︸ ︷
[p̃k, [p̃k, [p̃k, · · ·, [∇hpk, φ] ] ] ] for all τ ∈ N.
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which has the following norm estimation, for 1 ≤ p ≤ ∞ (see appendix)

||T̃ τ,h
k ||Lp→Lp ≤ C ′τ

2(τ+1−h)k
with C ′τ = C||∇τ+1φ||L∞ . (3.44)

Concerning the first term on the left hand side of (3.43), we have∣∣∣∣∫
v
T̃ r,h

k (f)pkfdv

∣∣∣∣ ≤ ||T̃ r,h
k (f)||L1 ||pkf ||L∞ (Holder inequality)

≤ ||T̃ r,h
k (f)||L12

Nk
2 ||pkf ||L2 (Bernstein inequality 2.12)

≤ C ′r
2(r+1−h)k

||f ||L1 2
Nk
2 ||pkf ||L2 (see 3.44). (3.45)

For the second, we use Cauchy Schwarz inequality to get∣∣∣∣∣
r−1∑
m=0

∫
v
T̃m,h

k (p̃kf)pkfdv

∣∣∣∣∣ ≤
r−1∑
m=0

||T̃m,h
k (p̃kf)||L2 ||pkf ||L2

≤ βr||p̃kf ||L2 ||pkf ||L2 (see 3.44), (3.46)

where βr = C
∑r−1

m=0 || ∇m+1φ ||L∞ .

Using (3.31), then, applying Young’s inequality to each term of the sommation of (3.46)

implies the end of the proof.

2

Now, we return to the first integral of (3.22), and using Lemma 3.2 with h=1, thanks to

(3.30), we have∣∣∣∣∫
v
[ ∇pk,∇(aψ̃j)](ψjf)pk(ψjf)dv

∣∣∣∣ ≤ CrC
γ
2
j

2kr
|| ψjf ||L1 2

Nk
2 || pk(ψjf) ||L2 (3.47)

+CrC
γ
2
j [

k+3∑
l=k−3

|| pl(ψjf) ||2L2 + || pk(ψjf) ||2L2 ]. (3.48)

Here Cr is any constant depending only on the variable r.

Similarly, the first integral of (3.24) can be estimated as∣∣∣∣∫
v
[ ∇pk, a∇ψj ](ψmf)pk(ψjf)dv

∣∣∣∣ ≤ CrC
γ
2
j

2kr
|| ψmf ||L1 2

Nk
2 || pk(ψjf) ||L2 (3.49)

+CrC
γ
2
j [

k+3∑
l=k−3

|| pl(ψmf) ||2L2 + || pk(ψjf) ||2L2 ]. (3.50)

Again, using Lemma 3.2 with h = 0 to estimate the first integral of (3.23), we obtain

1
2

∣∣∣∣∫
v
[ pk, a∇2ψ̃j + 2b∇ψ̃j ](ψjf)pk(ψjf)dv

∣∣∣∣ ≤ CrC
γ
2
j

2kr
|| ψjf ||L1 2

Nk
2 || pk(ψjf) ||L2 (3.51)
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+CrC
γ
2
j [

k+3∑
l=k−3

|| pl(ψjf) ||2L2 + || pk(ψjf) ||2L2 ]. (3.52)

Similarly, for the first integral of (3.25), we have

1
2

∣∣∣∣∫
v
[ pk, a∇2ψj + 2b∇ψj ](ψmf)pk(ψjf)dv

∣∣∣∣ ≤ CrC
γ
2
j

2k(r+1)
|| ψmf ||L1 2

Nk
2 || pk(ψjf) ||L2

(3.53)

+CrC
γ
2
j [

k+3∑
l=k−3

|| pl(ψmf) ||2L2 + || pk(ψjf) ||2L2 ]. (3.54)

Finally, using the inequalities,

|a(∇ψj)(∇ψm)| ≤ CC
γ
2
j , |∇r(a(∇ψj)(∇ψm))| ≤ CCrC

γ
2
j ,

applying Lemma 3.2 with h = 0 for the first integral of (3.26) , we have

1
2

∣∣∣∣∫
v
[ pk, a(∇ψj)(∇ψm)](ψnf)pk(ψjf)dv

∣∣∣∣ ≤ CrC
γ
2
j

2k(r+1)
|| ψnf ||L1 2

Nk
2 || pk(ψjf) ||L2 (3.55)

