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Abstract. In this paper we investigate optimal control problems governed by elliptic
variational inequalities with additional state-constraints. We present a relaxed formulation
for the problem. With penalization methods and approximation techniques we give qualifi-
cation conditions to get first order optimality conditions.
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1. Introduction. In this paper we investigate optimal control problems
governed by elliptic variational inequalities with additional state-constraints.
This topic has been widely studied by many authors. We mainly could mention
Barbu [1, 2, 3], Friedman [11, 12], Mignot [13], Mignot & Puel [14], Tiba [15]
or Bermudez & Saguez [8]. Most of these contributions (for example [1, 2, 3])
study the problem via the penalization of the state (in)equation. On the other
hand Mignot & Puel [14] (for instance) give an equivalent formulation of the
variational inequality via the associated lagrange multiplier for the obstacle
problem example. We have followed this point of view; our purpose is to set
optimality conditions for such a problem that could easily be used from the
numerical point of view. This paper is the generalization of the case of the
obstacle problem that we have been studying in [5]. We deal here with quite
abstract variational inequalities. Following our previous work, we first present
a relaxed form of the original problem which can be considered as a good “ap-
proximation” of this problem. Then using both Moreau-Yosida approximation
techniques and a penalization method we are able to set optimality conditions.
We end the paper with the example of the obstacle problem.

2. Setting the Problem. Let V and H be a pair of real Hilbert spaces
such that V is a dense subset of H and V ⊂ H ⊂ V ′ algebraically and
topologically (V ′ denotes the dual of V ). We suppose in addition that

the injection V ⊂ H is compact(2.1)
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so that H ⊂ V ′ is compact too. (For example one may choose V = H1
o (Ω)

and H = L2(Ω) where Ω is an open bounded “regular” subset of IR3.) We
denote 〈 , 〉 the pairing between V and V ′, ( , )H the H-scalar product and
| |V the norm of V . We call ΛV : V → V ′ the canonical isomorphism. Let
U be another Hilbert-space (such that U = U ′);we consider the variational
inequality

Ay + ∂Φ(y) 3 Bu+ f ,(2.2)

where
•A : V → V ′ is a linear, continuous operator satisfying the coercivity condition

∃ω > 0, ∀v ∈ V 〈Av, v〉 ≥ ω|v|2V ;(2.3)

•
Φ is a convex, proper, lower semi-continuous (lsc) function

from V to IR ∪ {+∞} ;
(2.4)

We denote
dom Φ = { y ∈ V | Φ(y) < +∞ }

the domain of Φ (which is convex and V -closed). We recall that the subdiffer-
ential ∂Φ(yo) of Φ at yo ∈ V is :

∂Φ(yo) = { z∗ ∈ V ′ | ∀y ∈ V Φ(y)− Φ(yo)− 〈z∗, y − yo〉 ≥ 0} ,

and that dom Φ = dom ∂Φ.
• f ∈ V ′ and

B is a linear, compact operator from U to V ′ .(2.5)

Let us recall some general results about solutions of (2.2)(see [2, 3] for exam-
ple).

Theorem 2.1. (Barbu [2] p 40) Under assumptions (2.3)-(2.4) and for
all ψ ∈ V ′ the variational inequality

Ay + ∂Φ(y) 3 ψ

has a unique solution y(ψ) ∈ V and the mapping ψ 7→ y(ψ) is Lipschitz from
V ′ to V .

Corollary 2.1. (Barbu [2] p 63) With the assumptions of the previous
theorem, for all u ∈ U , there exists a unique y(u) ∈ V solution of (2.2) and
the mapping u 7→ y(u) is weakly-strongly continuous from U to V .

In order to get some regularity results, we suppose from now that

f ∈ H and B ∈ L(U,H) ,(2.6)
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so that (2.5) is fulfilled and we may use in addition the following result (Barbu
[2] p 42) :let us denote AH : H → H the operator

AH(y) = Ay for all y ∈ D(AH) = { y ∈ V | Ay ∈ H } .(2.7)

This operator is maximal monotone in H ×H and we have
Theorem 2.2. Assume (2.3) and suppose in addition that there exists

z ∈ H and c ∈ IR such that

∀y ∈ V,∀λ > 0 Φ((I + λAH)−1(y + λz)) ≤ Φ(y) + cλ .(2.8)

Then for every ψ ∈ H the solution y(ψ) of Ay+ ∂Φ(y) 3 ψ belongs to D(AH)
and

|Ay(ψ)|H ≤ c(1 + |ψ|H) .

