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ABSTRACT

We consider a distributed optimal control problem governed
by a semilinear parabolic equation, where constraints on the
control and on the state are given. Aiming to show the exis-
tence of regular Lagrange multipliers we follow a linearization
approach together with a two-norm technique. The theory is
applied to derive a generalized bang-bang principle.
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1. INTRODUCTION

In this paper we investigate some optimal control problems where the state
equation is a semilinear parabolic equation. In addition, we consider con-
straints on both the control and the state. Our main purpose is to get some
Lagrange multipliers (for the state-equation) as regular as possible. Nonlin-
ear problems usually involve smooth data. The general duality theory for the
mathematical programming in Banach spaces provides Lagrange multipliers in
dual spaces. The smoother the spaces for the data, the larger the dual spaces
are. This means that, even if we are able to ensure the existence of such multi-
pliers, they are not in general regular (distributions or measures may appear,
for instance).

We are going to derive qualification conditions that allow to get regular
Lagrange multipliers. This question of regularity is quite important if we
have in mind, for instance, the convergence of Lagrangian algorithms or some
generalized bang-bang results.

We are going to treat separately the questions of existence and regularity.
In a first step, we obtain the existence of a multiplier: the framework is the
standard mathematical programming theory in Banach-spaces, and we rely
on some strong regularity properties of the data (as for instance the Fréchet-
differentiability). This allows us to study a linearized problem around the
optimal solution. From there on, we may embed the problem into a less reg-
ular variational framework and establish some conditions to obtain a smooth
“linearized” multiplier. Finally we realize that this multiplier is also a multi-
plier associated to the original problem.

The paper is organized as follows. First we define the problem we are
interested in and prove some existence results for the optimal solution. Then
we show how to linearize the problem around a (local) optimal solution. A
third part is devoted to regularity properties. We shall finish the paper with
some examples and a generalized Bang-Bang result.

2. SETTING OF THE PROBLEM

We are investigating the following optimal control problem with constraints
both on the state and the control, governed by a semilinear state-equation.
Minimize

(P ) J(y, u) =
1

2

∫

Q
(y − zd)

2 dx dt+
α

2

∫

Q
u2 dx dt

subject to
yt + Ay + f(y) = u in Q = Ω×]0, T [ ,

y = 0 on Σ = ∂Ω×]0, T [ ,
y(x, 0) = yo(x) in Ω ,

(2.1)
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and to
(y, u) ∈ C . (2.2)

Here, we denote by yt =
∂y

∂t
the derivative of y with respect to t.

In this setting, Ω is a smooth, open and bounded domain of IRn (n ≤ 3), T is
a positive real number, zd ∈ L2(Q), and α ≥ 0. Moreover we assume that

yo ∈ W 1,p
o (Ω) , where n < p , (2.3)

( for instance yo ≡ 0) and that

C is a non-empty, convex subset of L2(Q) × Lp(Q) ,
closed in the natural topology of L2(Q)2

and bounded with respect to u in Lp(Q) .
(2.4)

Remark 2.1 : We may choose, for instance, C = K × Uad, where K is a
non-empty, convex, closed subset of L2(Q) and Uad is a non-empty, convex,
L2-closed and Lp-bounded subset of Lp(Q).
Remark 2.2 : Indeed, it would be sufficient to choose the control function

in Lp1(Q) with p1 >
n+ 2

2
and yo ∈ W 1,p2

o (Ω) with n < p2 to get the following

results; anyway for the sake of simplicity we shall choose the same real number
p for both the control function and the initial data. We just have to remember

that if yo happens to be equal to 0, then we may choose p >
n+ 2

2
.

We recall that W 1,p(Ω) = {y ∈ Lp(Ω) | ∇y ∈ Lp(Ω)n } and we set V =
W 1,p
o (Ω).

Let us specify the linear differential operator : A is a linear elliptic differential
operator defined by

Ay = −
n∑

i,j=1

∂xi
(aij(x)∂xj

y) + a0(x)y with

aij ∈ C2(Ω̄), for i, j = 1 · · ·n,
a0 ∈ L∞(Ω), inf ess {a0(x) | x ∈ Ω̄} ≥ 0

n∑

i,j=1

aij(x)ξiξj ≥ co
n∑

i=1

ξ2
i ,∀x ∈ Ω̄,∀ξ ∈ IRn, co > 0 ,

(2.5)

and

f : IR −→ IR is a monotone increasing, C1, globally Lipschitz function
such that f(0) = 0.

