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Abstract

In this paper we investigate optimal control problems governed by elliptic varia-

tional inequalities of the obstacle type. We show how to obtain optimality conditions

for a relaxed problem with or without state constraints. Then we present the optimal-

ity system related to the original problem with state constraints, using a generalized

derivative.
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1 Introduction

In this paper we investigate optimal control problems governed by elliptic variational

inequalities of the obstacle type. This kind of problems have been studied by different

methods by many authors and we quote the works of Mignot [7], Barbu [1], Mignot and

Puel [8], Friedman [6], Tiba [10], He [11], Barbu and Tiba [5],Bergounioux [3, 4]. However,

there are still many open questions as, for instance, the treatment of the state constraints,

and a complete solution of the problem is not yet known, by our knowledge.
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We fix our attention on the following problem (P ) :

min

{

J(y, v) =
1

2

∫

Ω
(y − yd)

2 dx+
M

2

∫

Ω
u2 dx

}

(1.1)

subject to y ∈ [H1
o (Ω)]+, the positive cone in H1

o (Ω), and

a(y, ϕ− y) ≥ (u+ f, ϕ− y)L2(Ω) ∀ϕ ∈ [H1
o (Ω)]+, (1.2)

u ∈ Uad ⊂ L2(Ω) convex , closed subset. (1.3)

Above, Ω is an open, bounded smooth domain in R
n, f ∈ L2(Ω), yd ∈ L2(Ω), M > 0 is a

constant and a : H1
o (Ω)×H1

o (Ω) → R is a bilinear form satisfying the ellipticity condition

a(y, y) ≥ δ|y|2H1
o (Ω), δ > 0 . (1.4)

For instance, a(., .) may have the form

a(ϕ,ψ) =
n

∑

i,j=1

∫

Ω
aij

∂ϕ

∂xi

∂ψ

∂xj

dx+
n

∑

i=1

∫

Ω
bi
∂ϕ

∂xi

ψ dx+

∫

Ω
cϕψ dx , (1.5)

where aij ∈ C0,1(Ω), bi, c ∈ L∞(Ω), c ≥ 0.

It is known that, under the above assumptions the variational inequality (1.2) has a

unique solution y ∈ H2(Ω) ∩H1
o (Ω) and we have the following estimate

|y|H2(Ω) ≤ C |u+ f |L2(Ω) , (1.6)

with C a fixed positive constant. Moreover, (1.2) is equivalent with

Ay = u+ f + ξ in Ω (1.7)

y = 0 on ∂Ω (1.8)

y ≥ 0, ξ ≥ 0, ξ ∈ L2(Ω) , (1.9)

(y, ξ)L2(Ω) = 0 . (1.10)

Here A : H1
o (Ω) → H−1(Ω) denotes the linear bounded operator generated by a(., .), that

is

(Au, v)H−1(Ω)×H1
o (Ω) = a(u, v), ∀u, v ∈ H1

o (Ω) .

We see by (1.10) that the optimal control problem (1.1)- (1.3) is nonconvex and con-

straint qualification conditions (like Slater condition) will not be fulfilled. This shows the

difficulty of finding the optimality system and motivates our choice to examine it. In

section 2. we study a relaxed form of the problem (1.1)- (1.3) which is significant from the

point of view of numerical approximation. In the last section, we investigate the problem
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(1.1)- (1.3) to which explicit state constraints are added and we obtain a general form of

the first order necessary conditions.

For convenience, in the sequel we denote by | | the L2(Ω)-norm et ( , ) the L2(Ω)-

scalar product. | |i and ( , )i denote respectively the usual norm and the scalar product

of H i(Ω).

2 Relaxation of the Problem

The formulation (1.7)- (1.10) of the state-equation allows us to interpret ξ ∈ L2(Ω) as a

supplementary control parameter satisfying the control constraints (1.9) and the mixed

constraints (1.10). This point of view has been proposed by Mignot and Puel [8], Saguez

and Bermudez [9] and we shall follow it here. In this section we replace (1.10) by the

relaxed constraint

(y, ξ) ≤ α (2.1)

as it has already been done in Bergounioux [3]; α > 0 is arbitrary.

In order to simplify the exposition, we assume that f = 0 and

Uad is a bounded subset (by a constant k) of L2(Ω) .