From now we suppose that (2.8) is ensured. This is the case for example
for the obstacle problem given as an example in the last section of this paper,
where V = H1

o (Ω), H = L2(Ω) and D(AH) = H2(Ω) ∩H1
o (Ω).

Applying this regularity result to our case we get that for all u ∈ U ,
f + Bu ∈ H so that the solution of (2.2) y belongs to D(AH) ⊂ V , that is
Ay ∈ H.

Remark 2.1. One could think that this regularity assumption is not re-
ally necessary. Indeed, it is not useful to prove the results of next section.
Nevertheless, when we investigate penalized problems, then we shall need some
“strong” convergence for the penalized solutions, that is with the compactness
assumptions “weak” convergence in the pivot-space H.

Now, we investigate the following optimal control problem

(P)


min g(y) + h(u)
Ay + ∂Φ(y) 3 Bu+ f ,
(y, u) ∈ K × Uad ,

where
• g is convex from H to IR, finite everywhere ( dom(g) = H) and continuous.
This implies ([4] proposition 1.9 p.85) that

∃(ag, cg) ∈ H × IR such that ∀y ∈ H g(y) ≥ (ag, y)H + cg(2.9)

(because g is lsc) and g is everywhere subdifferentiable.
• h is convex from U to IR, finite everywhere ( dom(h) = U), continuous and
coercive :

lim
|u|U→+∞

h(u)
|u|U

= +∞ ;(2.10)
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• Uad (resp. K) is a closed, convex, non empty subset of U (resp. V ). We
note that y ∈dom ∂Φ ⊂dom Φ so that one may always suppose that

K ⊂ dom Φ .(2.11)

Remark 2.2. From now, we always suppose that these assumptions are
satisfied. They are not of course optimal. To get more information one can
refer to Barbu [3] p. 150.
We end this section with an existence result for (P).

Theorem 2.3. Under assumptions (2.3),(2.4),(2.9),(2.10), problem (P)
has (at least) one optimal solution.
Proof - The proof is quite similar to the one given in Barbu [3] p 151. The
main difference is the addition of the state constraint y ∈ K which does not
modify the proof.

3. “Relaxation” of the Problem. We denote Φ∗ : V ′ → IR the conju-
gate function of Φ; it is also a convex, proper, lsc and and we know that (see
[4, 10])

z ∈ ∂Φ(y) ⇔ y ∈ ∂Φ∗(z) ⇔ Φ(y) + Φ∗(z) = 〈y, z〉 .(3.1)

Because of the regularity result we always have Bu + f − Ay ∈ H , so that
z = Bu+ f −Ay ∈ ∂Φ(y) ∩H and (3.1) is equivalent to

z ∈ ∂Φ(y) ⇔ y ∈ ∂Φ∗(z) ⇔ Φ(y) + Φ∗(z) = (y, z)H .

Remark 3.1. In addition such an element z belongs to dom ∂Φ∗ ⊂ dom
Φ∗ so that the condition “z ∈ dom Φ∗” is implicitly included in relation (3.1).
Finally, problem (P) is equivalent to

(P̃)


min g(y) + h(u)
Ay = Bu+ f − z ∈ H ,
Φ(y) + Φ∗(z)− (y, z)H = 0 ,
y ∈ D(AH) ∩K, (u, z) ∈ Uad × (dom Φ∗ ∩H) .

w = (u, z) is now considered as a new control variable. Problem (P̃) is a state-
constrained optimal control problem with a non-convex (because of the bilinear
term) constraint coupling the state y and the control w. This constraint is
quite difficult to deal with. It is not convex and the equality constraint makes
the interior of the feasible domain empty in a very strong sense. So as we have
done in [5] for the particular case of the obstacle problem we had rather study
a “relaxed” problem. More precisely we consider

(PR
α )


min g(y) + h(u)
Ay = Bu+ f − z ,
Φ(y) + Φ∗(z)− (y, z)H ≤ α ,
y ∈ K, (u, z) ∈ Uad ×B∗R ,
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where α > 0, R > 0, B∗R = BH(0, R)∩dom Φ∗ and BH(0, R) is the H-ball of
radius R. B∗R is convex and H-closed (since dom Φ∗ is convex and V ′-closed
).

Remark 3.2. Let us comment this “relaxed” form for problem (P̃). First
we know that Φ(y) + Φ∗(z)− (y, z)H is always nonnegative. So

Φ(y) + Φ∗(z)− (y, z)H ≤ α(3.2)

is equivalent to |Φ(y) + Φ∗(z) − (y, z)H | ≤ α. This is the relaxed term : we
have replaced the equality “ = 0” with the inequality “ ≤ α ”, where α may
be as small as wanted. This is quite realistic from the numerical point of view
where equalities are indeed inequalities up to α.

