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Résumé

We investigate optimal control problems governed by variational inequalities. and more

precisely the obstacle problem. Since we adopt a numerical point of view, we first relax the

feasible domain of the problem ; then using both mathematical programming methods and

penalization methods we get optimality conditions with smooth lagrange multipliers.
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1 Introduction

In this paper we are going to investigate optimal control problems where the state is described
by variational inequalities. Moreover, we consider constraints on both the control and the state.
Our purpose is to give some optimality conditions that can be easily exploited numerically. These
kind of problems have been extensively studied by many authors, as for example V. Barbu [1],
F. Mignot and J.P. Puel [11], A. Friedman [8] or more recently Zheng-Xu He [14]. We do not claim
that our results are quite new, but we think that the optimality conditions we obtain are easy to
interpret from a numerical point of view. Moreover the method we propose is quite different from
the methods used in the papers mentioned above and may be adapted to the study a large class
of control problems.

We are going to interpret the variational inequality as a state equation, introducing another
control function as in Mignot-Puel [11]. Then, we consider the optimal control problem as a “stan-
dard” control problem governed by a partial differential equation, involving state constraints which
are not necessarily convex. Moreover, in order to derive some optimality conditions in a simple way,
we shall “relax” the domain ; so we do not really solve the original problem but this point of view
will be justified and commented. Then we use methods issued from the mathematical programming
theory in Banach spaces ([12, 15]), and classical penalization methods as in [5] to obtain first-order
necessary optimality conditions.

The first part of the paper is devoted to the presentation of the problem and we recall some
classical results on variational inequalities. In a second part we shall briefly present the main results
of the mathematical programming theory in Banach spaces, and apply them to our problem. To
get better results, we shall apply this method to a penalized problem where the only the (linear)
state-equation is penalized, in the next section ; we establish some convergence properties.Then we
obtain penalized optimality conditions, and providing some qualification conditions we shall set
some optimality conditions on the limit problem.
The last part is devoted to the presentation of some examples, especially the case where the control
set Uad is the whole control space L2(Ω).
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2 Problem setting

Let Ω be an open, bounded subset of IRn (n ≤ 3) with a smooth boundary ∂Ω. We consider
the bilinear form a(., .) defined on H1

o (Ω) ×H1
o (Ω) by

a(ϕ,ψ) =

n
∑

i,j=1

∫

Ω

aij

∂ϕ

∂xi

∂ψ

∂xj

dx+
n

∑

i=1

∫

Ω

bi
∂ϕ

∂xi

ψ dx+

∫

Ω

cϕψ dx , (2.1)

where aij , bi, c belong to L∞(Ω). Moreover, we suppose that aij ∈ C0,1(Ω̄) the space of lipschitz
continuous functions in Ω and c ≥ 0, to ensure a “good” regularity of the solution (see [8]). The
bilinear form a(., .) is continuous on H1

o (Ω) ×H1
o (Ω) and we shall assume it is coercive, i.e.,

∃δ > 0 , ∀ϕ ∈ H1
o (Ω), a(ϕ,ϕ) ≥ δ‖ϕ‖2

H1
o
(Ω) .

We shall denote ‖ ‖V , the norm in the Banach space V , and more precisely ‖ ‖ the L2(Ω)-norm.
In the same way, 〈 , 〉 denotes the duality product between H−1(Ω) and H1

o (Ω) ; we shall denote
similarly the L2(Ω)-scalar product when there is no ambiguity. Let us set also

K = {ϕ | ϕ ∈ H1
o (Ω) , ϕ ≥ 0 a.e. in Ω} . (2.2)

This set is a non empty, closed, convex subset of H1
o (Ω).

Now, let us describe the control problem we are interested in ; we begin with the state-“equation”
which is a variational inequality. Let f be an element of H−1(Ω) and Uad a non empty, closed,
convex subset of L2(Ω). For each v in Uad we define y = y(v) (the state function of the system) as
the solution of the variational inequality :

∀ϕ ∈ K a(y, ϕ− y) ≥ 〈f + v, ϕ− y〉 , y ∈ K , (2.3)

Following the paper of Mignot and Puel ([11]) we may interpret (2.3) as :

Ay = f + v + ξ , y ≥ 0 , ξ ≥ 0 , 〈ξ, y〉 = 0 , (2.4)

where A ∈ L(H1
o (Ω),H−1(Ω)) such that 〈Aφ,ψ〉 = a(φ, ψ). We note that the coercivity assumption

on a(., .) implies that
∀ϕ ∈ H1

o (Ω), 〈Aϕ,ϕ〉 ≥ δ‖ϕ‖2
H1

o
(Ω) . (2.5)

It is well known that the system (2.4) has a unique solution ([1, 8]).
We shall assume also, from now, that f ∈ L2(Ω), so that we may “include ” it in the control
function v (as a fixed part of this control). So we may assume that f ≡ 0 without loss of generality.
This implies that ξ ∈ L2(Ω) since we have the following result ([8] p. 29) :

Theorem 2.1 If f + v ∈ Lp(Ω), 1 < p < ∞, the solution y of the variational inequality (2.3)
belongs to W 2,p(Ω).

Here v ∈ L2(Ω), so y(v) ∈ H2(Ω) ∩H1
o (Ω) ⊂ Co(Ω) and ξ = Ay − v ∈ L2(Ω). This makes a sense

to the expression ‖Ay − v − ξ‖.
Now, let us consider the optimal control problem defined as follows :

min

{

J(y, v) =
1

2

∫

Ω

(y − zd)
2 dx+

M

2

∫

Ω

v2 dx

}

, (P0)

a(y, ϕ− y) ≥ 〈v + f, ϕ− y〉 ∀ϕ ∈ K, (2.6)

v ∈ Uad , y ∈ K , (2.7)

where zd ∈ L2(Ω), v ∈ L2(Ω), and M > 0.
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Remark 2.1 We may also choose K = {y ∈ H1
o (Ω) | y ≥ ψ a.e. in Ω}, where ψ ∈ H1

o (Ω)∩H2(Ω).

This optimal control problem appears as a problem governed by a state equation (instead of
inequation) with mixed state and control constraints :

min

{

J(y, v) =
1

2

∫

Ω

(y − zd)
2 dx+

M

2

∫

Ω

v2 dx

}

, (P)

Ay = f + v + ξ in Ω , y = 0 on Γ , (2.8)

(y, v, ξ) ∈ D, (2.9)

where

D = {(y, v, ξ) ∈ H1
o (Ω) × L2(Ω) × L2(Ω) | v ∈ Uad, y ≥ 0, ξ ≥ 0, 〈y, ξ〉 = 0}. (2.10)

We assume that the set D̃ = { (y, v, ξ) ∈ D | relation (2.8) is satisfied } is non empty ; we know,
then that problem (P) has at least an optimal solution (not necessarily unique) that we shall note
(ȳ, v̄, ξ̄) (see [11] for instance).

Similar problems have been studied also in Bergounioux and Tiba [5] when the set D is convex.
Here, the main difficulty comes from the fact that the feasible domain D is not convex because
of the bilinear constraint “〈y, ξ〉 = 0”. So, we cannot use directly the convex analysis methods
that have been used for instance in [5]. To derive optimality conditions in this case, we are going
to use methods adapted to quite general mathematical programming problems. Unfortunately,
the domain D (i.e. the constraints set) does not satisfy the usual (quite weak) assumptions of
mathematical programming theory, as we shall point it out in section 4. This comes essentially
from the fact that the L∞-interior of D is empty. Nevertheless, our aim is to compute the solutions
of the original problem. As we have a numerical purpose, we are going to consider the domain Dα

instead of D, with α > 0 and

Dα = {(y, v, ξ) ∈ H1
o (Ω) × L2(Ω) × L2(Ω) | v ∈ Uad, y ≥ 0, ξ ≥ 0, 〈y, ξ〉 ≤ α}. (2.11)

This point of view is motivated and justified numerically, since it is not possible to ensure
“〈y, ξ〉 = 0” during a calculus with a computer but rather “〈y, ξ〉 ≤ α” where α may be chosen as
small as wanted, but strictly positive.
First, we define the“ relaxed” problem.

