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Primal-dual Strategy for Constrained Optimal Control
Problems

mäıtine bergounioux1 kazufumi ito2 karl kunisch3

Abstract. An algorithm for efficient solution of control constrained optimal control problems is proposed and

analyzed. It is based on an active set strategy involving primal as well as dual variables. For discretized problems

sufficient conditions for convergence in finitely many iterations are given. Numerical examples are given and the role of

strict complementarity condition is discussed.
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1. Introduction and formulation of the problem. In the recent past significant advances

have been made in solving efficiently nonlinear optimal control problems. Most of the proposed

methods are based on variations of the sequential quadratic programming (SQP) technique, see for

instance [HT, KeS, KuS, K, T] and the references given there. The SQP-algorithm is sequential and

each of its iterations requires the solution of a quadratic minimization problem subject to linearized

constraints. If these auxiliary problems contain inequality constraints with infinite dimensional image

space then their solution is still a significant challenge.

In this paper we propose an algorithm for the solution of infinite dimensional quadratic problems

with linear equality constraints and pointwise affine inequality constraints. It is based on an active

set strategy involving primal and dual variables. It thus differs significantly from conventional active

set strategies that involve primal variables only, see [Sch] for example. In practice the proposed

algorithm behaves like an infeasible one. The iterates of the algorithm violate the constraints up to

the next-to-the-last iterate. The algorithm stops at a feasible and optimal solution.

Within this paper we do not aim for generality but rather we treat as a model problem an

unilateral control constraint optimal control problem related to elliptic partial differential equations.

The distributed nature of this problem, which is reflected in the fact that it behaves like an obstacle

problem for the biharmonic equation, makes it difficult to analyze.

Let us briefly outline the contents of the paper. The algorithm will be presented in Section 2.

We prove that if the algorithm produces the same active set in two consecutive iterates then the

optimal solution has been obtained. In Section 3 we shall give sufficient conditions which guarantee

that an augmented Lagrangian functional behaves as a decreasing merit function for the algorithm.

In practice this implies finite step convergence of the discretized problem. Section 4 is devoted to

showing that for a minor modification of the algorithm the cost functional is increasing until the
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Maitine.Bergounioux@labomath.univ-orleans.fr. This work was supported in part by EEC, HCM Contract CHRX-

CT94-0471
2Department of Mathematics, North Carolina State University, Raleigh, NC27695, USA.
3Institut für Mathematik, Universität Graz, A-8010 Graz, Austria, E-mail: Kunisch@kfunigraz.ac.at. Work sup-

ported in part by EEC, HCM Contract CHRX-CT94-0471 and Fonds zur Förderung der wissenschaftlichen Forschung,

UF8,“Optimization and Control”.

1



feasible optimal solution is reached. In Section 5 several numerical examples are given. For most

examples the algorithm behaves extremely efficient and typically converges in less than five iterations.

Thus, to present interesting cases the majority of the test examples is in some sense extreme: Either

the strict complementarity condition is violated or the cost of the control is nearly zero.

To describe the problem, let Ω be an open, bounded subset of R
N , N ≤ 3, with smooth boundary

Γ and consider the following distributed optimal control problem :

min J(y, u) =
1

2

∫

Ω

(y − zd)
2 dx +

α

2

∫

Ω

(u − ud)
2 dx , (P)

−∆y = u in Ω , y = 0 on Γ ,(1.1)

u ∈ Uad ⊂ L2(Ω) ,(1.2)

where zd, ud ∈ L2(Ω), α > 0 and Uad = { u ∈ L2(Ω) | u(x) ≤ b(x) a.e. in Ω}, b ∈ L∞(Ω) .

It is well known that, for every u ∈ L2(Ω) system (1.1) has a unique solution y = T (u) in H2(Ω) ∩
H1

o (Ω).

Remark 1.1. To emphasis the basic ideas of the proposed approach we treated the rather simple

problem (P). Many generalizations are possible. In particular, the analysis of this paper can be

extended to the case where −∆ in (1.1) is replaced by any strictly elliptic second order differential

operator. The algorithm itself can be easily adapted to other optimal control problems involving, for

example ordinary differential equations. Its numerical efficiency as well as the convergence analysis

require some additional research.

It is standard that problem (P) has a unique solution (y∗, u∗) characterized by the following

optimality system :






−∆y∗ = u∗ in Ω, y∗ ∈ H1
o (Ω) ,

−∆p∗ = zd − y∗ in Ω, p∗ ∈ H1
o (Ω) ,

(α(u∗ − ud) − p∗, u − u∗) ≥ 0 for all u ∈ Uad,

where (·, ·) denotes the L2(Ω)-inner product.

Let us give an equivalent formulation for this optimality system which is essential to motivate the

forthcoming algorithm:

Theorem 1.1. The unique solution (y∗, u∗) to problem (P) is characterized by

(S)





−∆y∗ = u∗ in Ω, y∗ ∈ H1
o (Ω) ,

−∆p∗ = zd − y∗ in Ω, p∗ ∈ H1
o (Ω) ,

u∗ = ud +
p∗ − λ∗

α
,

λ∗ = c[u∗ +
λ∗

c
− Π(u∗ +

λ∗

c
)] = c max(0, u∗ +

λ∗

c
− b) ,

for every c > 0. Here Π denotes the projection of L2(Ω) onto Uad.

Proof - We refer to [IK].
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We point out that the last equation in (S)

λ∗ = c[u∗ +
λ∗

c
− Π(u∗ +

λ∗

c
)](1.3)

is equivalent to

λ∗ ∈ ∂IUad
(u∗) ,(1.4)

where ∂IC denotes the subdifferential of the indicator function IC of a a convex set C. This follows

from general properties of convex functions (see [IK] for example) and can also easily be verified

directly for the convex function IUad
. The replacement of the well known differential inclusion (1.4)

[B] in the optimality system for (P) by (1.3) is an essential ingredient of the algorithm that we shall

propose.

Here and below, order relations like “max” and“ ≤ ”between elements of L2(Ω) are understood

in the pointwise almost everywhere sense.

Let us interpret the optimality system (S). From −∆y∗ = ud +
p∗ − λ∗

α
it follows that p∗ =

α[−∆y∗ − ud] + λ∗ and hence

−α∆y∗ − ∆−1y∗ + λ∗ = α ud − ∆−1zd .

