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1. Introduction. In this paper we investigate optimal control problems governed by vari-

ational inequalities of obstacle type. This problem has been widely studied during the last years

by many authors. It is now known that one cannot obtain classical optimality systems (in the

sense of Mathematical Programming) for such problems. This come essentially from the fact

that the mapping S which associates the state y solution of a Variational Inequality to the

control v, is not differentiable as pointed it out Mignot [9] and one can only define a conical

derivative for S. In [10], Mignot and Puel obtain optimality conditions using the results of [9].

Different methods have been used to consider this problem. Barbu [2, 3] studies approximations

of the Variational Inequality which lead to optimal control problems governed by variational

equations. Then he gets existence results and optimality conditions using a passage to the

limit in the approximation process. In [5, 6], the first author has obtained classical optimality

systems for suitable approximations of the original problem which can be easily used from the

numerical point of view.

On the other hand, Rubio and Wenbin [14] obtain results for strongly monotone variational

inequalities of obstacle type introducing a dual penalization for the variational inequality on

increasing radius balls. We have adopted these last authors point of view to interpret the
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variational inequality in a dual way. Anyway the motivation is slightly different since we have

been thinking of conjugated functions occurring in classical convex analysis. So we define a

regularized dual function which is C1 to describe the Variational Inequality. We do not claim

that our results are completely new (though we are able to weaken some assumptions that

are commonly used) but we think that this method may be extended to general Variational

Inequalities and may provide some new results and a better understanding of the behavior of

solutions.

The paper is organized as follows. We first present the problem and set the basic assump-

tions. Existence results are well known for this kind of problems and we are only interested in

optimality conditions. Then we define the dual functional h, give some properties and reinter-

pret the original problem as a classical mathematical programming problem with an C1 equality

constraint. A short example will show that it is hopeless to obtain classical optimality systems

so that usual results cannot be applied. So we use a penalty method to get first-order conditions

with additional assumptions. We end the paper with applications.

2. Setting the problem. Consider the following abstract problem :

(P) min J(y, v) , 〈T (y, v), z − y〉 ≥ 0 ∀z ∈ K, y ∈ K, v ∈ Uad

where

• V is an Hilbert space and V ′ its dual; we denote by 〈 , 〉 the duality product between V

and V ′, by ( , )V the inner scalar product of V and by ‖ ‖V the V -norm. We shall omit

the index for the space V most of time, i.e. ‖ ‖ will mean ‖ ‖V . Moreover Λ : V → V ′

is the duality mapping (i.e. here the canonical isomorphism) and we recall that :

∀(y, z) ∈ V × V (y, z)V = 〈y,Λz〉 .

• U is an Hilbert space and ΛU : U → U ′ denotes the duality mapping.

• K and Uad are non empty closed convex subsets of V and U respectively.

• T : V × U → V ′ is an operator (not necessarily linear) which satisfies :

T is C1 in the Fréchet sense.(2.1)

and

∀y ∈ K v 7→ T (y, v) is strongly continuous from U to V ′ .(2.2)
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We recall (see for example Zeidler [15] p.515) that T (y, .) is strongly continuous if it is weakly-

strongly sequentially continuous, i.e.

vn ⇀ v in U ⇒ T (y, vn) → T (y, v) in V ′ .

• J : V ×U → R∪{+∞} is a proper, convex and lower semicontinuous functional; moreover

it is supposed to be bounded below and Gâteaux-differentiable.

We assume also that

Problem (P) has at least one optimal solution denoted (y∗, v∗) ∈ K × Uad .(2.3)

All the previous assumptions are supposed to be ensured in the sequel of the paper. We sum-

marize them as assumption (H).

Remark 2.1. We must underline that the Gâteaux-differentiability assumption for the cost

functional J can be omitted. Indeed, using Moreau-Yosida approximation of J one can replace

the original problem by a similar problem where the cost functional is Gâteaux-differentiable

(and even C1) and the results of this paper can be applied. Then, one can pass to the limit in

optimality systems to get the new one which involves sub-gradients instead of Gâteaux-derivatives

(see Bergounioux [6] for instance). However, to make the presentation clearer we decided to add

this Gâteaux-differentiability assumption for J .

2.1. Examples. Let us give some examples to illustrate such problems. Let A be an

operator from V onto V ′ such that A is

• strongly monotone i.e.

∃ν > 0 such that ∀(y, z) ∈ V × V 〈Ay −Az, y − z〉 ≥ ν‖y − z‖2
V .

• demi-continuous, i.e. strongly-weakly sequentially continuous :

xn → x strongly in V ⇒ Axn ⇀ Ax weakly in V ′ .

Let ϕ : V → R ∪ {+∞} be a proper, convex and lower semicontinuous functional such that

∃yo ∈ dom ϕ such that lim
‖y‖→+∞

〈Ay, y − yo〉 + ϕ(y)

‖y‖
= +∞ ,

and f ∈ V ′.

Then the following variational inequality has a unique solution y (see [3] pp 125-127) :

∀z ∈ V 〈Ay, y − z〉 + ϕ(y) − ϕ(z) ≤ 〈f, y − z〉 .(2.4)
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In particular we may choose 〈Ay, z〉 = a(y, z) where a is a bilinear, continuous and V -elliptic

(i.e. a(y, y) ≥ µ‖y‖2) form and ϕ is the indicatrix function 1K of a nonempty, convex and closed

set K. We recall that

1K(y) =

{

0 if y ∈ K

+∞ else

Then, the Variational Inequality (2.4) has a unique solution y and the application f 7→ y is

lipschitz-continuous from V ′ onto V .

Suppose now that we have V ⊂ U ⊂ V ′ continuously and densely and define B a strongly

continuous operator from U to V ′ ( B may be, for instance, the canonical injection if U is

compactly embedded in V ) and assume, in addition that J is coercive. Then ([3] p.151) the

problem (P) has at least one optimal solution. In this case T (y, v) = Ay −Bv − f and satisfies

(2.2).

2.2. Reformulation of the Variational Inequality. We are going to transform the

variational inequality via a duality process. For α > 0, we define the functional hα : V ×U → R

as following :

hα(y, v) = sup
z∈K

[

〈−αT (y, v), z − y〉 −
1

2
‖z − y‖2

V

]

.(2.5)

Remark 2.2. α is a parameter that will be fixed later greater than ν−1 , where ν will be

a monotonicity constant for T , as it appears in Example 2.1 for instance. We will explain this

choice in the sequel of the paper.

Theorem 2.1. hα is well-defined and

i. ∀y ∈ K, ∀v ∈ U hα(y, v) ≥ 0 .

ii. hα(y, v) =
1

2

[

α2‖T (y, v)‖2
V ′ − d2

K(y − αΛ−1T (y, v))
]

,

where dK is the distance to the set K.

iii. hα(y, v) = −α 〈T (y, v), yK − y〉 −
1

2
‖yK − y‖2

V

where yK = PK(y − αΛ−1T (y, v)) and PK is the V -projection on K.

