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Abstract

The problem of reconstructing finite subsets of the integer lattice from X-rays has
been studied in discrete mathematics and applied in several fields like image pro-
cessing, data security, electron microscopy. In this paper we focus on the stability
of the reconstruction problem for some special lattice sets. First we prove that if
the sets are additive, then a stability result holds for very small errors. Then, we
study the stability of reconstructing convex sets from both an experimental and a
theoretical point of view. Numerical experiments are conducted by using linear pro-
gramming that support the conjecture that convex sets are additive with respect to
a set of suitable directions, and consequently the reconstruction problem is stable.
The theoretical investigation provides a stability result for lattice sets. It is used
to prove the following property: if a sequence of lattice convex sets have X-rays in
suitable directions which converge to X-rays of a convex body, then it converges to
this convex body.

Key words: Discrete Tomography, Stability, Linear Programming, Additivity,
Convexity

1 Introduction

A lattice set is a non-empty finite subset of the integer lattice Z
2. A lattice

direction is a direction directed by a vector in Z
2\{0}, and it can also be given

by an equation p(x, y) = ax + by with a, b ∈ Z. Further, the X-ray of a lattice
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set E in a lattice direction p is the function XpE giving the number of points
in E on each line parallel to this direction, formally XpE(k) = card({M ∈ E :
p(M) = k}). Discrete Tomography is the area of mathematics and computer
science that deals with the inverse problem of reconstructing lattice sets from a
finite set of X-rays. An overview on this subject highlighting the applications,
the mathematical foundations, and the algorithms in Discrete Tomography is
provided by the book [16].

In this paper we focus on the stability of the reconstruction problem.

Informally, a problem is stable if a small perturbation of the data does not
change the corresponding solutions too much. Therefore, the stability problem
is of main importance in practical applications where the X-rays are possibly
affected by errors. For instance, in electron microscopy, techniques that enable
to count the number of atoms lying in a line up to an error of ±1 are known
[14]. So, in case of instability, the reconstructed set can be quite different from
the original one even if the error on the data is small. In [1] the authors prove
that when m > 2, the two sets can be even disjoint, permitting an error of
2(m− 1) on the X-rays. First, we show in Remark 6 that to obtain a stability
result even with a very small error on the data the requirement of uniqueness
for the sets is not enough. To this goal, we shall consider the reconstruction
of lattice sets with some additional constraints.

In Section 3 we treat the stability of reconstructing additive sets. This class of
sets was first introduced by Fishburn et al. in [10]. Here we just recall to the
reader that additivity implies uniqueness, whereas the converse is not true.
Additionally, the notion of additivity should be regarded as a property of the
solutions of the linear program associated to the reconstruction problem. We
prove that if the sets are additive, then a stability result holds (Proposition
7).

In Section 4 we study the stability of reconstructing convex sets from both
an experimental and a theoretical point of view. In the former, we use linear
programming to deal with this problem. Experimental results suggest the con-
jecture that for the set of directions {x, y, 2x + y,−x + 2y}, convex sets are
additive. This would imply that the results of Section 2 may hold to convex
sets so giving a stability result that corresponds to the continuous case where
the reconstruction problem for convex bodies is well-posed ([22]). In the lat-
ter, the theoretical result (Proposition 18) confirms stability for convex sets
by exploiting the result in [22]. The last proposition of this paper allows to
use Discrete Tomography to solve Hammer’s X-ray problem which is recon-
structing a continuous convex body from continuous X-rays. More precisely
we prove that a convex body is arbitrarily near lattice convex sets on the con-
dition that the X-rays of the lattice convex sets are near enough the ones of
the convex body. In practice it means that we can reconstruct a convex body
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from discrete X-rays to any precision if the resolution and the error about the
X-ray can be as small as wanted. This result is very linked to other tries to ap-
proximate the convex body from a sequence of discrete objects reconstructed
from the X-rays (see [19]).

2 The Problem

The reconstruction problem is the task of determining any lattice set having
the given X-rays. Stability concerns how sensitive is the problem to noisy data.
Hence one can ask whether a perturbation of the data correspond solutions
that are close. To study the problem we define a measure for the error on
the X-rays and one for the distance of two solutions. Let D be a set of m
prescribed lattice directions with m ≥ 2 and let E, F be lattice sets:

DXD(E, F ) = max
p∈D

∑

k∈Z

|XpE(k) − XpF (k)|

and
card(E△F ) = card((E \ F ) ∪ (F \ E)).

