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Use of Augmented Lagrangian Methods
for the Optimal Control of Obstacle Problems

M. Bergounioux 1

Abstract. We investigate optimal control problems governed by variational inequali-
ties involving constraints on the control, and more precisely the example of the obstacle
problem. In this paper we discuss some augmented Lagrangian algorithms to compute the
solution.

KeyWords : Optimal control, Lagrange multipliers, augmented Lagrangian, variational
inequalities

1 Introduction

We investigate optimal control problems governed by variational inequalities and in-
volving constraints on both the control and the state. These problems have been widely
studied, by V. Barbu (Ref.1), F. Mignot and J.P. Puel (Ref.2) or Zheng-Xu He (Ref.3) for
instance.

We may consider these problems from many points of view. One of the most important
is the approximation of the variational inequality by an equation where the maximal
monotone operator (which is in this case the subdifferential of a lipschitz function) is
approached by a differentiable single-value mapping, with Moreau-Yosida approximations
techniques. This method (mainly due to Barbu (Ref.1)) leads to several existence results
and to first-order optimality systems. As the passage to the limit in the optimality system
is difficult and impossible without specific assumptions, one usually compute the solution
of the approximate problem which is a non-linear optimal control problem.

In Refs.4-6 first-order necessary optimality conditions have been obtained : these results
are based on a relaxation of the original problem via a splitting operator method. This
leads to the reformulation of the problem as an optimal control problem with constraints
coupling the state and the control ; these constraints are not convex. The method has
been developed for the example of the obstacle problem in Refs.4-5 (and extended later
to general variational inequalities in Ref.6) and we briefly recall the main results in the
first part of this paper. The next section is devoted to a saddle-point formulation of
the optimality system, and we discuss many viewpoints since the problem is not convex.
Then, we present some Lagrangian and augmented Lagrangian algorithms ; in particular
we point out relaxed (in the sense of Fortin and Glowinski (Ref.7)) augmented Lagrangian
algorithms. The last section is devoted to numerical experiments.

1Mâıtre de Conférences - URA-CNRS 1803, U.F.R. Sciences, Université d’Orléans, Orléans, France.
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2 Problem Setting

Let Ω be an open, bounded subset of R
n (n ≤ 3) with a smooth boundary, and consider

the following obstacle problem :

min

{

J(y, v) =
1

2

∫

Ω
(y − zd)

2 dx+ (ν/2)

∫

Ω
v2 dx

}

(P0)

such that
a(y, ϕ− y) ≥ 〈v + f, ϕ− y〉 ∀ϕ ∈ Ko, (2.1)

y ∈ Ko, (2.2)

v ∈ Uad, (2.3)

where
– (i) zd ∈ L2(Ω), v ∈ L2(Ω), f ∈ L2(Ω) and ν > 0 ;
– (ii) a is a bilinear form defined on H1

o (Ω) × H1
o (Ω), with the classical properties

(ellipticity, coercivity, and continuity ; see Refs.1,8 for example),
– (iii) 〈 , 〉 denotes the duality between H1

o (Ω) and H−1(Ω), ( , ) the scalar-product
of L2(Ω) and ‖ ‖ the L2(Ω)-norm ;

– (iv) Uad is a nonempty, closed, convex subset of L2(Ω), and

Ko = {y ∈ H1
o (Ω) | y ≥ 0 a.e. in Ω}. (2.4)

The equations (2.1) and (2.2) may be interpreted as follows [see Barbu (Ref.1) or Mignot
and Puel (Ref.2)] :

Ay = v + ξ, y ≥ 0, ξ ≥ 0, 〈y, ξ〉 = 0, (2.5)

where A ∈ L(H1
o (Ω),H−1(Ω)) such that 〈Aφ,ψ〉 = a(φ, ψ). The solution y of (2.5) is

known to be unique. Then, the optimal control problem appears as a problem governed
by a state equation (instead of inequation) with mixed state and control constraints :

min

{

J(y, v) =
1

2

∫

Ω
(y − zd)

2 dx+ (ν/2)

∫

Ω
v2 dx

}

, (P)

Ay = v + f + ξ in Ω, y = 0 on Γ, (2.6)

(y, v, ξ) ∈ D, (2.7)

where

D = {(y, v, ξ) ∈ H1
o (Ω) × L2(Ω) × L2(Ω) | v ∈ Uad, y ≥ 0, ξ ≥ 0, 〈y, ξ〉 = 0}. (2.8)

Remark 2.1 In fact ξ should be taken from H−1(Ω), but a regularity result of Fried-
man (Ref.8) allows us to choose it from L2(Ω). So y given by (2.6) belongs to H2(Ω) ∩
H1

o (Ω) and we set
K = Ko ∩ (H2(Ω) ∩H1

o (Ω)) . (2.9)
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Problem (P) has at least one solution, denoted by (ȳ, v̄, ξ̄). Similar problems have been
studied also in Bergounioux and Tiba (Ref.9) in the case where the constraint set D is
convex. This does not hold here : D is nonconvex and its interior is, in some sense, “very”
empty. Therefore, we relax the bilinear constraint “〈y, ξ〉 = 0” using “0 ≤ 〈y, ξ〉 ≤ α”
instead, where α > 0. This approach is motivated by the numerical point of view : during
the computation, equality conditions like “· · · = 0” are usually expressed as “| · · · | ≤ α”
where α can be arbitrarily small, but strictly positive.

In order to ensure the existence of a solution for the relaxed problem and to avoid
the use of an adapted penalization, we also assume that the L2- norm of ξ is bounded by
some positive constant R (greater that ‖ξ̄‖). Again, this is not very restrictive from the
numerical point of view, since R can be arbitrarily large. Let us denote

Vad = { ξ ∈ L2(Ω) | ξ ≥ 0 a.e in Ω, ‖ξ‖ ≤ R } .

The associated relaxed problem (Pα) becomes :

minJ(y, v) =
1

2

∫

Ω
(y − zd)

2 dx+ (ν/2)

∫

Ω
v2 dx

Ay = v + f + ξ in Ω, y = 0 on Γ,
(y, v, ξ) ∈ Dα ,

(Pα)

where

Dα = {(y, v, ξ) ∈ H1
o (Ω) × L2(Ω) × L2(Ω) | v ∈ Uad, y ≥ 0, ξ ∈ Vad, (y, ξ) ≤ α }. (2.10)

Theorem 2.1 Problem (Pα) has (at least) has a solution (yα, vα, ξα). Moreover when
α → 0, yα converges to ȳ weakly in H1

o (Ω), vα converges to v̄ strongly in L2(Ω) and ξα
converges to ξ̄ weakly in L2(Ω).