It follows that

αu∗ + ∆−2u∗ + λ∗ = αud − ∆−1zd ,

λ∗ = c max(0, u∗ +
λ∗

c
− b) for all c > 0

which implies the highly distributed nature of the optimal control. Setting H = αI + ∆−2 and

f = αud − ∆−1zd, system (S) can be expressed as

(S)1





Hu∗ + λ∗ = f ,

λ∗ = c max(0, u∗ +
λ∗

c
− b) for all c > 0

We observe that by setting u = −∆y, system (S) constitutes an optimality system for the variational

inequality





min
α

2

∫

Ω

|∆y|2dx +
1

2

∫

Ω

|y − (zd − α ∆ud)|2dx

y ∈ H1
o (Ω) ∩ H2(Ω)

−∆y ≤ b

the regularity of which was studied in [BS].

2. Presentation of the Algorithm. In this section we present the primal-dual active set al-

gorithm and discuss some of its basic properties. Let us introduce the active and inactive sets for the

solution to (P) and define

A∗ = { x | u∗(x) = b a.e. } and I∗ = { x | u∗(x) < b a.e. } .
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The proposed strategy is based on (1.3). Given (un−1, λn−1) the active set for the current iterate is

chosen as

An = { x | un−1(x) +
λn−1(x)

c
> b a.e. } .

We recall that λ∗ ≥ 0 and in the case of strict complementarity λ∗ > 0 on A∗. The complete algorithm

is specified next

Algorithm

1. Initialization : choose yo, uo and λo and set n = 1.

2. Determine the following subsets of Ω :

An = { x | un−1(x) +
λn−1(x)

c
> b } , In = { x | un−1(x) +

λn−1(x)

c
≤ b } .

3. If n ≥ 2 and An = An−1 then stop.

4. Else, find (yn, pn) ∈ H1
o (Ω) × H1

o (Ω) such that

−∆yn =





b in An

ud +
pn

α
in In ,

−∆pn = zd − yn in Ω .

and set

un =





b in An

ud +
pn

α
in In ,

5. Set λn = pn − α(un − ud), update n = n + 1 and goto 2.

The existence of the triple (yn, un, pn) satisfying the system of step 4 of the Algorithm follows

from the fact that it constitutes the optimality system for the auxiliary problem

(Paux) min { J(y, u) | y ∈ H1
o (Ω), − ∆y = u in Ω, u = b on An }

which has (yn, un) as unique solution.

We may use different initialization schemes. The one that was used most frequently is the following

one:




uo = b ,

−∆yo = uo, yo ∈ H1
o (Ω) ,

−∆po = zd − yo , po ∈ H1
o (Ω) ,

λo = max(0, α(ud − b) + po) .

(2.1)

This choice of initialization has the property of feasibility. Alternatively, we tested the algorithm

with initialization as the solution of the unconstrained problem, i.e.





λo = 0

−∆yo = ud +
po

α
, yo ∈ H1

o (Ω) ,

−∆po = zd − yo , po ∈ H1
o (Ω) ,

uo = ud +
po

α
.

(2.2)
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For all examples the first initialization behaved better or equal to the second.

The initialization process (2.1) has the property that the first set A1 is always included in the active

set A∗ of problem (P). More precisely we have

Lemma 2.1. If (uo, yo, λo) are given by (2.1) with uo ≥ u∗; then λo ≤ λ∗.

In addition, if uo = b then A1 ⊂ A∗.

Proof - By construction

λo = max(0, α(ud − uo) + po) = max(0, α(ud − uo) + ∆−1(yo − zd)) ,

and as a consequence of (S)

λ∗ = α(ud − u∗) + p∗ = α(ud − u∗) + ∆−1(y∗ − zd) = α(ud − u∗) − ∆−2u∗ − ∆−1zd ≥ 0.

It follows that

λ∗ − λo = λ∗ ≥ 0 if α(ud − uo) + ∆−1(yo − zd) ≤ 0 , and

λ∗ − λo = α(uo − u∗) + ∆−2(uo − u∗) + α(ud − uo) + ∆−1(yo − zd) else .

If uo ≥ u∗ the maximum principle yields ∆−2(uo − u∗) ≥ 0 and

λ∗ − λo

{
= λ∗ ≥ 0 if α(ud − uo) + ∆−1(yo − zd) ≤ 0

≥ α(ud − uo) + ∆−1(yo − zd) ≥ 0 else .

Therefore λo ≤ λ∗.

In addition, if uo = b then uo +
λo

c
= b +

λo

c
> b on A1. Consequently λo > 0 on A1 and λ∗ > 0. It

follows that A1 ⊂ A∗ and the proof is complete.

A first convergence result which also justifies the stopping criterion in Step 3 is given in the

following theorem.

Theorem 2.1. If there exists n ∈ N − {0} such that An = An+1 then the algorithm stops and

the last iterate satisfies

(Sn)






−∆yn = un =





b in An

ud +
pn

α
in Ω −An ,

−∆pn = zd − yn in Ω .

λn = pn − α(un − ud) , un ∈ Uad

with

λn = 0 on In and λn > 0 on An .(2.3)

Therefore, the last iterate is the solution of the original optimality system (S).

Proof - If there exists n ∈ N−{0} such that An = An+1, then it is clear that algorithm stops and the

last iterate satisfies (Sn) by construction except possibly for un ∈ Uad.

Thus we have to prove un ∈ Uad and (2.3).

• On In we have λn = 0 by step 5 of the Algorithm. Moreover un +
λn

c
= un ≤ b, since

In = In+1.

• On An we get un = b and un +
λn

c
> b since An = An+1.Therefore λn > 0 on An and

un ∈ Uad.
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To prove that the last iterate is a solution of the original optimality system (S), it remains to show

that

λn = c[un +
λn

c
− Π(un +

λn

c
)] .

• On In we have λn = 0 and un +
λn

c
= un ≤ b. It follows that

un +
λn

c
− Π(un +

λn

c
) = un − Π(un) = 0 = λn .

• On An we get un = b, λn > 0 and therefore

c[un +
λn

c
− Π(un +

λn

c
)] = c[b +

λn

c
− b] = λn .

Now we give a structural property of the algorithm :

Lemma 2.2. If un is feasible for some n ∈ N − {0} (i.e. un ≤ b) then An+1 ⊂ An .

