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Abstract. The problem of reconstructing finite subsets of the integer
lattice from X-rays has been studied in discrete mathematics and applied
in several fields like image processing, data security, electron microscopy.
In this paper we focus on the stability of the reconstruction problem
for some lattice sets. First we show some theoretical bounds for additive
sets, and a numerical experiment is made by using linear programming
to deal with stability for convex sets.
keywords: Discrete Tomography, Linear Programming, Additivity.

1 Introduction

A lattice set is a non-empty finite subset of the integer lattice Z
2. A lattice

direction is a direction directed by a vector in Z
2 \ {0}, and it can also be given

by an equation p(x, y) = ax+by with a, b ∈ Z. Further, the X-ray of a lattice set
E in a lattice direction p is the function XpE giving the number of points in E on
each line parallel to this direction, formally XpE(k) = |{M ∈ E : p(M) = k}|.
Discrete Tomography is the area of mathematics and computer science that deals
with the inverse problem of reconstructing lattice sets from a finite set of X-rays.
The reconstruction problem can be formulated as a linear program in terms of
fuzzy sets instead of lattice sets and efficient algorithms based on the interior
point can be provided for finding any solution or proving that no such solution
exists [10,12]. This approach is also motivated by the computational complexity
result stating that the reconstruction problem is NP-hard when the X-rays are
taken in more than two directions (m > 2) so that (if P 6= NP) any algorithm
will take an exponential time.

In this paper we use linear programming to deal with the stability of the
reconstruction problem. Stability is of main importance in practical applications
where the X-rays are possibly affected by errors. For instance, in electron mi-
croscopy, techniques [7] that enable to count the number of atoms lying in a line
up to an error of ±1 are known. But in case of instability, the reconstructed
set can be quite different from the original one even if the error on the data
is small. In [1] the authors prove that when m > 2, the two sets can be even



disjoint, permitting an error of 2(m − 1) on the X-rays. In Section 3 we show
that to obtain a stability result even with a very small error on the data the
requirement of uniqueness for the sets is not enough (see Remark 1). If the sets
are additive, then a stability result holds. Here we just recall to the reader that
additivity implies uniqueness, whereas the converse is not true. Additionally,
the notion of additivity should be regarded as a property of the solutions of the
linear program.

In Section 4 we treat the stability of reconstructing convex sets. Experimental
results suggest the conjecture that for the set of directions {x, y, 2x+y,−x+2y},
convex sets are additive. This would imply that the results of Section 2 may hold
for convex sets so giving a stability result that corresponds to the continuous
case where the reconstruction problem for convex bodies is well-posed ([16]).

2 The Problem

The reconstruction problem is the task of determining any lattice set having
the given X-rays. Stability concerns how sensitive is the problem to noisy data.
Hence one can ask whether a perturbation of the data correspond solutions that
are close. To study the problem we define a measure for the error on the X-rays
and one for the distance of two solutions. Let D be a set of m prescribed lattice
directions with m ≥ 2 and let E, F be lattice sets:

DXD(E, F ) = max
p∈D

∑

k∈Z

|XpE(k) − XpF (k)|

and

card(E△F ) = card((E \ F ) ∪ (F \ E)).

The formulation of the problem that we consider is the following:

Problem 1. Let E be known. Determine F maximizing card(E△F ), with the
constraint that DXD(E, F ) is given.

Let us introduce some definitions that we need in the following.

Definition 1. A lattice set E is additive with respect to D, or D-additive, if

there is a function e which gives a value ep(k) for each line p = k parallel to a

direction p of D such that for all M in Z
2:

M ∈ E if and only if
∑

p∈D

ep(p(M)) > 0.

This definition introduced by Fishburn et al. can be better understood with
linear programming: a lattice set E is additive if it is the unique solution of
the linear programming problem which looks for a fuzzy set which has the same
X-rays than E.



Definition 2. A lattice set E is unique with respect to D, or D-unique, if

F ⊂ Z
2 and XpE = XpF for any p ∈ D imply E = F .

There is an intimate relationship between these two definitions: every D-additive
set is D-unique and the converse is true if m = 2 (see[10]).

As a last remark we recall that if p and q are two directions, then a p-line does
not always intersect a q-line. Indeed Z

2 can be split in det(p, q) pq-lattice such
that in each pq-lattice a p-line intersects with any q-line. Precisely a pq-lattice
has the form:

Lpq
i = {M : p(M) = i (mod det(p, q)) and q(M) = κi (mod det(p, q))}

where κ only depends on the directions p and q (see for example [6]). Moreover
we denote by 〈i, j〉pq the point M such that p(M) = i and q(M) = j. Notice
that this point is in Z

2 only if p = i and q = j are in the same pq-lattice.