Moreover we may derive optimality conditions :

Theorem 2.2 Let (yα, vα, ξα) be a solution of (Pα) and assume the following qualification
conditions :

∀α such that (yα, ξα) = α ,∃(ỹ, ṽ, ξ̃) ∈ K × Uad × Vad such that

Aỹ = ṽ + f + ξ̃ and (ỹ, ξα) +
(

yα, ξ̃
)

< 2α ,
(H1)

∃p ∈ [1,+∞], ∃ ρ > 0 , ∀ χ ∈ Lp(Ω), ‖χ‖Lp(Ω) ≤ 1 ,

∃(yχ, vχ, ξχ) bounded in K × Uad × Vad (by a constant independent of χ) ,
such that Ayχ = vχ + f + ξχ + ρχ in Ω.

(H2)

Then there exist qα ∈ L2(Ω) and rα ∈ R+ such that

(yα − zd, y − yα) + (qα, A(y − yα)) + rα (ξα, y − yα) ≥ 0 for all y ∈ K, (2.11)

(νvα − qα, v − vα) ≥ 0 for all v ∈ Uad, (2.12)

(rαyα − qα, ξ − ξα) ≥ 0 for all ξ ∈ Vad, (2.13)

rα [(yα, ξα) − α] = 0 . (2.14)
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Proof.- See Ref.4 ✷

Remark 2.2 In the applications, the conditions (H1) and (H2) are quite often satisfied ;
it is true, for example, if Uad = L2(Ω) or Uad = { v ∈ L2(Ω) | v ≥ Ψ ≥ 0 a.e. in Ω},
where Ψ ∈ L2(Ω).

Now we are interested in the exploitation of the above optimality system. As we decide
to use a lagrangian point of view, we are going to formulate it as a saddle-point existence
result.

3 Saddle-Point Formulation

In the sequel, conditions (H1) and (H2) are supposed to be satisfied so that we always get
the existence of the optimality system of Theorem 2.2. Let Lα be the lagrangian function
associated to problem (Pα), defined on H2(Ω) ∩H1

o (Ω) × L2(Ω) × L2(Ω) × L2(Ω) × R by

Lα(y, v, ξ, q, r) = J(y, v) + (q, Ay − v − f − ξ) + r[(y, ξ) − α] . (3.15)

A direct consequence of Theorem 2.2 is the following result :

Theorem 3.1 Assume conditions (H1) and (H2) are ensured and let (yα, vα, ξα) be a
solution of (Pα), then (yα, vα, ξα, qα, rα) satisfies

Lα(yα, vα, ξα, qα, rα) ≥ Lα(yα, vα, ξα, q, r) for all (q, r) ∈ L2(Ω) × R
+ , (3.16)

and
∇y,v,ξL

α(yα, vα, ξα, qα, rα)(y − yα, v − vα, ξ − ξα) ≥ 0 (3.17)

for all (y, v, ξ) ∈ K × Uad × Vad.

Proof - Relation (3.16) comes from the fact that for all (q, r) ∈ L2(Ω) × R
+,

Lα(yα, vα, ξα, q, r) = J(yα, vα) + r[(yα, ξα) − α] ≤ J(yα, vα) ,

and
J(yα, vα) = Lα(yα, vα, ξα, qα, rα) ,

because of relation (2.14) .
Moreover, adding (2.11), (2.12) and (2.13) we obtain exactly relation (3.17). ✷

Let us call
C = K × Uad × Vad × L2(Ω) × R

+ ; (3.18)

Theorem 3.1 is not sufficient to ensure the existence of a saddle point of Lα on C, because
of the non-convexity of Lα. Nevertheless as the non-convex part is bilinear, it is easy to
see that this theorem is still valid if we replace Lα by the linearized Lagrangian function
Lα :

Lα(y, v, ξ, q, r) = J(y, v) + (q, Ay − v − f − ξ) + r[(y, ξα) + (yα, ξ) − 2α] . (3.19)

More precisely we have
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Theorem 3.2 With the assumptions and notations of Theorem 3.1, (yα, vα, ξα, qα, rα) is
a saddle point of the linearized Lagrangian function Lα on C :

Lα(yα, vα, ξα, q, r) ≤ Lα(yα, vα, ξα, qα, rα) ≤ Lα(y, v, ξ, qα, rα) for all (y, v, ξ, q, r) ∈ C .

Proof - We get first the left hand part of the above inequality since for any (q, r) ∈
L2(Ω) × R

+

Lα(yα, vα, ξα, q, r) = J(yα, vα) + 2r [(yα, ξα) − α] ≤ J(yα, vα) = Lα(yα, vα, ξα, qα, rα) .

The right hand part comes from

∇y,v,ξL
α(yα, vα, ξα, qα, rα) = ∇y,v,ξL

α(yα, vα, ξα, qα, rα)

with relation (3.17) and the convexity of Lα. ✷

In the case where the bilinear constraint is not active : (yα, ξα) < α, we get rα = 0. It
is easy to see that Lα(y, v, ξ, qα, rα) is then equal to Lα(y, v, ξ, qα, rα) and Theorem 3.2
yields

Lα(yα, vα, ξα, qα, rα) ≤ Lα(y, v, ξ, qα, rα) for all (y, v, ξ, q, r) ∈ C .

So with relation (3.16) we get

Corollary 3.1 If (yα, vα, ξα) is a solution of (Pα) where the inequality constraint is in-
active ((yα, ξα) < α) and if condition (H2) is satisfied, then (yα, vα, ξα, qα, rα) is a saddle
point of Lα on C.

Remark 3.1 We may also define the augmented Lagrangian function

Lα
c (y, v, ξ, q, r) = Lα(y, v, ξ, q, r) + (c/2)

[

‖Ay − v − f − ξ‖2 + [(y, ξα) + (yα, ξ) − 2α]2+

]

,

where c > 0 and g+ = max(0, g).
Then we may note that the previous theorem is still valid with Lα

c instead of Lα.

Remark 3.2 The converse result of Theorem 3.2 is false since we have used the linearized
Lagrangian and not the genuine one.