The formulation of the problem that we consider is the following:

Problem 1 Let E be known. Determine F maximizing card(E△F ), with the
constraint that DXD(E, F ) is given.

Let us introduce some definitions that we need in the following.

Definition 2 A lattice set E is additive with respect to D, or D-additive, if
there is a function e which gives a value ep(k) for each line p = k parallel to
a direction p of D such that for all M in Z

2:

M ∈ E if and only if
∑

p∈D

ep(p(M)) > 0.

This definition introduced by Fishburn et al. can be better understood with
linear programming: a lattice set E is additive if it is the unique solution of
the linear programming problem which looks for a fuzzy set which has the
same X-rays than E.

Definition 3 A lattice set E is unique with respect to D, or D-unique, if
F ⊂ Z

2 and XpE = XpF for any p ∈ D imply E = F .

There is an intimate relationship between these two definitions: every D-
additive set is D-unique and the converse is true if m = 2 (see[10]).
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As a last remark we recall that if p and q are two directions, then a p-line does
not always intersect a q-line. Indeed Z

2 can be split in det(p, q) pq-lattice such
that in each pq-lattice a p-line intersects with any q-line. Precisely a pq-lattice
has the form:

Lpq
i = {M : p(M) = i (mod det(p, q)) and q(M) = κi (mod det(p, q))}

where κ only depends on the directions p and q (see for example [7]). Moreover
we denote by 〈i, j〉pq the point M such that p(M) = i and q(M) = j. Notice
that this point is in Z

2 only if p = i and q = j are in the same pq-lattice.

3 Stability for Additive Sets

In this section we study the stability of reconstructing D-additive sets. We
begin to study Problem 1 with E and F verifying the constraint DXD(E, F ) ≤
1.

In the first two lemmas additivity is not required.

The condition DXD(E, F ) ≤ 1 permits the X-rays of the two sets to differ by
one in at most a line for each direction. Then, p ∈ D and an integer kp exists
such that |XpE(kp) − XpF (kp)| = 1 and XpE(k) = XpF (k) for k 6= kp.

Lemma 4 If p ∈ D and an integer kp exist such that |XpE(kp)−XpF (kp)| =
1, then for every q ∈ D there is an integer kq such that |XqF (kq)−XqE(kq)| =
1 and 〈kp, kq〉pq ∈ Z

2.

PROOF. Let Lpq
i be the pq-lattice containing the line p = kp, or equivalently

kp ∈ p(Lpq
i ). Suppose that XpF (kp) − XpE(kp) = +1. Thus, we have that

∑

k∈p(Lpq
i

)

XpF (k) = 1 +
∑

k∈p(Lpq
i

)

XpE(k).

Using the consistency of the X-rays for F and E, the previous identity leads
to the following

∑

k∈q(Lpq

i
)

XqF (k) = 1 +
∑

k∈q(Lpq

i
)

XqE(k),

for all q in D. From this, the thesis easily follows. 2

In the next lemma we show that all the lines with error 1 have a common point
and this point is in Z

2. In the following, we assume that card(F ) > card(E)
and for any p ∈ D the integer kp is as in the previous lemma.
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Lemma 5 If DXD(E, F ) = 1, then a point W ∈ Z
2 exists such that

XpF (k) = XpE(k) + 1, if k = p(W )

XpF (k) = XpE(k), otherwise

for all the directions p in D.

PROOF. Let p, q and r be directions in D and suppose that A = 〈kp, kq〉pq,
B = 〈kp, kr〉pr, C = 〈kq, kr〉qr are three distinct points. Let a, b be such that
r = ap + bq. Thus, summing up we can write:

∑

M∈F

r(M) = a
∑

M∈F

p(M) + b
∑

M∈F

q(M)

and by grouping line by line we obtain:

∑

k

kXrF (k) = a
∑

k

kXpF (k) + b
∑

k

kXqF (k).

We can exhibit the corresponding identity for the set E. As a result of the
difference of these two identities we obtain that kr = akp + bkq and so r(A) =
r(B) = r(C). Thus, the three points A, B and C coincide and the claim is
proved. 2

Remark 6 Given any three lattice directions we can construct two sets E, F
in such a way that they are (non-additive) sets of uniqueness. (We do not give
the proof for reasons of space limit and we refer the reader to [10]). Figure 1
illustrates two such sets verifying the constraint DXD(E, F ) = 1. Since they
are disjoint, Proposition 7 does not hold for D-unique sets.

