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Abstract

In this paper we investigate some optimal convex control problems, with mixed
constraints on the state and the control. We give a general condition which allows to
set optimality conditions for non qualified problems (in the Slater sense). Then we
give some applications and examples involving generalized bang-bang results.
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1 Formulation of the Problem

Let V ⊂ H ⊂ V ′ compactly and densely be Hilbert spaces, A(t) : V → V ′, B : U → V ′ be
linear bounded operators (U is another non trivial Hilbert space) and L : L2(0, T ;H×U) →
R, l : H → R be convex, continuous mappings.
We consider the following optimal control problem :

(P ) Min { L(x, u) + l(x(T )) }

subject to
x′(t) + A(t)x(t) = Bu(t) + f(t) a.e. in ]0, T [ , (1.1)

[x, u] ∈ D ⊂ X × L2(0, T ;U) , closed convex subset , (1.2)

where

• X = L2(0, T ;V ) ∩ W 1,2(0, T ;V ′),

• f ∈ L2(0, T ; V ′) ,

• L is coercive in the sense

∃c (a generic constant) > 0 such that ,

∀[y, u] ∈ L2(0, T ; H × U) L(y, u) > c ‖u‖2
L2(0,T ;U) − c,

(1.3)
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• ∀z ∈ V t 7→ A(t)z is V ′-measurable on ]0,T[ , and

∀z ∈ V ‖A(t)z‖V ′ ≤ c‖z‖V , (1.4)

∃α , ∃β > 0 , ∀z ∈ V 〈A(t)z, z〉V ×V ′ + α‖z‖2
H ≥ β‖z‖2

V . (1.5)

We assume the initial condition x(0) = xo ∈ H and the possible final restrictions are
included in the definition of D. The evolution equation (1.1) has a unique solution x ∈ X
for any u ∈ L2(0, T ;U), by theorem 4.5, Barbu and Precupanu [3], Ch. 1.

Moreover, by condition (1.3), it is a standard argument to show that (P ) has at least
one optimal pair (denoted [x∗, u∗] ) in D if some admissibility assumption is fullfilled :

∃ [x, u] ∈ D such that T (x, u) = 0 , (1.6)

with
∀[x, u] ∈ X × L2(0, T ;U) T (x, u) = x′ + A(t)x − Bu − f .

The problem (P ) is a generalization of the Bolza optimal control problem studied by
Barbu and Precupanu [3], Ch.4, both with respect to the cost functional and with respect
to the form of the mixed constraints. The continuity hypothesis on L and l is quite
restrictive, but as we keep the constraints separately (i.e. we do not include them into the
cost via the indicator function of D), then the class of examples is very large.

For state constrained control problems, one usually assume a Slater type interiority
condition. In the general setting of (1.2), it takes the form :

(S) ∃ [x̄, ū] feasible for (P ) such that x̄ ∈ int { y ∈ X | [y, ū] ∈ D} in C(0, T ; H) ,

and it has very severe implications on the set of possible applications.
It is our main concern to weaken this classical qualification constraint. Namely, instead

of (S), we shall suppose that

(H)
∃M ⊂ D bounded in C(0, T ; H) × L2(0, T ;U)

such that 0 ∈ int T (M) in L2(0, T ;V ′).

Let us first notice that 0 appears naturally in (H) since the problem constraint is
expressed as T (x, u) = 0. Moreover, the elements (pairs) of the set M need not be
feasible for (P ).

We first compare the two conditions (S) and (H); the following proposition proves that
(S) is always stronger than (H).

Proposition 1.1 (S) ⇒ (H).

Proof.- Thanks to (S), (1.1) and (1.2) we have

x̄′ + A(t)x̄ = Bū + f, x̄(0) = xo, a.e. in ]0, T [. (1.7)

Let ρ > 0 and ξ ∈ L2(0, T ;V ′) such that ‖ξ‖L2(0,T ;V ′) = 1. We denote by xξ the solution
of

x′
ξ + A(t)xξ = Bū + f + ρξ, xξ(0) = xo, a.e. in ]0, T [. (1.8)
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Taking the difference between (1.7) and (1.8), we get that

‖x̄ − xξ‖X ≤ kρ ,

with k independent of ξ. Then, if ρ is small enough, (S) gives [xξ, ū] ∈ D, for all ξ ∈
L2(0, T ; V ′) such that ‖ξ‖L2(0,T ;V ′) = 1. Here we set

M = conv({ [xξ, ū] | ξ ∈ L2(0, T ;V ′) , ‖ξ‖L2(0,T ;V ′) = 1 }) ,

where conv(E) is the convex hull of the set E, and the proof is finished. ✷

Remark 1.1 Assume that U ⊂ V ′ continuously and B : U → V ′ is the canonical injec-
tion. Then one ask an interiority assumption with respect to the control of the type :

(I)
∃ [x̃, ũ] feasible for (P) such that

Int { u ∈ U | [x̃, u] ∈ D } is non empty in L2(0, T ;V ′).