3 A Relaxed Problem

As we have already mentioned it, in the previous section we consider the problem (P) with Dα

instead of D. Moreover, we are obliged to add a constraint on the control ξ to be able to prove the
existence of a solution of the new relaxed problem. More precisely we consider :

minJ(y, v), (Pα)

Ay = v + ξ in Ω, y ∈ H1
o (Ω), (3.1)

(y, v, ξ) ∈ Dα,R , (3.2)

where R > 0 may be very large and

Dα,R = {(y, v, ξ) ∈ Dα | ‖ξ‖L2(Ω) ≤ R } .
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Remark 3.1 To be obliged to bound the control function ξ in L2(Ω) may seem surprising. Indeed
we are not able to prove the existence of a solution of the problem (Pα) when R = +∞. Never-
theless,once again from the numerical point of view, this constraint is not very restrictive : for
instance, R may be the largest positive number that may be computed by the machine.

Let us give an example showing that this additional constraint is necessary to get a solution
such that ξ ∈ L2(Ω).

We set Ω =] − 1, 1[ ; H1
o (Ω) is endowed with the scalar product : 〈y, z〉 =

∫ +1

−1

y′(x) z′(x) dx. Let

us choose zd as follows

zd(x) =

{

α (1 + x) if x < 0
α (1 − x) if x > 0 ,

where α ≤
1

2
. Then we have

inf

∫ +1

−1

|y − zd|
2 dx+

∫ +1

−1

v2 dx = 0 ,

where the infimum is taken on the set

Dα = { (y, v, ξ) | − y′′ = v + ξ, y ≥ 0, ξ ≥ 0, 0 ≤ 〈y, ξ〉 ≤ α } .

Indeed, the following sequence

yn(x) =











zd(x) on [−1,−
1

n
] ∪ [

1

n
, 1]

α (1 −
nx2

2
−

1

2n
) on [−

1

n
,
1

n
] ,

vn ≡ 0 and ξn = −y′′n = nα 1[− 1

n
, 1

n
] ,

is a minimizing sequence : it is admissible since yn ≥ 0, ξn ≥ 0 and

〈yn, ξn〉 =

∫ + 1

n

− 1

n

nα(α−
nα

2
x2 −

α

2n
) dx ≤ n

∫ + 1

n

− 1

n

α2 dx = 2α2 ≤ α .

Moreover

J(yn, vn, ξn) =
1

2

∫ + 1

n

− 1

n

|zd − yn|
2 dx→ 0 .

So the infimum of J on Dα is equal to 0, but there is no optimal solution (y, v, ξ) such that
ξ ∈ L2(Ω). If ξ ∈ L2(Ω) then y ∈ H2(Ω) ∩H1

o (Ω) ⊂ C1([−1,+1]). This is false ; the solution is

y = zd , v = 0 and ξ =
α

2
δo .

From now, we omit the index R since this constant is definitively fixed, such that

R ≥ ‖ξ̄‖ . (3.3)

(We recall that (ȳ, v̄, ξ̄) is a solution of (P)). We denote Vad = { ξ ∈ L2(Ω) | ξ ≥ 0, ‖ξ‖ ≤ R }
which is obviously a closed, convex subset of L2(Ω) and Dα = Dα,R.

As (ȳ, v̄, ξ̄) ∈ D it is obvious (with (??) ) that Dα is non empty for any α ≥ 0. First we give an
existence result :

Theorem 3.1 Let α > 0. Then problem (Pα) has at least one optimal solution that we call
(yα, vα, ξα). Moreover, when α tends to 0,
yα converges to ỹ strongly in H1

o (Ω), vα converges to ṽ strongly in L2(Ω), ξα converges to ξ̃ weakly
in L2(Ω), where (ỹ, ṽ, ξ̃) is a solution of (P).
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Proof.- Let be α > 0. Let (yn, vn, ξn) be a minimizing sequence, such that J(yn, vn) converges to
dα = inf(Pα). As J(yn, vn) is bounded, there exists a constant C such that, we have :

∀n ‖vn‖
2
L2(Ω) ≤ C .

So we can extract a subsequence( denoted similarly) such that vn converges to vα weakly in L2(Ω)
and strongly in H−1(Ω). As Uad is a closed convex set, it is weakly closed and vα ∈ Uad.
On the other hand we have Ayn − vn = ξn and 〈yn, ξn〉 ≤ α. So

〈Ayn, yn〉 = 〈vn, yn〉 + 〈yn, ξn〉 ,

〈Ayn, yn〉 ≤ 〈vn, yn〉 + α .

Using the coercivity of A, that is relation (2.5) we obtain

δ‖yn‖
2
H1

o
(Ω) ≤ ‖vn‖H−1(Ω)‖yn‖H1

o
(Ω) + α ≤ C‖yn‖H1

o
(Ω) + α .

This yields that yn is bounded in H1
o (Ω) ; so yn converges to yα weakly in H1

o (Ω) and strongly in
L2(Ω). Moreover as yn ∈ K, and K is a closed convex set, K is weakly closed and yα ∈ K.
As Ayn − vn = ξn, it is easy to see that ξn weakly converges to ξα = Ayα − vα in H−1(Ω).
Unfortunately the weak convergence of ξn to ξα in H−1(Ω)is not sufficient to conclude. We need a
weak convergence in L2(Ω). That is the reason why we have bounded ξn in L2(Ω). The unicity of
the limit implies that ξn weakly converges to ξα in L2(Ω). As Vad is closed and convex, we have
also ξα ∈ Vad.
Finally 〈yn, ξn〉 converges to 〈yα, ξα〉 because of the strong convergence of yn in L2(Ω) and the
weak convergence of ξn in L2(Ω) and (yα, vα, ξα) ∈ Dα.
The weak convergence and the lower semi continuity of J give :

dα = lim inf
n→+∞

J(yn, vn, ξn) ≥ (yα, vα) ≥ dα .

So J(yα, vα) = dα and (yα, vα, ξα) is a solution of (Pα).
• Now, let us prove the second part of the theorem ; first we note that (ȳ, v̄, ξ̄) belongs to Dα

for any α > 0. So :
∀α > 0 J(yα, vα) ≤ J(ȳ, v̄) , (3.4)

and vα and yα are bounded respectively in L2(Ω) andH1
o (Ω). Indeed, we use the previous arguments

since vα is bounded in L2(Ω) and

δ‖yα‖
2
H1

o
(Ω) ≤ ‖vα‖H−1(Ω)‖yα‖H1

o
(Ω) + α ≤ C‖yα‖H1

o
(Ω) + α .

So (extracting a subsequence) vα weakly converges to some ṽ in L2(Ω) and yα converges to some
ỹ weakly in H1

o (Ω) and strongly in L2(Ω). As above, it is easy to see that ξα weakly converges
to ξ̃ = Aỹ − ṽ in L2(Ω) since ξα is bounded in L2(Ω) independently of α, and that ỹ ∈ K, ṽ ∈
Uad, ξ̃ ∈ Vad.

In the same way 〈yα, ξα〉 converges to
〈

ỹ, ξ̃
〉

. As 0 ≤ 〈yα, ξα〉 ≤ α, this implies that
〈

ỹ, ξ̃
〉

= 0. So

(ỹ, ṽ, ξ̃) ∈ D. This yields that
J(ȳ, v̄) ≤ J(ỹ, ṽ) . (3.5)

Once again, we may pass to the inf-limit in (3.3) and we get :

J(ỹ, ṽ) ≤ lim inf
α→0

J(yα, vα) ≤ J(ȳ, v̄) .

This implies that
J(ỹ, ṽ) = J(ȳ, v̄) ;
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therefore (ỹ, ṽ, ξ̃) is a solution of (P). Moreover, as lim
α→0

J(yα, vα) = J(ỹ, ṽ) and yα strongly converges

to ỹ in L2(Ω), we get lim
α→0

‖vα‖ = ‖ṽ‖, so that vα strongly converges to ṽ in L2(Ω).

We have already seen that ξα weakly converges to ξ̃ in L2(Ω). So vα + ξα = Ayα converges to
ṽ + ξ̃ = Aỹ weakly in L2(Ω) and strongly in H−1(Ω). As A is an isomorphism from H1

o (Ω) to
H−1(Ω) this yields that yα strongly converges to ỹ in H1

o (Ω).
�

Remark 3.2 We may notice that we have not used the special definition of K, but only the fact
that this set is closed and convex in H1

o (Ω). The result of theorem 3.1 is also valid for any such set
K.