Proof. Recall that

d2
K(y) = min

z∈K
‖z − y‖2

V = ‖y − PK(y)‖2
V ,

Assertion (i) is obvious : one takes z = y to compute the supremum in (2.5).

Let (y, v) be in V × U .

hα(y, v) = α 〈T (y, v), y〉 −
1

2
‖y‖2 + sup

z∈K

[

〈−αT (y, v), z〉 −
1

2
‖z‖2 + (y, z)V

]
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= α 〈T (y, v), y〉 −
1

2
‖y‖2 − inf

z∈K

[

1

2
‖z‖2 −

(

y − αΛ−1T (y, v), z
)

V

]

,

since 〈T (y, v), z〉 =
(

Λ−1T (y, v), z
)

V
. So

hα(y, v) = α 〈T (y, v), y〉 −
1

2
‖y‖2 −

1

2
inf
z∈K

‖z − (y − αΛ−1T (y, v))‖2
V +

1

2
‖y − αΛ−1T (y, v))‖2

V

=
α2

2
‖T (y, v)‖2

V ′ −
1

2
d2

K(y − αΛ−1T (y, v))

Setting yK = PK(y − αΛ−1T (y, v)), we have then

hα(y, v) =
α2

2
‖T (y, v)‖2

V ′ −
1

2
‖y − αΛ−1T (y, v) − yK‖2

V

hα(y, v) = −α 〈T (y, v), yK − y〉 −
1

2
‖yK − y‖2

V .

Remark 2.3. We may relate this function h to the classical conjugate functions. Let us call

ỹ = −αT (y, v) for a while :

hα(y, v) = sup
z∈K

[

〈ỹ, z − y〉 −
1

2
‖z − y‖2

]

,

= −
1

2
‖y‖2 − 〈ỹ, y〉 + sup

z∈K

[

〈ỹ + Λy, z〉 −
1

2
‖z‖2

]

,

= −
1

2
‖y‖2 − 〈ỹ, y〉 + sup

z∈V

[〈ỹ + Λy, z〉 − ψ(z)] ,

where ψ(z) = 1
2‖z‖

2 + 1K(z) is convex. So we get

hα(y, v) = ψ∗(Λy − αT (y, v)) −
1

2
‖y‖2 + α 〈T (y, v), y〉

that is

hα(y, v) = ψ∗(Λy − αT (y, v)) −
1

2
‖Λy − αT (y, v)‖2

V ′ +
α2

2
‖T (y, v)‖2

V ′ ,

where ψ∗ is the conjugate function of ψ (see [8] for example).

Theorem 2.2. If the operator T is Fréchet - C1 then hα is Fréchet - C1 and

h′α(y, v) = α2[T ′(y, v)]∗Λ−1T (y, v) −

[(

I

0

)

− α[T ′(y, v)]∗Λ−1

]

Λ(I − PK)(y − αΛ−1T (y, v)) ,

where [T ′(y, v)]∗ is the adjoint operator of T ′(y, v).

Proof. We know that σ : V → R such that σ(y) =
1

2
d2

K(y) =
1

2
‖(I − PK)(y)‖2

V is Fréchet - C1

and σ′ = I −PK . (This is a consequence of Moreau-Yosida approximation theory: one can refer
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to [3] p.67 for more details). So hα is Fréchet - C1 since T is.

Let us fix (y, v) ∈ V × U and compute first 〈∇yhα(y, v), z〉 for z ∈ V .

As

hα(y, v) =
1

2

[

α2‖T (y, v)‖2
V ′ − d2

K(y − αΛ−1T (y, v))
]

.

then 〈∇yhα(y, v), z〉 =

α2
(

T (y, v), T ′
y(y, v) z

)

V ′
−
(

(I − PK)(y − αΛ−1T (y, v)), z − αΛ−1T ′
y(y, v) z)

)

V
=

α2
〈

Λ−1T (y, v), T ′
y(y, v) z

〉

V,V ′
−
〈

Λ(I − PK)(y − αΛ−1T (y, v)), z − αΛ−1T ′
y(y, v) z)

〉

V ′,V
=

α2
〈

T ′
y(y, v)

∗Λ−1T (y, v), z
〉

V ′,V
−
〈

[I − αΛ−1T ′
y(y, v)]

∗Λ(I − PK)(y − αΛ−1T (y, v)), z
〉

V ′,V
.

So

∇yhα(y, v) = α2T ′
y(y, v)

∗Λ−1T (y, v)− [I −α(Λ−1T ′
y(y, v))

∗]Λ(I −PK)(y−αΛ−1T (y, v)) .(2.6)

Similarly one computes ∇vhα(y, v) : 〈∇vhα(y, v), u〉U ′,U =

α2
(

T (y, v), T ′
v(y, v) u

)

V ′
−
(

(I − PK)(y − αΛ−1T (y, v)),−αΛ−1T ′
v(y, v) u)

)

V
=

α2
〈

Λ−1T (y, v), T ′
v(y, v) u

〉

V,V ′
+ α

〈

Λ(I − PK)(y − αΛ−1T (y, v)),Λ−1T ′
v(y, v) u)

〉

V ′,V
=

α2
〈

T ′
v(y, v)

∗Λ−1T (y, v), u
〉

U ′,U
+ α

〈

[Λ−1T ′
v(y, v)]

∗Λ(I − PK)(y − αΛ−1T (y, v)), u
〉

U ′,U
.

Finally we get

∇vhα(y, v) = α2T ′
v(y, v)

∗Λ−1T (y, v) + αT ′
v(y, v)

∗(I − PK)(y − αΛ−1T (y, v)) ,

i.e.

∇vhα(y, v) = αT ′
v(y, v)

∗[y − PK(y − αΛ−1T (y, v))] .(2.7)

Theorem 2.3. For any α > 0, the three following assertions are equivalent :

i. hα(y, v) = 0 , y ∈ K, v ∈ Uad.

ii. 〈T (y, v), z − y〉 ≥ 0 ∀z ∈ K, y ∈ K, v ∈ Uad.

iii. y = PK(y − αΛ−1T (y, v)), v ∈ Uad .

Proof. We show ii. ⇒ i.

Let be v ∈ Uad and y ∈ K be a solution of

〈T (y, v), z − y〉 ≥ 0 ∀z ∈ K .
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Then for any z ∈ K and α > 0, we get

−α 〈T (y, v), z − y〉 −
1

2
‖z − y‖2 ≤ 0 ,

so that hα(y, v) ≤ 0. As y ∈ K, we already know that hα(y, v) ≥ 0 and we get i.

Conversely: i. ⇒ ii.

hα(y, v) = 0 → −α 〈T (y, v), z − y〉 −
1

2
‖z − y‖2 ≤ 0, ∀z ∈ K .

Let be t ∈]0, 1[ and set z = (1 − t)y + tξ with ξ ∈ K. we obtain

−αt 〈T (y, v), ξ − y〉 −
t2

2
‖ξ − y‖2 ≤ 0 .

Dividing by t and letting t tend towards 0 implies

∀ξ ∈ K α 〈T (y, v), ξ − y〉 ≥ 0 ,

i.e. (ii) since α > 0.