This is not necessary for the existence of optimal pairs [y∗, u∗] for (1.1)-(1.3), since the

cost functional is coercive. Then (1.6) shows that for any ũ ∈ Uad, the corresponding ỹ, ξ̃

given by (1.2) (or equivalently by (1.7)-(1.10)) satisfy :

|ỹ|2 ≤ |ũ| ≤ C k , (2.2)

|ξ̃| ≤ |ũ| + |ỹ|2 ≤ (C + 1) k . (2.3)

We infer that the supplementary control ξ has to be bounded in L2(Ω) and we impose (2.3)

as an explicit condition in the relaxed problem, since it is no more automatically valid.

Therefore, we shall study the optimal control (Pα) given by (1.1),(1.7),(1.8),(1.9),(1.3)

and (2.1),(2.3).

Theorem 2.1 For any α > 0, there is at least one solution [yα, uα, ξα] for the problem

(Pα). Moreover, for α → 0, on a subsequence, we have [yα, uα, ξα] → [y∗, u∗, ξ∗] (an

optimal pair for (P)) in the strong topology of H1(Ω) × L2(Ω) coupled with the weak

topology of L2(Ω).

Proof.- For any ũ ∈ Uad, let ỹ and ξ̃ in H2(Ω)×L2(Ω) be associated via (1.7)-(1.10). Then

[ỹ, ũ, ξ̃] is admissible to (Pα), for all α > 0 since (2.3) is automatically fulfilled by (1.6).
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Now, let α > 0 be fixed and [yn, un, ξn] be a minimizing sequence to (Pα). By our

assumptions [un, ξn] is bounded in L2(Ω) × L2(Ω) and (1.7),(1.8) give {yn} bounded in

H2(Ω) ∩ H1
o (Ω). We denote by uα, ξα, yα some weak limits (on a subsequence) in the

above topology. They are obviously admissible for (Pα) and the weak lower semicontinuity

of the cost functional (1.1) shows that this is an optimal triple.

The above boundedness remains valid with respect to any α > 0 and let [ŷ, û, ξ̂] be

the weak limit on a subsequence of [yα, uα, ξα] in the topology of H2(Ω)×L2(Ω)×L2(Ω).

Obviously it satisfies (1.7),(1.8) and (1.9). Since yα → ŷ strongly in H1(Ω), then (2.1) and

(1.9) yield that (1.10) is as well satisfied. The triple [ŷ, û, ξ̂] is consequently admissible for

(P). It is optimal (see (2.4) below) and we redenote it by [y∗, u∗, ξ∗].

We show that the convergence of {uα} is valid in the strong topology of L2(Ω), on a

subsequence. We notice that [y∗, u∗, ξ∗] is admissible for (Pα) , for all α > 0, that is

1

2

∫

Ω
(yα − yd)

2 dx+
M

2

∫

Ω
u2

α dx ≤
1

2

∫

Ω
(y∗ − yd)

2 dx+
M

2

∫

Ω
(u∗)2 dx . (2.4)

Then (2.4) and the weak lower semicontinuity of the cost functional (1.1) give that

lim
α→0

∫

Ω
u2

α dx =

∫

Ω
(u∗)2 dx ,

and a wellknown strong convergence criterion in Hilbert spaces achieves the proof.

Remark 2.1 Numerically, it is enough to solve (Pα) for α “small”, instead of (P). If

Uad is unbounded, one can impose directly inequality (1.6) as a constraint or can make

a sequential choice of large constraints in (2.3) since the above argument shows that this

algorithm will stop in a finite number of steps.

Our next goal is to obtain the optimality condition for the problem (Pα), α > 0. We

shall use an adapted penalization technique which was introduced by Barbu [1] and has

the advantage to strengthen some convergence properties given by Theorem 2.1. However,

this approach is not applicable for the numerical approximation of (Pα) since it uses the

solution itself.

Let α > 0 be fixed and ε > 0 be a penalization parameter. We consider the optimiza-

tion problem

minJε(y, u, ξ) (2.5)

for all y ∈ H2(Ω) ∩H1
o (Ω), u ∈ Uad, ξ ∈ L2(Ω) satisfying (1.9) and (2.3). The penalized

functional is defined by

Jε(y, u, ξ) = J(y, v) +
1

2ε
|Ay − u− ξ|2

+
1

2
|y − yα|

2
2 +

1

2
|u− uα|

2 +
1

2ε
[(y, ξ)L2(Ω) − α]2+ ,
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where g+ =max(0, g).