On the other hand, if we do not add the constraint “z ∈ BH(0, R)” the
relaxed problem is not coercive and so in general it has no solution. Moreover,
by virtue of assumptions (2.8) and (2.10) the optimal solutions (y, u) and Ay
remain in a bounded set of H ×U and H and the constant R has to be chosen
accordingly (that is large enough); in particular R is greater than |Aȳ−f−Bū|H
for any (ȳ, ū) solution of (P), so that the feasible domain of (PR

α ) is non empty.
Anyway, this additional condition is not very restrictive. One could instead

add a regularization term (as |z|2H/R) to the cost functional, which would have
exactly the same effect. One may also add adapted penalization terms to this
cost functional as |y − ȳ|2V or |z − z̄|2H .
From now we fix R so that we always omit the index R in the notations and
(PR

α ) becomes (Pα).
Theorem 3.1. For every α > 0, (Pα) has at least one optimal solution

denoted (yα, uα, zα). Moreover, when α→ 0, yα strongly converges to ȳ in V ,
uα weakly converges to ū in U and zα weakly converges to z̄ in H where (ȳ, ū)
is a solution of (P) and z̄ = Aȳ −Bū− f ∈ H.
Proof - Let α > 0; we have chosen R such that the feasible domain of (Pα) is
always non-empty. We first prove that that dα = inf (Pα) ∈ IR.The coercivity
and continuity assumptions on A yield that A is an isomorphism from V to V ′.
Let (yn, un, zn) be a minimizing sequence : yn = A−1(Bun + f − zn), |zn|H ≤
R, un ∈ Uad, Φ(yn)+Φ∗(zn)−(yn, zn)H ≤ α and g(yn)+h(un) → dα. Because
of (2.9) we have

g(yn) + h(un) ≥
(
ag, A

−1(Bun + f − zn)
)
H + h(un) + cg

≥
(
ag, A

−1Bun
)
H + h(un)−

(
ag, A

−1zn
)
H + cg +

(
ag, A

−1f
)
H .

As |zn|H ≤ R then −
(
ag, A

−1zn
)
H + cg +

(
ag, A

−1f
)
H is bounded from below.

If dα = −∞ then
(
ag, A

−1Bun
)
H + h(un) → −∞. If (un) were bounded in

U then (extracting a subsequence) un would be weakly convergent to some ũ
in U ; as B is continuous Bun would be convergent to Bũ weakly in H and
strongly in V ′. Therefore A−1Bunwould be strongly convergent to A−1Bũ in
V and

(
ag, A

−1Bun
)
H →

(
ag, A

−1Bũ
)
H . Moreover h is lsc, so that −∞ <
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h(ũ)≤ lim inf
n→+∞

h(un) ; so we get a contradiction. This means that (un) is

unbounded. Coercivity assumption (2.10) implies that

lim
n→+∞

h(un)
|un|U

= +∞ .

Moreover Cauchy-Schwartz inequality shows that∣∣∣∣∣
(
ag, A

−1Bun
)
H

|un|U

∣∣∣∣∣ ≤ co
|un|U
|un|U

;

So

lim
n→+∞

(
ag, A

−1Bun

)
H

+ h(un) = |un|U

[(
ag, A

−1Bun
)
H

|un|U
+
h(un)
|un|U

]
= +∞ ,

and we get a contradiction.
• As |zn|H ≤ R one may extract a subsequence (still denoted zn) weakly con-
vergent in H to zα ∈ B∗R (since B∗R is weakly closed). As dα > −∞, h(un)
is bounded , and by coercivity (un) is bounded in U ; so (extracting a sub-
sequence) un weakly converges to uα ∈ Uad (Uad is weakly closed in U).
The continuity of B yields that Bun converges to Buα weakly in H. So
Ayn = Bun +f−zn converges to Buα +f−zα weakly in H and strongly in V ′.
As A is an isomorphism from V to V ′, yn converges to yα = A−1(Buα+f−zα)
strongly in V . Moreover yα ∈ K since K is closed.
• Let us prove that (yα, uα, zα) is feasible for (Pα). It remains to show that
Φ(yα) + Φ∗(zα) − (yα, zα)H ≤ α. Φ and Φ∗ are convex and lower semi-
continuous so they are weakly lower semi-continuous and we have

Φ(yα) + Φ∗(zα) ≤ lim inf
n→+∞

Φ(yn) + lim inf
n→+∞

Φ∗(zn) ≤ lim inf
n→+∞

[Φ(yn) + Φ∗(zn)] .