4 Lagrangian Algorithms

The previous section suggests to test Lagrangian algorithms usually used to compute
saddle-points in a convex frame. We are going to present some of them in the very case
where the inequality constraint is not active that is : (yα, ξα) < α. Indeed, we have seen
with Corollary 3.1 that the problem turns to be (locally) convex in this case and we get
an existence result for saddle point of Lα. Of course, this is restrictive but we have to
remember that the original problem was formulated with the constraint (y, ξ) = 0 ; so we
may hope that this assumption is not too unrealistic.

Then we shall see how these methods work in the case where the constraint may be
active. Though we are not able to prove convergence in this case we may interpret the
solution(s) of the optimality system as the fixed point(s) of a functional Φ and Lagrangian
algorithms may be viewed as successive approximations methods to compute the fixed
point. Unfortunately, though we are able to show that Φ is locally Lipschitz-continuous
(with sensitivity analysis techniques), we cannot estimate precisely the Lipschitz constant
(and prove that Φ is contractive).
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4.1 Inactive constraint (yα, ξα) ≤ α

The basic method to compute a saddle point is the Uzawa algorithm (see Ref.7 for
example). We have already used this kind of method coupled with a Gauss-Seidel splitting
to solve optimal control problems in Refs. 10-11. Concerning our problem this gives

Algorithm A0
– Step 1. Initialization : Set n = 0, choose qo ∈ L2(Ω), ro ∈ R

+, (v−1, ξ−1) ∈ Uad×Vad.
– Step 2. Compute

yn = arg min Lα(y, vn−1, ξn−1, qn, rn)
y ∈ K

(vn, ξn) = arg min Lα(yn, v, ξ, qn, rn)
(v, ξ) ∈ Uad × Vad

– Step 3. Compute

qn+1 = qn + ρ1 (Ayn − vn − f − ξn) where ρ1 ≥ ρo > 0 ,

rn+1 = rn + ρ2 [(yn, ξn) − α]+ where ρ2 ≥ ρo > 0 .

We notice that the second minimization problem of Step 2 can be decoupled ; it is equi-
valent to

vn = arg min (ν/2) ‖v‖2 − (qn, v)
v ∈ Uad

ξn = arg min (rnyn − qn, ξ)
ξ ∈ Vad .

So vn = PUad
(qn/ν) where PUad

denotes the L2(Ω)-projection on Uad and ξn is given by
solving a linear programming problem on a bounded set. To avoid this and to get a better
convergence rate one usually consider the augmented Lagrangian function

Lα
c (y, v, ξ, q, r) = Lα(y, v, ξ, q, r) + (c/2)

[

‖Ay − v − f − ξ‖2 + [(y, ξ) − α]2+

]

, (4.20)

where c > 0. Then the above algorithm used with Lα
c instead of Lα leads to

Algorithm A1

– Step 1. Initialization : Set n = 0, choose c > 0, qo ∈ L2(Ω), ro ∈ R
+, (v−1, ξ−1) ∈

Uad × Vad.
– Step 2. Compute

yn = arg min 1
2‖y − zd‖

2 + (qn, Ay) + rn (y, ξn−1)
y ∈ K +(c/2)

[

‖Ay − vn−1 − f − ξn−1‖
2 + [(y, ξn−1) − α]2+

]

vn = PUad
([qn + c(Ayn − f − ξn−1)]/[ν + c])

ξn = arg min (rnyn − qn, ξ) + (c/2)
(

‖Ayn − vn − f − ξ‖2 + [(yn, ξ) − α]2+
)

ξ ∈ Vad .
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– Step 3. Compute

qn+1 = qn + ρ1 (Ayn − vn − f − ξn) where ρ1 ≥ ρo > 0 ,

rn+1 = rn + ρ2 [(yn, ξn) − α]+ where ρ2 ≥ ρo > 0 .

Remark 4.1 The Gauss-Seidel splitting (see Refs.7,11,12 for example) leads to the follo-
wing minimization problem to get the control in Step 2.

vn = Arg min (ν/2) ‖v‖2 − (qn, v) + (c/2) ‖Ayn − v − f − ξn−1‖
2

v ∈ Uad ,

that is vn = PUad
([qn + c (Ayn − f − ξn−1)]/[ν + c]).

The above algorithm A1 is based on the most “natural” penalization of the inequality
constraint. We investigate now a variant of this algorithm, where the augmentation term
for the inequality constraint has been modified. This algorithm, due to Ito and Kunisch
(Ref.13), has been developed for some more general problems with equality and inequality
constraints in Hilbert spaces. We present it now.
We consider the general problem

minimize ϕ(x)

s.t. e(x) = 0, g(x) ≤ 0, l(x) ≤ ẑ,
(4.21)

where
(i) ϕ : X → R, e : X → Y, g : X → R

m, l : X → Z with X,Y, Z Hilbert spaces.
(ii) l is a bounded linear operator on X and ẑ ∈ Z.
(iii) There exists x∗ ∈ X and (λ∗, µ∗, η∗) ∈ Y × R

m
+ × Z∗

+ such that

the functions ϕ, e, g are Fréchet - C2 in a neighborhood of x∗ ; (4.22)

(iv)

ϕ, gi : X → R, for i = 1, · · · ,m, are weakly lower semi continuous and
e maps weakly convergent sequences to weakly convergent sequences.

(4.23)

(v) x∗ is stationary for (4.21) with Lagrange multiplier (λ∗, µ∗, η∗), i.e

ϕ′(x∗)h+ 〈λ∗, e′(x∗)h〉 + 〈µ∗, g′(x∗)h〉m + 〈η∗, l(h)〉 = 0 for all h ∈ X ,
and

e(x∗) = 0, 〈µ∗, g(x∗)〉Rm = 0, 〈η∗, l(x∗) − ẑ〉Z = 0 ;
(4.24)

(vi)
e′(x∗) : X → Y is surjective ; (4.25)

(vii)
There exists a constant σ > 0 such that
L′′(x∗)(h, h) ≥ σ|h|2 for all h 6= 0 in Ξ

(4.26)
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where

Ξ = { h ∈ X | e′(x∗)h = 0, g′i(x
∗)h ≤ 0 for i ∈ I1, g

′
i(x

∗)h = 0 for i ∈ I2 } ,

I1 = { i | gi(x
∗) = 0, µ∗i = 0 }, I2 = { i | gi(x

∗) = 0, µ∗i 6= 0 } ,

L(x) = L(x, (λ∗, µ∗, η∗)) = ϕ(x) + 〈λ∗, e(x)〉 + 〈µ∗, g(x)〉 + 〈η∗, l(x)〉 ;

Finally we define the augmented Lagrangian function

Lc
n(x) = ϕ(x) + 〈λn, e(x)〉 + 〈µn, g(x)〉 + (c/2)

[

|e(x)|2 + |ĝ(x, µn, c)|
2
]

,

where ĝ(x, µ, c) = max(g(x),−µ/c) (componentwise). We have then the following result

Theorem 4.1 Under the above assumptions, for an initial choice of (λo, µo), let xn satisfy

Lc
n(xn) ≤ Lc

n(x∗) and l(xn) ≤ ẑ ,

and let (λn+1, µn+1) be defined with

λn+1 = λn + ρne(xn), µn+1 = µn + ρnĝ(xn, µn, c), 0 < ρn < c .