At last, it is clear that ii. is equivalent to iii. since ii. is equivalent to

(

αΛ−1T (y, v), z − y
)

V
≥ 0 ∀z ∈ K ,

that is
(

y − (y − αΛ−1T (y, v)), z − y
)

V
≥ 0 ∀z ∈ K .

The characterization of the projection yields that

y = PK(y − αΛ−1T (y, v)) .

Finally, we have proved that problem (P) is equivalent to

(Pα) min J(y, v) , hα(y, v) = 0 , y ∈ K, v ∈ Uad

where hα is C1 but not convex and α > 0.

We end this section with a lower semi-continuity result for hα. More precisely

Theorem 2.4. Let yo be in K and assume the operator v → T (yo, v) is strongly continuous

at the point vo ∈ U , then the function v 7→ hα(yo, v) is weakly continuous at vo.

Proof. Consider a weakly convergent sequence vn ⇀ vo and α > 0; Theorem 2.1 gives

hα(yo, vn) = −〈αT (yo, vn), z̄n − yo〉 −
1

2
‖z̄n − yo‖

2
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where

z̄n = PK(yo − αΛ−1T (yo, vn)) → zo = PK(yo − αΛ−1T (yo, vo)) .

(since T (yo, vn) → T (yo, vo));so

lim
n→+∞

hα(yo, vn) = lim
n→+∞

[

−α 〈T (yo, vn), z̄n − yo〉 −
1

2
‖z̄n − yo‖

2

]

,

lim
n→+∞

hα(yo, vn) = −α 〈T (yo, vo), zo − yo〉 −
1

2
‖zo − yo‖

2 = hα(yo, vo) .

3. Classical Mathematical Programming Approach. In this section,we suppose that

J is differentiable (in the Fréchet sense). Problem (Pα) appears to be a classical mathematical

programming problem where the functions are smooth and there are no inequality constraints.

So we are going to see how general mathematical programming methods in Banach spaces can

be adapted here. Let us recall a result mainly due to J.Zowe and S.Kurcyusz [16]. We consider

real Banach spaces

X ,Y; let C be a convex closed subset of X and M a closed cone of Y with vertex at 0. We

deal also with :

f : X → R , Fréchet-differentiable functional and

g : X → Y continuously Fréchet-differentiable.

Now, let be the mathematical programming problem defined by :

min { f(x) | g(x) ∈M, x ∈ C } .(3.1)

We suppose that the problem (3.1) has an optimal solution that we call x̄, and we introduce the

conical hulls of C − {x̄} and M − {y} :

C(x̄) = { x ∈ X | ∃λ ≥ 0,∃ c ∈ C, x = λ (c− x̄) },

M(y) = { z ∈ Y | ∃λ ≥ 0,∃ ζ ∈M, z = ζ − λy }.

One may now enounce the main result about the existence of Lagrange multipliers for such a

problem.

Theorem 3.1. Let x̄ be an optimal solution for problem (3.1) and suppose that the following

regularity condition is fulfilled:

g′(x̄) · C(x̄) −M(g(x̄)) = Y .(3.2)
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Then a Lagrange multiplier µ∗ ∈ Y ′ exists such that

∀z ∈M 〈µ∗, z〉Y ′,Y ≥ 0 ,(3.3)

〈µ∗, g(x̄)〉Y ′,Y = 0 ,(3.4)

f ′(x̄) − µ∗ ◦ g′(x̄) ∈ C(x̄)+ ,(3.5)

where A+ = { x∗ ∈ X ∗ | 〈x∗, a〉X ′,X ≥ 0, ∀a ∈ A }.

Remark 3.1. A classical regularity condition to ensure the existence of Lagrange multipliers

for such problems is one of the following :

either x̄ ∈ Int C and g′(x̄) is surjective

or, there is some x ∈ C(x̄) such that g′(x̄)x ∈ Int M(g(x̄)) .

These conditions are not fulfilled when the considered interiors are empty (which happens quite

often). The so-called Zowe and Kurcyusz regularity condition (3.2) is a weak variant and allows

to get (classical) Lagrange multipliers even if the previous regularity conditions are not satisfied.

Indeed, if (3.2) is fulfilled then the linearizing cone of the feasible set at x̄ is included in the

sequential tangent cone at x̄ and therefore Lagrange multipliers exist.

Let us apply this formalism to our case with X = V ×U, Y = R, f = J, g = hα, C = K ×Uad

and M = {0}. We set x = (y, v) and x̄ = (y∗, v∗). In our setting condition (3.2) becomes

h′α(y∗, v∗) · C(y∗, v∗) = R .(3.6)

Applying the previous general result leads to

Theorem 3.2. Let (y∗, v∗) be an optimal solution for problem (P) and suppose that (3.6)

is fulfilled.

Then, there exists λ∗ ∈ R such that

J ′(y∗, v∗) − λ∗h′α(y∗, v∗) ∈ C(y∗, v∗)+ ,

i.e.

∀z ∈ K 〈∇yJ(y∗, v∗) − λ∗∇yhα(y∗, v∗), z − y∗〉
V ′,V

≥ 0 ,(3.7)

∀v ∈ Uad 〈∇vJ(y∗, v∗) − λ∗∇vhα(y∗, v∗), v − v∗〉U ′,U ≥ 0 .(3.8)

The regularity condition involves the derivative of hα at (y∗, v∗) so we compute it :
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Lemma 3.1.

h′α(y∗, v∗) = α T (y∗, v∗) ∈ V ′ .

Proof. We know that y∗ = PK(y∗ − αΛ−1T (y∗, v∗)) because of Theorem 2.3. So

(I − PK)(y∗ − αΛ−1T (y∗, v∗)) = −αΛ−1T (y∗, v∗) .

Using Theorem 2.2 we get : ∀(y, v) ∈ V × U 〈h′α(y∗, v∗), (y, v)〉 =

α2
(

T (y∗, v∗), T ′(y∗, v∗)(y, v)
)

V ′
+ α

(

Λ−1T (y∗, v∗), y − αΛ−1T ′(y∗, v∗)(y, v)
)

V
=

α2
(

T (y∗, v∗), T ′(y∗, v∗)(y, v)
)

V ′
− α2

(

T (y∗, v∗), T ′(y∗, v∗)(y, v)
)

V ′
+ α

(

Λ−1T (y∗, v∗), y
)

V
.

Let us write the regularity condition (3.6). It precisely means :

∀t ∈ R , ∃λ ≥ 0 ∃y ∈ K such that λα 〈T (y∗, v∗), y〉 = t .(3.9)

We remark that the above condition does not depend on the set Uad. Nevertheless it is quite

difficult to ensure and we think that most of time it not useful since it cannot be fulfilled. Let

us give a simple example which is the case of obstacle problem.

Let Ω be a bounded open subset of R
n (n ≤ 3) with a smooth boundary. We set V = H1

o (Ω)

and U = L2(Ω).The isomorphism Λ is equal to −∆ + I (where ∆ is the laplacian operator. We

define T as : T (y, v) = −∆y − v − f where f ∈ H−1(Ω). T is of course a C1-operator from

H1
o (Ω) × L2(Ω) to H−1(Ω).