Proof - On In we get λn = 0 by construction, so that un +
λn

c
= un ≤ b (because of feasibility). This

implies In ⊂ In+1 and consequently An+1 ⊂ An .

Note that Theorem 2.1 and in particular (2.3) does not utilize or imply strict complementarity.

In fact, if (2.3) holds, then the set of x for which un(x) = b and λn(x) = 0 is contained in In.

We end this section with “simple cases” where we may conclude easily that the algorithm is

convergent.

Theorem 2.2. For initialization (2.1), the Algorithm converges in one iteration in the following

cases

1. zd ≤ 0, ud = 0 , b ≥ 0 and the solution to −α∆u − ∆−1u = zd is nonpositive.

2. zd ≥ 0, b ≤ 0, ud > b or

zd ≥ 0, b ≤ 0, ud ≥ b and zd + ∆−1b is not zero as element in L2(Ω).

Proof - Let us first examine case 1. The maximum principle implies that −∆−1uo ≥ 0 . Consequently

zd + ∆−1uo ≤ 0 and by a second application of the maximum principle

−∆−1(zd + ∆−1uo) ≤ 0 .

Together with the fact that ud − b = −b ≤ 0, this implies

λo = max(0, α(ud − b) − ∆−1(zd + ∆−1uo)) = 0 .

Therefore A1 = ∅ and I1 = Ω.

Using the first iteration we obtain u1 =
p1

α
in Ω. Moreover −∆y1 = u1 and −∆p1 = zd − y1 imply

that

−α∆u1 − ∆−1u1 = zd .

By assumption u1 is feasible. Therefore A2 = A1 = ∅ and by Theorem 2.1 the algorithm stops at the

solution to (P).

Now we consider case 2. By assumption and due to (2.1) we have zd ≥ 0, b ≤ 0 , λo ≥ 0 and

A1 = { λo > 0 }. Due to the maximum principle −∆−1uo ≤ 0 and

po = −∆−1(zd − yo) = −∆−1[zd − (−∆−1uo)] ≥ 0 .
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Moreover if zd+∆−1b is not the zero element in L2(Ω), then po > 0 in Ω and α(ud−b)+po > α(ud−b).

If ud > b or (ud = b and zd + ∆−1b 6= 0) then λo = max(0, α(ud − b) + po) > 0 in Ω ( and λo = 0

on ∂Ω). Consequently A1 = Ω and u1 = b, λ1 = −∆−1(zd + ∆−1b) + α(ud − b) > 0. This yields

A2 = A1 = Ω and the algorithm stops.

3. Convergence analysis.

3.1. The Continuous Case. The convergence analysis of the Algorithm is based on the de-

crease of appropriately chosen merit functions. For that purpose we define the following augmented

Lagrangian functions

Lc(y, u, λ) = J(y, u) + (λ, ĝc(u, λ)) +
c

2
‖ĝc(u, λ)‖2 and L̂c(y, u, λ) = Lc(y, u, λ+) ,

where (·, ·) is the L2(Ω)-inner product, ‖ · ‖ is the L2(Ω)-norm, λ+ = max(λ, 0) and ĝc(u, λ) =

max(g(u),−λ
c
) with g(u) = u − b. Further (·, ·)|S and ‖ · ‖|S denote the L2-inner product and norm

on a measurable subset S ⊂ Ω. Note that the mapping

u 7→ (λ, ĝc(u, λ)) +
c

2
‖ĝc(u, λ)‖2 ,

is C1, which is not the case for the function given by

u 7→ (λ, g(u)) +
c

2
‖max(g(u), 0)‖2 .

The following relationship between primal and dual variables will be essential.

Lemma 3.1. For all n ∈ N − {0} and (y, u) ∈ H1
o (Ω) × L2(Ω) satisfying −∆y = u we have

J(yn, un) − J(y, u) = −1

2
‖y − yn‖2 − α

2
‖u − un‖2 + (λn, u − un)|An

(3.1)

Proof - Using ‖a‖2 −‖b‖2 = −‖a− b‖2 + 2 (a − b, a) and Steps 4 and 5 of the Algorithm, we find that

J(yn, un) − J(y, u) = −1

2
‖y − yn‖2 − α

2
‖u − un‖2 + (yn − y, yn − zd) + α (un − u, un − ud)

= −1

2
‖y − yn‖2 − α

2
‖u − un‖2 + (∆(yn − y), pn) + α (un − u, un − ud)

= −1

2
‖y − yn‖2 − α

2
‖u − un‖2 + (un − u,−pn + α(un − ud))

= −1

2
‖y − yn‖2 − α

2
‖u − un‖2 + (u − un, λn) .

As λn = 0 on In the result follows.

Let us define

Sn−1 = { x ∈ An−1 | λn−1(x) ≤ 0 } and Tn−1 = { x ∈ In−1 | un−1(x) > b(x) } .

These two sets can be paraphrased by calling Sn−1 the set of elements that the active set strategy

predicts to be active at level n− 1 but the Lagrange multiplier indicates that they should be inactive,
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and by calling Tn−1 the set of elements that was predicted to be inactive but the n − 1st iteration

level corrects it to be active. We note that

Ω = (In−1\Tn−1) ∪ Tn−1 ∪ Sn−1 ∪ (An−1\Sn−1)(3.2)

defines a decomposition of Ω in mutually disjoint sets. Moreover we have the following relation between

these sets at each level n:

In = (In−1\Tn−1) ∪ Sn−1 , An = (An−1\Sn−1) ∪ Tn−1 .(3.3)

In fact, as Ω = In ∪ An is is sufficient to prove that

(In−1\Tn−1) ∪ Sn−1 ⊂ In and (An−1\Sn−1) ∪ Tn−1 ⊂ An ,

that is

Sn−1 ⊂ In and Tn−1 ⊂ An .

Since Sn−1 ⊂ An−1 we find un−1 = b on Sn−1. From the definition of Sn−1 we conclude that λn−1 ≤ 0

so that un−1 +
λn−1

c
≤ b. This implies Sn−1 ⊂ In. The verification of Tn−1 ⊂ An is quite similar.

For the convenience of the reader we present these sets in Figure 1.

Figure 1: Decomposition of Ω at levels n − 1 and n

In Figure 1 the shaded region depicts In and the white region is An. The following table depicts

the signs of primal and dual variables for two consecutive iteration levels.