Then we have
+∞
∑

n=1

ρn|xn − x∗|2 ≤ Co(|λo − λ∗|2 + |µo − µ∗|2) .

Proof - See Ref.13 ✷

We are going to apply this result to our problem. More precisely :
– (i) X = H2(Ω) ∩H1

o (Ω) × L2(Ω) × L2(Ω), Y = L2(Ω) ;
x = (y, v, ξ), ϕ(x) = J(y, v), e(x) = Ay − v − f − ξ and m = 1, g(x) = (y, ξ) − α.
ϕ is quadratic, e is affine and g is bilinear so they are C2 and assumption (4.22)
is ensured. It is easy to see that (4.23) is also satisfied for ϕ and e. Moreover, g is
weakly sequentially continuous because of the compactness of the injection of H1

o (Ω)
into L2(Ω). So it is weakly lower semi-continuous.

– (ii) In the case where Uad is described as following

Uad = { v ∈ L2(Ω) | Λi(v) ≤ bi, i = 1 · · · p } ,

where Λi : L2(Ω) → L2(Ω) is linear, bounded, we set Z = H1
o (Ω) × L2(Ω)p ×

L2(Ω), ẑ = (0, b1, · · · , bp, 0) and l = (−IdH1
o (Ω),Λ1, · · · ,Λp,−IdL2(Ω)) where IdE is

the identity mapping of the space E.
This is not really restrictive since it involves for example the cases where Uad =
{ v ∈ L2(Ω) | a(x) ≤ v(x) ≤ b(x) a.e. on Ω } or Uad = L2(Ω).

– (iii) Assumption (4.24) is ensured by Theorem (2.2) with x∗ = (yα, vα, ξα), λ∗ = qα
and µ∗ = rα if we suppose that (H2) is satisfied.

– (iv) Moreover as e is affine then e′(x∗) = e+ f , which is obviously surjective.
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– (v) At last I1 and I2 are empty so that Ξ = X.

L(x) = Lα(y, v, ξ, qα, rα) + 〈η∗, l(y, v, ξ)〉 ,

L′′(x∗)(x, x) = J ′′(yα, vα)((y, v), (y, v)) + rα [(yα, ξ) + (y, ξα)] ,

because all the linear terms “disappear”.
Furthermore rα = 0 so that L′′(x∗)(x, x) = J ′′(yα, vα)((y, v), (y, v)) and (4.26) is
fulfilled.

Henceforth, we get the convergence of the algorithm below

Algorithm A2

Step 1. Initialization : Set n = 0, choose c > 0, qo ∈ L2(Ω), ro ∈ R
+.

Step 2. Compute
(yn, vn, ξn) = arg min L̂α

c (y, v, ξ, qn, rn)
(y, v, ξ) ∈ K × Uad × Vad

where

L̂α
c (y, v, ξ, q, r) = J(y, v) + (q, Ay − v − f − ξ) + rmax((y, ξ) − α,−r/c)

+(c/2)
[

‖Ay − v − f − ξ‖2 + [max((y, ξ) − α,−r/c)]2
]

,
(4.27)

Step 3.
qn+1 = qn + ρ1 (Ayn − vn − f − ξn) where ρ1 ∈]0, c[ ,

rn+1 = rn + ρ2 max((yn, ξn) − α,−rn/c) where ρ2 ∈]0, c[ .

4.2 Active Constraint

When the inequality constraint may be active, we have no longer any information on
rα nor local convexity of the Lagrangian function. Anyway we shall test the Algorithms of
the previous section a priori, since we do not know the solution, so we do not know if the
constraint is active or not. A justification of this point of view is that these Algorithms
may be interpretated as successive approximations method to compute the fixed-points of
a function Φ that we are going to define. We are able to prove that Φ is locally lipschitz
continuous but we cannot estimate precisely the Lipschitz constant. Our feeling is that an
appropriate choice for the augmentation parameters allows to make this constant strictly
less that 1, so that Φ is contractive. To reinterpretate Algorithm A1, we define some
functions ϕi as following :
(i) ϕ1 : L2(Ω) × L2(Ω) × L2(Ω) × R+ → H2(Ω) ∩H1

o (Ω) :

ϕ1(v, ξ, q, r) = y∗ = Arg min 1
2‖y − zd‖

2 + (q, Ay) + r (y, ξ)
y ∈ K +(c/2)

[

‖Ay − v − f − ξ‖2 + [(y, ξ) − α]2+
]

.
(4.28)

(ii) ϕ2 : H2(Ω) ∩H1
o (Ω) × L2(Ω) × L2(Ω) → L2(Ω) :

ϕ2(y, q, ξ) = v∗ = PUad
([q + c(Ay − f − ξ)]/[ν + c]).
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(iii) ϕ3 : H2(Ω) ∩H1
o (Ω) × L2(Ω) × L2(Ω) × R+ → L2(Ω) :

ϕ3(y, vq, r) = ξ∗ = Arg min (ry − q, ξ) + (c/2)
[

‖Ay − v − f − ξ‖2 + [(y, ξ) − α]2+
]

.
ξ ∈ Vad

(iv) ϕ4 : H2(Ω) ∩H1
o (Ω) × L2(Ω) × L2(Ω) × L2(Ω) × R+ → L2(Ω) × R+ :

ϕ4(y, v, ξ, q, r) = (q∗, r∗) = (q + ρ1(Ay − v − f − ξ), r + ρ2 [(y, ξ) − α]+) .