Moreover the strong convergence of yn to yα in H and the weak convergence
of zn to zα in H gives

lim
n→+∞

(yn, zn)H = (yα, zα)H .

Finally

Φ(yα) + Φ∗(zα)− (yα, zα)H ≤ lim inf
n→+∞

[Φ(yn) + Φ∗(zn)− (yn, zn)H ] ≤ α .

Therefore (yα, uα, zα) is feasible for (Pα) and g(yα) + h(uα) ≥ dα. As g and h
are lsc we have also

g(yα) + h(uα) ≤ lim inf
n→+∞

g(yn) + lim inf
n→+∞

h(un) ≤ lim inf
n→+∞

[g(yn) + h(un)] = dα .

Finally g(yα) + h(uα) = dα and (yα, uα, zα) is an optimal solution for (Pα).
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• It remains to prove the convergence of (yα, uα, zα) to an optimal solution
of (P). Let (yo, uo, zo) be an optimal solution of (P) such that zo ∈ B∗R
(remember that we have chosen R to ensure the existence of such a solution).
It is also a feasible triple for (Pα), for any α > 0. So

∀α > 0 −∞ < dα = g(yα) + h(uα) ≤ g(yo) + h(uo) = do .

So dα is bounded from above in IR. If it were not bounded from below then
we could find a sequence αn → 0 such that dαn → −∞. The same proof as
before shows that it is impossible. So h(uα) is bounded (independently of α)
and by coercivity (uα) is bounded in U as well. Similarly (zα) is bounded
in H (zα ∈ B∗R). Then one can show (as we have proved the existence of
(yα, uα, zα)) that

yα → ȳ strongly in V , uα ⇀ ū weakly in U and zα ⇀ z̄ weakly in H ,

where (ȳ, ū) is a solution of (P) with z̄ = Aȳ −Bū− f and that

lim
α→0

[g(yα) + h(uα)] = g(ȳ) + h(ū) .

4. Penalization of (Pα).

4.1. The approximated-penalized problem. From now, we fix also
α > 0 as small as wanted and we shall omit the index α most of time. We
are going to approximate and penalize the state-equation of (Pα) to get an
approximated problem (Pε

α). Then we shall derive optimality conditions for
this problem and set qualification conditions allowing us to pass to the limit
with respect to ε. For ε > 0, we consider the following problem :

(Pε
α)

{
minJε(y, u, z)
(y, u, z) ∈ K × Uad ×B∗R ,

where

Jε(y, u, z) = gε(y) + hε(u)

+
1
2ε
|Ay −Bu− f + z|2V ′ +

1
2ε

[Φε(y) + Φ∗ε(z)− (y, z)H − α]2+

+
1
2
|y − yα|2V +

1
2
|u− uα|2U +

1
2
|z − zα|2H .

Here g+ = max (0, g), and gε, hε, Φε and Φ∗ε are the Moreau-Yosida approx-
imations of g, h, Φ and Φ∗.

First, we briefly recall some useful properties of Moreau-Yosida approxi-
mation of convex functions. Let ϕ be a convex, proper, lower semi continuous
function from H to IR ∪ {+∞} where H is an Hilbert space (not necessarily
identified with its dual). The Moreau-Yosida approximation of ϕ is defined by

ϕε(x) = inf { |x− y|2H
2ε

+ ϕ(y) , y ∈ H }
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and we have the following properties ([3] pp.49-55) :
Theorem 4.1. Let us call Iε = (ΛH + εD)−1 the proximal mapping with

D = ∂ϕ, ΛH the canonical isomorphism from H to H′, and Dε = −ε−1ΛH(Iε−
I).
i. Iε is single valued and non expansive.
ii. Dεx ∈ ∂ϕ(Iεx) for all x ∈ H , and for all x ∈ dom(∂ϕ) lim

ε→0
Dεx = Dox ∈ ∂ϕ(x)

(strongly in H′) where Do(x) is the element of minimal norm of ∂ϕ(x).
iii. For all x ∈ dom ϕ Iεx converges strongly in H towards x.
iv. If εn → 0 , xεn → xo strongly in H and Dεnxεn ⇀ yo weakly in H′ then
yo ∈ ∂ϕ(xo).
v. ϕε is Fréchet-differentiable and ϕ′ε = Dε is Lipschitz (so that ϕε is C1).
vi. For all x ∈ H and ε > 0 ϕ(Iεx) ≤ ϕε(x) ≤ ϕ(x) .
Moreover, for all x ∈ H, lim

ε→0
ϕε(x) = ϕ(x) .