λn−1 λn un−1 un

Tn−1 = In−1 ∩ An 0 > b = b

Sn−1 = An−1 ∩ In ≤ 0 0 = b

In−1\Tn−1 (⊂ In) 0 0 ≤ b

An−1\Sn−1 (⊂ An) > 0 = b = b

Table 1

Below ‖∆−1‖ will denote the operator norm of ∆−1 in L(L2(Ω)).
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Theorem 3.1. If An 6= An−1 and

α + γ ≤ c ≤ α − α2

γ
+

α2

‖∆−1‖2
(3.4)

for some γ > 0, then L̂c(yn, un, λn) ≤ L̂c(yn−1, un−1, λn−1) . In addition, if the second inequality of

(3.4) is strict then either L̂c(yn, un, λn) < L̂c(yn−1, un−1, λn−1) or the Algorithm stops at the solution

to (S).

Proof - A short computation gives

(λ, ĝc(u, λ)) +
c

2
‖ĝc(u, λ)‖2

=

(
1√
c
λ,

√
c ĝc(u, λ)

)
+

1

2

(√
c ĝc(u, λ),

√
c ĝc(u, λ)

)

=
1

2
‖√cmax(g(u),−λ

c
) +

1√
c

λ‖2 − 1

2c
‖λ‖2

=
1

2
‖max(

√
c g(u),− λ√

c
) +

1√
c

λ‖2 − 1

2c
‖λ‖2

=
1

2c
‖max(c g(u) + λ, 0)‖2 − 1

2c
‖λ‖2.

Moreover for all (y, u, λ) we find

Lc(y, u, λ) = J(y, u) +
1

2c
‖max(c g(u) + λ, 0)‖2 − 1

2c
‖λ‖2 .(3.5)

By assumption An 6= An−1 and hence Sn−1 ∪ Tn−1 6= ∅. Using (3.5) we get

L̂c(yn, un, λn) − L̂c(yn−1, un−1, λn−1) =

J(yn, un) − J(yn−1, un−1)

+
1

2c

[
‖max(c g(un) + λ+

n , 0)‖2 − ‖λ+
n ‖2 − ‖max(c g(un−1) + λ+

n−1, 0)‖2 + ‖λ+
n−1‖2

]

and by (3.1)

L̂c(yn, un, λn) − L̂c(yn−1, un−1, λn−1) =

−1

2
‖yn−1 − yn‖2 − α

2
‖un−1 − un‖2 + (un−1 − un, λn)Tn−1

+

1

2c

[
‖max(c g(un) + λ+

n , 0)‖2 − ‖λ+
n ‖2 − ‖max(c g(un−1) + λ+

n−1, 0)‖2 + ‖λ+
n−1‖2

]
.

(3.6)

It will be convenient to introduce d(x) =

|max(c g(un(x)) + λ+
n (x), 0)|2 − |λ+

n (x)|2 − |max(c g(un−1(x)) + λ+
n−1(x), 0)|2 + |λ+

n−1(x)|2.

Let us estimate d on the four distinct subsets of Ω according to (3.2).

• On In−1\Tn−1 we have λn(x) = λn−1(x) = 0, un−1(x) ≤ b(x) (g(un−1(x)) ≤ 0) and

d(x) = |max(c g(un(x)), 0)|2 − |max(c g(un−1(x)), 0)|2 ≤ c2|un(x) − un−1(x)|2 .
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Moreover as λn = pn − α(un − ud) = 0 and λn−1 = pn−1 − α(un−1 − ud) = 0 we have

un(x) − un−1(x) =
pn(x) − pn−1(x)

α
so that

|un(x) − un−1(x)| ≤ 1

α
|pn(x) − pn−1(x)| on In−1\Tn−1

• On Sn−1, λn(x) = 0, λn−1(x) ≤ 0, g(un−1(x)) = 0 , so that d(x) = |max(c g(un(x)), 0)|2 . Here

we used the positivity of λ+ to get λ+
n−1(x) = 0. To estimate d(x) in detail we consider first the

case where un(x) ≥ b(x). Since x ∈ Sn−1 ⊂ In we obtain λn(x) = pn(x) − α[un(x) − ud(x)] = 0

and hence un(x) =
pn(x)

α
+ ud(x). Moreover, λn−1(x) = pn−1(x) − α[un−1(x) − ud(x)] ≤ 0 so that

ud(x) − b(x) ≤ −pn−1(x)

α
where we used un−1(x) = b(x). Since by assumption un(x) ≥ b these

estimates imply

|un(x)− un−1(x)| = un(x)− b(x) =
pn(x)

α
+ ud(x) − b(x) ≤ pn(x)

α
− pn−1(x)

α
=

1

α
|pn(x) − pn−1(x)| .

In addition it is clear that on the set In:

d(x) = |max(c g(un(x)), 0)|2 ≤ c2|un(x) − un−1(x)|2 .

In the second case, un(x) < b(x) so that max(c g(un(x)), 0) = 0 and d(x) = 0.

Finally we have a precise estimate on the whole set In. Let us denote

I∗
n = In−1\Tn−1 ∪ {x ∈ Sn−1 | un(x) ≥ b(x)} = In\{x ∈ Sn−1 | un(x) < b(x)} ;

then
∫

In

d(x) dx =

∫

I∗

n

d(x) dx = c2‖max(g(un), 0)‖2
I∗

n
≤ c2 ‖un − un−1‖2

I∗

n
.(3.7)

We note that we have proved in addition that

‖un − un−1‖I∗

n
≤ ‖∆−1‖

α
‖yn − yn−1‖ .(3.8)

• On An−1\Sn−1, we have g(un−1(x)) = g(un(x)) = 0, λn−1(x) > 0 and hence

d(x) = |max(λ+
n (x), 0)|2 − |λ+

n (x)|2 ≤ 0 .(3.9)

• On Tn−1 we have λn−1(x) = 0, g(un(x)) = 0, g(un−1(x)) > 0 and thus

d(x) = −c2|g(un−1(x))|2 = −c2|un(x) − un−1(x)|2 .(3.10)

Next we estimate the term (λn, un−1 − un)Tn−1
in (3.6):

(λn, un−1 − un)Tn−1
= (λn − λn−1, un−1 − un)Tn−1

= (pn − pn−1, un−1 − un)Tn−1
+ α‖un − un−1‖2

Tn−1
.