This again implies (H) by an argument as above. In this case the Slater condition need
not be fulfilled, that is to say that the condition (H) is strictly weaker than (S).

Condition (H) or its weaker variant (H′) from section 3. may be mainly compared
with the Zowe and Kurcyusz [18] condition in the mathematical programming theory.
This was previously used in abstract control problems by Tröltzsch [16, 17], combined
with interiority type assumptions at the level of applications. In the examples of section
3., we show that the interior of the constraint set may be empty even in the uniform
topology, but the argument still applies.

In the recent work of Barbu and Pavel [2] another case of empty interior constraints is
discussed for optimal control problems governed by periodic evolution equations and by
a different method. Our approach is based on the penalization of the only state system
rather than of both the state system and the constraints (as in Bonnans and Casas [8]);
the constraints are kept explicitly throughout the proof. This is quite a classical philoso-
phy in connection to Lagrange multipliers techniques (see for instance the monograph of
Tikhomirov [15]). In the setting of partial differential equations, it has been extensively
exploited in the books of Lions [12] or Tiba [14], Ch.2, in connection to nonlinear singular
control problems. Recently Bergounioux [5, 6] has applied this method to control prob-
lems with state constraints governed by elliptic systems and Bergounioux, Männikkö and
Tiba [7] have studied some examples of parabolic control problems. Applications of the
obtained optimality system to augmented Lagrangian algorithms were also indicated.

Finally, we point out that the technique used in the next section puts into evidence
with full accuracy the relationship between the operator T and the set D of constraints.

2 The Optimality System

We define the penalized problem as following
(Pε) Min { Lε(x, u) + lε(x(T )) + 1

2

∫ T

0 ‖u − u∗‖2
U dt + 1

2ε

∫ T

0 ‖x′ + Ax − Bu − f‖2
V ′ dt }

over all [x, u] ∈ D. It should be noted that the first integral is an ”adapted” penalization
term according to Barbu [1], while Lε and lε are the Moreau-Yosida regularization of the
convex mappings L and l.
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Remark 2.1 Let us briefly recall what the Moreau-Yosida regularization is. Let f be a
proper, convex mapping on a Banach space X. For anay ε > 0, the Moreau-Yosida
regularization of f is :

∀x ∈ X fε(x) = inf {
1

2ε
‖x − y‖2

X + f(y) | y ∈ X } .

A thorough study of the properties of Lε and lε may be found in Barbu and Precupanu [3],
ch. 2. We shall recall some of them when needed in the text.

The existence of a unique optimal pair [xε, uε] is obvious. We also denote

rε =
1

ε
J−1(x′

ε + Axε − Buε − f) ∈ L2(0, T ;V )

where J : V → V ′ is the canonical isomorphism.

Proposition 2.1 We have

xε → x∗ strongly in X , (2.1)

uε → u∗ strongly in L2(0, T ; U) , (2.2)

ε
1

2 rε is bounded in L2(0, T ;V ), (2.3)

Proof.- The optimality of the pair [x∗, u∗] and the properties of the convex regularized
mappings give

Lε(xε, uε) + lε(xε(T )) +
1

2

∫ T

0
‖uε − u∗‖2

U dt +
1

2ε

∫ T

0
‖x′

ε + A(t)xε − Buε− f‖2
V ′dt

≤ Lε(x
∗, u∗) + lε(x

∗(T )) ≤ L(x∗, u∗) + l(x∗(T )) .

(2.4)
With the coercivity assumption (1.3), the relation (2.4) gives

lε(xε(T )) +
1

2

∫ T

0
‖uε − u∗‖2

U dt +
1

2ε

∫ T

0
‖x′

ε + A(t)xε − Buε − f‖2
V ′dt ≤ c .

Moreover lε is lower bounded by an affine mapping uniformly with respect to ε > 0 so
that

1

2

∫ T

0
‖uε − u∗‖2

U dt +
1

2ε

∫ T

0
‖x′

ε + A(t)xε − Buε − f‖2
V ′dt ≤ c + c ‖xε(T )‖H .