We denote the problem (2.5) by (Pε
α); its feasible set

D = { (y, u, ξ) ∈ H2(Ω) ∩ [H1
o (Ω)]+ × Uad × L2(Ω)+ ; |ξ| ≤ (C + 1)k }

is independent of ε and α. The same argument as before shows (we shall frequently drop

the index α) :

Theorem 2.2 The problem (Pε
α) has at least a solution [yε, uε, ξε] in D.

Concerning the asymptotic behaviour of (Pε
α) we have the stronger statement

Theorem 2.3 When ε → 0, [yε, uε, ξε] is strongly convergent to [yα, uα, ξα] in H2(Ω) ×

L2(Ω) × L2(Ω).

Proof.- (Sketch). We have

Jε(yε, uε, ξε) ≤ Jε(yα, uα, ξα) =
1

2
|yα − yd|

2 +
M

2
|uα|

2 , (2.6)

and this shows that Ayε − uε − ξε → 0 strongly in L2(Ω), [(yε, ξε) − α]+ → 0 in R, {yε}

is bounded in H2(Ω), {uε}, {ξε} are bounded in L2(Ω). If [ỹα, ũα, ξ̃α] denote their weak

limit in H2(Ω) × L2(Ω) × L2(Ω), on a subsequence, then it will remain in D. Moreover

the strong convergence of yε to ỹα in L2(Ω) shows finally that [ỹα, ũα, ξ̃α] is an admissible

triple for (Pα) . Then (2.5), (2.6) yield :

1

2
|ỹα − yα|

2
2 +

1

2
|ũα − uα|

2 +
1

2
|ỹα − yd|

2 +
M

2
|ũα|

2

≤
1

2
|yα − yd|

2 +
M

2
|uα|

2 .

Then, the optimality of [yα, uα, ξα] shows that ỹα = yα, ũα = uα, ξ̃α = ξα (by (1.7))

and that the convergences are valid in the strong topology.

Now, we want to derive optimality conditions for (Pε
α). Jε is C1 and the feasible domain

of (Pε
α) is convex, so using convex variations we have

∀(y, u, ξ) ∈ D ∇Jε(yε, uε, ξε)(y − yε, u− uε, ξ − ξε) ≥ 0 . (2.7)

This leads to the following penalized optimality system :

Theorem 2.4 For all ε > 0 (small enough), there exist qε ∈ L2(Ω) and λε ∈ R
+ such

that
∀y ∈ H2(Ω) ∩H1

o (Ω), y ≥ 0

(yε − yd, y − yε) + (qε, A(y − yε))+

(yε − yα, y − yε)2 + λε (y − yε, ξε) ≥ 0 ,

(2.8)
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∀u ∈ Uad (Muε − qε + uε − uα, u− uε) ≥ 0 , (2.9)

∀ξ ≥ 0, |ξ| ≤ (C + 1) k (λεyε − qε, ξ − ξε) ≥ 0 . (2.10)

Proof.- relation (2.7) may be decoupled to obtain

∀y ∈ H2(Ω) ∩H1
o (Ω), y ≥ 0 ∇yJε(yε, uε, ξε)(y − yε) ≥ 0 , (2.11)

∀u ∈ Uad ∇uJε(yε, uε, ξε)(u− uε) ≥ 0 , (2.12)

∀ξ ≥ 0, |ξ| ≤ (C + 1) k ∇ξJε(yε, uε, ξε)(ξ − ξε) ≥ 0 . (2.13)

Setting

qε =
Ayε − uε − ξε

ε
∈ L2(Ω) and λε =

[(yε, ξε)L2(Ω) − α]+

ε
∈ R

+ ,

we get (2.8)-(2.10).