and therefore

(λn, un−1 − un)Tn−1
≤ ‖∆−1‖ ‖yn − yn−1‖Ω‖un − un−1‖Tn−1

+ α‖un − un−1‖2
Tn−1

.(3.11)
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Inserting (3.7-3.11) into (3.6) we find

L̂c(yn, un, λn) − L̂c(yn−1, un−1, λn−1) ≤

−1

2
‖yn−1 − yn‖2 − α

2
‖un−1 − un‖2

I∗

n
− α

2
‖un−1 − un‖2

In\I∗

n
− α

2
‖un−1 − un‖2

Tn−1

+‖∆−1‖ ‖yn − yn−1‖Ω‖un − un−1‖Tn−1
+ α‖un − un−1‖2

Tn−1

+
c

2
‖un−1 − un‖2

I∗

n
− c

2
‖un−1 − un‖2

Tn−1
.

(3.12)

Using ab ≤ 1

2
(
a2

ρ
+ ρb2) for every ρ > 0 and relation (3.8), we get for c ≥ α

L̂c(yn, un, λn) − L̂c(yn−1, un−1, λn−1) ≤

−1

2
‖yn−1 − yn‖2 +

(c − α)

2
‖un−1 − un‖2

I∗

n
+

(α − c)

2
‖un−1 − un‖2

Tn−1

+
‖∆−1‖

2ρ
‖yn−1 − yn‖2 +

ρ‖∆−1‖
2

‖un−1 − un‖2
Tn−1

≤

−1

2
‖yn−1 − yn‖2 +

(c − α)‖∆−1‖2

2α2
‖yn−1 − yn‖2

+
α − c + ρ‖∆−1‖

2
‖un−1 − un‖2

Tn−1
+

‖∆−1‖
2ρ

‖yn−1 − yn‖2 =

1

2

[
(c − α)

‖∆−1‖2

α2
+

‖∆−1‖
ρ

− 1

]
‖yn−1 − yn‖2 +

1

2
(α + ρ‖∆−1‖ − c)‖un−1 − un‖2

Tn−1
.

Setting γ = ρ‖∆−1‖ then L̂c(yn, un, λn) ≤ L̂c(yn−1, un−1, λn−1) provided that
[
[
(c − α)

α2
+

1

γ
]‖∆−1‖2 − 1

]
≤ 0 and α + γ − c ≤ 0 .

The latter condition is equivalent to

(3.4) α + γ ≤ c ≤ α − α2

γ
+

α2

‖∆−1‖2
.

If the second inequality is strict then L̂c(yn, un, λn) < L̂c(yn−1, un−1, λn−1) except if yn = yn−1. In

this latter case un = un−1 as well and the Algorithm stops at the solution to (S).

Remark 3.1. Note that for the choice γ = α condition (3.4) is equivalent to

2 α ≤ c ≤ α2

‖∆−1‖2
.(3.13)

Remark 3.2. If there exists γ such that (3.4) holds, then necessarily

c > α ≥ 2‖∆−1‖2

holds. Indeed, assume that α < 2‖∆−1‖2. Then

α + γ < α − α2

γ
+ 2α ,

that is

γ2 − 2αγ + α2 = (γ − α)2 < 0 ,

which is a contradiction.
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3.2. The Discrete Case. So far we have given a sufficient condition for L̂c to act as a merit

function for which the Algorithm has a strict descent property. In particular this eliminates the

possibility of chattering of the Algorithm: it will not return to the same active set a second time. If the

control and state spaces are discretized then the descent property can be used to argue convergence

in a finite number of steps. More precisely, assume that a finite difference or finite element based

approximation to (P) results in

(PN,M)

min JN,M(Y, U) =
1

2
‖M

1

2

1 (Y − Zd)‖2
RN +

α

2
‖M

1

2

2 (U − Ud)‖2
RM ,

S Y = M3 U ,

U ≤ B .

Here Y and Zd denotes vectors in R
N corresponding to the discretization of y and zd, and U, Ud and B

denote vectors in R
M , corresponding to the discretizations of u, ud and b. Further M1, S and M2 are

respectively N ×N, N ×N and M ×M positive definite matrices while M3 is an N ×M matrix. The

norms in (PN,M) denote Euclidian norms and the inequality is understood coordinatewise. Finally, it

is assumed that M2 is a diagonal matrix. It is simple to argue the existence of a solution (Y ∗, U∗) to

(PN,M). A first order optimality system is given by






S Y ∗ = M3 U∗

S P ∗ = −M1(Y
∗ − Zd)

U∗ = Ud +
1

α
M−1

2 (M⊤
3 P ∗ − Λ∗)

Λ∗ = c max(0, U∗ +
1

c
Λ∗ − B) ,

(3.14)

with (P ∗, Λ∗) ∈ R
N × R

M , for every c > 0. Here max is understood coordinatewise. The algorithm

for the discretized problem is given next.

Discretized Algorithm

1. Initialization : choose Y o, Uo and Λo, and set n = 1.

2. Determine the following subsets of {1, . . . , M} :

An = { i | Un−1
i +

1

c
Λn−1

i > Bi } , In = {1, . . . , M}\An .

3. If n ≥ 2 and An = An−1 then stop.

4. Else, find (Y n, Pn) ∈ R
N × R

N such that

S Y n = M3





B in An

Ud +
1

α
M−1

2 M⊤
3 Pn in In ,

S Pn = −M1(Y
n − Zd)

and set

Un =





B in An

Ud +
1

α
M−1

2 M⊤
3 Pn in In ,

5. Set Λn = M⊤
3 Pn − αM2(U

n − Ud), update n = n + 1 and goto 2.

12



The following corollary describing properties of the Discretized Algorithm can be obtained with

techniques analogous to those utilized above for analysing the continuous Algorithm. We shall denote

m2 = min
i

(M2)i,i, m2 = max
i

(M2)i,i and K = ‖M−1
2 M⊤

3 ‖ ‖S−1M1‖ .

Corollary 3.1. If

m2 (α + γ) ≤ c < α m2 −
α2

γ
+

α2‖M1‖
K

(3.15)

holds for some γ > 0 then the Discretized Algorithm converges in finitely many steps to the solution

of (PN ).