3 Stability for Additive Sets

3.1 Error equal to 1

In this section we study the symmetric difference of any two D-additive sets E
and F verifying the condition DXD(E, F ) ≤ 1. In the first two lemmas additivity
is not required.

The condition DXD(E, F ) ≤ 1 permits the X-rays of the two sets to differ
by one in at most a line for each direction. Then, p ∈ D and an integer kp exists
such that |XpE(kp) − XpF (kp)| = 1 and XpE(k) = XpF (k) for k 6= kp.

Lemma 1. If p ∈ D and an integer kp exist such that |XpE(kp)−XpF (kp)| = 1,
then for every q ∈ D there is an integer kq such that |XqF (kq) − XqE(kq)| = 1
and 〈kp, kq〉pq ∈ Z

2.

Proof. Let Lpq
i be the pq-lattice containing the line p = kp, or equivalently

kp ∈ p(Lpq
i ). Suppose that XpF (kp) − XpE(kp) = +1. Thus, we have that

∑

k∈p(Lpq

i
)

XpF (k) = 1 +
∑

k∈p(Lpq

i
)

XpE(k).

Using the consistency of the X-rays for F and E, the previous identity leads to
the following

∑

k∈q(Lpq

i
)

XqF (k) = 1 +
∑

k∈q(Lpq

i
)

XqE(k),

for all q in D. From this, the thesis easily follows. �

In the next lemma we show that all the lines with error 1 have a common point
and this point is in Z

2. In the following, we assume that card(F ) > card(E) and
for any p ∈ D the integer kp is as in the previous lemma.



Lemma 2. If DXD(E, F ) = 1, then a point W ∈ Z
2 exists such that

XpF (k) = XpE(k) + 1, if k = p(W )
XpF (k) = XpE(k), otherwise

for all the directions p in D.

Proof. Let p, q and r be directions in D and suppose that A = 〈kp, kq〉pq, B =
〈kp, kr〉pr, C = 〈kq , kr〉qr are three distinct points. Let a, b be such that r =
ap + bq. Thus, summing up we can write:

∑

M∈F

r(M) = a
∑

M∈F

p(M) + b
∑

M∈F

q(M)

and by grouping line by line we obtain:

∑

k

kXrF (k) = a
∑

k

kXpF (k) + b
∑

k

kXqF (k).

We can exhibit the corresponding identity for the set E. As a result of the
difference of these two identities we obtain that kr = akp + bkq and so r(A) =
r(B) = r(C). Thus, the three points A, B and C coincide and the claim is proved.

�

Suppose now that E and F are D-additive, that is E = {M : e(M) > 0} and
F = {M : f(M) > 0}.
Proposition 1. Let E and F be D-additive lattice sets. If DXD(E, F ) = 1,
then card(E△F ) = 1.

Proof. Let W be as in Lemma 2. At first suppose that W 6∈ E and let E′ =
E ∪ {W}. For each direction p in D we have that XpE

′ = XpF . Finally, since
additivity of F implies uniqueness of F , we conclude that F = E ∪ {W}.
On the contrary, if W ∈ E we study the following:

ΦE =
∑

M∈Z2

∑

p∈D

ep(p(M))(1E(M) − 1F (M)).

Rewriting it as

∑

M∈E

∑

p∈D

ep(p(M))(1E(M) − 1F (M)) +
∑

M 6∈E

∑

p∈D

ep(p(M))(1E(M) − 1F (M)),

we notice that ΦE > 0, because the additivity of E implies that if M is in E,
then e(M) > 0 and 1E(M) = 1 holds, and otherwise e(M) ≤ 0 and 1E(M) = 0.
We can also explicit the terms XpE and XpF in ΦE so obtaining that

ΦE =
∑

k 6∈p(W )

∑

p∈D

ep(k)(XpE(k)−XpF (k))+
∑

p∈D

ep(p(W ))(XpE(p(W ))−XpF (p(W )))

that is strictly less than zero. �



Remark 1. The comparison between uniqueness and additivity can be made fol-
lowing [10]. Given any three lattice directions we may construct two sets E, F
in such a way that they are unique but non-additive. (We do not give the proof
for reasons of space limit and we refer the reader to [10]). Figure 1 illustrates
two such sets verifying the constraint DXD(E, F ) = 1. Since they are disjoint,
Proposition 1 does not hold for D-unique sets.