Since uniqueness is not sufficient to have stable solutions for the reconstruction
problem, we suppose that E and F are D-additive, that is E = {M : e(M) >
0} and F = {M : f(M) > 0}.

Proposition 7 Let E and F be D-additive lattice sets. If DXD(E, F ) = 1,
then card(E△F ) = 1.

PROOF. Let W be as in Lemma 5. At first suppose that W 6∈ E and let
E ′ = E ∪ {W}. For each direction p in D we have that XpE

′ = XpF . Finally,
since additivity of F implies uniqueness of F , we conclude that F = E∪{W}.
On the contrary, if W ∈ E we study the following:

ΦE =
∑

M∈Z2

∑

p∈D

ep(p(M))(1E(M) − 1F (M)).
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D

y = 0

y = 49

x = 70
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x = 0

E

F

Fig. 1. E and F are non-additive sets of uniqueness such that DXD(E,F ) = 1 and
E ∩ F = ∅.

Rewriting it as

∑

M∈E

∑

p∈D

ep(p(M))(1E(M) − 1F (M)) +
∑

M 6∈E

∑

p∈D

ep(p(M))(1E(M) − 1F (M)),

we notice that ΦE > 0, because the additivity of E implies that if M is
in E, then e(M) > 0 and 1E(M) = 1 holds, and otherwise e(M) ≤ 0 and
1E(M) = 0. We can also explicit the terms XpE and XpF in ΦE so obtaining
that

ΦE =
∑

k 6∈p(W )

∑

p∈D

ep(k)(XpE(k)−XpF (k))+
∑

p∈D

ep(p(W ))(XpE(p(W ))−XpF (p(W )))

that is strictly less than zero. 2

Remark 8 Let us notice that in the proof, additivity for F and just uniqueness
for E are needed.

If we consider the case where the error is larger than 1, we have instability even
when the error is just equal to 2, if the number of lattice directions is larger
than 2. More in detail, the instability follows from the result of [1, Theorem
1] because the sets constructed in the proof of [1] are actually D-additive.
Therefore we can restate it as follows:

Proposition 9 (see [1]) For any n and a set D of m ≥ 3 directions there
exist E and F D-additive such that card(E) = card(F ) ≥ n, DXD(E, F ) = 2
and E ∩ F = ∅.
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4 Stability for Convex Sets

In this section we study Problem 1 for convex sets from both an experimental
and a theoretical point of view.

Any convex set is the intersection of a convex polygon and the digital plane
Z

2. The definition of convex set pass through that of convex polygon, and
this can be used to determine results for the discrete case from the continuous
case. In this way, convex sets are uniquely determined by their X-rays taken
in a suitable set of directions [11], and this set of directions distinguishes
convex bodies [13]. So in the “continuous” plane an analogous result holds,
and additionally the reconstruction problem is stable [22]. Moreover we notice
that there is a connection between additive sets and convex sets, since an
euclidean ball is additive with respect to two orthogonal directions ([9]).

Experiments support the conjecture that convex sets are additive for a suitable
set of directions, and indeed they accord with Proposition 7. The experimental
results are better for a larger error thanks to the property of convexity.

In the second part, we conduct a theoretical study that confirms stability for
convex sets.

4.1 Experimental results

In this section we experimentally study the stability of the reconstruction of
convex sets via linear programming. Our experiments support the suspect that
the results in the continuous have a correspondence in the “digital” plane.

Actually we consider in this section a class of lattice sets which is more general
than the convex sets [5].

For each point M = (xM , yM) ∈ Z
2 the four quadrants around M are defined

by the following formulas:

R0(M) = {(x, y) ∈ Z
2 / x ≤ xM and y ≤ yM},

R1(M) = {(x, y) ∈ Z
2 / x ≥ xM and y ≤ yM},

R2(M) = {(x, y) ∈ Z
2 / x ≥ xM and y ≥ yM},

R3(M) = {(x, y) ∈ Z
2 / x ≤ xM and y ≥ yM}.

Definition 10 A lattice set E is Q-convex if and only if for each M 6∈ E
there exists i ∈ {0, 1, 2, 3} such that Ri(M) ∩ E = ∅.
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An example of Q-convex set is given on the left part of Figure 2.