Proof - First we observe that if the Discretized Algorithm stops in Step 3 then the current iterate

gives the unique solution. Then we show with an argument analogous to that of the proof of Theorem

3.1 that with (3.15) holding, we have LN,M

c (Yn, Un, Λn) < LN,M

c (Yn−1, Un−1, Λn−1) or (Yn, Un) =

(Yn−1, Un−1), where the discretized merit function is given by

LN,M

c (Y, U, Λ) =
1

2
‖M

1

2

1 (Y − Zd)‖2
RN +

α

2
‖M

1

2

2 (U − Ud)‖2
RM + (Λ, ĝc(U, Λ))

RM +
c

2
‖ĝc(U, Λ)‖2

RM ,

with ĝc(U, Λ) = (max(U1 − B1,−Λ1

c
), . . . , max(UM − BM ,−ΛM

c
))⊤. If (Yn, Un) = (Yn−1, Un−1) then

An+1 = An and the Discretized Algorithm stops at the solution. The case LN,M

c (Yn, Un, Λn) <

LN,M

c (Yn−1, Un−1, Λn−1) cannot occur for infinitely many n since there are only finitely many different

combinations of active index sets. In fact, assume that there exists p < n such that An = Ap and

In = Ip. Since (Yn, Un) is a solution of the optimality system of Step 4 if and only if (Yn, Un) is the

unique solution of

min{ JN,M(y, u) | S Y = M3 U, U = B in An } ,

it follows that Yn = Yp, Un = Up and Λn = Λp. This contradicts LN,M

c (Yn, Un, Λn) < LN,M

c (Yp, Up, Λp)

and ends the proof.

Remark 3.3. Note that for γ =
α

m2
condition (3.15) is satisfied if

m2 α (1 +
1

m2
) ≤ c <

α2‖M1‖
K

.

Therefore, one can choose c = m2 α (1 +
1

m2
) for any

α >
m2K

‖M1‖
(1 +

1

m2
) .

4. Ascent properties of Algorithm. In the previous section sufficient conditions for conver-

gence of the Algorithm in terms of α, c and ‖∆−1‖ were given. Numerical experiments showed that

the Algorithm converges also for values of α, c and ‖∆−1‖ which do not satisfy the conditions of

Theorems 3.1. In fact the only possibility of constructing an example for which the Algorithm has

some difficulties (which will be made precise in the following section) is based on violating the strict

complementarity condition.
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Thus one is challenged to further justify theoretically the efficient behavior of the Algorithm. In

the tests that were performed it was observed that the cost functional was always increasing so that

in practice the Algorithm behaves like an infeasible algorithm. To parallel theoretically this behavior

of the Algorithm as far as possible, we slightly modify the Algorithm. For the modified Algorithm an

ascent property of the cost J will be shown.

Modified Algorithm

1. Initialization : choose uo, yo and λo; set n = 1.

2. (a) Determine the following subsets of Ω :

An = { x | un−1(x) +
λn−1(x)

c
> b } , In = { x | un−1(x) +

λn−1(x)

c
≤ b } ,

(b) and find (ỹ, p̃) ∈ H1
o (Ω) × H1

o (Ω) such that

−∆ỹ =





b in An

ud +
p̃

α
in In ,

−∆p̃ = zd − ỹ in Ω .

and set

ũ =





b in An

ud +
p̃

α
in In ,

3. λ̃ = p̃ − α(ũ − ud) .

4. Set

Ã = { x | ũ(x) +
λ̃(x)

c
> b} .

If Ã = An then stop, else goto 5.

5. Check for J(ỹ, ũ) > J(yn−1, un−1).

(a) If J(ỹ, ũ) > J(yn−1, un−1) then

n = n + 1, yn = ỹ, un = ũ, λn = λ̃ and goto 2a.

(b) Otherwise, determine

Tn−1 = { x ∈ In−1 | un−1(x) > b } .

• If measure of Tn−1 is null then stop;

• else set

An = An−1 ∪ Tn−1 , In = In−1\Tn−1 ,

then goto 2b.

Theorem 4.1. If the Modified Algorithm stops in Step 4, then (ũ, ỹ, λ̃) is the solution to (S). If

it never stops in Step 5b, then the sequence J(yn, un) (n ≥ 2) is strictly increasing and converges to

some J∗.

Proof - Let us first assume that the algorithm stops in Step 4. In case An is calculated from 2a

then (ũ, ỹ, λ̃) is the solution to (S) by Theorem 2.1. If An is determined from 5b then an argument

14



analogous to that used in the proof of Theorem 2.1 allows to argue that again (ũ, ỹ, λ̃) is the solution

to (S).

Next we assume that algorithm never stops in Step 4. Let us consider an iteration level, where

the check for ascent in Step 5a is not passed. Consequently An and In are redefined according to

step 5b and (ỹ, ũ) are recalculated from 2b. We have already noticed that (ỹ, ũ) is a solution of the

optimality system of Step 2b if and only if (ỹ, ũ) is the unique solution of

(Paux ) min{ J(y, u) | − ∆y = u in Ω , y ∈ H1
o (Ω), u = b in An } .

Since An = An−1 ∪ Tn−1 strictly contains An−1 it necessary follows that

J(yn−1, un−1) ≤ J(ỹ, ũ) .(4.1)

It will next be shown that equality in (4.1) is impossible. In fact if J(ỹ, ũ) = J(yn−1, un−1) then due to

uniqueness of the solution to (Paux ) it follows that (ỹ, ũ) = (yn−1, un−1) and consequently λ̃ = λn−1.

On An = An−1 ∪ Tn−1, we get ũ = b = un−1. This implies that un−1 = b on Tn−1 and gives a

contradiction to the assumption that the measure of Tn−1 is non null. Hence J(yn−1, un−1) = J(ỹ, ũ)

is impossible. Together with (4.1) it follows that J(yn−1, un−1) < J(ỹ, ũ) and thus the sequence

{J(yn, un)} generated by the Modified Algorithm is strictly increasing. The pair (yb, b) with −∆yb = b

in Ω is feasible for all (Paux ) so that J(yn, un) ≤ J(yb, b) . It follows that J(yn, un) is convergent to

some J∗.

We note, in addition that ũ is feasible since ũ = un−1 = un−1 + λn−1

c
≤ b on In (λn−1 = λ̃ = 0 on

In).