Remark 3.3 We have just proved that the solution of the relaxed problem converges to “a” so-
lution of the original problem. Nevertheless, we may force the relaxed solution to converge to a
desired solution (ȳ, v̄, ξ̄) of problem (P). So, following a trick of Barbu [1], we add some adapted
penalization terms to the functional J which becomes

J̄(y, v, ξ) = J(y, v) +
1

2
‖y − ȳ‖2

H1
o
(Ω) +

1

2
‖ξ − ξ̄‖2

L2(Ω).

It is easy to see that we are not obliged to bound the variable ξ in L2(Ω) any longer ; we consider
the problem

min J̄(y, v),

Ay = v + ξ in Ω, y ∈ H1
o (Ω),

(y, v, ξ) ∈ Dα ,

(P̄α)

instead of problem (Pα). Moreover, the previous theorem remains valid and we have a better conver-
gence :

Theorem 3.2 Let α > 0. Then problem (P̄α) has at least one optimal solution (ȳα, v̄α, ξ̄α). When
α tends to 0, (ȳα, v̄α, ξ̄α) converges to (ȳ, v̄, ξ̄) strongly in H1

o (Ω) × L2(Ω) × L2(Ω).

The proof is standard, see [1] for instance. �

We see then, that solutions of problem (Pα) are “good” approximations of the desired solution of
problem (P), as the numerical feeling suggested it. Now, we would like to get optimality conditions
for problem (Pα).

4 The Mathematical Programming point of view

As we have already mentioned it, the non convexity of the feasible domain, does not allow
to use convex analysis to get the existence of Lagrange multipliers. So we are going to use quite
general mathematical programming methods in Banach spaces and adapt them to our framework.
More precisely we are going to use the following results, mainly due to J.Zowe and S.Kurcyusz [15]
and F. Tröltzsch [12, 13].

Let us briefly present the method : let us consider real Banach spaces X ,U ,Z1,Z2 and a convex
closed “admissible” set Uad ⊆ U . In Z2 a convex closed cone P is given so that Z2 is partially
ordered by x ≥ y ⇔ x− y ∈P. We deal also with :

f : X × U → IR , Fréchet-differentiable functional ,

T : X × U → Z1 and G : X × U → Z2 continuously Fréchet-differentiable operators .

Now, let be the mathematical programming problem defined by :

min { f(x, u) | T (x, u) = 0, G(x, u) ≤ 0 , u ∈ Uad } . (4.1)
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To shorten the text, we denote the partial Fréchet-derivative of f, T, and G with respect to x
and u by a corresponding index x or u.
We suppose that the problem (4.1) has an optimal solution that we call (xo, uo), and we introduce
the sets :

Uad(uo) = { u ∈ U | ∃λ ≥ 0,∃u∗ ∈ Uad, u = λ(u∗ − uo) },

P(G(xo, uo)) = { z ∈ Z2 | ∃λ ≥ 0,∃p ∈ −P, z = p− λG(xo, uo) },

P+ = { y ∈ Z∗
2 | 〈y, p〉 ≥ 0 ,∀p ∈ P }.

One may now enounce the main result about the existence of optimality conditions.

Theorem 4.1 Let uo be an optimal control with corresponding optimal state xo and suppose that
the following regularity condition is fulfilled :

∀(z1, z2) ∈ Z1 ×Z2 the system
T ′(xo, uo)(x, u) = z1

G′(xo, uo)(x, u) − p = z2
is solvable with (x, u, p) ∈ X × Uad(uo) × P(G(xo, uo)) .

(4.2)

Then a Lagrange multiplier (y1, y2) ∈ Z∗
1 ×Z∗

2 exists such that

f ′x(xo, uo) + T ′
x(xo, uo)

∗y1 +G′
x(xo, uo)

∗y2 = 0 , (4.3)

〈f ′u(xo, uo) + T ′
u(xo, uo)

∗y1 +G′
u(xo, uo)

∗y2, u− uo〉 ≥ 0 , ∀u ∈ Uad , (4.4)

y2 ∈ P+ , 〈y2, G(xo, uo)〉 = 0 . (4.5)

�

The mathematical programming theory in Banach spaces allows to study problems where the
feasible domain is not convex. Indeed, in our case we cannot use the classical convex theory and the
Gâteaux differentiability to derive some optimality conditions. The Zowe and Kurcyusz condition
is a very weak condition to ensure the existence of Lagrange multipliers. It is natural to try to see
if this condition is satisfied for the original problem (P) : we are going to show that it cannot be
satisfied for the domain D. This is another justification (from a theoretical point of view) of the
fact that we take Dα instead of D.
Let us precise this point a little and consider the original optimal control problem (P). We apply
the previous theorem with

x = y , X = H2(Ω) ∩H1
o (Ω) ,

P = Po = { y ∈ H2(Ω) ∩H1
o (Ω) | y ≥ 0} ,

u = (v, ξ) , U = L2(Ω) × L2(Ω) , Uad = Uad × Vad ,

(4.6)

We recall that 〈 , 〉 denotes the L2(Ω)-scalar product.

Z1 = L2(Ω) × IR , Z2 = X = H2(Ω) ∩H1
o (Ω) ;

T (x, u) = T (y, v, ξ) = (Ay − v − ξ, 〈y, ξ〉) , G(y, v, ξ) = −y ,

f(x) = J(y, v) , (xo, uo) = (ȳ, v̄, ξ̄) .

T is linear with respect to the first component and bilinear with respect to the second one, G is
linear, so they are C1, and

T ′(ȳ, v̄, ξ̄)(y, v, ξ) =
(

Ay − v − ξ, 〈ȳ, ξ〉 +
〈

y, ξ̄
〉)

,

G′(ȳ, v̄, ξ̄)(y, v, ξ) = −y .



4 THE MATHEMATICAL PROGRAMMING POINT OF VIEW 8

Here
Uad(uo) = { (λ(v − v̄), µ(ξ − ξ̄)) | λ ≥ 0, µ ≥ 0, v ∈ Uad, ξ ∈ Vad },

P(G(xo, uo)) = P(−yα) = { −p+ δȳ ∈ H2(Ω) ∩H1
o (Ω) | δ ≥ 0, p ≥ 0 },

Then relation (4.2) becomes :

∀(z1, β, z2) ∈ L2(Ω) × IR × (H2(Ω) ∩H1
o (Ω)) the system

Ay − λ(v − v̄) − µ(ξ − ξ̄) = z1
〈

ȳ, µ(ξ − ξ̄)
〉

+
〈

y, ξ̄
〉

= β

−y + p− δȳ = z2
is solvable with µ, λ, δ ≥ 0, ξ ≥ 0 , v ∈ Uad, p ≥ 0 .

So y must be equal to p − δȳ − z2. If we put it in the second equation of the system, we have to
solve

µ 〈ȳ, ξ〉 +
〈

p, ξ̄
〉

= β +
〈

z2, ξ̄
〉

, (4.7)

with µ ≥ 0 and ξ, p ≥ 0.
This is of course, impossible, since the left term is always positive and the right one may be

chosen arbitrarily in IR. So the Zowe and Kurcyusz condition cannot be satisfied and it appears
that the restriction “〈y, ξ〉 = 0” is quite strong : that is why we replace it by “〈y, ξ〉 ≤ α”.

Now, we come back to the study of problem (Pα), and we are going to detail what the previous
general theorems lead to. When we consider Dα instead of D, X ,Po,U and Uad remain defined by
(4.6) but operators T and G are modified. Now

Z1 = L2(Ω) ,Z2 = X × IR , P = Po × IR+ ,

G(y, v, ξ) = (−y, 〈y, ξ〉 − α) and T (y, v, ξ) = Ay − v − ξ .
(4.8)

T and G are C1, and
T ′(yα, vα, ξα)(y, v, ξ) = Ay − v − ξ ,

G′(yα, vα, ξα)(y, v, ξ) = (−y, 〈yα, ξ〉 + 〈y, ξα〉) , .

Here
Uad(uo) = { (λ(v − vα), µ(ξ − ξα)) | λ ≥ 0, µ ≥ 0, v ∈ Uad, ξ ∈ Vad },

P(G(xo, uo)) = {( −p+ λyα,−γ − λ(〈yα, ξα〉 − α)) ∈ H2(Ω) ∩H1
o (Ω) × IR | γ, λ ≥ 0, p ≥ 0 }.