At last, let us define Φ : L2(Ω)×L2(Ω)×L2(Ω)×R → L2(Ω)×L2(Ω)×L2(Ω)×R+ :

Φ(v, ξ, q, r) = (v̄, ξ̄, q̄, r̄) ,

with
ȳ = ϕ1(v, ξ, q, r) ,

v̄ = ϕ2(ȳ, q, ξ) = ϕ2(ϕ1(v, ξ, q, r), q, ξ) ,

ξ̄ = ϕ3(ȳ, v̄, q, r) = ϕ3(ϕ1(v, ξ, q, r), ϕ2(ϕ1(v, ξ, q, r), q, ξ), q, r) ,

(q̄, r̄) = ϕ4[ȳ, v̄, ξ̄, q, r]

= ϕ4[ϕ1(v, ξ, q, r), ϕ2(ϕ1(v, ξ, q, r), q, ξ), ϕ3(ϕ1(v, ξ, q, r), ϕ2(ϕ1(v, ξ, q, r), q, ξ), q, r), q, r] .

All product spaces are endowed with the product norm. So Algorithm A1 turns to be
exactly the successive approximation method applied to Φ, to solve

Φ(v, ξ, q, r) = (v, ξ, q, r) . (4.29)

To prove the convergence we should prove first that Φ is contractive. Then, we have
to show that the solution (ṽ, ξ̃, q̃, r̃) of (4.29) satisfies the optimality system of Theorem
2.2 with ỹ = ϕ1(ṽ, ξ̃, q̃, r̃).

Theorem 4.2 The function Φ defined above is locally Lipschitz continuous.

Proof - It is sufficient to prove that every ϕi, i = 1, · · · , 4, is Lipschitz-continuous.
(i) It is clear that ϕ2 is Lipschitz continuous because of the properties of the projection
operator and the Lipschitz constant k2 satisfies

k2 ≤ c max(‖A‖, 1, 1/c)/(ν + c) ,

where ‖A‖ denotes the norm of the operator A.
(ii) The mapping ψ : H2(Ω) ∩H1

o (Ω) × L2(Ω) → R such that ψ(y, ξ) = (y, ξ) is bilinear
continuous, so it is C1 and therefore locally Lipschitz continuous. As the projection x 7→ x+

from R to R+ is globally Lipschitz continuous as well we get the property for

Ψ : H2(Ω) ∩H1
o (Ω) × L2(Ω) → R+

(y, ξ) 7→ [(y, ξ) − α]+ ,

and ϕ4 is locally Lipschitz continuous as well.
(iii) To study ϕ1 and ϕ3 we use some sensitivity and stability techniques (see Malanowski
Ref.14 for example). We prove that ϕ1 is locally Lipschitz continuous (the method is the
same for ϕ3).
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Let B be a L2(Ω) × L2(Ω) × L2(Ω) × R ball around some (vo, ξo, qo, ro) of radius ρ.
Let us choose (v1, ξ1, q1, r1) and (v2, ξ2, q2, r2) in this ball and set yi = ϕ1(vi, ξi, qi, ri) for
i = 1, 2.

Writing the first order optimality condition for the minimization problem (4.28) (the
objective function is Gâteaux-differentiable) we get for all y in K and i = 1, 2

(yi − zd, y − yi) + (qi, A(y − yi)) + (riξi, y − yi)
+c (Ayi − vi − ξi − f,A(y − yi)) + cΨi (ξi, y − yi) ≥ 0 ,

where we note Ψi = Ψ(yi, ξi) = [(yi, ξi) − α]+.
Taking successively i = 1, y = y2 and i = 2, y = y1 and adding the above inequalities we
get

‖y1 − y2‖
2 + c‖A(y1 − y2)‖

2 ≤ (q1 − q2, A(y2 − y1)) + (r1ξ1 − r2ξ2, y2 − y1) +
c (v2 − v1 + ξ2 − ξ1, A(y2 − y1))+
c (Ψ1ξ1 − Ψ2ξ2, y2 − y1) .

‖y1 − y2‖
2 + c‖A(y1 − y2)‖

2 ≤ ‖q1 − q2‖ ‖A(y2 − y1)‖+
[|r1 − r2| ‖ξ1‖ + |r2| ‖ξ1 − ξ2‖] ‖y2 − y1‖+
c [ ‖v2 − v1‖ + ‖ξ2 − ξ1‖ ] ‖A(y2 − y1)‖+
c [ |Ψ1 − Ψ2| ‖ξ1‖ + |Ψ2| ‖ξ1 − ξ2‖ ] ‖y2 − y1‖ .

The definition of Ψi gives

|Ψ1 − Ψ2| ≤ | (y1, ξ1) − (y2, ξ2) | ≤ ‖y2‖ ‖ξ1 − ξ2‖ + ‖y1 − y2‖ ‖ξ1‖ .

With |ri| ≤ ρ+ |ro|, ‖ξi‖ ≤ ρ+ ‖ξo‖ and setting ρ̃ = max(ρ+ |ro|, ρ+ ‖ξo‖) we obtain

‖y1 − y2‖
2 + c‖A(y1 − y2)‖

2 ≤‖q1 − q2‖ ‖A(y2 − y1)‖+
ρ̃ [ |r1 − r2| + ‖ξ1 − ξ2‖ ] ‖y2 − y1‖+
c [ ‖v2 − v1‖ + ‖ξ2 − ξ1‖] ‖A(y2 − y1)‖+
cρ̃ [ ‖y2‖ ‖ξ1 − ξ2‖ + ρ̃‖y1 − y2‖ + |Ψ2| ‖ξ1 − ξ2‖] ‖y2 − y1‖.

Setting Nc(y1 − y2) =
(

‖y1 − y2‖
2 + c‖A(y1 − y2)‖

2
)1/2

and using

‖A(y1 − y2)‖ ≤ c−1/2Nc(y1 − y2) , ‖y1 − y2‖ ≤ Nc(y1 − y2)

yields

Nc(y1 − y2) ≤ c−1/2‖q1 − q2‖ + ρ̃ [ |r1 − r2| + ‖ξ1 − ξ2‖ ]

+c1/2 [ ‖v2 − v1‖ + ‖ξ2 − ξ1‖ ]
+cρ̃ [ ‖y2‖ ‖ξ1 − ξ2‖ + ρ̃‖y1 − y2‖ + |Ψ2| ‖ξ1 − ξ2‖ ] .