We have generated 184 Q-convex sets of semi-perimeter from 4 to 370 using
an uniform generator ([4], inspired from [17]). Then their X-rays in the set
of directions D = {x, y, 2x + y,−x + 2y} have been computed. (These direc-
tions have been chosen because the X-rays along them uniquely determine
the convex sets ([11]) and they contain the horizontal and vertical directions).
We then used these X-rays and any error e ∈ {0, 1, 2, 3} as input data in the
following linear-program:

Maximizing
∑

(i,j)∈E

(1 − vi,j) +
∑

(i,j)/∈E

vi,j (1)

such that

∑

p(i,j)=k

vi,j = XpE(k) + er+
p,k − er−p,k (2)

∑

k

er+
p,k + er−p,k ≤ e (3)

0 ≤ vi,j ≤ 1, er+
p,k ≥ 0, er−p,k ≥ 0 (4)

We solved the linear program with the software soplex which implements the
simplex algorithm ([23]). Notice that solving this problem with vi,j ∈ Z per-
mits to exactly find the maximum of card(E△F ) where F describes all the
lattice sets such that DXD(E, F ) ≤ e. Unfortunately, integer-linear-program
is an NP-hard problem, and hence we solved the relaxed problem where the un-
known variables can be fractional: this computation provides an upper bound
to card(E△F ). Figure 2 illustrates (on the right side-hand) a solution of the
linear programming for card(E) = 200 and e = 3. The different grey-scale
colors of the squares correspond to different values of vi,j .

The complete results are summarized in Figures 3 and 4. In Figure 3 the up-
per bound to card(E△F ) is divided by card(E), so that each value gives an
upper bound to the relative distance from a given set. Moreover the black
squares show the values of the maximum of the quantity (1) when the con-
straints (2),(3) are replaced by XpE(k) − 1 ≤ ∑

p(i,j)=k vi,j ≤ XpE(k) +
1: these values give an upper bound to card(E△F ) when DX ′

D(E, F ) =
maxp∈D maxk∈Z |XpE(k) − XpF (k)| = 1.

These experimental results bring the following comments:

• If DXD(E, F ) = 0, then we always found a null relative distance. In other
words, according to our experiments every Q-convex set is D-additive. In
fact this property was first conjectured by L. Thorens ([21]) (with additivity
replaced by uniqueness), and can be seen as a variant of Conjecture 4.6 of
[2] and Theorem 5.7 of [11]. We can set out the conjecture as follows:
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E vi,j

Fig. 2. A Q-convex set E and the corresponding extremal values of vi,j for e = 3.
In this case we have card(E) = 200 and

∑

(i,j)∈E(1 − vi,j) +
∑

(i,j)∈Ec vi,j = 33.7.
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/|E
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Fig. 3. An upper bound to card(E△F )
card(E) for the Q-convex generated sets. (Only 40 %

of the 184 generated sets have been represented for readability)

Conjecture 11 If D is a set of directions which contains {x, y}, such that
all the directions are not in the same quadrant and they uniquely determine
the convex sets, then every Q-convex set is D-additive.
Notice that the property about the quadrants is necessary because there is
a counter-example with D = {x, y, x + y, x + 5y}.

• For a fixed error e, the relative distance looks to converge to zero as card(E)
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grows. If we divide by
√

card(E) instead of card(E), this ratio seems to

be bounded so that in average card(E△F ) = O(
√

card(E)) according to

our experiments (see Figure 4). It must be noticed that in the case e =
1, the maximum error for lattice sets is always 1 for the generated cases
according to the result of Proposition 7. Since the theoretical result holds
for additive sets, the experiments could be interpreted as a further evidence
of the conjecture.

• If DX ′
D(E, F ) = 1, then the relative distance does not seem to converge to

zero, but the computed values are only upper bounds, that is, we do not
know if the fractional values mirror instability or they are just an artifact
introduced by relaxing the integral constraints of the problem. In the former
case, the reconstruction of convex sets would not be applied easily in the
continuous world (as in medical imaging), because a rounding error of the
measurements can always be of ±1.
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|E
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|E|

DX(E,F)=0
DX(E,F)=1
DX(E,F)=2
DX(E,F)=3

Fig. 4. An upper bound to card(E△F )√
card(E)

for the 184 generated Q-convex sets

4.2 Theoretical results

In this section we first exploit a stability result for convex bodies [22] to deal
with the corresponding problem for convex lattice sets and then we use this
result to choose that it is possible to reconstruct convex bodies from X-rays,
by the intermediate of lattice convex sets and Discrete Tomography.
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4.2.1 Preliminaries

A convex body is a compact convex subset of R
2 with non-empty interior. We

denote the set of all the convex bodies by K∗. The X-ray XpU of the convex
body U in direction p is the function giving the length of each chord of U
parallel to p. More precisely XpU(α) is the length of the intersection of U
with the line p = α. The Steiner symmetral Sp(U) of U in direction p is the
closure of the union of all open segments on lines parallel to p of the same
length as XpU centered about a fixed line orthogonal to p. So the Steiner
symmetral Sp(U) and the X-ray XpU contains exactly the same information.