(2.6)
Remark 2.3 : We note that the global Lipschitz assumption on f can be
relaxed, if uniform boundedness of y can be shown by maximum principle ar-
guments independently from the Lipschitz property. Then f ∈ C1(Q) would
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suffice. However, we rely on the stronger assumption to simplify the presen-
tation. In what follows, we denote the real function f : IR → IR and the
nonlinear operator f : y(·) 7→ f(y(·)) in L2(Q) by the same sign f .
Definition 2.1 :For 1 < p < +∞, we set

Wp(0, T ) = {y ∈ Lp(0, T ;V ) | y′ ∈ Lp
′

(0, T ;V ′) } ,

where p′ is the conjugate of p.
We first recall that the state-equation has a unique solution and derive some
regularity results for it.
Theorem 2.1 : With the previous assumptions, for any u ∈ L2(Q) the state
system (2.1) has a unique solution y = T (u) ∈ W2(0, T ).
Moreover we know that W2(0, T ) ⊂ C([0, T ];L2(Ω)) and that the mapping
y 7→ y(0) from W2(0, T ) to L2(Ω) is surjective.
Proof .-This is a standard result of the theory of semilinear parabolic equations,
since f is a maximal monotone graph (see Barbu [2] or Neittaanmäki and Tiba
[10]). Here the Lipschitz property of f is not needed.

To show higher regularity of the solution of the state system (2.1) we shall
make use of the following embedding result due to Lions and Peetre ( Lions
[12], pp.24 ) .
We recall that

W 2,1,q(Q) = {y ∈ Lq(Q) | Dy, D2y, yt ∈ Lq(Q)}.

Lemma 2.1 : If Ω ⊂ IR3 is a bounded domain having the cone property, then
the embedding

W 2,1,q(Q) ⊂ Lr(Q)

is continuous for

r =






+∞ if q > 5/2
any positive number if q = 5/2

5q

5 − 2q
if q < 5/2 .

If Lr(Q) is replaced by Lr−ε(Q), ε > 0, then the above embedding is
compact.
Theorem 2.2 : Under the previous assumptions, the solution y of (2.1) be-
longs to C(Q̄).
Proof .-The proof is performed for n = 3 (for n ≤ 2 it is even simpler). We have
just seen that y ∈ W2(0, T ) ⊂ L2(Q). As f is globally Lipschitz, f(y) ∈ L2(Q)
holds as well. So y is the solution of the “linear” system

yt + Ay = u− f(y) in Q ,
y = 0 on Σ ,

y(x, 0) = yo(x) in Ω ,
(2.7)
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where u − f(y) ∈ L2(Q), hence classical regularity results (see [3, 13] for
instance) imply that y ∈ W 2,1,2(Q).

Now we use Lemma 2.1 for q = 2 and r =
5q

5 − 2q
= 10 to obtain y ∈ L10(Q).

The Lipschitz property of f implies that f(y) ∈ L10(Q) as well. Once again, we
rely on parabolic regularity: the right hand side of the first line of (2.7) belongs
to L3(Q), since u ∈ L3(Q) and f(y) ∈ L10(Q). Moreover yo ∈ W 1,p

o (Ω) ⊂
W 1,3
o (Ω), since p ≥ 3 > (n + 2)/2 = 5/2. Therefore, the initial data are

compatible with the boundary condition. The Lp-theory of parabolic equations
implies now that y ∈ W 2,1,3(Q) and (once again) Lemma 2.1 yields that y ∈
L∞(Q) .

Now it is possible to show by standard methods that y ∈ C(Q̄). We refer,
for instance to Di Benedetto [8], Corollary 0.1, relying on the assumption
y ∈ L∞(Q) and on the continuity of the boundary data. Moreover, we have
to use the compatibility condition given by y ∈ W 1,p

o (Ω) ⊂ C(Ω̄) (cf. also the
remark in [8], p.531).

Once we have ensured that the operator T : L2(Q) −→ W2(0, T ) is well
defined we may prove the existence of (at least) one optimal solution of problem
(P ).
Theorem 2.3 : Assume that the feasible domain of problem (P)

D = {(y, u) ∈ L2(Q) × Lp(Q) | y = T (u) and (y, u) ∈ C } ,

is non empty . Then problem (P) has at least one optimal solution, which we
shall denote by (ȳ, ū).
Proof .-Let (yn, un) ∈ C be a minimizing sequence, such that J(yn, un) con-
verges to the infimum d ≥ 0. So the sequence un is bounded in Lp(Q), in
L2(Q) and in L2(0, T ;H−1(Ω)) (because L2(Ω) ⊂ H−1(Ω) with a continuous
imbedding).
Thus a subsequence of un (say un) weakly converges to some ū in L2(Q) (and
in L2(0, T ;H−1(Ω))).