Nc(y1 − y2) ≤ c−1/2‖q1 − q2‖ + ρ̃ |r1 − r2| + c1/2 ‖v2 − v1‖

+
[

ρ̃+ c1/2 + cρ‖y2‖ + cρ̃|Ψ2|
]

‖ξ1 − ξ2‖ + cρ̃2 ‖y1 − y2‖ .
(4.30)

The above inequality used with y2 = yo = ϕ1(vo, ξo, qo, ro) gives

‖y1 − yo‖ ≤ Nc(y1 − yo) ≤ c1 + cρ̃2 ‖y1 − yo‖ .
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Then if c < 1/ρ̃2 we have

∀(vi, ξi, qi, ri) ∈ B ‖yi‖ ≤ c1/(1 − cρ̃2) + ‖yo‖ = c2 and |Ψi| ≤ c3

where the constants ci = Ci(B, c) only depend on c and B ; Finally with (4.30) we get

Nc(y1 − y2) ≤ c−1/2‖q1 − q2‖ + ρ̃ |r1 − r2| + +c1/2‖v2 − v1‖

+
[

ρ̃+ c1/2 + c(c1 + c3)ρ̃
]

‖ξ1 − ξ2‖ + cρ̃2 ‖y1 − y2‖
≤ κ ‖(v2, ξ2, q2, r2) − (v1, ξ1, q1, r1)‖L2(Ω)×L2(Ω)×L2(Ω)×R + cρ̃2 ‖y1 − y2‖ ,

where κ = κ(c,B) = max(c−1/2, ρ̃, c1/2, ρ̃+ c1/2 + c(c1 + c3)) ; with c < 1/ρ̃2 we get in turn

‖y1−y2‖ ≤ Nc(y1−y2) ≤ [κ/(1−cρ̃2)] ‖(v2, ξ2, q2, r2)−(v1, ξ1, q1, r1)‖L2(Ω)×L2(Ω)×L2(Ω)×R ,

and
‖A(y1 − y2)‖ ≤ κ∗‖(v2, ξ2, q2, r2) − (v1, ξ1, q1, r1)‖L2(Ω)×L2(Ω)×L2(Ω)×R ,

where κ∗ = κ
(

c−1/2 + c1/2ρ̃2/(1 − cρ̃2)
)

.
As Nc is equivalent to the H2(Ω)∩H1

o (Ω)-norm this proves that ϕ1 is locally Lipschitz-
continuous provided c < 1/(max(ρ+ |ro|, ρ+ ‖ξo‖)

2. ✷

Remark 4.2 As the previous proof shows it, it is quite difficult to give a precise estimation
of the Lipschitz constant of Ψ. Anyway our feeling is that an appropriate choice of c could
make this constant strictly less than 1, if ρ is small enough.

It remains to prove that the fixed point of Φ (whenever it exists) is a stationary point, i.e
a solution of the optimality system.

Theorem 4.3 Any solution (ṽ, ξ̃, q̃, r̃) of (4.29) satisfies the relations (2.11)-(2.12)-(2.13)
of the optimality system of Theorem 2.2. In addition, if the inequality constraint is active
the whole optimality system of Theorem 2.2 is satisfied.

Proof - Let us call (ṽ, ξ̃, q̃, r̃) such a point and ỹ = ϕ1(ṽ, ξ̃, q̃, r̃). The definition of Ψ yields

ṽ = ϕ2(ỹ, q̃, ξ̃) , (4.31)

ξ̃ = ϕ3(ỹ, ṽ, ξ̃, q̃, r̃) , (4.32)

(q̃, r̃) = ϕ4(ỹ, ṽ, ξ̃, q̃, r̃) . (4.33)

Relation (4.33) gives :
q̃ = q̃ + ρ1(Aỹ − ṽ − f − ξ̃) ,

and
r̃ = r̃ + ρ2[

(

ỹ, ξ̃
)

− α]+ ,

so that
Aỹ − ṽ − f − ξ̃ = 0 and

(

ỹ, ξ̃
)

≤ α . (4.34)

As ỹ ∈ K, ṽ ∈ Uad and ξ̃ ∈ Vad, this means that (ỹ, ṽ, ξ̃) is feasible for the problem (Pα).
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Now we write successively the optimality systems related to the definitions of ϕ1, ϕ2

and ϕ3. From the definition of ϕ1 we get for all y ∈ K

(ỹ − zd, y − ỹ) + (q̃, A(y − ỹ)) + r̃
(

ξ̃, y − ỹ
)

+

c
(

Aỹ − ṽ − ξ̃, A(y − ỹ)
)

+ c[
(

ỹ, ξ̃
)

− α]+

(

ξ̃, y − ξ̃
)

≥ 0

and with (4.34)

(ỹ − zd, y − ỹ) + (q̃, A(y − ỹ)) + r̃
(

ξ̃, y − ỹ
)

≥ 0 .

This is exactly relation (2.11) with (ỹ, ξ̃, q̃, r̃) instead of (yα, ξα, qα, rα).
Similarly, one can show that relations (2.12) and (2.13) are ensured for (ỹ, ṽ, ξ̃, q̃, r̃). ✷

5 Numerical Experiments

5.1 Implementation and Example

We have tested both algorithms A1 and A2. For numerical reasons that we are going
to explain we have also tested algorithm A2 with the Gauss-Seidel splitting already used
for A1. For all these methods, the main difficulty lies in the resolution of Step 2, that is
the resolution of a problem of the following type

min{ ϕ(x) | x ≥ 0 } ,

where ϕ is not twice differentiable. We have tested a classical primal-dual method which
was very slow because of the high number of unknowns ; finally, since the function ϕ is
“almost” quadratic we have chosen a quite efficient active set method exposed by Ito and
Kunisch in Ref.15, coupled with a Newton iteration.

We present the numerical results on a example given in Bermudez and Saguez (Ref.16).
We take Ω =]0, 1[×]0, 1[⊂ R

2, A = −∆ the Laplacian operator (∆y = ∂2y/∂x2
1+∂

2y/∂x2
2).