As the initial condition is contained in D and the dependence from the right hand side
as defined by (1.1) is sublinear, then we see that (uε) is bounded in L2(0, T ;U), xε is

bounded in X and ε
1

2 rε is bounded in L2(0, T ;V ).
We note [x̂, û] their weak limit on a subsequence. Since

x′
ε + A(t)xε = Buε + f + εJ(rε) ,

we can pass to the limit and [x̂, û] is an feasible pair for (P ). We have

Lε(xε, uε) = L((I + ε∂L)−1(xε, uε)) +
1

2ε
‖[xε, uε] − (I + ε∂L)−1(xε, uε)‖

2
H×U ,
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where I is the identity in H × U . Coming back to (2.4), we get easily that Lε(xε, uε) is
bounded so (I + ε∂L)−1(xε, uε) ⇀ [x̂, û] weakly in L2(0, T ; H × U) by the above formula.
Taking in account the weak lower semicontinuity of L and l we can pass to the limit in
(2.4) :

L(x̂, û) + l(x̂(T )) +
1

2

∫ T

0
‖û − u∗‖2

U dt ≤ L(x∗, u∗) + l(x∗(T )) .

Then û = u∗, x̂ = x∗ and we have (2.2) and (2.1) by a strong convergence criterion in
Hilbert spaces. ✷

Proposition 2.2 We have the following first order optimality condition :

〈∇Lε(xε, uε), [xε, uε] − [x, u]〉L2(0,T ;H×U) + 〈∇lε(xε(T )), xε(T ) − x(T )〉H

+

∫ T

0
〈uε − u, uε − u∗〉U dt −

∫ T

0

〈

x′ + Ax − Bu − f, J(rε)
〉

V ′
dt ≤ 0

(2.5)

for any [x, u] in D. (Here ∇ denotes the Gâteaux derivative.)

This is a standard result in the optimization of convex differentiable functionals (see
Lions for instance [11], Ch.1) and J(rε) plays the role of a Lagrange multiplier.
Proof.- We make feasible variations in x and u :

Lε(xε, uε) + lε(xε(T )) +
1

2

∫ T

0
‖uε − u∗‖2

U dt +
1

2ε

∫ T

0
‖x′

ε + Axε − Buε − f‖2
V ′ dt

≤ Lε(xs, us) + lε(xs(T )) +
1

2

∫ T

0
‖us − u∗‖2

U dt +
1

2ε

∫ T

0
‖x′

s + Axs − Bus − f‖2
V ′ dt ,

where xs = xε + s(x − xε), us = uε + s(u − uε), s ∈]0, 1] and [x, u] ∈ D arbitrary.
Passing all the terms to the left hand side, dividing by s > 0 and letting s tend to 0, we
obtain

〈∇Lε(xε, uε), [xε, uε] − [x, u]〉L2(0,T ;H×U) + 〈∇lε(xε(T )), xε(T ) − x(T )〉H

+

∫ T

0
〈uε − u, uε − u∗〉U dt −

∫ T

0

〈

x′ + Ax − Bu − f − εJ(rε), J(rε)
〉

V ′
dt ≤ 0

(2.6)
for any [x, u] in D. Then (2.5) follows from (2.6) since ε‖J(rε)‖

2
L2(0,T ;V ′) ≥ 0.

(We have also used the properties of J(rε).) ✷

Remark 2.2 The condition (2.6) is also sufficient for optimality in (P). We can reexpress
(2.5) as

〈∇Lε(xε, uε), [xε, uε] − [x, u]〉L2(0,T ;H×U) + 〈∇lε(xε(T )), xε(T ) − x(T )〉H

+

∫ T

0
〈uε − u, uε − u∗〉U dt −

∫ T

0

〈

x′ + Ax − Bu − f, rε

〉

V ′×V
dt ≤ 0

(2.7)
for any [x, u] in D.
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Now we define the simplified adjoint system

−p′ε + A∗(t)pε = ∇xLε(xε, uε) , (2.8)

pε(T ) = ∇lε(xε(T )) , (2.9)

where A∗ denotes the adjoint operator of A.
Multiply (2.8) by xε − x, for any x in X such that x(0) = xo, and integrate by parts

we get

〈∇xLε(xε, uε), xε − x〉L2(0,T ;H) =

∫ T

0

〈

−p′ε + A∗pε, xε − x
〉

H
dt

=

∫ T

0

〈

x′
ε − x′ + A(xε − x), pε

〉

V ′×V
dt

− 〈∇lε(xε(T )), xε(T ) − x(T )〉H .