Moreover, yn is bounded in L2(Q) as well and we may assume that it weakly
converges to ȳ in L2(Q). C is convex and L2-closed, so it is weakly L2-closed
and (ȳ, ū) ∈ C. Relations (2.1) give :

〈y′n(t), yn(t)〉 + 〈Ayn(t) + f(yn(t)), yn(t)〉 = 〈un(t), yn(t)〉 , a.e. in [0, T ] ,

where 〈 , 〉 denotes the duality product between V = H1
o (Ω) and V ′ = H−1(Ω).

Performing an integration from 0 to t, we get

1

2

∫ t

0

d

dt
‖yn(s)‖

2
L2(Ω) ds+

∫ t

0
〈Ayn(s) + f(yn(s)), yn(s)〉V ′,V ds

=
∫ t

0
〈un(s), yn(s)〉V ′,V ds .

(2.8)
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As a conclusion of the Friedrich inequality, A is known to be coercive in H1
o (Ω).

Moreover, f is monotone. Hence the above relation yields

∀t ∈ [0, T ],
1

2
‖yn(t)‖

2
L2(Ω) + c

∫ t

0
‖yn(s)‖

2
H1

o (Ω) dt ≤

1

2
‖yo‖

2
L2(Ω) +

∫ t

0
‖un(s)‖H−1(Ω)‖yn(s)‖H1

o (Ω)ds .

We have already seen that un is bounded in L2(0, T ;H−1(Ω)), so we obtain :

∀t ∈ [0, T ] ,
1

2
‖yn(t)‖

2
L2(Ω) + c

∫ t

0
‖yn(s)‖

2
H1

o (Ω)ds

≤ Co + C1‖yn‖L2(0,T ;H1
o (Ω)).

(2.9)

The previous relation with t=T implies that yn is bounded in L2(0, T ;H1
o (Ω)).

Therefore A(yn) + f(yn) is bounded in L2(0, T ;H−1(Ω)). As un is bounded
in L2(0, T ;H−1(Ω)) we may conclude that y′n is bounded in L2(0, T ;H−1(Ω))
too, so that yn is bounded in W2(0, T ) and a subsequence (still denoted yn)
weakly converges to ȳ in W2(0, T ).

The compactness of the embedding H1
o (Ω) ⊂ L2(Ω) yields the compactness

of the embedding W2(0, T ) ⊂ L2(Q) (see [11], p.57) and the (sub)sequence yn
strongly converges to ȳ in L2(Q). Moreover, we may prove that the operator
A+f is weakly-sequentially continuous from W2(0, T ) to L2(0, T ;H−1(Ω)) (for
a detailed proof see [5], Proposition 2.1) : so A(yn) + f(yn) weakly converges
to A(ȳ)+ f(ȳ) in L2(0, T ;H−1(Ω)). Thus (ȳ, ū) is a feasible point. J is convex
and lower-semicontinuous, so the strong-weak convergence of (yn, un) towards
(ȳ, ū) in L2(Q) × L2(Q) implies that

J(ȳ, ū) ≤ lim inf
n→+∞

J(yn, un) = lim
n→+∞

J(yn, un) = d .

Finally, as d is the infimum we get J(ȳ, ū) ≤ d ≤ J(ȳ, ū) . So (ȳ, ū) is an
optimal solution of problem (P ).
Remark 2.4: In the proof of the previous theorem we have considered the
problem as an “L2”-problem. Here the sequence un belongs to Lp(Q) and L2-
converges to ū. So a priori ū does not belong to Lp(Q). The crucial assumption
here is the L2-closedness of the set C.
Remark 2.5: We may prove quite similarly that the optimal control problem
has at least one solution if we choose a final observation of the state instead of
the distributed one. Moreover, we can replace the first integral of the objective
by a non-convex but continuous functional on L2(Q). This is based on the
strong convergence of the state-sequence in L2(Q).
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3. LINEARIZATION OF THE PROBLEM

The regularity property of the solutions of (2.1) allows to consider the
mapping f on C(Q̄) and give a differentiability result.
Lemma 3.1: The mapping y 7→ f(y) is C1 in C(Q̄).
Proof .-This is a well known result on Nemytskii operators (see for instance
Ioffe and Tikhomirov [9]).
Let us define the state-space :

Y = { y ∈ Wp(0, T ) | yt + Ay ∈ Lp(Q) , y(0) ∈ W 1,p(Ω) } .