Then relation (4.2) turns to :

∀(z1, z2, β) ∈ L2(Ω) ×X × IR the system

Ay − λ(v − vα) − µ(ξ − ξα) = z1
−y + p− δyα = z2

〈yα, µ(ξ − ξα)〉 + 〈y, ξα〉 + γ + δ (〈yα, ξα〉 − α) = β ,

(4.9)

is solvable with µ, γ, λ, δ ≥ 0, p, ξ ∈ Vad, v ∈ Uad and y ∈ X .
The second equation of the system gives : y = −z2 + p− δyα and we have to solve :

Ap− δAyα − λ(v − vα) − µ(ξ − ξα) = z1 +Az2
µ 〈yα, ξ − ξα〉 + 〈p, ξα〉 + γ − λα = ρ ;

(4.10)

where ρ = β + 〈z, ξα〉 is an arbitrary real number and with µ, γ, λ, δ ≥ 0 and p, ξ ∈ Vad, v ∈ Uad.
It appears that this condition may be difficult to satisfy. So, following Tröltzsch ([12], p.21), we

prefer a strong variant (4.11) of the Zowe and Kurcyusz condition. (We keep always the previous
notations).
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Theorem 4.2 Let us suppose that (T ′
x(xo, yo))

−1 ∈ L(Z1,X ) exists, and that there is a pair
(x̃, ũ) ∈ X × Uad such that

T ′(xo, uo)(x̃, ũ− uo) = 0
G′(xo, uo)(x̃, ũ− uo) ∈ intZ2

P(G(xo, uo)) .
(4.11)

Then the condition (4.2) is satisfied, so that theorem 4.1 is valid. �

As T ′
y(yα, vα, ξα) = A is an isomorphism from X into L2(Ω), condition (4.11) reduces to :

∃(ỹ, ṽ, ξ̃) ∈ X × Uad such that

Aỹ − (ṽ − vα) − (ξ̃ − ξα) = 0

(−ỹ,
〈

yα, ξ̃ − ξα

〉

+ 〈ỹ, ξα〉 ∈ intZ2
P(G(yα, vα, ξα)) .

(4.12)

Let us comment this condition. First

Aỹ − (ṽ − vα) − (ξ̃ − ξα) = 0 ⇒ Aỹ − ṽ − ξ̃ = −vα − ξα = −Ayα .

The second part of relation (4.12) means the existence of ρ > 0, ao > 0 such that :

∀η ∈ X , ‖η‖X ≤ 1, ∀a ∈ IR, |a| ≤ ao, ∃pη ≥ 0,∃λη,a, γa ≥ 0,
{

−ỹ − ρη = −pη + λη,ayα ,
〈

yα, ξ̃ − ξα

〉

+ 〈ỹ, ξα〉 + a = −γa − λη,a (〈yα, ξα〉 − α) .

This means finally :

∃(ỹ, ξ̃) ∈ X × Vad,∃ ρ > 0 , ∃ ao > 0 such that

ṽ = A(ỹ + yα) − ξ̃ (in Ω) belongs to Uad and
{

∀a ∈ IR, |a| ≤ ao, ∀η ∈ X , ‖η‖X ≤ 1 ,∃λη,a ∈ IR+, such that

ỹ + λη,ayα + ρη ≥ 0 and
〈

yα, ξ̃
〉

+ 〈ỹ, ξα〉 ≤ 〈yα, ξα〉 − a− λη,a (〈yα, ξα〉 − α) .

(4.13)

Remark 4.1 In the very case where 〈yα, ξα〉 = α, the last part of (4.13) :

〈

yα, ξ̃
〉

+ 〈ỹ, ξα〉 ≤ 〈yα, ξα〉 − a− λη,a (〈yα, ξα〉 − α) ,

is equivalent to
〈

yα, ξ̃
〉

+ 〈ỹ, ξα〉 ≤ α− a ,

so that relation (4.13) becomes :

∃(ỹ, ξ̃) ∈ X × Vad,∃ ρ > 0 , ∃ ao > 0 such that

ṽ = A(ỹ + yα) − ξ̃ ∈ Uad and

∀a ∈ IR, |a| ≤ ao

〈

yα, ξ̃
〉

+ 〈ỹ, ξα〉 ≤ α− a , and

∀η ∈ X , ‖η‖X ≤ 1 ,∃λη ∈ IR+, such that ỹ + ληyα + ρη ≥ 0 .

So relation (4.13) implies the following one

∃(ỹ, ξ̃) ∈ X × Vad,∃ ρ > 0 such that

ṽ = A(ỹ + yα) − ξ̃ ∈ Uad and ,
〈

yα, ξ̃
〉

+ 〈ỹ, ξα〉 < α , and

∀η ∈ X , ‖η‖X ≤ 1 ,∃λη ∈ IR+, such that ỹ + ληyα + ρη ≥ 0 .

(4.14)

Moreover, in this very case, these two relations are equivalent since (4.14) implies (4.13) as well,

with ao = α− (
〈

yα, ξ̃
〉

+ 〈ỹ, ξα〉) > 0 .
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Now, we may enounce the Lagrange multipliers existence result :

Theorem 4.3 Assume condition (4.13) (or (4.2)) is satisfied. Then a Lagrange multiplier (qα, rα) ∈
L2(Ω) × IR+ exists such that

∀y ∈ K 〈pα + qα, A(y − yα)〉 + 〈rαξα, y − yα〉 ≥ 0 , (4.15)

∀v ∈ Uad 〈Mvα − qα, v − vα〉 ≥ 0 , (4.16)

∀ξ ∈ Vad 〈rαyα − qα, ξ − ξα〉 ≥ 0 , (4.17)

rα (〈yα, ξα〉 − α) = 0 , (4.18)

where pα is the solution (∈ X ) of

A∗pα = yα − zd on Ω, pα ∈ H1
o (Ω) , (4.19)

( A∗ is the adjoint operator of A).

Proof.- J is Fréchet-differentiable and

J ′(yα, vα)(y, v) = 〈yα − zd, y〉 +M 〈vα, v〉 .

We may apply theorem 4.1. So there exists qα ∈ L2(Ω), sα ∈ X ∗ (i.e. a measure) and rα ∈ IR such
that :

∀y ∈ X 〈yα − zd, y〉 + 〈qα, Ay〉 + rα 〈ξα, y〉 − 〈〈sα, y〉〉 = 0 , (4.20)

∀v ∈ Uad M 〈vα − qα, v − vα〉 ≥ 0 ,

∀ξ ∈ Vad 〈rαyα − qα, ξ − ξα〉 ≥ 0 ,

rα ≥ 0, rα (〈yα, ξα〉 − α) = 0 ,

∀y ∈ X , y ≥ 0, 〈〈sα, y〉〉 ≥ 0 , 〈〈sα, yα〉〉 = 0 , (4.21)

where 〈〈 , 〉〉 denotes the duality product between X ∗ and X . Relation (4.20) applied to y − yα

gives

∀y ∈ X 〈yα − zd, y − yα〉 + 〈qα, A(y − yα)〉 + rα 〈ξα, y − yα〉 = 〈〈sα, y〉〉 − 〈〈sα, yα〉〉 .

So, with (4.21), we obtain :

∀y ≥ 0 〈yα − zd, y − yα〉 + 〈qα, A(y − yα)〉 + rα 〈ξα, y − yα〉 ≥ 0 .

Let pα be the adjoint state defined with (4.19) ; we finally obtain :

∀y ≥ 0 〈pα + qα, A(y − yα)〉 + 〈rαξα, y − yα〉 ≥ 0 .

�

Remark 4.2 All we have previously done with X = H2(Ω)∩H1
o (Ω), Z1 = L2(Ω) and Z2 = X×IR,

may be done similarly with X = H1
o (Ω), Z1 = H−1(Ω) and Z2 = X × IR (U and Uad remain

unchanged). Then relation (4.13) becomes

∃(ỹ, ξ̃) ∈ H1
o (Ω) × Vad,∃ ρ > 0 , ∃ ao > 0 such that

ṽ = A(ỹ + yα) − ξ̃ (in Ω) belongs to Uad and
{

∀a ∈ IR, |a| ≤ ao, ∀η ∈ H1
o (Ω), ‖η‖H1

o
(Ω) ≤ 1 ,∃λη,a ∈ IR+, such that

ỹ + λη,ayα + ρη ≥ 0 and
〈

yα, ξ̃
〉

+ 〈ỹ, ξα〉 < 〈yα, ξα〉 − a− λη,a (〈yα, ξα〉 − α) .