D

y = 0

y = 49

x = 70

W

x = 0

E

F

Fig. 1. E and F are non-additive sets of uniqueness such that DXD(E, F ) = 1
and E ∩ F = ∅.

3.2 Error larger than 1

In this section we consider the case where the error is larger than 1. Since even
when the error is just equal to 2, we have instability if the number of lattice
directions is larger than 2, we restrict our attention to the case of two directions.

More in detail, the instability follows from the result of [1, Theorem 1] because
the sets constructed in the proof of [1] are actually D-additive. Therefore we can
restate it as follows:

Proposition 2 (see [1]). For any n and a set D of m ≥ 3 directions there exist

E and F D-additive such that |E| = |F | ≥ n, DXD(E, F ) = 2 and E ∩ F = ∅.
As a result, our focus is on the case of two directions. In this case additivity

is equivalent to uniqueness, and the construction used to prove Proposition 2
cannot be carried out.



Since pq-lattices are equivalent to Z
2 we can see that it is sufficient to consider

the case D = {x, y}.
So, in the following, we suppose that E and F are unique with respect to

D = {x, y}. In [14, p17]) it is proved that M = (xM , yM ) is in E if and only if
e(M) = ex(xM ) + ey(yM ) ≥ 0 where ex(j) = XxE(j) and ey(i) = −card({l :
XyE(l) ≥ XyE(i)). Notice that this property implies directly the additivity of
Definition 1 because we can add a small positive number to e in such a way that
e(M) remains negative if M /∈ E. We define similarly f(M) = fx(xM )+fy(yM ).
Then, as in the previous section, we can prove that:

ΦE =
∑

(j,i)∈Z2

(ex(j) + ey(i))(1E(j, i) − 1F (j, i)) ≥ 0

ΦF =
∑

(j,i)∈Z2

(fx(j) + fy(i))(1E(j, i) − 1F (j, i)) ≤ 0

Remark 2. By definition of ex and fx, if an error of ±a occurs in x = j then
fx(j) = ex(j) ± a.

The relationship between fy(i) and ey(i) is more complex and will be studied in
special cases. At first we begin with a short lemma:

Lemma 3. Let P be a point of F \ E such that XxF (xP ) = XxE(xP ) + 1 and

XyF (yP ) ≤ XyE(yP ), then a point Q ∈ E \ F exists satisfying yP = yQ, and

for any such point we have XxE(xQ) > XxF (xQ).

Proof. Since XyF (yP ) ≤ XyE(yP ) there exists a point Q ∈ E \ F such that
yP = yQ. Let ex, ey be defined as above. We have:

ex(xQ) + ey(yQ) ≥ 0 > fx(xQ) + fy(yQ) (3.1)

ex(xP ) + ey(yP ) < 0 ≤ fx(xP ) + fy(yP ) (3.2)

Substituting fx(xP ) = ex(xP )+1 in (3.2) we get ey(yP ) < 0 ≤ fy(yP )+1, that is,
ey(yP ) ≤ fy(yP ) (because ey and fy are always integer). Since ey(yP ) = ey(yQ)
and fy(yP ) = fy(yQ), equation (3.1) gives ex(xQ) > fx(xQ). �

Proposition 3. Let D = {x, y}; if E and F are any two D-unique lattice sets

satisfying DXD(E, F ) = 2, then card(E△F ) ≤ 4.

The proof is omitted due to space constraints and is available in [4].

4 Stability for Convex Sets

In this section we experimentally study the stability of the reconstruction of
convex sets via linear programming. Any convex set is the intersection of a
convex polygon and the digital plane Z

2. The result of [11] states that convex
sets are uniquely determined by their X-rays taken in a suitable set of directions.



In the “continuous” plane an analogous result holds and additionally the problem
is well-posed ([16]). Moreover there is a connection between additive sets and
convex sets, since an euclidean ball is additive with respect to two orthogonal
directions ([9]). Our experiments support the suspect that these results have a
correspondence in the “digital” plane.

Actually we consider in this section a class of lattice sets which is more
general than the convex sets [3].