Definition 12 A set of direction D is a Gardner-McMullen set of directions
if any convex body is characterized by all its X-rays in the directions of D.

We recall a result of [12, Proposition 6.1,Theorem 4.5]:

Theorem 13 (Gardner-Gritzmann) A set D = {p1, p2, p3, p4} of four lat-
tice directions is a Gardner-McMullen set of directions if and only if the cross-
ratio of the directions arranged in order of increasing angle with the positive
x-axis is not in {4

3
, 3

2
, 2, 3, 4}.

Example 14 This theorem implies that the set D = {x, y, 2x + y,−x + 2y}
is a Gardner-Gritzmann set of directions.

In the following we suppose that D = {p1, p2, p3, p4} is a Gardner-McMullen
set of four directions. So the mapping µ : K∗ 7→ (Sp1U, Sp2U, Sp3U, Sp4U) is
injective.

Let K∗ be endowed with Nikodym’s distance:

dN(U, V ) = m(U△V ),

where m(U) denotes the Lebesgue measure on R
2. Now are we in place to

state the stability result for convex bodies (see Theorem of [22, section 3.1]):

if K∗ is endowed with the topology induced by the Nikodym’s distance, µ is
continuous and continuously invertible from µ(K∗).

We shall reformulate this theorem. Consider the map σD : U 7→ (XpU)p∈D; if
D is a Gardner-McMullen set of direction, then σD(U) is injective. Let XD be
the range of σD. We endow XD with the following distance:

dX((fp)p∈D, (gp)p∈D) = max
p∈D

∫ +∞

−∞

|fp(α) − gp(α)|
√

a2
p + b2

p

dα,

where (fp)p∈D, (gp)p∈D are in XD, ap and bp are defined by p(x, y) = apx+ bpy.
(Notice that each integral in the definition of this distance corresponds exactly
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to the Nikodym distance if X-rays are considered as Steiner symmetral.) We
also use the notation dXD

(U, V ) = dX(σD(U), σD(V )).

The Theorem of [22, section 3.1] can be rewritten as follows:

Theorem 15 (Volčič) Let D be a Gardner-McMullen set of four lattice di-
rections the inverse σ−1

D of the function σD is a continuous function from XD

to K∗.

For any bounded set E ⊂ R
2 we define Rmax(E) = maxM∈E ‖M‖ where ‖ · ‖ is

the euclidean norm. The set K1
ε = {U ∈ K∗ : Rmax(U) ≤ 1 and m(U) ≥ ε}

is a compact subset of K∗; it follows that σD(K1
ε) is a compact subset of XD

and so the function σ−1
D restricted to σD(K1

ε) is uniformly continuous. So we
can give a more precise formulation of the previous theorem:

Corollary 16 Let D be a Gardner-McMullen set of four lattice directions.
For any ε > 0 there exists η > 0 such that any U, V ∈ K1

ε satisfy:

dXD
(U, V ) < η =⇒ dN(U, V ) < ε.

4.2.2 A stability result for lattice convex sets

In this section D is a Gardner-McMullen set of four lattice directions. Since a
Gardner-McMullen set of lattice direction uniquely determines convex lattice
sets [11], we use the result enunciated in Corollary 16 to get a stability result
for convex lattice sets.

At first we need a lemma which is a direct consequence of Pick’s theorem.
We recall that a lattice polygon is a polygon whose vertexes are in Z

2, and a
simple polygon is a polygon whose edges have a non-empty intersection only
if they are consecutive.

Lemma 17 If P ⊂ R
2 is simple lattice polygon, then card(P ∩Z

2) ≤ 2m(P )+
2.

PROOF. By Pick’s theorem [20,15] we have m(P ) = i + b
2
− 1 where i is the

number of lattice points which are in the interior of P and b is the number of
lattice points which are in the border of P .