The previous result can be strengthened in the case where (P) is discretized as in subsection 3.1.

Corollary 4.1. If the Modified Algorithm is discretized as described in the previous section and

if it never stops in Step 5b, then the (discretized) solution is obtained in finitely many steps.

Proof - Unless the algorithm stops in Step 4, the values of JN (Yn, Un) (n ≥ 2) are strictly increasing.

As argued in the proof of Corollary 3.1 at each level of the iteration the minimization is carried out

over an active set different from all those that have been computed before. As there are only finitely

many different possibilities for active sets, the Modified Algorithm terminates in Step 4 at the unique

solution of (S).

We have not found a numerical example in which the Modified Algorithm terminates in Step 5b.

5. Numerical Experiments. In this section we report on numerical tests with the proposed

Algorithm. For these tests we chose Ω =]0, 1[×]0, 1[ and the five-point finite difference approximation

of the Laplacian. Unless otherwise specified the discretization was carried out on a uniform mesh with

grid size 1/50.

For the chosen dimension ‖∆−1‖ =
1

2π2
so that

1

‖∆−1‖2
= 4π4 ≃ 390. Relation (3.13) which is

required for the applicability of Theorem 3.1 is satisfied if α ≥ 5. 10−3 to get the convergence via

Theorem 3.1. Nevertheless we have also tested the method for smaller values of α.

The tests were performed on an HP Work station using the MATLAB c© package.

5.1. Example 1. We set

zd(x1, x2) = sin (2πx1) sin (2πx2) exp(2x1)/6 , b ≡ 0 .
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Several tests for different values for α, c and ud were performed. We present two of them. For the

first one (3.13) is satisfied with strict inequalities.

Table 2

Example 1.a: ud ≡ 0 , α = 10−2 , c = 10−1

Iteration max(un − b) size of An J(yn, un) Lc(yn, un, λn) L̂c(yn, un, λn)

1 4.8708e-02 1250 4.190703e-02 4.190785e-02 4.190785e-02

2 5.8230e-05 1331 4.190712e-02 4.190712e-02 4.190712e-02

3 0.0000e+00 1332 4.190712e-02 4.190712e-02 4.190712e-02

4 0.0000e+00 1332 4.190712e-02 4.190712e-02 4.190712e-02

Let us give plots of the optimal control and state.
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Figure 2: Optimal State Figure 3: Optimal control

We present below a second example where (3.13) is not fulfilled because α is too small; in addition ud

has been chosen infeasible.
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Table 3

Example 1.b: ud ≡ 1 , α = 10−6 , c = 10−2

Iteration max(un − b) size of An J(yn, un) Lc(yn, un, λn) L̂c(yn, un, λn)

1 5.0986e+02 1250 1.734351e-02 9.858325e+00 9.858325e+00

2 4.4728e+02 1487 2.089663e-02 7.688683e+00 7.688683e+00

3 3.6796e+02 1677 2.375001e-02 5.612075e+00 5.612075e+00

4 5.8313e+02 1831 2.603213e-02 4.526200e+00 4.526200e+00

5 6.7329e+02 1944 2.782111e-02 3.657995e+00 3.657995e+00

6 5.3724e+02 2039 2.911665e-02 2.402021e+00 2.402021e+00

7 3.6175e+02 2098 2.981378e-02 1.191161e+00 1.191161e+00

8 1.5071e+02 2146 3.011540e-02 3.678089e-01 3.678089e-01

9 6.5928e+01 2178 3.018832e-02 7.796022e-02 7.796022e-02

10 2.3420e+01 2196 3.019715e-02 3.344241e-02 3.344241e-02

11 3.4889e+00 2208 3.019762e-02 3.022994e-02 3.022994e-02

12 0.0000e+00 2210 3.019762e-02 3.019762e-02 3.019762e-02

13 0.0000e+00 2210 3.019762e-02 3.019762e-02 3.019762e-02

Though the size of the set An, in the sense of number of grid points in An is increasing, the

sequence An does not increase monotonically. More precisely points in An at iteration n may not

belong to An+1 at iteration n + 1.

We observe numerically that the algorithm stops as soon as an iterate is feasible. So the sequence

of iterates is not feasible until it reaches the solution. We could say that we have an “outer” method.

We must also underline that differently from classical primal active set methods, the primal-dual

method that we propose can move a lot of points from one iteration to the next.

We compared the new Algorithm to an Uzawa method for the augmented Lagrangian with Gauss-

Seidel splitting. For convenience we recall that algorithm.

Algorithm : UGS

• Step 1. Initialization : Set n = 1 and choose γ > 0.

Choose qo ∈ L2(Ω) and u−1 ∈ L2(Ω) .

• Step 2. Choose kn ∈ N, set u−1
n = un−1 and for j = 0, . . . , kn

yj
n = Arg min { Lγ(y, uj−1

n , qn) | y ∈ H2(Ω) ∩ H1
o (Ω) }

uj
n = Arg min { Lγ(yj

n, u, qn) | u ∈ Uad } .

End of the inner loop : yn = ykn
n , un = ukn

n .

• Step 3.

qn+1 = qn +
ρ

kn + 1

kn∑

j=0

(Ayj
n − uj

n), where ρ ∈ (0, 2γ] ,

17



where

Lγ(y, u, q) = J(y, u) + (q, Ay − u)L2(Ω) +
γ

2
‖Ay − u‖2

L2(Ω).

For this algorithm a detailed convergence analysis was given in [BK]. Due to the splitting technique

the second constrained minimization in Step 2 can be carried out by a simple algebraic manipulation.

Algorithm UGS is an iterative algorithm that approximates the solution (y∗, u∗), whereas the new

Algorithm obtains the exact (discretized) solution. For Example 1a. the computing time was 61 secs

whereas the Algorithm UGS with accuracy set at 10−3 was stopped after 105 min. At that moment

the difference between the Algorithm and Algorithm UGS was

|Jugs − J(y∗, u∗)| ≈ 4.10−8, ‖yugs − y∗‖L∞ ≈ 8.10−7 and ‖uugs − u∗‖L∞ ≈ 4.10−6 ,

where the index “ugs” refers to the result from Algorithm UGS. For Example 1.b the Algorithm took

191 secs whereas Algorithm UGS was stopped after 120 min.