+CrC
γ
2
j [

k+3∑
l=k−3

|| pl(ψnf) ||2L2 + || pk(ψjf) ||2L2 ]. (3.56)

3.3.3 Remaining estimates

In this subsection, we shall use Cauchy Schwarz and Young’s inequalities several times to

estimate the remaining terms. Firstly, integrating by parts, the second integral of (3.24)

becomes

−
∫

v
(a∇ψj)∇pk(ψmf)pk(ψjf)dv =∫

v
(a∇ψj)pk(ψmf)∇pk(ψjf)dv +

∫
v
∇(a∇ψj)pk(ψmf)pk(ψjf)dv. (3.57)

For the second integrals of respectively (3.57), (3.23), (3.25) and (3.26), thanks to inequalities

(3.30), we obtain by Young’s inequality∣∣∣∣∫
v
∇(a∇ψj)pk(ψmf)pk(ψjf)dv

∣∣∣∣ ≤ CC
γ
2
j [ || pk(ψmf) ||2L2 + || pk(ψjf) ||2L2 ], (3.58)

1
2

∣∣∣∣∫
v
(a∇2ψ̃j + 2b∇ψ̃j)pk(ψjf)pk(ψjf)dv

∣∣∣∣ ≤ CC
γ
2
j || pk(ψjf) ||2L2 , (3.59)
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1
2

∣∣∣∣∫
v
(a∇2ψj + 2b∇ψj)pk(ψmf)pk(ψjf)dv

∣∣∣∣ ≤ CC
γ
2
j [ || pk(ψmf) ||2L2 + || pk(ψjf) ||2L2 ],

(3.60)
1
2

∣∣∣∣∫
v
a∇ψj∇ψmpk(ψnf)pk(ψjf)dv

∣∣∣∣ ≤ CC
γ
2
j [ || pk(ψnf) ||2L2 + || pk(ψjf) ||2L2 ]. (3.61)

Next, for the first integral of (3.57), using Cauchy Schwarz inequality, we obtain∣∣∣∣∫
v
(a∇ψj)pk(ψmf)∇pk(ψjf)dv

∣∣∣∣ ≤ CC
γ+1
2

j || pk(ψmf) ||L2 || ∇pk(ψjf) ||L2 . (3.62)

For any constant ζ > 1, thanks to Young inequality, the term (3.62) becomes

CC
γ+1
2

j

ζ
|| pk(ψmf) ||L2 ζ || ∇pk(ψjf) ||L2≤

CCγ+1
j

2ζ2
|| pk(ψmf) ||2L2 +

ζ2

2
|| ∇pk(ψjf) ||2L2 .

(3.63)

Finally, it remains to estimate the second right hand side of (3.22), (3.29) and the first

integral of (3.27). Thanks to inequalities (3.30), we obtain that these terms have the same

following upper bounds

CC
γ+1
2

j || pk(ψjf) ||L2 || ∇pk(ψjf) ||L2 . (3.64)

For any constant µ > 1, thanks Young inequality, (3.64) becomes

CC
γ+1
2

j

µ
|| pk(ψjf) ||L2 µ || ∇pk(ψjf) ||L2≤

CCγ+1
j

2µ2
|| pk(ψjf) ||2L2 +

µ2

2
|| ∇pk(ψjf) ||2L2 .

(3.65)

3.4 Obtaining a differential equation

From Bernstein’s inequality (2.12), we first note that one has

||pk(ψjf)||L2 ≤ C2
Nk
2 ||pk(ψjf)||L1 , (3.66)

where C is a non negative constant independent of k and j .

This holds true for all integers k ≥ 0, j ≥ 0.

Beginning with the terms (3.37), (3.40), (3.47), (3.49), (3.51), (3.53) and (3.55), we get the

bound

≤ C
C

γ
2
j

2(r−1)k
2

Nk
2 ||pk(ψjf)||L2 , (3.67)

where C depends on K, || ψ ||L∞ and || f ||L1 .