So card(P ∩ Z
2) = i + b ≤ 2i + b = 2(m(P ) + 1). 2

In the sequel each direction p of D has the form p(x, y) = apx+ bpy with ap, bp

integer.
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Proposition 18 For any ε > 0 and K > 1, there exists η > 0, M > 0 such
that any lattice convex non-segment sets E and F such that card(E)

(Rmax(E))2
, card(F )

(Rmax(F ))2
≥

ε, Rmax(E), Rmax(F ) ≥ M , 1
K

≤ Rmax(E)
Rmax(F )

≤ K satisfy:

DX(E, F )

(max(Rmax(E), Rmax(F )))2
< η =⇒

card(E△F )

(max(Rmax(E), Rmax(F )))2
< ε +

17

max(Rmax(E), Rmax(F ))

PROOF. We define εc = min( ε
4K2 ,

ε
2
). Let ηc given by Corollary 16 applied

to εc. We take M such that 6
M

≤ ηc

2
, 1

(KM)2
≤ εc and M ≥ 8. So we suppose

that E and F are sets which satisfy the conditions of the propositions.

Let us consider sets Ec = 1
N

conv(E), Fc = 1
N

conv(F ) and the number N =
max(Rmax(E), Rmax(F )).

The sets Ec and Fc are convex polygons of R
2, and since they are not segments,

Ec and Fc are convex bodies. Additionally, they are simple lattice polygons
being their vertices in (Z/N)2. By Lemma 17 applied to P = NEc we have

m(Ec) ≥ 1
N2 (

card(E)
2

− 1). So:

m(Ec) ≥
1

N2
(
card(E)

2
− 1)

≥ card(E)

2(KRmax(E))2
− 1

(KRmax(E))2

≥ ε

2K2
− 1

(KM)2

≥ 2εc − εc = εc

Similarly m(Fc) ≥ εc. So Ec, Fc ∈ K1
ε.

Now we suppose that DX(E,F )
N2 < η with η = ηc

4
and we estimate dXD

(Ec, Fc).
We have that:

XpE(n) − 1

N
≤ XpEc(

n

N
) ≤ XpE(n) + 1

N

XpF (n) − 1

N
≤ XpFc(

n

N
) ≤ XpF (n) + 1

N
so that

|XpEc(
n

N
) − XpFc(

n

N
)| ≤ |XpE(n) − XpF (n)| + 2

N
.

13



Since

|XpEc(α)−XpFc(α)| ≤ max(|XpEc(
⌊αN⌋

N
)−XpFc(

⌊αN⌋
N

)|, |XpE(
⌈αN⌉

N
)−XpF (

⌈αN⌉
N

)|)

we get

∫ +∞

−∞
|XpEc(α) − XpFc(α)|dα ≤ 2

N

⌊N
√

a2
p+b2p⌋

∑

n=⌈−N
√

a2
p+b2p⌉

|XpE(n) − XpF (n)| + 2

N

=
2

N2

+∞
∑

n=−∞

|XpE(n) − XpF (n)| +
2(2N

√

a2
p + b2

p + 1)

N2
.

Finally, ap and bp are integer and, so
√

a2
p + b2

p ≥ 1, and we conclude that

dXD
(Ec, Fc) ≤

2

N2
DX(E, F ) +

6

N

≤ 2η +
6

M

≤ ηc

2
+

ηc

2
= ηc.

By Corollary 16 we have that dN(Ec, Fc) ≤ εc ≤ ε
2
.

The symmetric difference Ec△Fc is the union of components of Ec \Fc and of
Fc\Ec. Let Cj denotes the closure of the jth component and Ec△Fc = ∪k

j=1Cj .
Each component Cj is a simple polygon (S0A0A1A2 . . . AlS1B0B1B2Bm) where
A0, . . .Al are consecutive vertexes of Ec, B0, . . . Bm are consecutive vertexes
of Fc, and S0, S1 are intersection of an edge of Ec and an edge of Fc.

We consider the polygon C ′
i union of the three following polygons:

• conv((S0A0B0) ∩ (Z/N)2)
• the polygon (A0A1 . . . AlB0B1 . . . Bl)
• conv((S1AlBm) ∩ (Z/N)2)

This polygon is included in Ci and is a simple polygon whose vertexes are all
in (Z/N)2, so by Lemma 17 we have card(Ci∩(Z/N)2) = card(C ′

i∩(Z/N)2) ≤
2m(C ′

i) + 2 ≤ 2m(Ci) + 2.