5.2. Example 2. The desired state zd, b are set as in the previous example and α = 10−2, c =

10−1. This example has been constructed such that there is no strict complementarity at the solution.

More precisely we have set ud = b − 1

α
[−∆−1zd + ∆−2b] so that the exact solution of problem (P) is

u∗ = b = 0 and λ∗ = 0 and hence λ∗ is not positive where the constraint is active. This example was

considered by means of the optimality system (S) of Theorem 1.1.

Table 4

uo ≡ 0 (≡ b)

Iteration max(un − b) size of An J(yn, un) Lc(yn, un, λn) L̂c(yn, un, λn)

1 4.4409e-15 1385 4.296739e-02 4.296739e-02 4.296739e-02

2 1.2546e-14 160 4.296739e-02 4.296739e-02 4.296739e-02

3 3.2752e-15 2078 4.296739e-02 4.296739e-02 4.296739e-02

4 4.5519e-15 2308 4.296739e-02 4.296739e-02 4.296739e-02

5 4.5242e-15 1613 4.296739e-02 4.296739e-02 4.296739e-02

6 4.3299e-15 1787 4.296739e-02 4.296739e-02 4.296739e-02

Here the canonical initial guess uo coincides with the solution u∗. From the Table 3 we observe

that un, J(yn, un), Lc(yn, un) and L̂c(yn, un) remain constant while the active sets An chatter. For

different initial guesses for uo the same type of behavior is observed, the Algorithm always reaches the

optimal value for u and J in one iteration, and if the stopping criterion of the Algorithm was based

on the coincidence of two consecutive values of J it would stop after one iteration. The chattering

of active sets is due to lack of strict complementarity and machine precision. Let us briefly consider

this phenomenon and note at first that the signs in the Algorithm are set such that at the limit we

should have Ω = I∗ (all inactive with λ∗ = u∗ = 0). If x ∈ An−1 then un−1(x) = 0 by Step 4 and

λn−1(x) = ±ε, with ε equal to the computer epsilon, will decide whether x ∈ An or In, although

for numerical purposes the exact pair for (u, λ) is already obtained. If x ∈ In−1 then λn−1 = 0 and

un−1(x) = ±ε will decide whether x ∈ An or In, while the influence of this choice on J or Lc is of the
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order of ε2 i.e. it is numerically zero. Therefore we decided to replace “> b” in the definition of An

by “> b− ε ” (and In = Ω\An ): the algorithm behaves now as expected and stops after 2 iterations.

5.3. Example 3. We have seen with Example 1. that the augmented Lagrangian function

decreases during iterations. We show with this example that the augmented Lagrangian function may

not decrease though the method is convergent and provides the exact solution. Let us precise the

data :

zd =

{
200 x1x2 (x1 − 1

2 )2 (1 − x2) if 0 < x1 ≤ 1/2 ,

200 x2 (x1 − 1)(x1 − 1
2 )2 (1 − x2) if 1/2 < x1 ≤ 1 ,

ud ≡ 0 , b ≡ 1, c = 10−2 .

Table 5

Example 3.a: α = 10−6, uo ≡ 1 (≡ b)

Iteration max(un − b) size of An J(yn, un) Lc(yn, un, λn) L̂c(yn, un, λn)

1 4.1995e+02 1100 3.314755e-02 9.645226e+00 9.645226e+00

2 3.8057e+02 1370 3.672870e-02 7.943326e+00 7.943326e+00

3 3.6453e+02 1300 3.963515e-02 7.393744e+00 7.393744e+00

4 3.7512e+02 1400 4.249987e-02 7.809205e+00 7.809205e+00

5 3.8952e+02 1500 4.555558e-02 8.300084e+00 8.300084e+00

6 3.9452e+02 1600 4.880515e-02 8.320358e+00 8.320358e+00

7 3.8004e+02 1700 5.203947e-02 7.485445e+00 7.485445e+00

8 3.3858e+02 1800 5.490267e-02 5.699382e+00 5.699382e+00

9 2.6458e+02 1898 5.701220e-02 3.286759e+00 3.286759e+00

10 1.5311e+02 1986 5.811845e-02 1.093548e+00 1.093548e+00

11 8.3048e+01 2040 5.834162e-02 3.099587e-01 3.099587e-01

12 1.5809e+01 2086 5.839423e-02 5.959874e-02 5.959874e-02

13 0.0000e+00 2098 5.839438e-02 5.839438e-02 5.839438e-02

14 0.0000e+00 2098 5.839438e-02 5.839438e-02 5.839438e-02

The solution was obtained in 210 secs.

The following plot shows the influence of α on the behavior of the Lagrangian function Lc.

19



Figure 4: Influence of α on the behavior of Lc (Logarithmic scale)

We see that during the first iterations the augmented Lagrangian function does not decrease if α

is too small.

However, if the initialization point is close enough the solution then this function becomes decreas-

ing. We have tested initialization points different from b which were closer to the solution and obtained

decrease of Lc. As an example we give in Table 6 the results for α = 10−10 with an initialization

according to (2.1) but with uo the solution for α = 10−5

Table 6

Example 3.b: α = 10−10, uo given by the solution to (P) for α = 10−5

Iteration max(un − b) size of An J(yn, un) Lc(yn, un, λn)

1 1.6605e+03 1986 5.696032e-02 4.889158e+01

2 1.4741e+03 2034 5.750110e-02 2.948470e+01

3 1.1542e+03 2082 5.781067e-02 1.299992e+01

4 6.8931e+02 2130 5.793424e-02 2.631407e+00

5 1.6713e+02 2168 5.795024e-02 2.198494e-01

6 1.1931e+02 2172 5.795048e-02 1.276798e-01

7 7.0091e+01 2176 5.795058e-02 7.857522e-02

8 2.0618e+01 2180 5.795061e-02 5.958497e-02

9 0.0000e+00 2182 5.795061e-02 5.795061e-02

10 0.0000e+00 2182 5.795061e-02 5.795061e-02

Note that the total number of iterations including the initialization with α = 10−5 to obtain the

solution corresponding for α = 10−10 is equal to 18. If one computes the solution with initialization

uo = b, the number of iterations is 27 and Lc decreases after iteration 12. Thus a good initial guess

can decrease the number of iterations to obtain the solution. This process was repeated successfully

for smaller values of α up to α = 10−15 as well.
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