The discretization is done via finite-differences and the size of the grid is given by h = 1/N
on each side of the domain. We set Uad = L2(Ω), ν = 100

zd =

{

200 x1x2 (x1 −
1
2)2 (1 − x2) if 0 < x1 ≤ 1/2 ,

200 x2 (x1 − 1)(x1 −
1
2)2 (1 − x2) if 1/2 < x1 ≤ 1 ,

(5.35)

and

f =

{

200 [2x1(x1 −
1
2)2 − x2 (6x1 − 2) (1 − x2)] if 0 < x1 ≤ 1/2 ,

200 (1
2 − x1) if 1/2 < x1 ≤ 1 .

(5.36)

Moreover , we put α = 10−3. This example is constructed such that the null control v∗ ≡ 0
is the optimal control for the original problem (P) and

y∗ =

{

zd if 0 < x1 ≤ 1/2 ,
0 if 1/2 < x1 ≤ 1 ,

(5.37)

and J∗ = J(y∗, v∗) = 25/504 ≃ 0.496 10−1. We have tested different initial values for the
data ; we shall discuss them in the forthcoming subsections. The experimentation has been
done with the MATLAB c© software.
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5.2 Algorithm A1

The first tests have shown that the convergence was effective but slow. This comes
from the fact that the global minimization problem with (respect to y, v and ξ) issued
from Uzawa-method, which has been decoupled with a Gauss-Seidel splitting in Step 2.
is not solved accurately enough with only one Gauss-Seidel iteration. So, following Fortin
and Glowinski (Ref.7) we have introduced a longer “splitting loop” so that A1 becomes :

Algorithm A1’
– Step 1. Initialization : Set n = 0, choose c > 0, qo ∈ L2(Ω), ro ∈ R

+, (v−1, ξ−1) ∈
Uad × Vad.

– Step 2. qn, rn, vn−1 and ξn−1 are know ; set kn > 0, j = 0, vo
n = vn−1 and ξo

n = ξn−1

Begin the splitting loop : for j = 1, · · · , kn compute

yj
n = arg min 1

2‖y − zd‖
2 + (qn, Ay) + rn

(

y, ξj−1
n

)

y ∈ K +(c/2)
[

‖Ay − vj−1
n − f − ξj−1

n ‖2 + [
(

y, ξj−1
n

)

− α]2+

]

vj
n = PUad

([qn + c (Ayj
n − f − ξj−1

n )]/[ν + c])

ξj
n = arg min

(

rny
j
n − qn, ξ

)

+ (c/2)
[

‖Ayj
n − vj

n − f − ξ‖2 + [
(

yj
n, ξ

)

− α]2+

]

ξ ∈ Vad .

At the end of loop, set yn = ykn
n , vn = vkn

n , ξn = ξkn
n .

– Step 3. Compute

qn+1 = qn + ρ1 (Ayn − vn − f − ξn) where ρ1 ≥ ρo > 0 ,

rn+1 = rn + ρ2 [(yn, ξn) − α]+ where ρ2 ≥ ρo > 0 .

Algorithm A1’ has been tested with a constant length of the Gauss-Seidel loop : kn ≡
kgs. Tests have shown that a good choice for N = 15 is kgs = 5. A bigger value of kgs

decreases the number of iterations but as we have to take into account the Gauss Seidel
iterations, the global number of iterations is approximately the same. This algorithm
converges, but it is very delicate to choose the parameters c and ρ. It seems to be quite
sensitive to this choice. Of course the convergence rate depends on these parameters but we
may also have convergence at the beginning and then oscillations or convergence towards
a solution which is not very accurate. Anyway oscillations occurring for “bad” values of c
and ρ may be “killed” if kgs is increased, so that Step 2 is solved more precisely.
The choice of initial values is not very influent, except if they are chosen too far from the
solution (for example yo = 1, vo = −100, ξo = 10 ) because of Newton iterations (once
again a greater value of kgs gives better results).
We get (y, ξ) = 0 after a small number of iterations ; there is a jump : (y, ξ) is ”suddenly”
set to 0 after a gentle decreasing to 0. We note that the jump occurs at the same iteration
if we set α to 1.e-03 or 1.e-06 (α = 1 gives a bad solution..) So the constraint (y, ξ) ≤ α is
inactive at the solution and the analysis of Section 3. is valided a-posteriori. The following
table shows the influence of the parameters on the convergence process.
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We set kgs = 5, yo = 0, vo = 0, ξo = 0 , qo = 0 and N = 15. It is the number of iterations,
so that the global number is It ∗ kgs. For N = 15 we have kept c = 10, ρ = 5 and kgs = 5
as a good choice.

Table 1. Influence of parameters for Algorithm A1’

c ρ ro ‖Ay − f − v − ξ‖ (y, ξ) It J × 102 Comments

10 5 1 7.3 e-05 0 41 4.956

10 5 0 7 e-05 0 41 ”

10 1 1 9 e-02 4.28 50 ” very slow

1 0.5 1 non convergence

1 1 1 non convergence

5.3 Algorithm A2

Step 2 of Algorithm A2 is solved directly and (we could say) “exactly”. This is the
most expensive step of the method. The first iteration “pushes” the iterate very near the
solution and one can see ( with Table 2.) that the convergence is quite fast during the first
iterations. Then it is much slower. Moreover, as in the previous method we can see that
constraint (y, ξ) < α is inactive at the solution and we have (y, ξ) = 0 very quickly (most
of time from the first iteration, especially if ro 6= 0).

Table 2. Convergence of Algorithm A2

and c=1, ρ =0.5 , N =10, yo = vo = ξo = qo = 0, ro = 1, accuracy 10−4

Iteration ‖Ay − f − v − ξ‖ J × 102

1 8.1966 e-04 4.9489

2 4.1005 e-04 ”

3 2.0514 e-04 ”

4 1.0262 e-04 ”

5 6 e-05 ”

This algorithm is convergent in any case ; the different parameters (c, ρ or the initia-
lization of data) have few influence on the convergence itself but only on the convergence
rate. We present some results in Table 3. As CPU time depends on the machine and has
no absolute signification, we have normalized this time setting the smallest to 1, since only
relative values are interesting ( to give an idea, for this case, the unit CPU time on a HP
- Work station is 63 s.)