For each point M = (xM , yM ) ∈ Z
2 the four quadrants around M are defined

by the following formulas:

R0(M) = {(x, y) ∈ Z
2 / x ≤ xM and y ≤ yM},

R1(M) = {(x, y) ∈ Z
2 / x ≥ xM and y ≤ yM},

R2(M) = {(x, y) ∈ Z
2 / x ≥ xM and y ≥ yM},

R3(M) = {(x, y) ∈ Z
2 / x ≤ xM and y ≥ yM}.

Definition 3. A lattice set E is Q-convex if and only if for each M 6∈ E there

exists i ∈ {0, 1, 2, 3} such that Ri(M) ∩ E = ∅.
An example of Q-convex set is given on the left part of Figure 2.

We have generated 184 Q-convex sets of semi-perimeter from 4 to 370 using
an uniform generator ([5], inspired from [13]). Then their X-rays in the set of
directions D = {x, y, 2x + y,−x + 2y} have been computed. (These directions
have been chosen because the X-rays along them uniquely determine the convex
sets ([11]) and they contain the horizontal and vertical directions). We then
used these X-rays and any error e ∈ {0, 1, 2, 3} as input data in the following
linear-program:

Maximizing
∑

(i,j)∈E

(1 − vi,j) +
∑

(i,j)/∈E

vi,j (4.3)

such that
∑

p(i,j)=k

vi,j = XpE(k) + er+
p,k − er−p,k (4.4)

∑

k

er+
p,k + er−p,k ≤ e (4.5)

0 ≤ vi,j ≤ 1, er+
p,k ≥ 0, er−p,k ≥ 0 (4.6)

We solved the linear program with the software soplex ([17]). Notice that solving
this problem with vi,j ∈ Z permits to exactly find the maximum of card(E△F )
where F describes all the lattice sets such that DXD(E, F ) ≤ e. Unfortunately,
integer-linear-program is an NP-hard problem, and hence we solved the relaxed

problem where the unknown variables can be fractional: this computation pro-
vides an upper bound to card(E△F ). Figure 2 illustrates (on the right side-hand)



E vi,j

Fig. 2. A Q-convex set E and the corresponding extremal values of vi,j for e = 3.
In this case we have card(E) = 200 and

∑

(i,j)∈E(1−vi,j)+
∑

(i,j)∈Ec vi,j = 33.7.

a solution of the linear programming for card(E) = 200 and e = 3. The different
grey-scale colors of the squares correspond to different values of vi,j .

The complete results are summarized in Figures 3 and 4. In Figure 3 the up-
per bound to card(E△F ) is divided by card(E), so that each value gives an upper
bound to the relative distance from a given set. Moreover the black squares show
the values of the maximum of the quantity (4.3) when the constraints (4.4),(4.5)
are replaced by XpE(k) − 1 ≤ ∑

p(i,j)=k vi,j ≤ XpE(k) + 1: these values give

an upper bound to card(E△F ) when DX ′
D(E, F ) = maxp∈D maxk∈Z |XpE(k)−

XpF (k)| = 1.
These experimental results bring out the following points:

– If DXD(E, F ) = 0, then we always found a null relative distance. In other
words, according to our experiments every Q-convex set is D-additive. In
fact this property was first conjectured by L. Thorens ([15]) (with additivity
replaced by uniqueness), and can be seen as a variant of Conjecture 4.6 of
[2] and Theorem 5.7 of [11]. We may set out the conjecture as follows:

Conjecture 1. If D is a set of directions which contains {x, y}, such that all
the directions are not in the same quadrant and they uniquely determine the
convex sets, then every Q-convex set is D-additive.

Notice that the property about the quadrants is necessary because there is
a counter-example with D = {x, y, x + y, x + 5y}.

– For a fixed error e, the relative distance looks to converge to zero as card(E)
grows. If we divide by

√

card(E) instead of card(E), this ratio seems to be

bounded so that in average card(E△F ) = O(
√

card(E)) according to our
experiments (see Figure 4). It must be noticed that in the case e = 1, by
the previous remark and Proposition 1 the real maximum error for lattice
sets is always 1 for the generated cases; we obtain a stronger result in the
experiment because the problem has been relaxed.
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– If DX ′
D(E, F ) = 1, then the relative distance does not seem to converge to

zero, but the computed values are only upper bounds, that is, we do not
know if the fractional values mirror instability or they are just an artifact
introduced by relaxing the integral constraints of the problem. In the former
case, the reconstruction of convex sets would not be applied easily in the
continuous world (as in medical imaging), because a rounding error of the
measurements can always be of ±1.
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