Then, choosing ε = η = ζ = µ =
C

γ
4
j

2 , gluing together the estimates of the terms (3.39),
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(3.42), (3.48), (3.50), (3.52), (3.54), (3.56), (3.58), (3.59), (3.60), (3.61), (3.63), (3.65) and

summing with respect to the exponent of Cj , we get the following differential inequality, for

all integer k, j
∂t||pk(ψjf)||2L2 + C

γ
2
j ||∇pk(ψjf)||2L2 ≤ C

C
γ
2
j

2(r−1)k
2

Nk
2 ||pk(ψjf)||L2

+CC
γ+2
2

j { ||pk(ψjf)||2L2 +
k+3∑

l=k−3

j+2∑
h=j−2,h 6=j or l 6=k

||pl(ψhf)||2L2},
(3.68)

Dividing (3.68) by 2k(N+1), using (2.12), we get a chain of inequalities of the form, for all

integers k ≥ 0, j ≥ 0

∂tUkj(t) + CkjUkj(t) ≤ Kr
kj(t) + CC

γ+2
2

j { Ukj(t) +
k+3∑

l=k−3

j+2∑
h=j−2,h 6=j or l 6=k

Ulh(t) }, (3.69)

where 
Ukj =

||pk(ψjf)||2L2

2k(N+1)
, Ckj = CC

γ
2
j 22k, Cj = (1 + 22j)

and Kr
kj(t) = C

C
γ
2
j

2rk
|| pk(ψjf)(t) ||L1 .

3.5 Conclusion and regularity

a) Smoothness with respect to the variable v.

For the estimation of (3.69), we use the iteration method to obtain the regularity in the

Schwartz space. Integrating this formula between times t0 and t, we get

Ukj(t) ≤ Ukj(t0)e−Ckjt

+
∫ t

t0

eCkj(s−t)[ Kr
kj(s) + C

γ+2
2

j {Ukj(s) +
k+3∑

l=k−3

j+2∑
h=j−2,h 6=j or l 6=k

Ulh(s)}]. (3.70)

Next, we fix any non negative variable β < 1, getting an inegality eCkj(s−t) < 1

Cβ
kj(s−t)β

. Then,

we multiply (3.70) by the constant Cβ
kj and we sum on the variables k, j. Thanks to the

inequality (3.66), giving the link with L1 space, and the hypothesis (1.7) of the conservation

of all moments of f , we have, for any integer r > 0 and for all t0 > 0

∞∑
k=0

∞∑
j=0

Cβ
kjUkj(t) < Ct0 ,

where Ct0 is a constant depending only on K, || f ||L1
γ

and || f ||2
L1

γ+2
2

.

Now, we whall show that the series
∑∞

k=0

∑∞
j=0C

qβ
kj Ukj(t) is finite, for all integer q, as soon
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as t ≥ t0 by iteration over the variable q. The previous estimations prove that is true for

q = 1.

Assuming that it is true up to q, using inequality (3.66) and the conservation of moments of

f , we find that, after q+1 iterations, for r ≥ 2qβ

∞∑
k=0

∞∑
j=0

C
(q+1)β
kj Ukj(t) < Ct0 ,

where Ct0 is a constant depending only on K, || f ||L1
γ+qβγ

and || f ||2
L1

γ+2+γqβ
2

.

Hence, we conclude that
∑∞

k=0

∑∞
j=0C

qβ
kj Ukj(t) is convergent.

In view of Lemma (2.1), f(t) lies in H2qβ−N−1
qγ as soon as t > 0 and for any integers q. In

other words, f ∈ Hh
s for all h > 0, s ≥ γ

2β (h+N + 1).

Finally, all in all, we see that (still when t > 0) f lies Hh
s for all h, s > 0, and therefore lies

in S.
b) Smoothness with respect to the time t.

It remains to show that the previous regularity of the solution f holds true for all derivatives

on the variable t i.e ∂p
t f(t) ∈ S for all integer p as soon as t > 0, by iterating over the variable

p, which is already clearly true for p = 0, in view of the previous step. Next, assuming that

it is true on p, then for p+ 1

∂p+1
t f =

p∑
k=0

Ck
p (∂k

t a)∇2(∂p−k
t f)−

p∑
k=0

Ck
p (∂k

t c)∂
p−k
t f. (3.71)

Thanks to the convolution structure, the derivatives of a and c can be done directly on f .