(4.22)

This allows to look for some ỹ less regular than in (4.13) (H1
o (Ω) instead of H2(Ω) ∩H1

o (Ω)), but
the η functions must belong to a “larger” space.
In this case the optimality system is more precise : sα ∈ H−1(Ω) and the tests functions ( corres-
ponding to the state) may be taken in H1

o (Ω).
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Remark 4.3 We have kept the Lagrange multipliers associated to the state-equation and to the
constraint 〈yα, ξα〉 ≤ α because they have a “good” regularity (one is in L2(Ω) and the other one is
a real number). On the other hand, the multiplier associated to the constraint “y ≥ 0” is a measure
and we prefer to “eliminate” it since the projection on the convex K is generally not too difficult
to compute.

The optimality system we have obtained is quite standard and we are going to interpret with a
linearized lagrangian function in a further section.

Let us come back to the qualification condition (4.13). It may be difficult to ensure it, since
we have to find (ỹ, ṽ, ξ̃) which must satisfy all the constraints “together”. In the next section we
are going to use a penalization method to obtain a qualification condition, “decoupled” in some
sense and easier to ensure. This condition leads to the same optimality system, but allows more
regularity on the multiplier qα.

5 Penalization of the relaxed problem

Now we are going to “decouple” the different constraints. More precisely we are going to treat
separately the “convex” constraints (as the state equation which is linear) and the non convex
constraints. We first penalize the state equation and we obtain an optimization problem with non
convex constraints, that we are going to study with mathematical programming methods once
again to get penalized optimality conditions.

Moreover we want to focus on the solution (yα, vα, ξα) ; so, following Barbu [1], we add some
adapted penalization terms to the functional J .

From now, α > 0 is fixed ; so we omit the index α when no confusion is possible. For any ε we
define a penalized functional Jε > 0 on H1

o (Ω) × L2(Ω) × L2(Ω) as following :

Jε(y, v, ξ) =



















J(y, v) +
1

2ε
‖Ay − v − ξ‖2

L2(Ω)

+
1

2
‖y − yα‖

2
H1

o
(Ω) +

1

2
‖v − vα‖

2
L2(Ω) if Ay − v − ξ ∈ L2(Ω)

+∞ else

(5.1)

and we consider the penalized optimization problem

min { Jε(y, v, ξ) | (y, v, ξ) ∈ Dα} (Pα
ε )

Remark 5.1 Note that we penalize the functional J , and not the variational inequality itself as
in Barbu [1].

Theorem 5.1 The penalized problem (Pα
ε ) has at least a solution (yε, vε, ξε) ∈ (H2(Ω)∩H1

o (Ω))×
L2(Ω) × L2(Ω).

Proof.- The proof is the same that the proof of theorem 3.1. The main difference is that we have
no longer

Ayn − vn − ξn = 0 ,

for any minimizing sequence but

Ayn − vn − ξn ⇀ 0, weakly in L2(Ω) .

Anyway the conclusion is the same. �

Now we may also give a result concerning the asymptotic behavior of the penalized problem.

Theorem 5.2 When ε tends to 0, (yε, vε, ξε) strongly converges to (yα, vα, ξα) in H1
o (Ω)×L2(Ω)×

L2(Ω).
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Proof.- The proof is quite similar to the proof of theorem (3.1). We have : ∀ε > 0 ,

J(yε, vε) +
1

2ε
‖Ayε − vε − ξε‖

2
L2(Ω) +

1

2
‖yε − yα‖

2
H1

o
(Ω) +

1

2
‖vε − vα‖

2
L2(Ω) ≤ J(yα, vα) = jα. (5.2)

So
vε ⇀ ṽ weakly in L2(Ω) ,

yε → ỹ weakly in H1
o (Ω) and strongly in L2(Ω) .

Moreover, ‖Ayε − vε − ξε‖
2
L2(Ω) ≤ 2εjα implies the strong convergence of Ayε − vε − ξε to 0 in

L2(Ω). ξε is bounded in L2(Ω) so it weakly converges to ξ̃ in L2(Ω). The weak continuity of A and
the unicity of the limit implies also that Ayε − vε weakly converges to Aỹ − ṽ = ξ̃ in L2(Ω).

It is easy to see that ỹ ∈ K, ṽ ∈ Uad and ξ̃ ∈ Vad. Moreover, as yε tends to ỹ strongly in L2(Ω)

and ξε tends to ξ̃ weakly in L2(Ω), we know that 〈yε, ξε〉 ≤ α converges to
〈

ỹ, ξ̃
〉

. So
〈

ỹ, ξ̃
〉

≤ α

and, finally we see that (ỹ, ṽ, ξ̃) belongs to Dα .
Relation (5.2) implies that

J(yε, vε) +
1

2
‖yε − yα‖

2
H1

o
(Ω) +

1

2
‖vε − vα‖

2
L2(Ω) ≤ J(yα, vα) . (5.3)

Passing to the inf-limit we get

J(ỹ, ṽ) +
1

2
‖ỹ − yα‖

2
H1

o
(Ω) +

1

2
‖ṽ − vα‖

2
L2(Ω) ≤ J(yα, vα) .

As (ỹ, ṽ, ξ̃) belongs to Dα we have also

J(yα, vα) ≤ J(ỹ, ṽ) .

So ‖ỹ − yα‖
2
H1

o
(Ω) + ‖ṽ − vα‖

2
L2(Ω) = 0, ỹ = yα, ṽ = vα and ξ̃ = ξα.

We have just proved the weak convergence of (yε, vε, ξε) to (yα, vα), ξα) in H1
o (Ω)×L2(Ω)×L2(Ω)

and that lim
ε→0

J(yε, vε) = J(yα, vα). Relation (5.3) gives

‖yε − yα‖
2
H1

o
(Ω) + ‖vε − vα‖

2
L2(Ω) ≤ 2 (J(yα, vα) − J(yε, vε)) ;

therefore we get the desired strong convergence. �

Corollary 5.1 If we define the penalized adjoint state pε as the solution of

A∗pε = yε − zd on Ω, pε ∈ H1
o (Ω) , (5.4)

then pε strongly converges to pα in H1
o (Ω), where pα is defined with (4.19).

�

Now, we apply the general theorems of the previous section to the penalized problem (Pα
ε ).

Once again we set
X = H2(Ω) ∩H1

o (Ω) , Z2 = X ;

u = (v, ξ) , U = L2(Ω) × L2(Ω) , Uad = Uad × Vad ,

P = { y ∈ X | y ≥ 0} × IR+ ,

G(y, v, ξ) = (−y , 〈y, ξ〉 − α) ,

f(x) = Jε(y, v) , (xo, uo) = (yε, vε, ξε) .
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There is no equality operator, G is C1 and

G′(yε, vε, ξε)(y, v, ξ) = (−y, 〈yε, ξ〉 + 〈y, ξε〉) .

Here
Uad(uo) = { (λ(v − vε), µ(ξ − ξε)) | λ ≥ 0, µ ≥ 0, v ∈ Uad, ξ ∈ Vad },

P(G(xo, uo)) = {( −p+ λyε,−γ − λ(〈yε, ξε〉 − α)) ∈ H2(Ω) ∩H1
o (Ω) × IR | γ, λ ≥ 0, p ≥ 0 } .

Let us write the condition (4.2) : for any (z, β) in X × IR we must solve the system :

−y + p− λyε = z

〈yε, µ(ξ − ξε)〉 + 〈y, ξε〉 + γ + λ (〈yε, ξε〉 − α) = β ,

with µ, γ, λ ≥ 0, p ≥ 0, ξ ∈ Vad, v ∈ Uad and y ∈ X . Taking y from the first equation into the
second we have to solve :

µ 〈yε, ξ − ξε〉 + 〈p, ξε〉 + γ − λα = β + 〈z, ξε〉 = ρ ,

with µ, γ, λ ≥ 0, p ≥ 0, ξ ∈ Vad, v ∈ Uad . We see that we may take : µ = 1, ξ = ξε, p = 0, and

{

λ = 0 , γ = ρ , if ρ ≥ 0 ,

λ = −
ρ

α
, γ = 0 , if ρ < 0 .