Remark 2.2 We define the simplified adjoint state corresponding to optimal control prob-

lems without constraints on the state :

A∗pε = yε − yd in Ω , (2.14)

pε = 0 on ∂Ω . (2.15)

Then by (2.8) we obtain

∀y ∈ H2(Ω) ∩H1
o (Ω), y ≥ 0

(pε + qε, A(y − yε)) + (yε − yα, y − yε)2 + λε (y − yε, ξε) ≥ 0 .
(2.16)

Let us note that pε is just an auxiliary mapping and pε → pα strongly in H2(Ω)∩H1
o (Ω) by

(2.14),(2.15) and Theorem 2.3. Here pα denotes the solution of (2.14),(2.15) corresponding

to yα.

In order to pass to the limit when ε→ 0, we impose the natural assumption

0 ∈ Uad (2.17)

which simply says that it is possible to have no control action on the system.

Theorem 2.5 Under the above assumptions, {λε} is bounded in R and {qε} is bounded

in L2(Ω).
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Proof.- We add relations (2.16),(2.9), (2.10) and we group conveniently the terms, taking

into account the definition of qε, to obtain

− (qε, Ay − u− ξ) − λε [(y, ξε) + (yε, ξ)] + 2λεα ≤

(pε, A(y − yε)) + (yε − yα, y − yε)2 +

(Muε + uε − uα, u− uε) − ε|qε|
2 − 2λε [(yε, ξε) − α] .

(2.18)

If (yε, ξε) − α ≥ 0 then 2λε [(yε, ξε) − α] ≥ 0, and if (yε, ξε) − α ≤ 0 then λε = 0 because

of its definition; in any case the term −2λε [(yε, ξε) − α] may be neglected in the above

relation. We see that the right-hand side in (2.18) is bounded by a constant independent

of ε, α and depending only on y, u. Here we use as well Theorem 2.3.

First, we fix y = 0, u = 0, ξ = 0, which is possible by (2.17), and we have

2λεα ≤ c ,

that is {λε} is bounded in R by
c

2α
.

Now, let us fix u = 0 and write (2.18) in the form

(−qε, Ay − ξ) ≤ C(y, ξ) (2.19)

where C(., .) is a bounded map fromH2(Ω)×L2(Ω). Consider ρ > 0 some “small” constant

and χ arbitrary in B(0, ρ) the ball of radius ρ and center 0 in L2(Ω).

We choose ξχ = χ− = χ+ − χ and y = yχ given by

Ayχ = χ+ in Ω , , yχ = 0 on ∂Ω . (2.20)

Obviously yχ ≥ 0 by the maximum principle, yχ ∈ H2(Ω) ∩H1
o (Ω) by the regularity for

(2.20) and |ξχ| ≤ ρ, |yχ|H2(Ω)∩H1
o (Ω) ≤ ρc with an absolute c. That is yχ and ξχ are

admissible with ρ “small” enough and are bounded test elements.

With this choice, there is a constant η > 0 such that (1.9) implies

(−qε, χ) ≤ η (2.21)

for any χ ∈ B(0, ρ) and this ends the proof.

Remark 2.3 The above argument shows that the qualification condition (Bergounioux

and Tiba [5]) :

∃ρ > 0, ∀χ ∈ B(0, 1), ∃[yχ, uχ, ξχ] bounded in D

by a constant independent of χ

such that Ayχ = uχ + ξχ + ρχ in Ω ,

is automatically fulfilled in the case of problem (Pε
α).
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We may pass to the limit on a subsequence as ε→ 0 and we obtain

Theorem 2.6 Under the above hypotheses, if [yα, uα, ξα] is a solution of (Pα), there exist

Lagrange multipliers λα, qα in R
+ × L2(Ω) such that

∀y ∈ H2(Ω) ∩H1
o (Ω), y ≥ 0

(pα + qα, A(y − yα)) + λα (y − yα, ξα) ≥ 0 ,
(2.22)

∀u ∈ Uad (Muα − qα, u− uα) ≥ 0 , (2.23)

∀ξ ≥ 0, |ξ| ≤ (C + 1) k (λαyα − qα, ξ − ξα) ≥ 0 , (2.24)

λα [(yα, ξα) − α] = 0 . (2.25)

Proof.- It is obvious to get relations (2.22)-(2.24). We just have to comment relation (2.25)

which is a complementarity condition related to (2.1).

If (yα, ξα)−α < 0 then the convergence results imply that (yε, ξε)−α < 0 for any ε small

enough. So λε = 0 and the limit value is λα = 0 as well.