Since the derivatives of f of order less or equal to p are in Schwartz space, if we derive

(3.71) w.r.t. variable v for any order, and multiply the results by any polynomial, it is still

bounded.

Therefore, this implies that the l.h.s. of (3.71) lies in Schwartz space and concludes the proof

of Theorem 1.1, under assumption (1.4).

4 Proof Theorem 1.1, under assumption (1.5)

In this section, we consider the hard potentiel case χ(| v |) =| v |γ , which has a singularity

around zero.

The method of proof used above still applies for this case, up to some modifications that we

now explain.
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Firstly, looking at subsection 3.2, the lower bound therein holds true for hard potentiel

kernels, as proven in the work of Desvillettes and Villani [9] (Proposition 4).

Some modifications will then appear starting from subsection 3.3, where we need to estimate

from above different terms using the commutator iteration method (that is, Lemmas 3.1 and

3.2), and this is really here that smoothness of the kernel is needed.

In order to get ride of the singularity near 0, during this subsection, we shall split the kernel

into two parts. The first one will be smooth, thus avoiding the singularity and therefore we

can apply to it the manipulations of the iteration’s method. For the second one, we shall

show that it is possible to make it as small as one wishes, in a suitable sense.

In the sequel, as a convention, we shall use subscripts S for ”smooth” and R for ”remainder”.

This type of decomposition is used several times in [16], but is standard.

Having in mind subsection 3.3, we proceed as follows.

Firstly, we take Φ : R −→ R+ an even C∞ function such that supp Φ ⊂ (−1, 1), being 1 near

0. Then, we write, for any strictly non negative constant αk depending on k,

χ = χS,k + χR,k, χS,k =| v |γ Φαk
, χR,k =| v |γ Φαk

where Φαk
= 1− Φαk

such that Φαk
(| v |) = Φ( |v|αk

) for all v ∈ Rn.

After some computations, we note that different derivatives of the smooth part gives, for

any integer β, the bound

| ∇βχS,k(| v |) |≤ Cβ | v |γ−β Φαk
, (4.72)

for a non negative constant Cβ depending only on β.

We write, with clear notations

a = aS,k + aR,k, b = bS,k + bR,k, c = cS,k + cR,k. (4.73)

In view of the convolution structure, taking (4.72) into account, one has, for all v ∈ RN

| aS,k(v) |≤ C | v |γ+2 Φαk
, | bS,k(v) |≤ C | v |γ+1 Φαk

,

| ∇βaS,k(v) |≤ CCβ | v |γ+2−β Φαk
∀β ≥ 2,

for a constant C depending here only on || f ||L1
γ+2

.

Therefore, we obtain, using the precise support sets of ψj and ψ̃j , the following inequalities,

for all j ∈ N 
| aS,kψj |≤ C2j(γ+2), | aS,k∇ψj |≤ C2j(γ+1), | aS,k∇2ψj |≤ C2jγ ,

| bS,k
ψj |≤ C2j(γ+1), | bS,k∇ψj |≤ C2jγ

and | ∇β(aS,kψj) |≤ CCβ2jγ , ∀β ≥ 2,

(4.74)
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for a constant C depending on || f ||L1
γ+2

and the L∞ bound of ψ and its derivatives. Of

course, these inequalities also hold true if we change ψj by ψ̃j .

For the non smooth part, taking into account the support of Φαk
, we obtain the following

bounds

| aR,k(v) |≤ Cαγ+2
k , | bR,k(v) |≤ Cαγ+1

k , | cR,k(v) |≤ Cαγ
k , (4.75)

for a constant C depending on || f ||L1 .

Next, after decomposition of the kernel, as regards to the estimates of the integrals in sub-

section 3.3.2, we are reduced to treat two types of integrals, corresponding respectively to

the smooth and non smooth parts.

For the smooth ones, taking into account estimates (4.74), the same estimations clearly hold

true again.