So the condition (4.2) is always satisfied and we may apply theorem 4.1, since Jε is Fréchet-
differentiable, and

J ′
ε(yε, vε, ξε)(y, v, ξ) = 〈yε − zd, y〉 +M 〈vε, v〉 + 〈qε, Ay − v − ξ〉 + 〈yε − yα, y〉H1

o
(Ω) + 〈vε − vα, v〉

where

qε =
1

ε
(Ayε − vε − ξε) ∈ L2(Ω) . (5.5)

There exists sε ∈ X ∗ and rε ∈ IR such that :

∀y ∈ X 〈yε − zd, y〉 + 〈qε, Ay〉 + 〈yε − yα, y〉H1
o
(Ω) + rε 〈ξε, y〉 − 〈〈sε, y〉〉 = 0 ,

∀v ∈ Uad M 〈vε − qε + vε − vα, v − vα〉 ≥ 0 ,

∀ξ ∈ Vad 〈rεyε − qε, ξ − ξε〉 ≥ 0 ,

rε ≥ 0, rε (〈yε, ξε〉 − α) = 0 ,

∀y ∈ X , y ≥ 0, 〈〈sε, y〉〉 ≥ 0 , 〈〈sε, yε〉〉 = 0 .

The calculus is exactly the same that the one made just before. Finally, we have optimality condi-
tions on the penalized system, without any further assumption :

Theorem 5.3 The solution (yε, vε, ξε) of problem (Pα
ε ) satisfies the following optimality system :

∀y ∈ K , 〈pε + qε, A(y − yε)〉 + 〈rεξε, y − yε〉 + 〈yε − yα, y − yε〉H1
o
(Ω) ≥ 0 , (5.6)

∀v ∈ Uad , 〈Mvε − qε + (vε − vα), v − vε〉 ≥ 0 , (5.7)

∀ξ ∈ Vad , 〈rεyε − qε, ξ − ξε〉 ≥ 0 , (5.8)

rε ∈ IR+, rε (〈yε, ξε〉 − α) = 0 , (5.9)

where pε is given by (5.4) and qε by (5.5). �



5 PENALIZATION OF THE RELAXED PROBLEM 14

Now we would like to pass to the limit in these relations and we need estimations on qε and rε.
Now we would like to pass to the limit in these relations and we need estimations on qε and rε.

Let us choose (y, v, ξ) in K × Uad × Vad, and add the relations (5.6)-(5.8). We obtain :

〈qε,−Ay + v + ξ〉 − 〈rεξε, y〉 − 〈rεyε, ξ〉 + 2rε 〈yε, ξε〉 ≤

〈pε, A(y − yε)〉 − ε‖qε‖
2 + 〈yε − yα, y − yε〉H1

o
(Ω) + 〈Mvε + (vε − vα), v − vε〉 .

The left side is uniformly bounded with respect to ε by a constant C which only depends of y, v, ξ.
Moreover relation (5.9) gives :

rε 〈yε, ξε〉 = rεα ,

so that we finally obtain :

−〈qε, Ay − v − ξ〉 − rε (〈ξε, y〉 + 〈yε, ξ〉) + 2rεα ≤ C(y,v,ξ) . (5.10)

If 〈yα, ξα〉 < α, as 〈yε, ξε〉 → 〈yα, ξα〉 in IR, there exists εo > 0 such that

∀ε ≤ εo 〈yε, ξε〉 < α ,

and relation (5.9) implies that rε = 0. So the limit value is rα = 0.
If 〈yα, ξα〉 = α we cannot conclude immediately, so we assume the following condition :

∀α such that 〈yα, ξα〉 = α ,

∃(ỹ, ṽ, ξ̃) ∈ K × Uad × Vad such that

Aỹ = ṽ + ξ̃ and 〈ỹ, ξα〉 +
〈

yα, ξ̃
〉

< 2α .

(H1)

Remark 5.2 As we do not know (yα, ξα), it is more useful to have an hypothesis which does not
depend of (yα, ξα) ; so we should better suppose the stronger following assumption :

∀α > 0, ∀(y, ξ) ∈ X × L2(Ω) such that 〈y, ξ〉 = α ,

∃(ỹ, ṽ, ξ̃) ∈ K × Uad × Vad such that

Aỹ = ṽ + ξ̃ and 〈ỹ, ξ〉 +
〈

y, ξ̃
〉

< 2α .

(H′
1)

Nevertheless assumption (H1) is usually easy to ensure ; we give below an important case where it
is true.

Proposition 5.1 If 0 ∈ Uad, then (H1) is fulfilled.

Proof .- The result is obvious since we may choose ỹ = 0 ∈ K, ξ̃ = 0 and ṽ = 0 ∈ Uad. Then

〈ỹ, ξα〉 +
〈

yα, ξ̃
〉

= 0 < 2α .

�

Then we have the first estimation :

Theorem 5.4 Assume (H1) ; then rε is bounded by a constant independent of ε and we may
extract a subsequence that converges to rα in IR.

Proof .- We have already mentioned that rα = 0 when 〈yα, ξα〉 < α. In the other case, assumption
(H1) provides test functions (ỹ, ṽ, ξ̃) which does not depend of ε.
Let be ρ ∈]0, 2α[ ; as

〈ỹ, ξε〉 +
〈

yε, ξ̃
〉

→ 〈ỹ, ξα〉 +
〈

yα, ξ̃
〉

< 2α,

there exists εo > 0 such that

∀ε ≤ εo 〈ỹ, ξε〉 +
〈

yε, ξ̃
〉

≤ 2α− ρ .
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Using relation (5.10) with (ỹ, ṽ, ξ̃), we get :

∀ε ≤ εo rε ≤
C̃

ρ
.

�

Once we have the previous estimation, relation (5.10) becomes :

∀ (y, v, ξ) ∈ K × Uad × Vad − 〈qε, Ay − v − ξ〉 ≤ C(y,v,ξ) . (5.11)

Then we have to do another assumption to get the estimation of qε :

∃p ∈ [1,+∞], ∃ ρ > 0 , ∀ χ ∈ Lp(Ω), ‖χ‖Lp(Ω) ≤ 1 ,
∃(yχ, vχ, ξχ)bounded in K × Uad × Vad (by a constant independent of χ) ,

such that Ayχ = vχ + ξχ + ρχ in Ω.
(H2)

Then we may conclude :

Theorem 5.5 Assume (H1) and (H2) ; then qε is bounded in Lp′

(Ω) by a constant independent
of ε. (p′ is the conjugate of p).

Proof .- It is obvious since (H2) and relation (5.11) applied with (yχ, vχ, ξχ) give :

∀ χ ∈ Lp(Ω), ‖χ‖Lp(Ω) ≤ 1 , ρ 〈qε, χ〉 ≤ Cχ ≤ C .

�

Then we may pass to the limit in the penalized optimality system and obtain :

Theorem 5.6 Assume (H1) and (H2) ; if (yα, vα, ξα) is a solution of (Pα), then a lagrange mul-
tiplier (qα, rα) ∈ Lp′

(Ω) × IR+ exists, such that

∀y ∈ K ,A(y − yα) ∈ Lp(Ω) , 〈pα + qα, A(y − yα〉 + rα 〈ξα, y − yα〉 ≥ 0 , (5.12)

∀v ∈ Uad , v − vα ∈ Lp(Ω) 〈Mvα − qα, v − vα〉 ≥ 0 , (5.13)

∀ξ ∈ Vad , ξ − ξα ∈ Lp(Ω) 〈rαyα − qα, ξ − ξα〉 ≥ 0 , (5.14)

rα (〈yα, ξα〉 − α) = 0 , (5.15)

where pα is given by (4.19) . �

Remark 5.3 It is clear that we may choose p = 2 in the previous theorem. Nevertheless we prefer
enounce the result in its general form. We see that the multiplier may be found more regular with
the assumption (H2) than in the previous section.