We set K = { y ∈ V | y ≥ 0 a.e. in Ω } and ξ∗ = T (y∗, v∗) = −∆y∗ − v∗ − f . It is a classical

result (see [10, 5] for instance) that T (y∗, v∗) ≥ 0 a.e. and 〈T (y∗, v∗), y∗〉V ′,V = 0. Condition

(3.9) becomes

∀t ∈ R , ∃λ ≥ 0 ∃y ≥ 0 such that λα 〈T (y∗, v∗), y〉 = t .

This is obviously impossible for t < 0.

Remark 3.2. Lemma (3.1) gives the relation between hα and T when the pair (y, v) is

solution of the variational inequality i.e. hα(y, v) = 0. We get precisely T (y, v) =
1

α
h′α(y, v).

The previous analysis shows that is hopeless to get “classical” Lagrange multipliers that

satisfy an optimality system as (3.7)-(3.8). Indeed, even a quite weak regularity condition

cannot be satisfied. One cannot use the general results of mathematical programming theory.

So we are going to use other techniques to get what we still will call Lagrange multipliers;

however these multipliers will satisfy more restrictive optimality systems.
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4. The penalty method.

4.1. Penalization of Pα. We have underlined, it is hopeless to expect a “classical” op-

timality system as the previous example shows it; however we are going to prove there exists

some “weaker” optimality conditions via a penalization method.

Let be (y∗, v∗) ∈ K × Uad a solution of (P), and consider the following problem (Pn
α) which

is a penalization of problem (Pα).

(Pn
α) inf Jn(y, v) , ∀y ∈ K , ∀v ∈ Uad

with

Jn(y, v) := J(y, v) + nhα(y, v) +
1

2
‖y − y∗‖2

V +
1

2
‖v − v∗‖2

U .

For a sequence εn → +0 there exists by Ekeland’s variational principle an element (yn, vn) ∈

K × Uad such that

J(yn, vn) + nhα(yn, vn) +
1

2
‖yn − y∗‖2

V +
1

2
‖vn − v∗‖2

U ≤ inf (Pn
α) + εn

and

J(yn, vn) + nhα(yn, vn) +
1

2
‖yn − y∗‖2

V +
1

2
‖vn − v∗‖2

U − εn

∥

∥

∥

∥

∥

(

y − yn

v − vn

)∥

∥

∥

∥

∥

V ×U

≤

J(y, v) + nhα(y, v) +
1

2
‖y − y∗‖2

V +
1

2
‖v − v∗‖2

U ∀(y, v) ∈ K × Uad.(4.1)

Theorem 4.1. Assume (H) and one of the following :

1. Either,y 7→ T (y, v) is strongly monotone uniformly with respect to v ∈ U , i.e

∃ν > 0 〈T (y, v) − T (z, v), y − z〉 ≥
ν

2
‖z − y‖2

V ∀y, z ∈ K ∀v ∈ Uad(4.2)

and α > ν−1.

2. Or T is weakly-strongly continuous with respect to both variables y and v i.e.

yn ⇀ y and vn ⇀ v ⇒ T (yn, vn) → T (y, v) .(4.3)

Then, the sequence (yn, vn) strongly converges to (y∗, v∗) in V × U .

Moreover lim
n→+∞

n · hα(yn, vn) = 0.

Proof - With (y, v) = (y∗, v∗) ∈ K × Uad it follows from (4.1)

0 ≤ nhα(yn, vn) +
1

2
‖yn − y∗‖2

V +
1

2
‖vn − v∗‖2

U

≤ J(y∗, v∗) − J(yn, vn) + εn

∥

∥

∥

∥

∥

(

yn − y∗

vn − v∗

)
∥

∥

∥

∥

∥

V ×U

.(4.4)
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If the cost function J : Y × U → R is convex, continuous and Gâteaux-differentiable we obtain

0 ≤ nhα(yn, vn) +
1

2
‖yn − y∗‖2

V +
1

2
‖vn − v∗‖2

U

≤ ‖J ′(y∗, v∗)‖

∥

∥

∥

∥

∥

(

yn − y∗

vn − v∗

)∥

∥

∥

∥

∥

V ×U

+ εn

∥

∥

∥

∥

∥

(

yn − y∗

vn − v∗

)∥

∥

∥

∥

∥

V ×U

.(4.5)

It follows that the sequences {vn} and {yn} are bounded. Therefore there exist a weakly con-

vergent subsequences of {vn} and {yn} (still denoted {vn} and {yn} ) such that

vn ⇀ v̄ ∈ Uad and yn ⇀ ȳ ∈ K .(4.6)

Moreover we see that

hα(yn, vn) → 0 as n→ +∞.(4.7)

Let us detail the two different cases occurring in the theorem.

• Case 1.

We use assumption (4.2) (i.e the strong monotonicity of T with respect to y for any v)

to prove that yn strongly converges to ȳ; we get

0 ≤
ν

2
‖yn − ȳ‖2 ≤ 〈T (yn, vn) − T (ȳ, vn), yn − ȳ〉

0 ≤
αν

2
‖yn − ȳ‖2 ≤ − α 〈T (yn, vn), ȳ − yn〉 − α 〈T (ȳ, vn), yn − ȳ〉

(αν − 1)

2
‖yn − ȳ‖2 ≤ hα(yn, vn) − α 〈T (ȳ, vn), yn − ȳ〉 .

Moreover we assume that α > ν−1 . As the mapping v → T (y, v) is strongly continuous

for any y ∈ K (assumption (2.3) ) T (ȳ, vn) strongly converges to T (ȳ, v̄). As hα(yn, vn) →

0 as well, we finally get the strong convergence of yn toward ȳ.

As the operator T satisfies (2.1) and (2.2), hα is (strongly) continuous with respect to y

and weakly continuous with respect to v because of Theorem 2.4 . Then using relation

(4.7) we get

0 = lim
n→+∞

hα(yn, vn) ≥ lim inf
n→+∞

hα(yn, vn) ≥ hα(ȳ, v̄) ≥ 0.

Thus, the pair (ȳ, v̄) is feasible for (Pα).
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• Case 2.

We assume (4.3) now. As zn = PK(yn − αΛ−1T (yn, vn)) we know that

‖zn − yn‖ = ‖PK(yn − αΛ−1T (yn, vn)) − PK(yn)‖

≤ α‖T (yn, vn)‖ ≤ M .

since (yn, vn) weakly converges to (ȳ, v̄) and T is weakly-strongly continuous. Therefore

there exists a subsequence of zn (still denoted in the same way) weakly convergent to

some z̄ ∈ K. In addition the characterization of the projection operator yields that

(

yn − αΛ−1T (yn, vn) − zn, z − zn
)

≤ 0 ∀z ∈ K.

Setting z = yn ∈ K we get

1

2
‖zn − yn‖

2 ≤ − α 〈T (yn, vn), zn − yn〉 −
1

2
‖zn − yn‖

2 = hα(yn, vn) .