Lemma 3.2: Y is a subspace of C(Q̄). Moreover, Y endowed with the norm

‖y‖Y = ‖y‖Wp(0,T ) + ‖y‖C(Q̄) + ‖yt + Ay‖Lp(Q) + ‖y(0)‖W 1,p(Ω) ,

is a Banach-space and the operator y 7→ yt+Ay is continuous from Y to Lp(Q).
Proof .-Let yn be a Cauchy sequence in Y . Then yn,t+Ayn is a Cauchy sequence
in Lp(Q) and yn is also a Cauchy sequence inWp(0, T ) (because of the boundary
conditions). Parabolic regularity shows that yn is also a Cauchy sequence in
C(Q̄). The result follows now from the completeness of Wp(0, T ), C(Q̄) and
Lp(Q).
Remark 3.1: The norm ‖y‖C(Q̄) could be deleted, as convergence of yn in
C(Q̄) follows from that of yn,t + Ayn in Lp(Q) and that of yn(0) in W 1,p(Ω).
However, we include this norm for convenience.
So the following state-operator T is C1 :

T : Y × Lp(Q) → Lp(Q)
(y, u) 7→ yt + Ay + f(y) − u .

This is due to Lemma 3.1 and to the fact that the operator y 7→ yt +Ay is
linear and continuous from Y to Lp(Q) and the identity u 7→ u is linear and
continuous in Lp(Q) .
Thus problem (P ) has the abstract form






min J(y, u)
T (y, u) = 0 ,

(y, u) ∈ C̃ ,

where C̃ = { (y, u) ∈ C ∩ (Y × Lp(Q)) | y(0) = yo, y|Σ = 0 }.
On the first glimpse, this seems to be false, since we have restricted the feasible
set from W2(0, T ) × L2(Q) to Y × Lp(Q). However, the controls belong auto-
matically to Lp(Q), even if we regard them as elements of L2(Q). Moreover,
the preceding investigations revealed y ∈ Y . Therefore, the admissible set has
not changed at all. Only the underlying spaces were changed. This is essential
for differentiating the operator f , which is impossible in W2(0, T ).
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Now, let us we require the following regularity assumption at (ȳ, ū) :

T ′(ȳ, ū) · C̃(ȳ, ū) = Lp(Q) , (3.1)

where C̃(ȳ, ū) = { λ(y − ȳ, u− ū) | λ ≥ 0, (y, u) ∈ C̃ }. We say that (ȳ, ū) is
regular and may use the following result of [16].
Theorem 3.1: If (ȳ, ū) is a regular solution of (P ), then it is also a solution
of the linearized problem






min J ′(ȳ, ū) · (y, u)
T ′(ȳ, ū) · (y, u) = 0 ,

(y, u) ∈ C̃(ȳ, ū) .

or equivalently 




min J ′(ȳ, ū) · (y, u)
T ′(ȳ, ū) · (y − ȳ, u− ū) = 0 ,

(y, u) ∈ C̃ .

Proof .-This result appears as an intermediate result (the relation (3.5)) in the
proof of Theorem 3.1 in the paper of Zowe and Kurcyuscz [16].
In our very case, assumption (3.1) means that (ȳ, ū) is regular if and only if

∀w ∈ Lp(Q), ∃λw > 0,∃(yw, uw) ∈ C , such that




(yw)t − ȳt + A(yw − ȳ) + f ′(ȳ) · (yw − ȳ) − (uw − ū) =
w

λw
in Q

yw = 0 on Γ
yw(0) = yo in Ω .

(3.2)
We put

v̄ = −[ȳt + Aȳ + f ′(ȳ) · ȳ − ū] = f(ȳ) − f ′(ȳ) · ȳ ∈ Lp(Q) ⊂ L2(Q) , (3.3)

and introduce the affine-linear operator

Lȳ(y, u) = yt + A(y) + f ′(ȳ) · y + v̄ − u .

Then relation (3.2) is equivalent to

Lp(Q) ⊂ IR+ Lȳ(C̃) .