So finally

card(E△F ) =
k

∑

j=1

card(Ci ∩ (Z/N)2) ≤
k

∑

j=1

(2m(Cj) + 2) = 2dN(Ec, Fc) + 2k.

The vertexes of Ec and Fc are in Z/N2 ∩ [−1, 1]2 so the polygons Ec and Fc

have less than 2(2N + 1) vertexes. Each component Ci contains at least one

14



vertex of Ec or one vertex of Fc so k ≤ 4(2N + 1). Moreover dN(Ec, Fc) ≤ ε
2

so card(E△F ) ≤ εN2 + 8(2N + 1) = εN2 + 16N + 8. We have supposed that
N ≥ M ≥ 8 so finally card(E△F ) ≤ εN2 + 17N . 2

This upper bound overestimates the symmetric difference because we actually
count also points of the border of Ec ∩ Fc and the number of components is
less than the number of vertexes of Ec and Fc, that in turn is less than 4N .

4.2.3 Reconstruction of a convex body from noisy discrete X-rays

In this section we always suppose that D is a Gardner-McMullen set of direc-
tions. If F is a convex body then we know that it is completely determined by
its continuous X-rays in D. Anyway it does not give an algorithm to recon-
struct F from its X-rays. The aim of this section is to use previous Proposition
to show that it is possible, in theory, to reconstruct F by using Discrete To-
mography. For this we fix an integer n, and we suppose that we have a lattice
convex set En which could be seen as an approximation of F to the resolution
1
n
. But as we do not know F , the only assertions about En is the nearness of

the discrete X-rays of En and the continuous X-rays of F . Proposition 20 will
show that assertions which only consider the X-rays of En exist such that the
set En converges, in a certain sense, to F when n tends to infinity.

If p = ax + by is a direction, ‖p‖ designs
√

a2 + b2. We start with an easy
lemma which will be useful in the following:

Lemma 19 If E is any bounded subset of R
2 and p, p′ are two directions then

max(
|α1|
‖p‖ ,

|α2|
‖p‖ ,

|α′
1|

‖p′‖ ,
|α′

2|
‖p′‖) ≤ Rmax(E)

≤ max(‖〈α1, α
′
1〉pp′‖, ‖〈α1, α

′
2〉pp′‖, ‖〈α2, α

′
1〉pp′‖, ‖〈α2, α

′
2〉pp′‖)

where α1 = infz∈E p(z), α2 = supz∈E p(z), α′
1 = infz∈E p′(z), α′

2 = supz∈E p′(z).

Proposition 20 Let F be a convex body, and (En)n∈N a sequence of non-
segment convex lattice sets such that for any p ∈ D there hold:

1

n
max{k ∈ Z : XpEn(k) 6= 0} −→

n→∞
sup{α ∈ R : XpF (α) 6= 0} (5)

1

n
min{k ∈ Z : XpEn(k) 6= 0} −→

n→∞
inf{α ∈ R : XpF (α) 6= 0} (6)

1

n
max
p∈D

∑

k∈Z

|XpEn(k)

n
− XpF (

k

n
)| −→

n→∞
0 (7)
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then
1

n2
card(En∆(nF ∩ Z

2)) −→
n→∞

0.

PROOF. Let (Fn)n∈N be the sequence of convex lattice sets, defined by Fn =
nF∩Z

2. To prove this proposition we are going to show that an integer N exists
such that for n > N the sets En and Fn verify the conditions of Proposition
18. The thesis follows by applying the proposition.

At first we derive some conditions we need to our goal.

Since card(Fn)
n2 −→

n→∞
m(F ) and Rmax(Fn)

n
−→
n→∞

Rmax(F ), it follows that

card(Fn)

(Rmax(Fn))2
−→
n→∞

m(F )

(Rmax(F ))2
> 0. (8)

We have
XpFn(k) − 1

n
≤ XpF (

k

n
) ≤ XpFn(k) + 1

n
,

and, hence by condition (7)

1

n2
DX(En, Fn) −→

n→∞
0. (9)

As a consequence of this and | card(En)−card(Fn) | ≤ DX(En, Fn), we obtain

that card(En)−card(Fn)
n2 −→

n→∞
0.