So (4.7) gives the strong convergence of zn − yn to 0 and z̄ = ȳ. Moreover as

(yn − zn, z − zn) ≤ α 〈T (yn, vn), z − zn〉 ∀z ∈ K

and T is weakly-strongly continuous we finally obtain

0 ≤ 〈T (ȳ, v̄), z − ȳ〉 ∀z ∈ K.

Therefore (ȳ, v̄) satisfies hα(ȳ, v̄) = 0.

So in both cases (ȳ, v̄) is a feasible element of (P). Then from (4.4) we obtain

0 ≤ lim
n→+∞

[

n · hα(yn, vn) +
1

2
‖yn − y∗‖2

V +
1

2
‖vn − v∗‖2

U

]

≤ J(y∗, v∗) − J(ȳ, v̄) ≤ 0 .

Finally

yn → y∗ = ȳ , vn → v∗ = v̄ strongly , and n · hα(yn, vn) → 0 .(4.8)

Now we set first order optimality conditions for problem (Pn
α) (though the pair (yn, vn) is

only an “εn-minimizer” for this problem). Then we shall pass to the limit as n→ +∞.

By (4.1) it follows with y = yn + ts, s ∈ K − yn and v = vn + tr, r ∈ Uad − vn and t > 0

J(yn + ts, vn + tr) − J(yn, vn) + n [hα(yn + ts, vn + tr) − hα(yn, vn)]

+
1

2
t2‖s‖2 + t 〈Λ(yn − y∗), s〉

+
1

2
t2‖r‖2 + t 〈ΛU (vn − v∗), r〉 + εnt

∥

∥

∥

∥

∥

(

s

r

)
∥

∥

∥

∥

∥

V ×U

≥ 0.
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Dividing by t and letting tend t→ 0, this implies with s = z−yn, z ∈ K, and r = u−vn, u ∈ Uad,

the inequality

〈

J ′(yn, vn),

(

z − yn

u− vn

)〉

+ n

〈

h′α(yn, vn),

(

z − yn

u− vn

)〉

+

〈(

Λ(yn − y∗)

ΛU (vn − v∗)

)

,

(

z − yn

u− vn

)〉

+ εn

∥

∥

∥

∥

∥

(

z − yn

u− vn

)∥

∥

∥

∥

∥

V ×U

≥ 0(4.9)

for all (z, u) ∈ K × Uad.

As we assumed that the operator T : V ×U → V ′ is continuously Fréchet-differentiable, Theorem

2.2 gives, with

zn = PK(yn − αΛ−1T (yn, vn))(4.10)

〈

h′α(yn, vn),

(

z − yn

u− vn

)〉

=

〈

αT ′(yn, vn)

(

z − yn

u− vn

)

, yn − zn

〉

+ < αT (yn, vn), z − yn > + < Λ(zn − yn), z − yn > .(4.11)

So with (4.9), we get

〈

J ′(yn, vn) − nαT ′∗(yn, vn)(zn − yn),

(

z − yn

u− vn

)〉

+ 〈nΛ(zn − yn), z − yn〉 + n 〈αT (yn, vn), z − yn〉

+

〈(

Λ(yn − y∗)

ΛU (vn − v∗)

)

,

(

z − yn

u− vn

)〉

+ εn

∥

∥

∥

∥

∥

(

z − yn

u− vn

)∥

∥

∥

∥

∥

V ×U

≥ 0(4.12)

and for u = vn ∈ Uad with pn := n(zn − yn) from (4.12)

∀z ∈ K
〈

J
′

y(yn, vn) − αT
′∗

y (yn, vn)pn, z − yn

〉

+ n 〈αT (yn, vn), z − yn〉

+ 〈Λ(yn − y∗), z − yn〉 + n 〈Λ(zn − yn), z − yn〉 + εn‖z − yn‖ ≥ 0 .(4.13)

For z = yn ∈ K it follows from (4.12)

∀u ∈ Uad

〈

J
′

v(yn, vn) − αT
′∗

v (yn, vn)pn, u− vn

〉

+ 〈ΛU (vn − v∗), u− vn〉

+εn‖u− vn‖ ≥ 0.(4.14)
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4.2. Passage to the limit. We would like to pass to the limit in the previous inequali-

ties. Beginning with relation (4.14) we realize that all the n-quantities are either bounded or

convergent except pn. So we first give an estimation on pn.

Theorem 4.2. Assume (H) and one of the following :

1. Either (4.2)

2. Or T ′
y is coercive in the following sense:

∃(µ, ν) > 0, ∀(y, v) ∈ K × Uad, ∀z ∈ V s.t. ‖z‖V ≥ µ ,
〈

T
′

y(y, v)z, z
〉

≥
ν

2
‖z‖2

V(4.15)

and α > ν−1.

Then, there exists κ > 0 such that

∀n ∈ N ‖pn‖V ≤ κ .

Proof - Let us take z = zn = PK(yn − αΛ−1T (yn, vn)) in (4.13); this gives

〈

J
′

y(yn, vn) − nαT
′∗

y (yn, vn)(zn − yn), zn − yn

〉

+ n 〈αT (yn, vn), zn − yn〉

+n 〈Λ(zn − yn), zn − yn〉 + 〈Λ(yn − y∗), zn − yn〉 + εn‖zn − yn‖ ≥ 0 .

As hα(yn, vn) = −α 〈T (yn, vn), zn − yn〉 −
1

2
‖zn − yn‖

2 (Theorem 2.1 - iii) we get

〈

J
′

y(yn, vn), zn − yn

〉

− nhα(yn, vn)

−
n

2
‖zn − yn‖

2 + n 〈Λ(zn − yn), zn − yn〉

+ 〈Λ(yn − y∗), zn − yn〉 + εn‖zn − yn‖ ≥ nα
〈

T
′∗

y (yn, vn)(zn − yn), zn − yn

〉

.

(4.16)

• Case 1. The operator T is strongly monotone with respect to y so (see Shi [12] )

〈

T
′∗

y (y, v)z, z
〉

≥
ν

2
‖z‖2

V ∀z ∈ V , ∀y ∈ K, ∀v ∈ Uad .

With hα(yn, vn) ≥ 0 relation (4.16) gives

〈

J
′

y(yn, vn), zn − yn

〉

+
n

2
‖zn − yn‖

2 + 〈Λ(yn − y∗), zn − yn〉+ εn‖zn − yn‖ ≥ nα
ν

2
‖zn − yn‖

2 .

So

‖J ′
y(yn, vn)‖ + ‖yn − y∗‖ + εn ≥

n

2
(να− 1)‖zn − yn‖ .

As the left-hand side quantities are uniformly bounded with respect to n we get the

desired result ( analog to Shi [12] and Wenbin and Rubio [14] ).
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• Case 2. We now assume (4.15). Relation (4.16) gives

‖J ′
y(yn, vn)‖ + ‖yn − y∗‖ + εn ≥

α
〈

T ′
y(yn, vn)(pn), pn

〉

‖pn‖
−

1

2
‖pn‖ .(4.17)

If pn is not bounded, one can suppose (up to a subsequence) that ‖pn‖ → +∞ and

relation (4.15) is true for n large enough. Relation (4.17) gives

‖J ′
y(yn, vn)‖ + ‖yn − y∗‖ + εn ≥

αν − 1

2
‖pn‖ ,

and we get a contradiction.