4. OPTIMALITY CONDITIONS

We have just seen in the previous section that, imposing the assumption
(3.2), the solution (ȳ, ū) of the non-linear optimal control problem is also a
solution of the linearized problem which reads
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(Pl) Min < ȳ − zd, y >L2(Ω) + α < ū, u >L2(Ω)

subject to

yt − ȳt + A(y − ȳ) + f ′(ȳ)(y − ȳ) = u− ū in Q ,
y = 0 on Σ ,

y(0) = yo(x) in Ω ,
(y, u) ∈ C .

Now we can reverse our arguments. Coming back from the space Y × Lp(Q)
(needed for linearization) to the original space W2(0, T ) × L2(Q) nothing will
change except the underlying spaces. This does not contradict the definition
of f ′(ȳ) : We have (f ′(ȳ) y)(x, t) = f ′(ȳ(x, t)) · y(x, t). The first factor belongs
to C(Q̄), hence this linear mapping can be continuously extended to L2(Q).
We now study the problem in W2(0, T )×L2(Q) to give some constraint qualifi-
cations ensuring the existence of a regular Lagrange multiplier. Then we shall
prove that this multiplier is a multiplier for the original nonlinear problem as
well.

Let us fix the notations. The state-space is W2(0, T ) and we introduce
Aȳ as the linear, continuous and coercive operator defined on W2(0, T ) by
Aȳ(y) = Ay + f ′(ȳ) · y. Then ∂t + Aȳ is a linear continuous operator from
W2(0, T ) onto L2(Q).

Once again, problem (Pl) may be considered as an optimal control problem
in larger spaces (less “smooth” in some sense) than the “natural” spaces, and
may be rewritten as

Min < ȳ − zd, y >L2(Ω) +α < ū, u >L2(Ω)

subject to
yt + Aȳy = u− v̄ in Q ,

y = 0 on Σ ,
y = yo in Ω ,

(y, u) ∈ C .

(4.1)

In particular, C is viewed as a subset of L2(Q) × L2(Q), yo ∈ H1
o (Ω) and

u − v̄ ∈ L2(0, T ;H−1(Ω)). We set Ĉ = { (y, u) ∈ C | y|Σ = 0, y(0) = yo }

(note that C̃ ⊂ Ĉ).
Such linear optimal control problems have been studied in [6] for the

parabolic case and we recall the main result :
Theorem 4.1: Assume

(A)
∃M ⊂ Ĉ, bounded in C([0, T ], L2(Ω)), such that

0 ∈ IntW (Lȳ(M)),
where W is a dense separable Banach-subspace of L2(0, T ;H−1(Ω)) ,
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(IntW denotes the interior for the W -topology). Then, there exists q̄ ∈ W ′

such that
〈ȳ − zd, y − ȳ〉L2(Ω) + α 〈ū, u− ū〉L2(Ω) +

〈q̄, yt − ȳt + Aȳ(y − ȳ) − (u− ū)〉W ′,W ≥ 0
(4.2)

holds for all (y, u) ∈ C such that yt − ȳt + Aȳ(y − ȳ) − (u− ū) ∈ W .
Proof .-See [6, 4].
Remark 4.1: Condition (A) is equivalent to

∃ρ > 0 BW (0, ρ) ⊂ Lȳ(M) ,

where where BW (0, λ) is the W -ball centered in 0 with radius λ.
We could also use the following qualification assumption which seems to be
weaker than (A) (see Azé [1]) :

(Ã) W ⊂ IR+ Lȳ(Ĉ) .

Note that this conditions looks like the Zowe and Kurcyuscz condition (3.2) :
only the underlying space is changed.

The optimality system (4.2) is also an optimality system for problem (P ).
So q̄ appears as a Lagrange multiplier associated to the state-equation for the
(original nonlinear) problem (P ). If we set W = Lp(Q), then assumption (Ã)
is equivalent to the Zowe and Kurcyusz condition applied to the linearized
problem : we obtain a multiplier in the dual Lp

′

(Q) of Lp(Q) : it is not better.
If we want to get more regularity we have to choose for instance W = Lq(Q)
with q < p : the multiplier is now an element of Lq

′

(Q). The best situation is
obtained for q = 2. We are giving some examples in the next section.