Remark 5.4 We may use the previous method similarly to study the problem (Pα) defined in
Remark 3.2. We have just to consider J̄ instead of J . So,(with p = 2), we obtain the following
theorem :

Theorem 5.7 Assume (H1) and (H2) ; if (ȳα, v̄α, ξ̄α) is a solution of (Pα), then a lagrange mul-
tiplier (q̄α, r̄α) ∈ L2(Ω) × IR+ exists, such that

∀y ∈ K , 〈p̄α + q̄α, A(y − ȳα〉 + 〈ȳα − ȳ, y − ȳα〉H1
o
(Ω) + r̄α

〈

ξ̄α, y − ȳα

〉

≥ 0 , (5.16)

∀v ∈ Uad , 〈Mv̄α − q̄α, v − v̄α〉 ≥ 0 , (5.17)

∀ξ ∈ Vad ,
〈

r̄αȳα − q̄α + ξ̄ − ξ̄α, ξ − ξ̄α+
〉

≥ 0 , (5.18)

r̄α
(〈

ȳα, ξ̄α
〉

− α
)

= 0 . (5.19)

�
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6 Examples

In the previous sections we have obtained optimality conditions, assuming some “qualification”
conditions (4.13) or (H1 +H2). The optimality systems we have got are similar and we would like
to compare the qualification conditions in a general way. We have the following result :

Theorem 6.1 Condition (4.14) ⇒ (H1)

Proof .- We are in the case where 〈yα, ξα〉 = α. Condition (4.14) gives the existence of (y∗, v∗, ξ∗)
in X × Uad × Vad and ρ > 0 such that Ay∗ = v∗ + ξ∗ −Ayα and 〈yα, ξ

∗〉 + 〈y∗, ξα〉 < α. Moreover
(for η = 0 ), there exists λ ∈ IR+ such that

y∗ + λyα ≥ 0 .

• If λ ∈ [0, 1], we set ỹ = yα + λy∗.
As y∗ ≥ −λyα then ỹ ≥ (1 − λ2)yα ≥ 0, and ỹ ∈ K.
Moreover

Aỹ = Ayα + λAy∗ = λ(v∗ + ξ∗) + (1 − λ)(vα + ξα) = ṽ + ξ̃ ,

where ṽ = λv∗ + (1 − λ)vα ∈ Uad, and ξ̃ = λξ∗ + (1 − λ)ξα ∈ Vad.
We have also :

〈

yα, ξ̃
〉

+ 〈ỹ, ξα〉 = λ 〈yα, ξ
∗〉 + (1 − λ) 〈yα, ξα〉 + 〈yα, ξα〉 + λ 〈y∗, ξα〉 ,

〈

yα, ξ̃
〉

+ 〈ỹ, ξα〉 = (2 − λ) 〈yα, ξα〉 + λ (〈yα, ξ
∗〉 + 〈y∗, ξα〉) ,

〈

yα, ξ̃
〉

+ 〈ỹ, ξα〉 < (2 − λ)α+ λα = 2α .

• If λ > 1, we set ỹ = yα +
1

λ
y∗ ; as ỹ =

1

λ
(y∗ + λyα), ỹ ∈ K. The same calculus as done just

before, shows that
Aỹ = ṽ + ξ̃ ,

where ṽ =
1

λ
v∗ + (1 −

1

λ
)vα ∈ Uad, ξ̃ =

1

λ
ξ∗ + (1 −

1

λ
)ξα ∈ Vad, and

〈

yα, ξ̃
〉

+ 〈ỹ, ξα〉 < (2 −
1

λ
)α+

1

λ
α = 2α .

So, in both cases, (H1) is satisfied with (ỹ, ṽ, ξ̃). �

Nevertheless it is difficult to compare (4.13) and (H2) as done above. We just give some examples
where the comparison is possible.

6.1 Case where Uad = L2(Ω)

In this section we are going to study the case where Uad = L2(Ω) ; it is an interesting example
since most of known results concerning this kind of problem concern an admissible set Uad equal to
the whole control space (here L2(Ω)), (see [14, 11], for example). We are going to show how difficult
it is to compare the different conditions given in Sections 3. and 4. and give some indications to
see how to get the limit optimality system when α→ 0.
When Uad = L2(Ω) it is obvious that (H2) is always ensured ; (H1) is satisfied as well since 0 ∈ Uad

(see Proposition 5.1).
Moreover, in the very case where 〈yα, ξα〉 = α ( which is the only case that is considered in (H1) )
the condition (4.13) (that is (4.14) in this case) becomes :
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∃(ỹ, ξ̃) ∈ X × Vad,∃ ρ > 0 , such that
〈

yα, ξ̃
〉

+ 〈ỹ, ξα〉 < α and

∀η ∈ X , ‖η‖X ≤ 1 ,∃λη ∈ IR+, such that ỹ + ληyα + ρη ≥ 0 ,
(6.1)

where X is either H2(Ω)∩H1
o (Ω) or H1

o (Ω) (as mentioned in Remark 4.2). Then, for 1-dimensional
problems we have

Proposition 6.1 If n = 1, condition (6.1) is satisfied with X = H1
o (Ω), in the case where

〈yα, ξα〉 = α.

Proof.- As 〈yα, ξα〉 = α > 0, the set { x ∈ Ω | ξα(x) 6= 0} has a non null measure, so that

ρ =
α

2 〈1, ξα〉
=

α

2
∫

Ω
ξα dx

> 0 .

We set ỹ = (ρ− yα)+ ∈ H1
o (Ω). Let η ∈ X , such that ‖η‖X ≤ 1, so

∀x ∈ Ω − 1 ≤
η(x)

β
≤ 1 ,

where β > 0 is independent of η. This comes from the fact that H1
o (Ω) ⊂ C(Ω) (n = 1). We have

∀x ∈ Ω ỹ(x) + yα(x) +
ρ

β
η(x) =















ρ (1 +
η(x)

β
) ≥ 0 if ρ > yα

yα + ρ
η(x)

β
≥ ρ (1 +

η(x)

β
) ≥ 0 if ρ ≤ yα .

So ỹ + yα +
ρ

β
η ≥ 0, (with λη = 1). Let us set ξ̃ = 0 and ṽ = Aỹ ∈ L2(Ω).

We have :

〈

yα, ξ̃
〉

+ 〈ỹ, ξα〉 = 〈ỹ, ξα〉 =

∫

{yα<ρ}

(ρ− yα)ξα dx ≤ ρ 〈1, ξα〉 −

∫

{yα<ρ}

yα ξα dx.

As ρ 〈1, ξα〉 =
α

2
and

∫

{yα<ρ}

yα ξα dx ≥ 0 we finally have

〈

yα, ξ̃
〉

+ 〈ỹ, ξα〉 ≤
α

2
< α ,

and we have found (ỹ, ṽ, ξ̃) such that (6.1) is ensured. �

Remark 6.1 The previous proof cannot work for n ≥ 2. In this case we would have to take
X = H2(Ω) ∩H1

o (Ω) (at least for n ≤ 3) which allows to take the L∞ topology for the state-space
X . Unfortunately ỹ generally does not belong to H2(Ω).

Now, we may write the optimality system ; relation (5.13) implies that qα = Mvα and we get
at last :

Theorem 6.2 If (yα, vα, ξα) is a solution of (Pα), then a lagrange multiplier rα ∈ IR+ exists,
such that

∀y ∈ K , 〈pα +Mvα, A(y − yα)〉 + rα 〈ξα, y − yα〉 ≥ 0 , (6.2)

∀ξ ∈ Vad , 〈rαyα −Mvα, ξ − ξα〉 ≥ 0 , (6.3)

rα (〈yα, ξα〉 − α) = 0 , (6.4)

where pα is given by (4.19) . �
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Remark 6.2 We have a similar result if we consider the problem (P̄α) as in remarks 3.2 and 5.4.
We have then :

Theorem 6.3 If (ȳα, v̄α, ξ̄α) is a solution of (P̄α), then a lagrange multiplier r̄α ∈ IR+ exists such
that

∀y ∈ K , 〈p̄α +Mv̄α, A(y − ȳα〉 + 〈ȳα − ȳ, y − ȳα〉H1
o
(Ω) + r̄α

〈

ξ̄α, y − ȳα

〉

≥ 0 , (6.5)

∀ξ ∈ Vad ,
〈

r̄αȳα −Mv̄α + ξ̄ − ξ̄α, ξ − ξ̄α
〉

≥ 0 , (6.6)

r̄α
(〈

ȳα, ξ̄α
〉

− α
)

= 0 . (6.7)

�

Remark 6.3 We note that the optimality system (6.2-6.4) “looks like” the penalized optimality
system (5.6-5.9). So we could try to obtain an estimation on rα in order to pass to the limit when
α → 0, with the same kind of arguments. The appropriate hypothesis could be the following one,
similar to (H1) :

∃ρ > 0,∀α such that 〈yα, ξα〉 = α ,

∃(y∗α, ξ
∗
α) ∈ K × Vad , 〈y∗α, ξα〉 + 〈yα, ξ

∗
α〉 ≤ 2α− ρ .