We choose arbitrarily two directions p, p′ of D. Let α1 = minz∈F p(z), α2 =
maxz∈F p(z), α′

1 = minz∈F p′(z), α′
2 = maxz∈F p′(z). By Lemma 19 applied

to En, the conditions (5),(6) and the continuity of the function (α, α′) →
〈α, α′〉pp′, there exists an integer N1 such that for n > N1 we have: M1 ≤
Rmax(En)

n
≤ M2 with M1 = 1

2
max( |α1|

‖p‖
, |α2|
‖p‖

,
|α′

1|

‖p′‖
,
|α′

2|

‖p′‖
) and

M2 = 2 max(‖〈α1, α
′
1〉pp′‖, ‖〈α1, α

′
2〉pp′‖, ‖〈α2, α

′
1〉pp′‖, ‖〈α2, α

′
2〉pp′‖).Thus, by

this and the previous deduction, we get

card(En)

(Rmax(En))2
≥ card(En)

(nM2)2
−→
n→∞

m(F )

(M2)2
> 0. (10)

Moreover, an integer N2 > N1 exists such that for n > N2 there holds:
M1

2Rmax(F )
≤ Rmax(En)

Rmax(Fn)
≤ 2M2

Rmax(F )
.

Now we are going to use these properties to show that we can apply Proposi-
tion 18 to En and Fn. To prove the thesis, we have to find, for any ε > 0, an N
such that 1

n2 card(En∆(nF∩Z
2)) ≤ ε for n > N . Let K = max( 2M2

Rmax(F )
, 2Rmax(F )

M1
)
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and ε′ = ε
2(2KRmax(F ))2

. Without loss of generality let us suppose that 0 < ε′ <
m(F )

2(Rmax(F ))2
, m(F )

2(M2)2
,

• We have that 1
K

≤ Rmax(En)
Rmax(Fn)

≤ K for n > N2.

• By the conditions (8) and (10) there exists an integer N3 such that card(En)
(Rmax(En))2

, card(Fn)
(Rmax(Fn))2

≥
min( m(F )

2(Rmax(F ))2
, m(F )

2(M2)2
) ≥ ε′. Hence card(En)

(Rmax(En))2
, card(Fn)

(Rmax(Fn))2
≥ ε′.

• For any fixed M > 0 there exists an integer N3 such that for any n > N3

we have Rmax(En) ≥ M and Rmax(Fn) ≥ M .
• For any fixed η > 0, by property (9), an integer N4 exists such that

1
n2 DX(En, Fn) < η(Rmax(F )

2K
)2 for any n > N4.

• There exists an integer N5 such that Rmax(Fn)
n

≥ Rmax(F )
2

for n > N5.

So, for any n > N = max(N2, N3, N4, N5), the sets En and Fn satisfy the
conditions of Proposition 18 (with ε′ instead of ε and η and M chosen as in
the proposition). Therefore we have:

DX(En, Fn)

(max(Rmax(En), Rmax(Fn)))2
< η =⇒

card(En△Fn)

(max(Rmax(En), Rmax(Fn)))2
< ε′ +

17

max(Rmax(En), Rmax(Fn))
.

We have max(Rmax(En), Rmax(Fn))) ≥ Rmax(Fn)
K

≥ nRmax(F )
2K

and max(Rmax(En), Rmax(Fn)) ≤
KRmax(Fn) ≤ 2KnRmax(F ).

So DX(En,Fn)
(max(Rmax(En),Rmax(Fn)))2

≤ n2η(
Rmax(F )

2K
)2

(
nRmax(F )

2K
)2

= η, then

card(En∆Fn) ≤ ε′(Rmax(En), Rmax(Fn)))2 + 17 max(Rmax(En), Rmax(Fn))

≤ ε′(2KnRmax(F ))2 + 17(2KnRmax(F ))

≤ n2 ε

2
+ 34KRmax(F )n

≤ n2 ε

2
+ n2 ε

2
for n > N6 =

68KRmax(F )

ε
= εn2

2

Remark 21 This last proposition gives a positive result for the reconstruction
of a convex body from X-rays. Nevertheless it does not really give a concrete
algorithm to reconstruct this convex body for at least two reasons:

• the result is not quantitative: the difference card(En∆conv(nF ∩Z
2)) is not

bounded by a precise function on the X-rays errors.
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• when the resolution is fixed, we have to reconstruct a lattice convex set from
approximative X-rays. Algorithms are known in the exact case ([5]) or for
more general classes than lattice convex sets ([3,6]) but not exactly in this
case.
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