5. EXAMPLES AND APPLICATIONS

5.1.A First Example

In this subsection we set yo = 0 and C = K × Uad, where

K = { y ∈ Wp(0, T ) | ϕ(x, t) ≤ y(x, t) ≤ ψ(x, t) a.e. in Q }. (5.1)

Here, ϕ and ψ are L∞(Q)-functions such that

∃ρ > 0 ,∀(x, t) ∈ Q ϕ(x, t) + ρ ≤ 0 ≤ ψ(x, t) − ρ ,

so that
0 ∈ IntL∞(K) . (5.2)

Following Remark 2.2, we notice that it is sufficient to set p >
n+ 2

2
. Similarly

we set

Uad = { u ∈ L∞(Q) | a(x, t) ≤ u(x, t) ≤ b(x, t) ∀(x, t) ∈ Q } , (5.3)
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where a ≤ b are L∞(Q)-functions. (Note that Uad may have an empty L∞-
interior if a = b on Σ, for instance.) We note that C is convex, L2-closed and
Lp-bounded with respect to u.
We notice that relation (3.2) is equivalent to

∀w ∈ Lp(Q), ∃λw > 0, ∃ (yw, uw) ∈ C , such that




(yw)t + Aȳyw = uw − v̄ +
w

λw
in Q

yw = 0 on Γ
yw(0) = yo in Ω .

(5.4)

First we give a simple sufficient condition to ensure (5.4).
Lemma 5.1: Assume

v̄ = f(ȳ) − f ′(ȳ) · ȳ ∈ Uad . (5.5)

Then condition (5.4) is satisfied.
Proof .-Let be w ∈ Lp(Q) and denote by z(w) the solution of

(z(w))t + Aȳz(w) = w in Q ,
z(w) = 0 on Σ ,

z(w)(0) = 0 in Ω .

Proceeding as in the proof of Theorem 2.2, the continuity of the operator and
Sobolev embedding theorems imply that z(w) ∈ C(Q̄) and that we may find a
constant k such that

∀w ∈ Lp(Q) ‖z(w)‖C(Q̄) ≤ k ‖w‖Lp(Q) .

As 0 ∈ IntL∞(K), there exists some constant δ > 0 such that

∀z ∈ C(Q̄) ‖z‖C(Q̄) ≤ δ ⇒ z ∈ K .

Now, we set uw = v̄ ∈ Uad, λw =
k

δ
‖w‖Lp(Q) and yw = z(w/λw). Then we have

(yw)t + Aȳyw = uw − v̄ +
w

λw
in Q,

yw = 0 on Σ ,
yw(0) = 0 in Ω ,

and

‖yw‖C(Q̄) ≤
k

λ
‖w‖Lp(Q) = δ ,

so that yw ∈ K and condition (5.4) is fullfilled.
We shall present at the end of this subsection some meaningful examples.

Furthermore, we have :
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Theorem 5.1: Assume (5.2) and (5.4) (or for instance (5.5) instead of (5.4)).

Then, for any r >
n+ 2

2
, there exists a multiplier q̄ ∈ Lr

′

(Q), such that :

〈ȳ − zd, y − ȳ〉L2(Ω) +α 〈ū, u− ū〉L2(Ω) +

〈q̄, yt − ȳt + Aȳ(y − ȳ) −(u− ū)〉Lr′ (Q),Lr(Q) ≥ 0

for all (y, u) ∈ K × Uad such that yt + Aȳy − u ∈ Lr(Q).
Proof .-We just have to prove condition (A) with W = Lr(Q). Let us formulate
it more explicitely: we want to find some subset M of K × Uad, bounded in
C([0, T ], L2(Ω)) and some δ > 0 such that

∀ξ ∈ { ξ ∈ Lr(Q) | ‖ξ‖Lr(Q) ≤ 1 }, ∃(yξ, uξ) ∈ M with

(yξ)t + Aȳyξ = −v̄ + uξ + δξ in Q, yξ = 0 on Σ, yξ(0) = 0 in Ω .

Indeed we take

M = { [z(v), v̄] | v ∈ Br(0, λ) }, r >
n+ 2

2
,

where Br(0, λ) is the Lr-ball centered in 0 with radius λ, and λ > 0 is
small;(z(v) has already been defined before.) Once again, by the continu-
ity with respect of the right-hand side and the Sobolev embedding theorem,
we can choose λ such that

‖z(v)‖C(Q̄) ≤ δ ,

that is z(v) ∈ K and M ⊂ K × Uad. Moreover Lȳ(M) = Bp(0, λ) and (A) is
fulfilled in Lr(Q).
(Note that if n = 1 we may take r = 2).
Remark 5.1: Let us indicate some concrete examples where the previous
result may be used :

• f(y) = λy3, with λ > 0;

Uad = { u ∈ L∞(Q) | − a ≤ u(x, t) ≤ a ∀(x, t) ∈ Q } , where a is a
strictly positive real number, and

K = { y ∈ Wp(0, T ) | − b ≤ y(x, t) ≤ b a.e. in Q } where b is a real

number such that 0 < b ≤ (
a

2λ
)1/3. It is clear that 0 ∈ IntL∞(K).