(2.10)

Replacing (2.10) in (2.6), we obtain the equivalent form

〈∇uLε(xε, uε), uε − u〉L2(0,T ;U) +

∫ T

0

〈

x′
ε − x′ + A(xε − x), pε

〉

V ′×V
dt

+

∫ T

0
〈uε − u, uε − u∗〉U dt −

∫ T

0

〈

x′ + Ax − Bu − f, J(rε)
〉

V ′
dt

≤ −ε‖J(rε)‖
2
L2(0,T ;V ′) ≤ 0,

(2.11)

for any [x, u] in D.
Taking in turn u = uε, x = xε, a short computation provides the following decoupled

system :
∫ T

0

〈

x′
ε − x′ + Axε − Ax, pε + rε

〉

V ′×V
dt ≤ 0 , (2.12)

∫ T

0
〈uε − u, uε − u∗〉U dt + 〈∇uLε(xε, uε), uε − u〉L2(0,T ;U)

−

∫ T

0
〈uε − u, B∗J(rε)〉U dt ≤ 0 ,

(2.13)

for any [x, u] such that [x, uε] ∈ D and [xε, u] ∈ D.

Remark 2.3 The relations (2.8)-(2.9) and (2.12)-(2.13) give the optimality conditions
for the problem (Pε) in a more usual form. In particular, if D = K × Uad (i.e. the
constraints are separate) and if N (uε) denotes the normal cone to the control constraints
set at uε, that is

N (uε) = { z ∈ L2(0, T ;U) | 〈z, uε − u〉L2(0,T ;U) ≥ 0 ,∀u ∈ Uad } ,

then (2.13) becomes

∇uLε(xε, uε) + uε − u∗ + N (uε) ∋ B∗J(rε) ,

which is a standard form of the Pontryagin maximum principle (Barbu and Precupanu [3],
Ch. IV, Tiba [14], Ch. II).
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Proposition 2.3 On a subsequence, we have :

∇lε(xε(T )) ⇀ w ∈ ∂l(x∗(T )) weakly in H , (2.14)

∇Lε(xε, uε) ⇀ (w1, w2) ∈ ∂L(x∗, u∗) weakly in L2(0, T ;H × U) , (2.15)

pε → p∗ strongly in C(0, T ; H) , (2.16)

where p∗ is the solution of the simplified adjoint system

−
dp∗

dt
+ A∗p∗ = w1 , (2.17)

p∗(T ) = w . (2.18)

Proof.- We have : ∇Lε(xε, uε) ∈ ∂L((I + ε∂L)−1)(xε, uε). With a similar argument to the
one of the proof of proposition 2.1, it yields that (I + ε∂L)−1)(xε, uε) strongly converges
to [x∗, u∗] in L2(0, T ; H × U). As L is continuous, it is everywhere sub-differentiable and
∂L is locally bounded. Then ∇Lε(xε, uε) is bounded in L2(0, T ;H × U) and (2.15) is a
consequence of the demiclosedness of maximal monotone operators.

The argument is the same for relation (2.14) and (2.16)-(2.17)- (2.18) may be obtained
taking the limit in (2.8)-(2.9). ✷

Proposition 2.4 Under the hypothesis (H), (rε) is bounded in L2(0, T ;V ) and rε ⇀ r∗

on a subsequence, weakly in L2(0, T ;V ).

Proof.- We use the relation (2.7); we take test functions [xξ, uξ] ∈ M ⊂ D such that

T (xξ, uξ) = ρ ξ ,

for any ξ ∈ L2(0, T ;V ′) such that ‖ξ‖L2(0,T ;V ′) = 1 and for some ρ > 0. The boundedness
of M and propositions (2.1) and (2.3) allow to infer

ρ

∫ T

0
〈ξ, rε〉V ′×V dt ≤ c ,

where c is an absolute constant independent of ε > 0 and ξ. ✷

We have finally the following theorem :

Theorem 2.1 If the pair [x∗, u∗] is optimal for the problem (P), then

∫ T

0

〈

x∗′ − x′ + Ax∗ − Ax, p∗ + r∗
〉

V ′×V
dt ≤ 0 , (2.19)

〈w2, u
∗ − u〉L2(0,T ;U) −

∫ T

0

〈

u∗ − u, B∗J−1(r∗)
〉

U
dt ≤ 0 , (2.20)

for any [x, u] such that [x, u∗] ∈ D and [x∗, u] ∈ D.
Moreover the inequality summing (2.19) and (2.20) is valid for any [x, u] ∈ D; it is

also sufficient for the optimality of [x∗, u∗].
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Proof.- The necessity has been established with the previous sequence of propositions. Let
us prove the sufficiency of the condition. Let [x, u] be any feasible pair for (P ) and add
(2.19) and (2.20) :

∫ T

0

〈

x∗′− x′+ Ax∗− Ax, p∗+ r∗
〉

V ′×V
dt+〈w2, u

∗ − u〉L2(0,T ;U)−

∫ T

0
〈Bu∗− Bu, r∗〉V ′×V dt ≤ 0.