Concerning the non smooth integrals, we shall use estimates (4.75), to obtain different upper

bounds. For instance, using Taylor’s expansion at order 1, we obtain∣∣∣∣∫
v
[ ∇2pk, a

R,kψ̃j ]fpkfdv

∣∣∣∣ ≤ || [ ∇2pk, a
R,kψ̃j ]f ||L1 ||pkf ||L∞ (Holder inequality)

≤ C2kαγ+1
k ||f ||L12

Nk
2 ||pkf ||L2 (Bernstein inequality)

≤ C2kαγ+1
k ||f ||L12

Nk
2 ||pkf ||L2 .

In the same way, we have also the two estimates∣∣∣∣∫
v
[ ∇pk, b

R,k
ψ̃j ]fpkfdv

∣∣∣∣ ≤ || [ ∇pk, b
R,k
ψ̃j ]f ||L1 ||pkf ||L∞ (Holder inequality)

≤ Cαγ
k ||f ||L12

Nk
2 ||pkf ||L2 (Bernstein inequality)

≤ Cαγ
k ||f ||L12

Nk
2 ||pkf ||L2 ,

and ∣∣∣∣∫
v
[ pk, b

R,k∇ψ̃j ]fpkfdv

∣∣∣∣ ≤ || [ pk, b
R,k∇ψ̃j ]f ||L1 ||pkf ||L∞ (Holder inequality)

≤ Cαγ
k ||f ||L12

Nk
2 ||pkf ||L2 (Bernstein inequality)

≤ Cαγ
k ||f ||L12

Nk
2 ||pkf ||L2 .

Concerning subsection 3.3.3, the above splitting is not needed, and thus the bounds therein

remain true, replacing C
1
2
j by 2j .
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All in all, we get the following slightly different inequality, for αk < 1,
∂t||pk(ψjf)||2L2 + 2jγ ||∇pk(ψjf)||2L2 ≤ C

2jγ

2(r−1)k
2

Nk
2 ||pk(ψjf)||L2 + C2kαγ

k2
Nk
2 ||pk(ψjf)||L2

+C2j(γ+2) { ||pk(ψjf)||2L2 +
k+3∑

l=k−3

j+2∑
h=j−2,h 6=j or l 6=k

||pl(ψhf)||2L2}.

(4.76)

Dividing (4.76) by 2k(N+1), using (2.12), we get a chain of inequalities of the form, for any

integers k, j

∂tUkj(t)+CkjUkj(t) ≤ Kr
kj(t)+Hkj(t)+C2j(γ+2){ Ukj(t)+

k+3∑
l=k−3

j+2∑
h=j−2,h 6=j or l 6=k

Ulh(t) },

where {
Ukj =

||pk(ψjf)||2L2

2k(N+1)
, Ckj = C2jγ22k, Kr

kj(t) = C
2jγ

2rk
|| pk(ψjf)(t) ||L1

and Hkj(t) = Cαγ
k || pk(ψjf)(t) ||L1 .

To conclude with the regularity, we proceed as in subsection 3.5. We obtain the same in-

equality but with one more term, depending on αk.

To get the convergence of the series, it is enough to take αk = 1
2kκ for a suitable κ > 0. In

particular, for our case, it suffices to choose κ large enough w.r.t. 2qβ+1
γ for any fixed integer

q (see subsection 3.5).

Appendix

Definition 4.1 Let k ∈ N. We denote pk and p̃k the Littlewood-Paley operators defined in

section 2. These operators can be written under the following convolution form, for f ∈ L1

• pkf = φk ∗ f with φk(.) = 2Nkψ̂(2k.) with φk ∈ S

• p̃kf = φ̃k ∗ f with φ̃k(.) = 2Nk ˆ̃
ψ(2k.) with φ̃k ∈ S,

where ψ and ψ̃ are the smooth functions given in section 2.

Proposition 4.1 Let k ∈ N, r ∈ N∗ and h=0,1,2. Let ϕ be any smooth bounded function

together with its derivatives. Define the linear commutator operator

T̃ r,h
k =

r︷ ︸︸ ︷
[p̃k, [p̃k, [p̃k, · · ·, [∇hpk, ϕ] ] ] ].