Then one can extract a subsequence of {pn} (still denoted {pn} ) weakly convergent towards p∗

as n→ +∞, and by (4.14) and α > ν−1 we obtain

〈

J
′

v(y
∗, v∗) − αT

′∗

v (y∗, v∗) p∗, u− v∗
〉

≥ 0 ∀u ∈ Uad(4.18)

From (4.8) we know that n · hα(yn, vn) → 0, so that (with (2.5))

−〈αT (yn, vn), pn〉 −
1

2
‖pn‖‖zn − yn‖ → 0 as n→ +∞.

Since pn ⇀ p∗ and zn → y∗, it follows that the following equation for the adjoint state p∗

〈T (y∗, v∗), p∗〉 = 0(4.19)

is fulfilled (one may compare to the results of Shi [12]).

It remains to pass to the limit in relation (4.13). Let us precise this point.

Let A : V × U → 2V be the following set-valued mapping

A(y, v) =















{z ∈ K| 〈αT (y, v) + Λ(yK − y), z − y〉 ≤ 0 }

if (y, v) ∈ K × Uad

∅ else.

(4.20)

where yK = PK(y − αΛ−1T (y, v)).

For (y, v) ∈ K × Uad, y ∈ A(y, v) so that A(y, v) 6= ∅ and dom(A) = K × Uad; moreover

the set A(y, v) is convex and closed. If (y∗, v∗) ∈ K × Uad is the solution of (P), then y∗ =

PK(y∗ − αΛ−1T (y∗, v∗)) yields

A(y∗, v∗) = {z ∈ K| 〈T (y∗, v∗), z − y∗〉 ≤ 0, } .
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On the other hand we have seen (Theorem 2.3- ii) that

∀z ∈ K 〈T (y∗, v∗), z − y∗〉 ≥ 0 ,

so that we get

A(y∗, v∗) = {z ∈ K| 〈T (y∗, v∗), z − y∗〉 = 0} .(4.21)

Moreover, one can easily see that relation (4.13) implies that

∀z ∈ A(yn, vn)
〈

J
′

y(yn, vn) − αT
′∗

y (yn, vn)pn, z − yn

〉

+ 〈Λ(yn − y∗), z − yn〉 + εn‖z − yn‖ ≥ 0 .
(4.22)

To study the asymptotic behavior of this inequality we need some continuity properties for A.

We recall (see Berge [4] or Aubin-Frankowska [1] for example) that the inf-limit of a sequence

of non empty subsets {An} of X (where X is a Banach space) is defined as following :

lim inf
n→+∞

An = {x ∈ X| ∃{xn} : xn ∈ An and xn → x}

(Note that it is also called the Kuratowski-Painlevé set convergence). The set-valued mapping

A : V × U → 2K is said to be lower semi-continuous (l.s.c.) at (y∗, v∗) ∈ K × Uad if

A(y∗, v∗) ⊂ lim inf
n→+∞

A(yn, vn)

holds for every sequence (yn, vn) ∈ K × Uad with yn → y∗ and vn → v∗. Since the set A(y∗, v∗)

is closed, it follows in addition that

A(y∗, v∗) = lim inf
n→+∞

A(yn, vn).

Consider now (4.22) and let n→ +∞; then we obtain

∀z ∈ lim inf
n→+∞

A(yn, vn),
〈

J ′
y(y

∗, v∗) − αT
′∗

y (y∗, v∗)p∗, z − y∗
〉

≥ 0 .(4.23)

Finally we get

Theorem 4.3. [Weak Variant]

Suppose that assumptions of Theorems 4.1 and 4.2 are fulfilled; let (y∗, v∗) be an optimal solution

of (P). Then, there exists q∗ = α p∗ ∈ V such that

∀u ∈ Uad

〈

J
′

v(y
∗, v∗) − T

′∗

v (y∗, v∗) q∗, u− v∗
〉

≥ 0 ,(4.24a)

∀z ∈ lim inf
(y,v)→(y∗,v∗)

A(y, v)
〈

J ′
y(y

∗, v∗) − T
′∗

y (y∗, v∗) q∗, z − y∗
〉

≥ 0 ,(4.24b)
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〈 T (y∗, v∗), q∗〉 = 0 .(4.24c)

If we suppose that A is l.s.c. at (y∗, v∗) we obtain a strong variant of the previous result.

Corollary 4.1. [Strong Variant]

Suppose that assumptions of Theorem 4.3 are fulfilled; let (y∗, v∗) be an optimal solution of (P)

and assume that A is l.s.c. at (y∗, v∗). Then, there exists q∗ ∈ V such that relations (4.24a)

and (4.24c) are satisfied with

∀z ∈ K s.t. 〈T (y∗, v∗), z − y∗〉 = 0
〈

J ′
y(y

∗, v∗) − T
′∗

y (y∗, v∗) q∗, z − y∗
〉

≥ 0 .(4.25)

These results are to be compared with those obtained by Barbu [3] where the operator T is

defined as in Example 2.1 by

∀z ∈ V 〈Ay, y − z〉 + ϕ(y) − ϕ(z) ≤ 〈f +Bv, y − z〉 ,

and A is a linear continuous operator from V to V ′ and Uad = U . The cost functional J is

defined as

J(y, v) = g(y) + h(v) ,

with appropriate continuity, convexity and coercivity assumptions on g and h (we refer to [3]

p.150). Then, we get:

Theorem 4.4. Let (y∗, v∗) be an optimal pair for problem (P). Then there exists p∗ ∈ V

such that

−A∗p∗ − η ∈ ∂g(y∗) ,(4.26)

u∗ ∈ ∂h(B∗p∗) .(4.27)

where η is the weak limit of a sequence ∇2ϕε(yε)pε in V ′ with pε → p∗ and yε → y∗.

Thus, the multiplier p∗ is not completely “known” since it depends on the choice of an approxima-

tion ϕε of ϕ and on the approximated quantities yε and pε. This comes from the approximation

method to get the system. Instead of a penalization of the whole state (in)equation as we have

done (via the hα function), this author had rather used an approximation ϕε of the ϕ function

to get an equation approximating the inequation.

In our setting, ϕ = 1K and g and h are differentiable, but A is not necessarily linear. Anyway,

relations (4.26) and (4.27) become

−A∗p∗ − η = ∇g(y∗) , u∗ = ∇h(B∗p∗) .
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We can see (and it is a general remark) that informations are less precise with Barbu’s approach.

Indeed, taking into account general problems do not allow to use properties of particular cases.

We shall meet this problem again when we shall investigate the linear obstacle problem in the

next section.