The computation of v̄ = f(ȳ) − f ′(ȳ) · ȳ gives v̄ = −2λȳ3. So

‖v̄‖L∞(Q) ≤ 2λ‖ȳ‖3
L∞(Q) ≤ 2λb3 ≤ a ,

hence v̄ ∈ Uad.
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• f(y) = exp(λy) − 1, with λ > 0;

Uad = { u ∈ L∞(Q) | ao ≤ u(x, t) ≤ a1 ∀(x, t) ∈ Q } , with ao ≤ 0 < a1.

K = { y ∈ Wp(0, T ) | − b ≤ y(x, t) ≤ b a.e. in Q } where b is a real
number such that 1+ao ≤ (1−λb) exp(−λb) and (1+λb) exp(λb) ≤ a1+1.

The same analysis shows that 0 ∈ IntL∞(K) and v̄ ∈ Uad.

Note that the functions f described in this remark are C1 but not globally
Lipschitz. Nevertheless all results are valid because all state-functions consid-
ered in this section belong to K and are uniformly L∞-bounded. So following
Remark 2.3, the local-Lipschitz property of f is sufficient to ensure regularity
for the solutions of (2.1).
5.2. A generalized Bang-Bang result

We adopt the notations of the previous subsection with ϕ and ψ in C(Q̄),
and we set α = 0. Let us suppose that

(5.4) is fulfilled in Lr(Q) and 0 ∈ IntL∞(K) .

The optimality system is

〈ȳ − zd, y − ȳ〉L2(Ω) + 〈q̄, yt − ȳt + Aȳ(y − ȳ) − (u− ū)〉Lr′ (Q),Lr(Q) ≥ 0

for all (y, u) ∈ K × Uad such that yt + Aȳy ∈ Lr(Q) and r >
n+ 2

2
.

The state-part of the optimality system reads

〈ȳ − zd, y − ȳ〉L2(Ω) + 〈q̄, yt − ȳt + Aȳ(y − ȳ)〉Lr′ (Q),Lr(Q) ≥ 0

for all y ∈ K such that yt + Aȳy ∈ Lr(Q).
We define the adjoint-state p̄ as the solution of

−p̄t + A∗
ȳp̄ = ȳ − zd in Q ,
p̄ = 0 on Σ ,

p̄(T ) = 0 in Ω ,
(5.6)

so that the previous inequality becomes

〈p̄+ q̄, yt − ȳt + Aȳ(y − ȳ)〉Lp′ (Q),Lp(Q) ≥ 0 (5.7)

for all y ∈ K such that yt + Aȳy ∈ Lr(Q) (A∗
ȳ denotes the adjoint operator

of Aȳ where Aȳ ∈ L(W 1,2(Q), L2(Q))).
The control-part of the optimality system gives

∀u ∈ Uad 〈q̄, u− ū〉Lr′ (Q),Lr(Q) ≤ 0 . (5.8)
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Now, we are going to use these above relations to get some deeper infor-
mation about the optimal pair. Let us define the sets

Qϕ = { (x, t) ∈ Q̄ | ȳ(x, t) = ϕ(x, t) } , Qψ = { (x, t) ∈ Q̄ | ȳ(x, t) = ψ(x, t) } ,

Qo = Q− (Qϕ ∪Qψ) .

We know that ȳ ∈ C(Q̄). Then Qϕ and Qψ are closed sets and Qo is an
open subset of Q. Let d ∈ D(Q) be a test function with compact support
supp d ⊂ Qo. By the continuity of ȳ, ϕ, ψ and the compactness of supp d, one
can find δ > 0 such that ȳ + δd and ȳ − δd remain in K . Obviously, they are
also regular and we can use them in (5.7) as test functions to infer

〈p̄+ q̄, dt + Aȳd 〉Lr′ (Q),Lr(Q) = 0

for any d ∈ D(Q) with compact support in Qo. Taking into account this
relation and the equation satisfied by p̄, we see that

−q̄t + A∗
ȳ q̄ = ȳ − zd in D′(Qo) . (5.9)

This shows that q̄ ∈ W 2,1,r
loc (Qo) for r > 1, if zd belongs to Lr(Q). Then

q̄ ∈ C(Qo) by the Sobolev theorem if r is sufficiently large.
Now we are able to clarify the structure of the optimal pair of (P ), which may
be termed as a generalized bang-bang result, Tröltzsch [14].
Theorem 5.2 : We have :

Qo ⊆ { (x, t) | ȳ(x, t) = zd(x, t) } ∪ { (x, t) | ū(x, t) = a(x, t) }
∪{ (x, t) | ū(x, t) = b(x, t) }.