Then, there exists a constant number C > 0 such that, for all 1 ≤ p ≤ ∞,

||T̃ r,h
k ||Lp→Lp ≤ CCr

2(r+1−h)k
where Cr =|| ∇r+1ϕ ||L∞ .

21



Proof: Using Taylor’s expansion of ϕ on v until order r + 1, we get, for all v, v∗ ∈ RN

ϕ(v∗) = ϕ(v)+
(v∗ − v)

1!
∇ϕ(v)+

(v∗ − v)2

2!
∇2ϕ(v)+· · · · · ·+(v∗ − v)r+1

(r + 1)!
∇r+1ϕ(c) with c ∈ [v∗, v].

So, we can write, for u ∈ Lp(RN )

[∇hpk, ϕ](u) =
∫
v∗ ∇

hφk(.− v∗)[ϕ(v∗)− ϕ(.)]u(v∗)dv∗

=
∑r

m=1 Θm,h
k (u) + Γr+1,h

k (u),

where{Θm,h
k (u) =

1
m!
∇mϕ[ρm,h

k ∗ u]

Γr+1,h
k (u)(v) =

1
(r + 1)!

∫
v∗
ρr+1

k (v − v∗)∇r+1ϕ(c)u(v∗)dv∗ and ρm,h
k = (−1)mvm∇hφk(.).

We simplify the notations to write T̃ r,h
k under the form

T̃ r,h
k (u) =

∑r
m=1

r︷ ︸︸ ︷
[p̃k, [p̃k, [p̃k, · · ·, [Θm,h

k ] ] ] ](u)

+

r︷ ︸︸ ︷
[p̃k, [p̃k, [p̃k, · · ·, [Γr+1,h

k ] ] ] ](u).

Taking the notation ρ̃m
k = (−1)mvmφ̃k(.) for all integer m.

After some computations, thanks to Taylor’s expansion which we apply several times, we

obtain

T̃ r
k (u)(v) =

r∑
m=1

∑
i1+i2+···+ir−m+1=r−m+1

∫
x1

· · ·
∫

xm

· · ·
∫

xr

∫
v∗
dx1 · · · dxrdv

∗ 1
i1!i2! · · · ir−m+1!

φ̃k(v−x1) · · · φ̃k(xm−2−xm−1)ρ̃i1
k (xm−1−xm) · · · ρ̃ir−m+1

k (xr−1−xr)ρ
m,h
k (xr−v∗)∇r+1ϕ(c)u(v∗)

+
1

(r + 1)!

∫
x1

· · ·
∫

xr

∫
v∗
dx1 · · · dxrdv

∗φ̃k(v−x1) · · · φ̃k(xr−1−xr)ρ
r+1,h
k (xr−v∗)∇r+1ϕ(c′)u(v∗)

where c, c′ ∈ [v, x1 · · ·xr], (i1, i2, · · · , ir) ∈ Nr.

So,
|T̃ r,h

k (u)| ≤ Cr

r∑
m=1

∑
i1+i2+···+ir−m+1=r−m+1

m−1︷ ︸︸ ︷
| φ̃k | ∗ · · · ∗ | φ̃k | ∗|ρ̃i1

k | ∗ · · · ∗ |ρ̃
ir−m+1

k | ∗ |ρm,h
k | ∗ |u|

+Cr

r︷ ︸︸ ︷
| φ̃k | ∗ · · · ∗ | φ̃k | ∗|ρr+1,h

k | ∗ |u|,
(4.77)
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where Cr = C||∇r+1ϕ||L∞ .
Since ψ̂, ˆ̃

ψ ∈ S, we get, for all integer m{ ||ρm,h
k ||L1 ≤

cm,h

2k(m−h)
where cm,h = || |v|m∇hψ̂||L1

||φ̃k||L1 ≤ c̃0, ||ρ̃m
k ||L1 ≤

c̃m
2km

where c̃m = || |v|m ˆ̃
ψ||L1 .

(4.78)

Thanks to estimates (4.77) and (4.78), there exists a strictly non negative constant C, de-

pending on cm,h, c̃m(1 ≤ m ≤ r), such that, for all 1 ≤ p ≤ ∞

||T̃ r,h
k ||Lp→Lp ≤ CCr

2(r+1−h)k
.
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