As [x, u] is feasible we get

〈w2, u
∗ − u〉L2(0,T ;U) +

∫ T

0

〈

x∗′ − x′ + Ax∗ − Ax, p∗
〉

V ′×V
dt ≤ 0 .

Integrating by parts and taking in account the adjoint equation, we obtain :

〈w2, u
∗ − u〉L2(0,T ;U) + 〈w1, x

∗ − x〉L2(0,T ;H) + 〈w, x∗(T ) − x(T )〉H ≤ 0 .

The definition of the subdifferential achieves the proof. ✷

Remark 2.4 To get a better insight of the relation (2.19), let us assume that D = K×Uad

(closed convex subsets in appropriate spaces). Let r∗ be in X (regularity). Then (2.19)
can be written as following :

∫ T

0

〈

∂xL(x∗, u∗) − r∗′ + A∗r∗, x∗ − x
〉

V ×V ′
dt

+ 〈∂l(x∗(T )) + r∗(T ), x∗(T ) − x(T )〉H ≤ 0 ,

(2.21)

by partial integration and for any x in K. If we consider the evolution system, which gives
the adjoint equation of Barbu and Precupanu [3] :

−
dr∗

dt
+ A∗(t)r∗ + ∂1K(x∗) ∋ −∂xL(x∗, u∗) a.e. in ]0, T [ , (2.22)

r∗(T ) ∈ −∂l(x∗(T )) , (2.23)

(where 1K is the indicatrix function of K), then (2.21) is as a weak variant of (2.22)-
(2.23). In particular, when no state constraints are imposed, one may easily infer that
p∗ = −r∗. We see that condition (H) yields the existence of a Lagrange multiplier, while
(S) ensures better regularity properties for it, (Barbu and Precupanu [3]).

Remark 2.5 The form of the optimality conditions may also be compared to the works
of Bonnans and Casas [8, 9]. Basically, we decouple the influence of the state constraints
from the adjoint equation and we put it as an independant inequality (2.19). The remaining
simplified adjoint system (2.17)-(2.18) just performs the necessary integrations by parts in
order to reexpress the gradient of the cost functional, and it is identical to the case without
any state constraints (Lions [11]). This also avoids the delicate analysis of adjoint systems
with measures as data, which is necessary when the classical approach is used (Casas [10]).



3 SOME APPLICATIONS 9

3 Some Applications

Let W ⊂ L2(0, T ;V ′) continuously, densely be a Banach space. We replace (H) by the
weaker variant

(H′)
∃M ⊂ D bounded in C(0, T ;H) × L2(0, T ;U) such that

0 ∈ Int T (M) in the W topology .

Since condition (H) is used only in the proof of Proposition (2.4), then propositions 2.1-
2.3 remain valid. We also ask the following pairing compatibility condition, which is
automatically fulfilled in many examples :

〈v, w〉W×W ′ =

∫ T

0
〈v, w〉V ×V ′ (3.1)

when both terms have sense. We keep the notations of the proof of Proposition 2.4.
Condition (H′) yields that

ρ 〈ξ, rε〉W×W ′ < c (3.2)

that is (rε) is bounded in the ”larger” space W ′ instead of L2(0, T ; V ). Let r∗ denote a
weak * cluster point for this set.

Theorem 3.1 The pair [x∗, u∗] is an optimal pair for (P) if and only if

〈w2, u
∗ − u〉L2(0,T ;U) +

∫ T

0

〈

x∗′ − x′ + Ax∗ − Ax, p∗
〉

V ′×V
dt

−〈x′ + Ax − Bu − f, r∗〉W×W ′ ≤ 0 ,

(3.3)

for any [x, u] such that T (x, u) ∈ W .

Proof.- Necessity is a direct consequence of (2.7) and (3.2) since one may pass to the limit
in all the terms if T (x, u) ∈ W .

For the sufficiency we notice that any feasible pair for (P ) satisfies T (x, u) = 0 ∈ W .
Then (3.3) may be used and only the first two terms will remain. The proof is finished as
in Theorem 2.1. ✷

Remark 3.1 In applications, T (x, u) ∈ W may be valid for any pair [x, u] ∈ D or this
may be equivalent with a regularity condition which is possible to include in the definition
of the state and control spaces. See [9] for the details of this technique in a different
setting.