(H∗
1)

Nevertheless, such a condition is impossible to ensure since the measure of the set { ỹ > 0 and
ξ̃ 6= 0} is null. So we cannot always find a real ρ > 0 and a subset of Ω (with non null measure)
where yα ≥ ρ and ξα 6= 0, for any α.

Finally, in the case where Uad = L2(Ω), n = 1, both conditions (6.1) and (H1) + (H2) are
satisfied. Nevertheless we are not able to say if (H1) + (H2) is strictly weaker than (6.1) (though
we believe it) or not. However, in a general way, it seems that the conditions (H1)+(H2) are weaker,
because they are decoupled and they concern the different constraints separately. In particular, in
the case where Uad = L2(Ω) the state equation does not appear any longer.

Remark 6.4 We have compared (H1) to the strong variant of the Zowe and Kurcyusz condition
and not to the weak one (4.2). Anyway, our feeling is that (H1) is not better but easier to write
and therefore, to verify.

6.2 Case where Uad = { v ∈ L2(Ω) | v ≥ ψ ≥ 0 a.e. on Ω}

We now investigate the case where

Uad = { v ∈ L2(Ω) | v ≥ ψ a.e. on Ω } ,

where ψ ∈ L2(Ω) and ψ ≥ 0 a.e. on Ω. We note that (H1) is not automatically fulfilled since 0 is
not necessarily an element of Uad.
In this case, (H1) + (H2) is :























(H1) If 〈yα, ξα〉 = α, ∃ỹ ≥ 0, ∃ξ̃ ∈ Vad such that

ṽ = Aỹ − ξ̃ ≥ ψ, 〈 ỹ, ξα〉 +
〈

yα, ξ̃
〉

< 2α

(H2) ∃ρ > 0 such that ∀χ ∈ Lp(Ω), ‖χ‖Lp(Ω) ≤ 1 ,
∃yχ ≥ 0, ∃ξχ ∈ Vad,∃vχ ≥ ψ, Ayχ = vχ + ξχ + ρχ .

If p = 2, the condition (H2) is equivalent to

∃ρ > 0, ∀ϕ ∈ X , ‖ϕ‖X ≤ 1 ,∃yϕ ≥ 0, A(yϕ + ρϕ) ≥ ψ . (6.8)

and we have :
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Proposition 6.2 If p = 2, Relation (4.13) ⇒ (H1) + (H2).

Proof.- We have seen that (4.13) ⇒ (H1) is always true. We prove that (4.13) ⇒ (H2) as well ;
let (ỹ, ṽ, ξ̃) and ρ > 0 be given by (4.13) :

Aỹ = ṽ + ξ̃ −Ayα and 〈 ỹ, ξα〉 +
〈

yα, ξ̃
〉

< α

and
∀ϕ ∈ X , ‖ϕ‖X ≤ 1,∃λϕ ≥ 0, ỹ + λϕyα + ρϕ ≥ 0 .

Let χ ∈ L2(Ω) such that ‖χ‖L2(Ω) ≤ 1. As A is an isomorphism from X to L2(Ω), ∃!ϕ ∈ X
such that Aϕ = χ in Ω. Moreover ‖ϕ‖X ≤ cA, where cA is the norm of the operator A. Let us set

ρ̃ =
ρ

cA
.

As ‖
1

cA
ϕ‖X ≤ 1, there exists λχ ≥ 0 such that pχ = ỹ + λχyα + ρ̃ϕ ≥ 0.

• If λχ ∈ [0, 1], we set yχ = pχ + (1 − λχ)yα. yχ ≥ 0 and

Ayχ = Aỹ + λχAyα + ρ̃Aϕ+ (1 − λχ)Ayα = ṽ + ξ̃ + ρ̃χ .

So (H2) is satisfied with yχ, vχ = ṽ ≥ ψ and ξχ = ξ̃ ∈ Vad.
• If λχ > 1, we set yχ = pχ and (H2) is satisfied with yχ, vχ = ṽ + (λχ − 1)(vα + ξα) ≥ ṽ ≥ ψ and

ξχ = ξ̃ ∈ Vad. �

Proposition 6.3 Condition (H1) is satisfied.

Proof.- We are in the case where 〈yα, ξα〉 = α > 0. So the set

ω = { x ∈ Ω | yα(x) > 0 and ξα(x) 6= 0}

has a non null measure and
∫

ω

yα(x) ξα(x) dx = µ > 0 .

We define ξ̃ =

{

0 in ω
ξα in Ω − ω

∈ Vad , ṽ = vα ∈ Uad and ỹ as the solution in X of Aỹ = ṽ + ξ̃ in

Ω.
It is easy to see that yα ≥ ỹ ≥ 0 because of the maximum principle. So we get

0 ≤ 〈ỹ, ξα〉 ≤ 〈yα, ξα〉 = α .

Moreover

〈

yα, ξ̃
〉

=

∫

Ω−ω

yα(x) ξα(x) dx =

∫

Ω

yα(x) ξα(x) dx−

∫

ω

yα(x) ξα(x) dx ,

〈

yα, ξ̃
〉

= 〈yα, ξα〉 − µ = α− µ < α .

Finally we have

〈ỹ, ξα〉 +
〈

yα, ξ̃
〉

≤ 2α− µ < 2α .

�

Proposition 6.4 Condition (H2) is ensured with p = 2.
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Proof.- Let be ρ > 0 fixed. For any χ ∈ L2(Ω), such that ‖χ‖L2(Ω) ≤ 1, we set

vχ =

{

ψ − ρχ on { χ ≤ 0}
ψ on { χ ≥ 0} .

It is obvious that vχ ∈ L2(Ω), vχ ≥ ψ and vχ + ρχ ≥ 0. Now we define yχ as the solution in X of
Ayχ = vχ + ρχ. As vχ + ρχ ≥ 0, the maximum principle yields that yχ ≥ 0. �

We may now write the optimality system :

Theorem 6.4 Let (yα, vα, ξα) be a solution of (Pα), then a lagrange multiplier (qα, rα) ∈ L2(Ω)×
IR+ exists, such that

∀y ∈ K , 〈pα + qα, A(y − yα〉 + rα 〈ξα, y − yα〉 ≥ 0 , (6.9)

∀v ∈ Uad , 〈Mvα − qα, v − vα〉 ≥ 0 , (6.10)

∀ξ ∈ Vad , 〈rαyα − qα, ξ − ξα〉 ≥ 0 , (6.11)

rα (〈yα, ξα〉 − α) = 0 , (6.12)

where pα is given by (4.19). �

7 Conclusion

We have established optimality conditions for the relaxed problem only. Nevertheless, as we
have already mentioned it, it is good enough for the numerical experimentation. The optimality
system may be solved with usual algorithms of optimization (see [10, 7] for instance). We may also
interpret the optimality system as a saddle point result for the linearized Lagrangian function L
around the solution (yα, vα, ξα), where

L(y, v, ξ, q, µ) = J(y, v, ξ) + 〈q, Ay − v − ξ〉 + µ (〈ξα, y〉 + 〈ξ, yα〉) ,

on the set K × Uad × Vad × L2(Ω) × IR+. Then we may derive some lagrangian or augmented
lagrangian algorithm, as in [4] to compute “the” solution. This will be done in a forthcoming
paper.

In conclusion, we shall add that this kind of “mixed” method should be efficient to study more
general variational inequalities for the state equation. It seems that it could be also used for optimal
control problems where the state equation is nonlinear.

Moreover the “mixed” method allows to make the multiplier more regular, or conversely gives
the existence of less regular multipliers with some weaker qualification condition.

Acknowledgment.- I would like to thank the anonymous referee for a very careful reading of this
paper. He has contributed to make it much better. In particular, he suggested the final form of the
proof of Proposition 6.1 and the whole example of Remark ??.
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