5. Applications and Examples .

5.1. Comparison with Rubio-Wenbin results. Let us compare the results of the pre-

vious section to those of Rubio and Wenbin in [14]. Following these authors, we define the

set

W = {ξ ∈ V | ∃ξn ∈
⋃

λ>0

λ(K − zn), ξn → ξ

and lim sup
n→+∞

n 〈αT (yn, vn) + Λ(zn − yn), ξn〉 ≤ 0 } .

Since

n 〈αT (yn, vn) + Λ(zn − yn), ξ − yn〉 =

n 〈αT (yn, vn) + Λ(zn − yn), ξ − zn〉 + 〈αT (yn, vn) + Λ(zn − yn), pn〉

and

lim
n→∞

〈αT (yn, vn) + Λ(zn − yn), pn〉 = 0 ,

it is easy to see that the passage to the limit in relation (4.13) gives

∀ξ ∈W
〈

J ′
y(y

∗, v∗) − T
′∗

y (y∗, v∗) q∗, ξ
〉

≥ 0 .(5.1)

Proposition 5.1. We have

⋃

λ>0

λ[(K − zn) ∩ (zn −K)] ⊂W .

Moreover, if the map y 7→ (K − y) ∩ (y −K) is lower semi-continuous at y∗,

⋃

λ>0

λ[(K − y∗) ∩ (y∗ −K)] ⊂W .

Proof - Let ξ be in
⋃

λ>0 λ[(K − zn) ∩ (zn −K)] and ξn ∈ λn[(K − zn) ∩ (zn −K)] such that

ξn → ξ. As ξn ∈
⋃

λ>0 λ(K − zn) it remains to show that

lim sup
n→+∞

n 〈αT (yn, vn) + Λ(zn − yn), ξn〉 ≤ 0 .(5.2)

As zn = PK(yn − αΛ−1T (yn, vn)), the characterization of the projection on K yields

∀z ∈ K 〈αT (yn, vn) + Λ(zn − yn), zn − z〉 ≤ 0 .
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As ξn ∈ λn(zn −K) we may choose z = zn −
ξn

λn

∈ K in the previous relation to get

〈αT (yn, vn) + Λ(zn − yn), ξn〉 ≤ 0 .

Then it is clear that (5.2) is satisfied and ξ ∈W .

The end of the proposition is obvious since zn → y∗.

This proposition means that our results include those of Rubio and Wenbin [14]. Therefore,

they can be applied in all the cases given as examples in the cited paper.

5.2. Lower-semicontinuity criteria for A. We are going to precise a little more the

set-valued application A and give some cases where one has the desired lower semi-continuity.

To simplify the presentation we define the functional Φ : V × U → V as

Φ(y, v) =
1

α

(

[PK(y − αΛ−1T (y, v))] − [y − αΛ−1T (y, v)]
)

,

so that

A(y, v) = {z ∈ K| (Φ(y, v), z − y)V ≤ 0 } ,

if (y, v) ∈ K × Uad. Note that Φ is continuous and Φ(y∗, v∗) = Λ−1T (y∗, v∗).

Let us call F and G : V × U → V the following set-valued applications

F (y, v) = K − y , and G(y, v) = { z ∈ V | (Φ(y, v), z)V ≤ 0 } ,

so that

∀(y, v) ∈ K × Uad , A(y, v) = [F (y, v) ∩G(y, v)] + y .

Lemma 5.1. The set-valued applications F and G have convex and closed values. Moreover

they are lower semi-continuous at any (y, v) ∈ K × Uad such that Φ(y, v) 6= 0.

Proof - The first assertion is obvious. Let us show now the lower semi-continuity of F and G.

Let be (y, v) in V × U and define a sequence (yn, vn) of V × U converging to (y, v); choose

z ∈ K − y. Then, it is clear that the element zn = z + y − yn converges to z and belongs to

K − yn. Therefore F is lower semi-continuous at (y, v).

The lower semi-continuity of G is not so obvious. Let be z ∈ G(y, v).

• If (Φ(y, v), z)V < 0 then the continuity of Φ implies (Φ(yn, vn), z)V < 0 for n large enough

so that one can choose zn = z.

• If (Φ(y, v), z)V = 0 then αn = (Φ(yn, vn), z)V converges to 0. If Φ(yn, vn) 6= 0 we set

zn = z − |αn|
Φ(yn, vn)

||Φ(yn, vn)||2
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and zn = z otherwise. So (Φ(yn, vn), zn)V is either equal to 0 or to αn − |αn|: it is less than 0

in any case; so zn ∈ G(yn, vn).

If Φ(y, v) 6= 0 then Φ(yn, vn) 6= 0 for n large enough and
Φ(yn, vn)

||Φ(yn, vn)||2
remains bounded. So zn

converges to z in V and the lower semi-continuity of G is proven in this case.

Now we may conclude using a result of Penot ([11] - Proposition 2.3 and Corollary 3.3) on the

persistence under intersection that we recall:

Proposition 5.2. Let F and G be two convex-valued multifunctions from V × U into V

which are l.s.c. at (y∗, v∗) and assume that F has a convex graph, is closed valued and that int

F (y∗, v∗) is non empty.

Then, if G(y∗, v∗) ∩ int F (y∗, v∗) is nonempty, F ∩G is l.s.c. at (y∗, v∗).

Before we apply this result, we may notice that it is “symmetric” and one could replace F

by G (and conversely) in the previous proposition. However, in our case

F (y∗, v∗) ∩ int G(y∗, v∗) = {z ∈ K| 〈T (y∗, v∗), z − y∗〉 < 0} ,

is always empty. This justifies the choice of F and G.

We may now enounce the following

Theorem 5.1. Suppose that assumptions of Theorem 4.3 are fulfilled and assume that K

has a nonempty interior; let (y∗, v∗) be an optimal solution. Then, there exists q∗ ∈ V such that

relations (4.24a) and (4.24c) are satisfied with

• either T (y∗, v∗) = 0,

• or

∀z ∈ K s.t. 〈T (y∗, v∗), z − y∗〉 = 0
〈

J ′
y(y

∗, v∗) − T
′∗

y (y∗, v∗) q∗, z − y∗
〉

≥ 0 .(5.3)

Proof - If T (y∗, v∗) 6= 0, then Φ(y∗, v∗) 6= 0 and Lemma 5.1 gives the lower semi-continuity of

F and G at (y∗, v∗). Moreover F is closed-valued and its graph is convex since K and Uad are

convex. In addition if the interior of K is nonempty then the interior of F (y∗, v∗) = K − y∗ is

nonempty as well. So Proposition 5.2 gives the lower semi-continuity of F ∩G at (y∗, v∗). It is

easy to conclude that A is lsc at (y∗, v∗) as well.

Remark 5.1 ( Finite Dimensional Case).

As usual, hypothesis are simplified and much easy to ensure in the Finite Dimensional Case.

As there is no difference between the strong and the weak convergence, the continuity of T yields

the strong continuity.
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On the other hand, one can use the previous results easily since convex sets with nonempty

interiors are more easy to describe in finite dimensional spaces. This in particular the case for

the obstacle problem where K is a convex-cone of the type

K = {y ∈ R
n | y ≥ ψ } .