3.1 A First Example : Empty Interior Constraints.

We analyse in some detail the following example of optimal control problem governed by
a parabolic partial differential equation :

(PP ) Min {
1

2

∫

Q

(y − zd)
2 dx dt +

N

2

∫

Q

u2 dx dt}
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subject to :

∂y

∂t
− ∆y = f + u in Q = Ω×]0, T [ , (3.4)

y(x, t) = 0 on Σ = ∂Ω×]0, T [ , (3.5)

y(x, 0) = yo(x) in Ω , (3.6)

and the constraints

e(x, t) ≤ y(x, t) ≤ g(x, t) a.e. in Q , (3.7)

a(x, t) ≤ u(x, t) ≤ b(x, t) a.e. in Q . (3.8)

Here Ω is a smooth, open and bounded domain of R
n, zd ∈ Leuxq, N ≥ 0, yo ∈

Leux, f, a, b are in L∞(Q) and e, g in C(Q̄). We denote

K = { y ∈ L2(0, T ;H1
o (Ω)) ∩ W 1,2(0, T ;H−1(Ω)) | e ≤ y ≤ g, y(., 0) = yo } ,

Uad = { u ∈ Leuxq | a ≤ u ≤ b a.e. in Q } ,

D = K × Uad ,

which are closed convex sets. One has to assume the compatibility condition

e ≤ yo ≤ g in Ω ,

and some admissibility hypothesis. We ask
(E) ∃α > 0, ∃ũ ∈ Uad such that e ≤ Y (ũ − α) ≤ Y (ũ + α) ≤ g in Q ,

where Y is the solution operator u 7→ y defined by (3.4)-(3.6). By comparison, (E) implies
that the pair [ũ, Y (ũ)] is feasible for (PP ). However, this is not an interiority assumption
since e may be equal to g in some points. For instance, we may allow e(x, t) = g(x, t) = 0
on the border of the domain. Moreover, the mappings ũ + α, ũ − α need not belong to
Uad, which may also have a void interior, i.e a = b on some subset.

Remark 3.2 A stronger variant of (E) is : there exist two controls ũ, û feasible for (PP),
which can be ”strictly separated”. It means that (E) is stronger than the standard admis-
sibility assumption, but weaker than the hypothesis of existence of two feasible pairs (with
this separation property). As (E), in turn, yields (H′), this gives a hint on the generality
of the hypothesis (H′). Moreover (H′) requires that the problem (P) is non trivial, that is
the set of admissible pairs is “rich”.

In order to apply the abstract theory, we take the spaces V = H1
o (Ω), H = U = Leux,

the operators A(t) : V → V ′, A(t)z = −∆z, B : H → V ′, B = i, the canonical injection,
and the mappings l = 0 and

L(y, u) =
1

2

∫

Q

(y − zd)
2 dx dt +

N

2

∫

Q

u2 dx dt .

The hypothesis (H′) is a clear consequence of (E) with W = L∞(Q), by fixing

yξ = Y (uξ) = Y (ũ + αξ), ξ ∈ W, ‖ξ‖W = 1 .
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Again a comparison argument shows that [yξ, uξ] ∈ D for any ξ as above and we can
choose in (H′) the bounded set

M = conv { [yξ, uξ] | ξ ∈ W, ‖ξ‖W = 1 } .

Then relation (3.3) may be rewritten as :

∫

Q

Nu∗(u∗ − u) dx dt +

∫

Q

(y∗′ − y′ − ∆(y∗ − y))p∗ dx dt

−〈y′ − ∆y − u − f, r∗〉W×W ′ ≤ 0 ,

(3.9)

for any y in K, u in Uad such that T (y, u) ∈ W = L∞(Q).
Notice also that, since f ∈ W,Uad ⊂ W, the last condition (T (y, u) ∈ W = L∞(Q)) is
equivalent to a regularity condition on y : y′ − ∆y ∈ L∞(Q), which is satisfied by y∗.
Here [y∗, u∗] is the optimal pair of (PP ) and p∗ satisfies

−p∗′ − ∆p∗ = y∗ − zd in Q

p∗ = 0 on Σ
p∗(T ) = 0 in Ω .

Choosing in turn u = u∗ and y = y∗ in (3.9), we get

∀y ∈ K such that y′ − ∆y ∈ L∞(Q)
〈

y∗′ − y′ − ∆(y∗ − y), p∗ + r∗
〉

W×W ′
≤ 0 , (3.10)

∀u ∈ Uad 〈Nu∗ − r∗, u∗ − u〉W×W ′ ≤ 0 . (3.11)

The relations (3.10) and (3.11) represent the decoupled form of the optimality condition
(3.9) and may be compared to (2.19) and (2.20).