Proof .-Choose u = ū in Q−Qo so that (5.8) yields

∀u ∈ Uad

∫

Qo
q̄(ū− u) dx dt ≥ 0 . (5.10)

We have Qo = { (x, t) ∈ Qo | q̄(x, t) > 0 } ∪ { (x, t) ∈ Qo | q̄(x, t) < 0 } ∪
{ (x, t) ∈ Qo | q̄(x, t) = 0 }. Relation (5.10) shows that ū = b on the first set
and ū = a on the second set.

Let us call Q̃ the last set and suppose it has positive measure (otherwise
the proof is finished). We have to prove that ȳ = zd on this subset. We use a
result found in Brezis [7] p.195 :
Lemma 5.2: Let z be in W 1,α(ω) with 1 ≤ α ≤ ∞ and ω any open subset
of IRn. Then ∇z = 0 a.e. on the set {x ∈ ω | z(x) = k }, where k is a real
number.

As q̄ ∈ W 2,1,r
loc (Qo) for r > 1, we first apply this result to any compact

subset ω ⊂ Qo and z = q̄; so q̄t and ∇q̄ are equal to 0 almost everywhere on
Q̃.
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Now for any component indices i and j, we set z =
∂q̄

∂xi
= Dxi

q̄ and we are

going to prove that Dxj
z vanishes where z vanishes.

For any integer n > 0, let be θn ∈ D(] −
1

n
,
1

n
[) such that 0 ≤ θn ≤ 1 and

θn(0) = 1; let Gn be the real valued function defined by

Gn(x) =
∫ x

0
(1 − θn(t)) dt , for all x ∈ IR .

It is easy to see that Gn ∈ C∞(IR), Gn(0) = 0 and |Gn(x)| ≤ |x| for all x ∈ IR.
Moreover G′

n(x) ∈ [0, 1] for all x ∈ IR and G′
n converges everywhere towards ξo

the characteristic function of the set IR−{0}. So we infer that Gn(x) converges
to x everywhere on IR.
Let us set zn = Gn(z). The properties of Gn show that

zn(x, t) → z(x, t) on Qo . (5.11)

As q̄ belongs to W 2,1,r
loc (Qo) then Dxj

z belongs to Lrloc(Q
o). Moreover Dxj

zn =
G′
n(z)Dxj

z also belongs to Lrloc(Q
o) since 0 ≤ G′

n(z) ≤ 1.
For any ϕ ∈ D(Qo) we get

∫

Qo
zn (Dxj

ϕ) dxdt = −
∫

Qo
(Dxj

zn) ϕ dxdt ,

∫

Qo
zn (Dxj

ϕ) dxdt = −
∫

Qo
G′
n(z)(Dxj

z) ϕ dxdt .

The Lebesgue dominated convergence theorem allows to take the limit with
respect to n and we obtain:

∫

Qo
z (Dxj

ϕ) dxdt = −
∫

Qo
ξo(z)(Dxj

z) ϕ dxdt .

As z vanishes on Q̃, we finally get

−
∫

Qo
(Dxj

z) ϕ dxdt =
∫

Qo
z (Dxj

ϕ) dxdt = −
∫

Qo−Q̃
(Dxj

z) ϕ dxdt .

This yields

∀ϕ ∈ D(Qo)
∫

Q̃
(Dxj

z) ϕ dxdt = 0 ,

that is Dxj
z = 0 a.e. on Q̃.

Finally we have proved that −q̄t+A
∗
ȳ q̄ = 0 on Q̃. This implies that ȳ−zd = 0

a.e. on Q̃ and the proof is finished.
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6. CONCLUSION

We have chosen to illustrate the method for an example of a semilinear
parabolic problem with distributed control. This can be adapted in the same
way to many boundary or initial control problems or to elliptic problems. The
functional frame has to be chosen quite carefully.
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