Remark 2.4 We claim that we may similarly obtain first order optimality conditions if

we add a state constraint of the type “y ∈ K”, where K is a closed convex subset of H1
o (Ω).

All the previous convergence results remain valid. The boundedness for qε is obtained by

setting the qualification assumption mentionned in Remark 2.3.

The optimality conditions (2.22)-(2.25) give the solution of (Pα), which suffices for

the numerical approximation of (P), with α “small”. However the estimate on {λε} is

of order α−1 and it seems impossible to take α → 0 in (2.22)-(2.25). The first order

necessary conditions for the problem (P) will be discussed in the next section by a related

method and under the presence of state-constraints.

3 The Obstacle Problem with State Constraints

In this section , we study the problem (P) with the additional state constraint

y ∈ K ⊂ H1
o (Ω) closed convex subset. (3.1)

By using a technique similar to the previous section we shall prove a result of Kuhn-Tucker

type but we don’t consider a relaxed form of the original problem.

We formulate the penalized problem (ε > 0) :

min

{

1

2
|y − yd|

2 +
M

2
|u|2 +

1

2ε
|Ay − u− ξ|2 +

1

ε
(y, ξ) +

1

2
|u− u∗|2 +

1

2
|ξ − ξ∗|2

}

(3.2)
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subject to y ∈ K ∩ [H1
o (Ω)]+, u ∈ Uad, ξ ≥ 0 ,

where [y∗, u∗, ξ∗] is optimal for the problem (P) with the additional constraint (3.1). This

can be established, under the standard admissibility and coercivity assumptions, in the

usual way. Moreover, we may suppose for simplicity that [0, 0, 0] is an admissible triple.

The main difference from the previous sections is that we penalize the condition (y, ξ) = 0

and not (y, ξ) ≤ α; the approximating optimization problem is given by (3.1), (3.2),

u ∈ Uad , (3.3)

and

y ≥ 0 , ξ ≥ 0 , y ∈ H2(Ω) ∩H1
o (Ω), ξ ∈ L2(Ω) . (3.4)

As before the cost criterion in (3.2) is not a convex mapping, while the constraint set

(3.1),(3.3),(3.4) is convex in this case. Moreover K and Uad are not necessarily bounded

subsets. We denote this minimization problem by (Pε) (since there is no possible confusion

with the previous sections).

Theorem 3.1 There exists a unique optimal triple [yε, uε, ξε] for (Pε) and taking ε → 0

we have

uε → u∗ strongly in L2(Ω) (3.5)

ξε → ξ∗ strongly in L2(Ω) (3.6)

yε → y∗ strongly in H2(Ω) ∩H1
o (Ω) . (3.7)

Proof - (Sketch). If [yn, un, ξn] is a minimizing sequence for (Pε), then it is bounded in

H2(Ω) × L2(Ω) × L2(Ω) by the coercivity of the functional (3.2). On a subsequence, we

may assume that yn ⇀ ỹε, un ⇀ ũε, ξn ⇀ ξ̃ε and we may pass to the inf-limit in (3.2)

since H2(Ω) ⊂ L2(Ω) compactly. The argument follows as in Theorem 2.3.

Since the variables y, u, ξ in (Pε) are independent each other, then we may take

partial variations of convex type (i.e. uε + λ(u− uε), u ∈ Uad and so on · · ·) and we get :

Theorem 3.2 If qε =
1

ε
(Ayε − uε − ξε) ∈ L2(Ω) then :

∀y ∈ H2(Ω) ∩K , y ≥ 0 ,

(yε − yd, yε − y) +
1

ε
(ξε, yε − y) + (qε, A(yε − y)) ≤ 0 ;

(3.8)

∀u ∈ Uad ,

M (uε, , uε − u) + (uε − u∗, uε − u) − (qε, uε − u) ≤ 0 ;
(3.9)

∀ξ ∈ L2(Ω), ξ ≥ 0 ,
1

ε
(yε, ξε − ξ) + (ξε − ξ∗, ξε − ξ) − (qε, ξε − ξ) ≤ 0 ;

(3.10)

Moreover, if 0 ∈ Int(Uad), then {qε} is bounded in L2(Ω).
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Proof - We add relations (3.8)-(3.10) and we transform them as follows :

(yε − yd, yε − y) +M (uε, uε − u) +
1

ε
(yε, ξε − ξ) +

1

ε
(ξε, yε − y)

+ (uε − u∗, uε − u) + (ξε − ξ∗, ξε − ξ) + (qε, εqε −Ay + u+ ξ) ≤ 0 .