Now, we are going to use these above relations to get some more precise information
about the optimal pair. Let us define the sets

Qe = { (x, t) ∈ Q̄ | y∗(x, t) = e(x, t) } , Qg = { (x, t) ∈ Q̄ | y∗(x, t) = g(x, t) } ,

Qo = Q − (Qe ∪ Qg) .

Thanks to (3.4)-(3.6) and the Sobolev embedding theorem, we infer that y∗ ∈ C(Q̄) if yo

is regular. Then Qe and Qg are closed sets and Qo is an open subset of Q. Let d ∈ D(Q)
be a test function with compact support supp d ⊂ Qo. By the continuity of y∗, e, g and
the compactness of supp d, one can find ρ > 0 such that y∗ +ρd and y∗−ρd remain in K .
Obviously, they are also regular and we can use them in (3.10) as test functions to infer :

〈

p∗ + r∗,
∂d

∂t
− ∆d

〉

W×W ′

= 0 ,

for any d ∈ D(Q) with compact support in Qo. Taking in account this relation and the
equation satisfied by p∗, we see that there exists a distribution j ∈ D′(Q) with support
included in Q − Qo, such that

∂r∗

∂t
− ∆r∗ + j = y∗ − zd in D′(Q) . (3.12)
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The previous equation is another familiar form of the adjoint system for state constrained
control problems. In particuler, it shows that r∗ ∈ W

2,1,p
loc (Qo) for p > 1 if zd belongs to

Lp(Q). Then r∗ ∈ C(Qo) by the Sobolev theorem if p is big enough.
We are now prepared to give a result on the structure of the optimal pair of (PP ), which
may be termed as a generalized bang-bang result, Tröltzsch [16]. We suppose from now
that N =0.

Corollary 3.1 We have :

Qo ⊆ { (x, t) | y∗(x, t) = zd(x, t) }∪{ (x, t) | u∗(x, t) = a(x, t) }∪{ (x, t) | u∗(x, t) = b(x, t) } .

Proof.- Choose u = u∗ in Q − Qo so that (3.11) yields

∀u ∈ Uad

∫

Qo

r∗(u∗ − u) dx dt ≥ 0 . (3.13)

Since r∗ ∈ C(Qo), obviously

Qo = { (x, t) ∈ Qo | r∗(x, t) > 0 }∪{ (x, t) ∈ Qo | r∗(x, t) < 0 }∪{ (x, t) ∈ Qo | r∗(x, t) = 0 } ,

and (3.13) shows that u∗ = b on the first set and u∗ = a on the second set. If the last
set has positive measure, then (3.12) and the maximal regularity of r∗ on Qo gives that
y∗ = zd on this subset. ✷

Remark 3.3 Taking into account the definition of Qo, we see that at least one from y∗

and u∗ equals the extremal values e, g, a, b or zd in any point of Q. A similar analysis
may be pursued when N > 0, but the structure of the optimal pair will be more complicated.

3.2 A Second Example :“Bottleneck” Problems.

We examine ”bottleneck” type problems which were introduced by Bellman [4] in con-
nection with some models for industrial production processes. They were discussed by a
different approach in the work of Miricà [13].

We assume that the state equation and the cost functional are the same as in the
previous example, with f ∈ L∞(Q), yo ∈ W

1,∞
o (Ω) ∩ W 2,∞(Ω), yo ≥ 0 a.e. in Ω, but the

constraint has the form
|y| ≤ u a.e. in Q . (3.14)

This is equivalent with : −u ≤ y ≤ u, so that the set D defined by (3.14) is convex.

Remark 3.4 If f ≥ 0, the maximum principle gives y ≥ 0 (with (3.4)) and the constraint
(3.14) is equivalent to

(3.14′) 0 ≤ y ≤ u a.e. in Q ,

which is the original form considered by Bellman [4]. We also underline that the boundary
condition (3.5) shows that the feasible pairs are not in the interior of D even in the
L∞(Q)-topology, that is Slater-type conditions cannot be valid in (3.14’).
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Take now ũ = αet, α > 0 and ỹ the solution of (3.4)-(3.6) associated to ũ. If α is
great enough, then f + ũ ≥ 0 a.e. in Q and ỹ ≥ 0 a.e in Q by the maximum principle. Let
w = αet − α ≥ 0 a.e in Q. We notice that w satisfies

∂w

∂t
− ∆w = αet in Q

w = (αet − α)|Σ ≥ 0 on Σ

w(0) = 0 in Ω .