This set has a nonempty interior in R
n (but unfortunately the interior of such a set is empty in

the infinite dimensional space L2(Ω) for example).

5.3. The Linear Obstacle Problem. Let us present the linear obstacle problem case as

given in Mignot-Puel [10] as an example.

Let Ω be an open, bounded subset of R
n (n ≤ 3) with a smooth boundary ∂Ω. We set V =

H1
o (Ω), U = L2(Ω) and T (y, v) = Ay − v − f where A is the continuous linear operator from

H1
o (Ω) to H−1(Ω) defined by



































Ay = −
n
∑

i,j=1

∂xi
(aij(x)∂xj

y) + a0(x)y with

aij , a0 ∈ C2(Ω̄) for i, j = 1, . . . , n, inf {a0(x) | x ∈ Ω̄} > 0
n
∑

ij=1

aij(x)ξiξj ≥ δ

n
∑

i=1

ξ2i ,∀x ∈ Ω̄,∀ξ ∈ R
n, δ > 0 ,

(5.4)

and f ∈ L2(Ω). The compactness of the injection of H1
o (Ω) in L2(Ω) implies that (2.2) is

satisfied. The linearity of A gives (2.1). Moreover is we choose

J(y, v) =
1

2

[

‖y − yd‖
2
L2(Ω) + ρ‖v − vd‖

2
L2(Ω)

]

,

where yd ∈ L2(Ω), ud ∈ L2(Ω) and ρ > 0, assumption (2.3) is fulfilled as well. So (H) is satisfied.

Moreover, the H1(Ω)-ellipticity of A yields (4.2).

Let us consider

K = {y ∈ H1
o (Ω) | y ≥ ϕ ≥ 0 a.e. in Ω} ,(5.5)

where ϕ ∈ H1
o (Ω). This set is a non empty, closed, convex subset of H1

o (Ω). Unfortunately, the

H1(Ω)-interior of K is empty except for n = 1. So we would like to choose another suitable

state-space, using the regularity properties of A which is an isomorphism from H2(Ω) ∩H1
o (Ω)

to L2(Ω).

So, we set from now V = H2(Ω) ∩H1
o (Ω) which is an Hilbert-space continuously embedded in

Co(Ω), since n ≤ 3. As the interior of K is non empty for the L∞- norm, it is nonempty as well

for the V -norm. Moreover, assumption (H) is still fulfilled.
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Nevertheless it remains a difficulty : A is (generally) no longer V -elliptic. We may conclude

however. We precisely need the results of Theorems 4.1 and 4.2. As relation (4.2) seems to

be impossible to ensure, let us focus on (4.3). The compactness of the injection of L2(Ω)

in H−1(Ω) (and the continuity of the injection of H−1(Ω) in (H2(Ω) ∩ H1
o (Ω))′ ) yields this

property immediately. So results of Theorem 4.1 are still valid. In Theorem 4.2 we have seen

that pn could be bounded. We may prove this also if Uad = L2(Ω):

Lemma 5.2. If Uad = L2(Ω), then the result of Theorem 4.2 is still valid.

Proof - If Uad = L2(Ω), relation (4.14) with u = vn + v gives

∀v ∈ L2(Ω) (ρ(vn − vd) + vn − v∗, v)L2(Ω) − α 〈pn, v〉V,V ′ + εn‖v‖L2(Ω) ≥ 0.

As the n-quantities (except pn) are bounded, this implies that pn is bounded in L2(Ω) indepen-

dently of n and therefore weakly converges to p∗ in L2(Ω).

We can conclude that Corollary 4.1 may be applied. Let us precise the notations: we set

ξ∗ = Ay∗ − f − v∗ and Ky∗ = { z ∈ K − y∗ | (ξ∗, z)L2(Ω) = 0 } .

We may note that (ξ∗, y∗) = 0 (this is a genuine property of the obstacle problem) so that we

get Ky∗ = K ∩ (y∗)⊥ . This gives

Theorem 5.2. Assume Uad = L2(Ω) and let (y∗, v∗) be an optimal solution of (P). Then,

there exists q∗ ∈ L2(Ω) such that

q∗ + ρ(v∗ − vd) = 0 ,(5.6)

Either

Ay∗ − v∗ − f = 0 ,(5.7)

or

( ξ∗, q∗)L2(Ω) = 0 ,(5.8a)

∀z ∈ Ky∗ (y∗ − yd −A∗ q∗, z)L2(Ω) ≥ 0.(5.8b)

Let us compare this result with the one of Mignot and Puel [10]. Let us set

Sy∗ = { z ∈ L2(Ω) | (ξ∗, z)L2(Ω) = 0 and z ≥ 0 on { y∗ = 0 }} .

In [10], these authors obtain the following

Theorem 5.3. Assume Uad = L2(Ω) and let (y∗, v∗) be an optimal solution of (P). Then,

there exists q∗ ∈ L2(Ω) such that (5.6) is satisfied and

( ξ∗, q∗)L2(Ω) = 0 , and q∗ ≥ 0 on { y∗ = 0 } ,(5.9a)
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∀z ∈ Sy∗ (y∗ − yd −A∗ q∗, z)L2(Ω) ≥ 0.(5.9b)

As Ky∗ ⊂ Sy∗ we see that we have lost informations between (5.8b) and (5.9b). We cannot avoid

it because of the (general) method we have used. From the very beginning (in the penalized

system) we have been considering elements of K; so it is hopeless to get an optimality system

dealing with elements which would not belong to K. Another lack of information concerns q∗.

We have lost the property that q∗ ≥ 0 on { y∗ = 0 } . Once again, this comes from the fact that

we have used a quite general method for quite general problems and we have not been taking

into account all the particular properties of the linear obstacle problem.

Remark 5.2. Though the exact computation of the hα function is not useful, since it does

not appear in the final optimality system, we may precise it in the linear case, for T (y, v) =

−∆y − f − v for instance. Of course, it depends on the norm of the space V . If V = H1
o (Ω) is

endowed with the norm ‖y‖1,o = ‖∇y‖L2(Ω) we see that Λ = −∆ = T ′
y. So, using Theorem 2.1

ii., we get Λ−1T (y, v) = y − (−∆−1)(f + v) and

hα(y, v) =
1

2

[

α2‖y − (−∆−1)(f + v))‖2
1,o − d2

K((1 − α)y + α(−∆−1)(f + v))
]

.

Let us set yα = (1 − α)y + α(−∆−1)(f + v)) and compute d2
K(yα) = ‖yα − yK‖2

1,o where yK is

the H1
o (Ω)-projected element of yα on K. A classical calculus shows that yK is the solution of

the following obstacle problem

{

∫

Ω ∇yK∇(z − yK) dx ≥
∫

Ω fα (z − yK) dx , ∀z ∈ K

yK ∈ K ,
(5.10)

where fα = −∆yα = −∆y − α(−∆y − f − v). Finally

hα(y, v) =
1

2

[

‖yα − y‖2
1,o − ‖yα − yK‖2

1,o

]

=

∫

Ω
[∇(yα − y)]2 − [∇(yα − yK)]2 dx.
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