We fix y = 0, ξ = 0 and u = ρv ∈ Uad, with ρ > 0 small and v ∈ L2(Ω), |v| = 1. By

(3.5)-(3.7) all the terms, except the last, are bounded, that is

∀v ∈ L2(Ω), |v| = 1, ρ (qε, v) ≤ Cst . (3.11)

Here, we also use that (yε, ξε) ≥ 0 and may be neglected. Relation (3.11) shows that {qε}

is bounded in L2(Ω) and the proof is finished.

Remark 3.1 The necessary conditions (3.8)-(3.10) are not sufficient in general, since the

problem (Pε) is nonconvex.

It is known that the original variational inequality may be equivalently expressed by

using the maximal monotone operator ∂I[H1
o (Ω)]+ , i.e. the subdifferential of the indicator

function of the convex [H1
o (Ω)]+. Then, the optimality conditions involve a generalized

derivative of this operator. In finite dimensional spaces, Mignot [7], Theorem 1.3, has

shown that maximal monotone operators are differentiable a.e. in their domain. In our

setting, we introduce the following definition, which extends the one used by Barbu and

Tiba [2] :

Definition 3.1

D̃∂IK∩L2(Ω)+(y∗, w)q =

{ δ ∈ (H2(Ω))′ | rε ⇀ q weakly in L2(Ω), w̃ε ∈ ∂IKε∩L2(Ω)+(yε + εrε),

wε ∈ ∂IK∩H2(Ω)+(yε) , w̃ε → w strongly in L2(Ω), wε → w strongly in (H2(Ω))′

1

ε
(w̃ε − wε) ⇀ δ weakly in (H2(Ω))′, yε → y∗ strongly in H2(Ω)} .

Here m is a constant bounding {qε − ξε + ξ∗} and Kε = { s ∈ L2(Ω) | dist(s,K) ≤ εm}.

Theorem 3.3 Under the above hypotheses, if [y∗, u∗] is an optimal pair for the problem

(P) with the additional state-constraint (3.1), there exists q∗ ∈ L2(Ω) such that :

−A∗q∗ ∈ y∗ − yd − D̃∂IK∩L2(Ω)+(y∗,−ξ∗)(−q∗) , (3.12)

q∗ ∈Mu∗ + ∂IUad
(u∗) . (3.13)

Proof - We notice that yε−εqε+ε(ξε−ξ
∗) ∈ Kε∩L

2(Ω)+ by the above estimates. Relation

(3.10) may be rewritten as

yε − εqε + ε(ξε − ξ∗) ∈ ∂I−(−ξε) ,
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or equivalently

−ξε ∈ ∂I+(yε − εqε + ε(ξε − ξ∗)) ,

(here I−, I+ are the indicator functions of the negative, positive cones in L2(Ω).)

Since we know that yε − εqε + ε(ξε − ξ∗) ∈ Kε as well, we may write that

−ξε ∈ ∂IKε∩L2(Ω)+(yε − εqε + ε(ξε − ξ∗)) . (3.14)

Similarly, relation (3.8) gives that

−A∗qε −
1

ε
ξε ∈ yε − yd +

1

ε
∂IK∩H2(Ω)+(yε) , (3.15)

where A∗ is the adjoint of the operator A : H2(Ω) → L2(Ω). Then (3.14) and (3.15) yield

that

−A∗qε ∈ yε − yd +
1

ε
∂IK∩H2(Ω)+(yε) −

1

ε
∂IKε∩L2(Ω)+(yε − εqε + ε(ξε − ξ∗)) .

The convergence properties of yε, qε, ξε and Definition 3.1 give the point (3.12). The

maximum principle (3.13) is a consequence of (3.5) and (3.9).

Remark 3.2 It is possible to discuss the above approximation scheme in the spaces H1
o (Ω)×

H−1(Ω) instead of (H2(Ω)∩H1
o (Ω))×L2(Ω). But, then difficulties related to the absence

of some compactness properties will arise and the approach becomes more complicated.
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