(3.15)

Let us denote yv the solution of (3.4)-(3.6) associated to v (so that yo is associated to
v = 0). By comparison, it yields that w ≥ ỹ − yo, that is ũ − α + yo ≥ ỹ ≥ 0. There is
some constant m such that −m ≤ yo ≤ m a.e in Q. Then, if α > 2m is large enough, we
have

0 ≤ ỹ ≤ ũ − m a.e in Q . (3.16)

The pair [ỹ, ũ] is feasible and (3.16) shows that hypothesis (H′) is satisfied. Indeed we
take

M = { [yv, ũ] | v ∈ BLp(Q)(ũ, λ) }, p >
n + 2

2
,

where BLp(Q)(ũ, λ) is the Lp-ball centered in ũ with radius λ, and λ > 0 is small. By the
continuity with respect of the right-hand side and the Sobolev embedding theorem, we
can choose λ such that

‖ỹ − yv‖C(Q̄) ≤ m ,

that is M ⊂ D. Moreover T (M) = BLp(Q)(0, λ) and (H′) is fulfilled in Lp(Q). If n = 1
we may take p = 2 and even condition (H) is fulfilled.

Remark 3.5 We also notice that for the ”linear” constraint (3.14’) a simpler argument
may be used. For instance, we may define the new control function

ϕ = y − u ,

and D may be reexpressed in the ”decoupled” form

y ≥ 0 , ϕ ≤ 0 , a.e in Q .

The same substitution may be performed in (3.4)-(3.6) and in the cost functional, so that
the penalization method from section 2. may be used directly.

Finally, we prove that a generalized bang-bang result remains valid in this case as well,
under some regularity assumptions.

Corollary 3.2 Let N be equal to 0 and assume that y∗, u∗ exist and are continuous
functions on Q̄. Then

Q = { (x, t) ∈ Q | |y∗(x, t)| = u∗(x, t) } ∪ { (x, t) ∈ Q | y∗(x, t) = zd(x, t) } . (3.17)
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(The two sets above need not be disjoint. The first one corresponds to the case where the
constraint is active.)
Proof.- As hypothesis (H′) is fulfilled, theorem (3.1) gives the existence of r∗ ∈ Lq(Q)

where
1

p
+

1

q
= 1 and :

∫

Q

(y∗′ − y′ − ∆(y∗ − y))p∗ dx dt −

∫

Q

(y′ − ∆y − u − f)r∗ dx dt ≤ 0 , (3.18)

for any [y, u] ∈ D such that T (y, u) ∈ Lp(Q).
Here we used that N = 0 and p∗ is given by

−p∗′ − ∆p∗ = y∗ − zd in Q

p∗ = 0 on Σ
p∗(T ) = 0 in Ω .

(3.19)

Let Q∗ ⊂ Q be the open set defined as following

Q∗ = { (x, t) ∈ Q | |y∗(x, t)| < u∗(x, t) } ,

where the constraint is inactive. First we take test pairs of the type

[y, u] = [y∗ ± λdd, u∗] ∈ D ,

where d ∈ D(Q), supp d ⊂ Q∗ and λd > 0 is a small constant given by the Weierstrass
theorem applied to the continuous functions |y∗|, u∗ on the compact set supp d, such that

|y∗(x, t) ± λdd(x, t)| ≤ |y∗(x, t)| + λd|d(x, t)| ≤ u∗(x, t) .

Thanks to (3.18), we obtain after a short calculation, that

∫

Q

(d′ − ∆d)(p∗ + r∗) dx dt = 0 , (3.20)

for every d ∈ D(Q) with compact support in Q∗. Then, we may find a distribution
j ∈ D′(Q) with support in Q − Q∗ (active constraints set) such that :

∂r∗

∂t
+ ∆r∗ + j = y∗ − zd in D′(Q) . (3.21)

This follows from (3.19) and (3.20), and it implies a local regularity property for the
Lagrange multiplier r∗ : r∗ ∈ W

2,1,2
loc (Q∗) since zd ∈ L2(Q).

Now let us take the test pairs

[y, u] = [y∗, u∗ ± λdd ] ∈ D ,

where d, λd are as above. Again, by (3.18) we get

∫

Q

dr∗ dx dt = 0 .
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Multiplying (3.21) by d, we infer

∫

Q

d(y∗ − zd) dx dt =
〈

r∗′ + ∆r∗, d
〉

D′(Q)×D(Q)
= −

∫

Q

r∗(d′ − ∆d) dx dt = 0 ,

for any d ∈ D(Q) with support in Q∗. This proves that y∗ = zd in Q∗ and the proof is
over. ✷
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