Table 3. Influence of parameters for Algorithm A2
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and N = 10, yo = vo = ξo = qo = 0, accuracy 10−4

c ρ ro ‖Ay − f − v − ξ‖ N IT CPU Units

1 0.5 1 9 e-05 5 1.5

0.1 0.01 1 >15 >10

1 1 1 4 e-07 2 1.42

1 0.1 1 9 e-05 21 3

10 5 1 8 e-05 1 1

10 5 0 4 e-05 1 1.1

100 50 1 8 e-06 1 1.4

Thus, this method is quite satisfying since it is robust and needs few iterations (the
first one is the most “expensive”). Anyway, during the resolution of Step 2 one has to
assemble a matrix which size is (3 ∗ N2) (each variable y, v or ξ is represented by a N2

vector). Even the use of sparse matrix cannot avoid a full N2-matrix. This resolution is
quite expensive in time and memory and we had to restrain our tests to N ≤ 15. It would
not be wise to use it for a grid size of 50×50 for example, even on a powerful Work-Station.
Even if the size of allocated memory would be sufficient the computational time would
very long...

So we have also considered a Gauss-Seidel splitting which allows to decouple the unk-
nowns and make the subproblems “smaller”. Step 2 of algorithm A2 is modified ; we
introduce a splitting loop of length kn and we obtain the relaxed algorithm A2’ described
below.

Algorithm A2’
– Step 1. Initialization : Set n = 0, choose c > 0, qo ∈ L2(Ω), ro ∈ R

+, ξ−1 ∈ L2(Ω)
and v−1 ∈ L2(Ω).

– Step 2. qn, rn, ξn−1 and vn−1 are known ; kn is given and j = 0, vo
n = vn−1, ξ

o
n =

ξn−1.
Begin the splitting loop : for j = 1, · · · , kn compute

yj
n = arg min { L̂α

c (y, vj−1
n , ξj−1

n , qn, rn) | y ≥ 0 } ,

ξj
n = arg min { L̂α

c (yj
n, v

j−1
n , ξ, qn, rn) | ξ ≥ 0 } ,

vj
n = PUad

([νvd − c (Ayj
n − ξj

n − f + qn/c)]/[ν + c]) .

At the end of splitting loop, set yn = ykn
n , ξn = ξkn

n , vn = vkn
n .

– Step 3. Compute

qn+1 = qn + ρ1 (Ayn − vn − f − ξn) where ρ1 ∈]0, c[ ,

rn+1 = rn + ρ2 max([(yn, ξn) − α],−rn/c) where ρ2 ∈]0, c[ .

The initial value for (y−1, v−1, ξ−1) has been set to 0 ; anyway, it seems that it has not
a great influence on the convergence ; for example the choice of (y−1 ≡ 1, v−1 ≡ 100, ξ−1 ≡
10) gives the same solution with the same CPU Time. We have not tested negative values

2In this case the value of ‖Ay − f − v − ξ‖ is 8 10−4 at the first iteration and 4 10−7 at the second
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for y−1 and ξ−1 since we tried to start from a feasible point. We have set kn ≡ kgs. Tests
with kgs = 1 show that convergence is effective but very slow : indeed, once again, it is
quite important to solve the subproblem of Step 2 very accurately (it is of course the case
for algorithm A2). A good value of kgs for N = 15 is 5 (we have already mentioned why
during the study of A1’). When ro 6= 0 we can see that we get (y, ξ) = 0 very quickly ;
the choice of ro = 0 makes the convergence of (y, ξ) towards 0 slower, but anyway, the
constraint (at the solution) is inactive. Once again, this justifies the analysis of Section 4.
We summarize in Table 4. some tests about the influence of parameters.

Table 4. Parameter Influence on Algorithm A2’ (N=15)

Initialization c ρ kgs ‖Ay − f − v − ξ‖ J × 102 Iterations Comments

yo = vo = ξo = 0 and

qo = 0, ro = 1 0.1 0.01 5 Oscillating iterates Bad convergence

” 1 0.1 5 5 e-02 4.9561 24

” 1 1 5 5 e-02 ” 10
” 1 0.5 5 7 e-02 ” 20
” 1 0.5 5 2 e-03 ” 25 5 × 25 = 125 3

” 1 0.5 10 2 e-03 ” 16 10 × 16 = 160 3

” 1 0.5 1 Bad convergence

qo = 0, ro = 0 1 0.5 5 4 e-02 4.9567 12 (y, ξ) = 3 e − 02

qo = 0, ro = 1 10 5 5 1 e-03 4.9684 21 (y, ξ) = e − 01

(yo, vo, ξo) = (1, 100, 10) 1 0.1 5 2 e-03 4.9563 11 (y, ξ) = 4 e − 02

qo = 0, ro = 1

For N = 15, one could say that a good choice of parameters is c = 1, ρ = 0.5 and kgs =
5. Table 5. gives indications on the convergence for these parameters and yo = 0, vo =
0, ξo = 0 , qo = 0, ro = 1.

Table 5. Convergence of Algorithm A2’

Iteration ‖Ay − f − v − ξ‖ (y, ξ) J × 102

1 1.4630e+00 2.6870e+00 5.0598

2 1.4621e+00 6.4095e-01 5.0576

3 1.1458e+00 2.9751e-01 4.9606

4 6.0735e-01 2.8411e-01 4.9587

5 3.0226e-01 2.6581e-01 4.9578

10 9.9310e-03 1.5777e-01 4.9567

15 1.8642e-03 6.4416e-02 4.9563

19 4.7422e-03 3.4128e-03 4.9562

20 7.0212e-02 0 4.9561

25 2.2657e-03 0 4.9561

29 9.6108e-05 0 4.9561

3Global number of iterations : It * kgs.
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To spare time tests for algorithms A1’ and A2 have been done with N=15. Some other
tests have been performed with N =30. This is much slower of course because of the size
of the grid. Moreover parameters have to be adjusted again. In particular kgs must be
increased. So the computing time is not proportional to the size of the grid.

6 Conclusions

Algorithm A2 seems to be better than A1’ because the convergence is effective in
any case and there is no sensitivity with respect to the different parameters. Algorithm
A2’ allows to consider a fine finite-difference grid (that is a great number of unknowns)
and most of time faster than A2. Moreover all the non-sensitivity with respect to the
parameters properties are preserved so that it is quite robust. All these reasons make A2’
quite efficient to solve the problem we were interested in.

To conclude we may say that augmented Lagrangian methods with splitting are quite
useful to solve (numerically) optimal control problems governed by variational inequalities.
This not really surprising since it is known that they are quite efficient in the treatment
of many nonlinear problems occurring in mechanics as Fortin and Glowinski (Ref.7) and
Glowinski and Le Tallec (Ref.12) have already pointed it out.
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