In addition, as we need sharper convergence results we set some further as-
sumptions about the function ϕ and we suppose that

∀(xε) ∈ dom ϕ strongly convergent (in H ) to x ∈ dom ϕ
then ϕ′ε(xε) is bounded in H′ (with respect to ε).

(4.1)

Then we have the following useful theorem
Theorem 4.2. For any convex, proper, lsc function ϕ,

i. If xε strongly converges to some x in H then lim
ε→0

Iεxε = x (strongly in H).

ii. If xε weakly converges to some x ∈ dom ∂ϕ in H, then lim inf
ε→0

ϕε(xε) ≥ ϕ(x) .

iii. If ϕ satisfies condition (4.1) and if xε ∈ dom ϕ strongly converges to some
x ∈ dom ϕ then lim

ε→0
ϕε(xε) = ϕ(x) and x ∈ dom ∂ϕ.

Proof - i. and ii. are direct consequences of Theorem 4.1. To prove iii. we use
the relation (2.18) given in Barbu [3] p.66 :

∀z, y ∈ H,∀ε > 0, ϕε(y)− ϕε(z) ≤
〈
ϕ′ε(y), y − z

〉
H′,H

where 〈 , 〉H′,H denotes the pairing between H and H′.
We use it first with z = xε and y = x and then with y = xε and y = x; this
gives

|ϕε(xε)− ϕε(x)| ≤ max(|ϕ′ε(xε)|H′ , |ϕ′ε(x)|H′)|x− xε|H .

With Theorem 4.1 ii., assumption (4.1) and the strong convergence of xε to x,
we get the strong convergence of ϕε(xε) to ϕε(x). We conclude with Theorem
4.1 vi.

Remark 4.1. The above property is satisfied for any convex, proper, lsc
function ϕ as soon as x ∈ int(dom ϕ ) since ∂ϕ(x) is locally bounded in this
case (see [4] p. 60). Anyway, here it may happen that int(dom ϕ ) is empty
and this result cannot be used.

We precise now the hypotheses on functions Φ and Φ∗; from now we assume
that

Φ satisfies (4.1) with H = V and Φ∗ satisfies (4.1) with H = V ′ .(4.2)
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This assumption is not so restrictive since it allows to consider a wide class
of convex functions; let us give some examples :

Example 4.1. Convex functions satisfying (4.1).
• Any continuous, convex function defined on the whole space V satisfies (4.1)
since int(dom ϕ ) = V so that ∂ϕ(x) is locally bounded for any x (we use also
Theorem 4.2 i., Theorem 4.1 ii. and a result of Barbu & Precupanu [4] p. 60).
• Any indicator function ϕ = 1C of a convex, closed, non empty subset C of
H satisfies (4.1) also; we recall that

1C(y) =

{
0 if y ∈ C
+∞ else

and Iε(x) = PC(x) where PC is the H-projection on C. Then

ϕε(x) =
|x− PC(x)|2H

2ε
and ϕ′ε(x) = ΛH

(
x− PC(x)

ε

)
.

If xε strongly converges to x in C =dom ϕ, then ϕ′ε(xε) = 0 for all ε and so
remains bounded in H′.

Example 4.2. Convex functions satisfying (4.2).
• If Φ is the indicator function of a convex closed cone C of V then Φ∗ = 1C∗

where C∗ is the polar cone of C in V ′; so with Example 4.1. we see that (4.2)
is ensured.

This case involves the obstacle problem or the Signorini problem.
• If Φ(x) = |x|V is continuous and dom (Φ) = H then Φ∗ is the indicator
function of the unit ball of V ′.
• Φ(x) = 1

p |x|
p
V then Φ∗(x) = 1

p′ |x|
p′

V ′ where p, p′ ∈]1,+∞[ are conjugate num-
bers (see Ekeland-Temam [10]). This leads to a semilinear state-equation.

Remark 4.2. The approximation process concerns the functions g, h, Φ
and Φ∗ which are not necessarily Fréchet-differentiable and are replaced by
their Moreau-Yosida approximations. This method provides C1 functions.

We have also added two kinds of penalization terms : the state-equation and
the inequality (non convex) constraint are penalized in a standard way. The
other terms are adapted penalization terms which ensure the strong convergence
of the penalized solution towards the desired solution (when uniqueness does
not hold).
First we have an existence and convergence result for (Pε

α).
Theorem 4.3. For all ε > 0, problem (Pε

α) has (at least) a solution
(yε, uε, zε). Moreover, when ε → 0, (yε, uε, zε) → (yα, uα, zα) strongly in V ×
U ×H.
Proof - We first prove the existence of a solution for (Pε

α). We notice that
(yα, uα, zα) is a feasible triple for (Pε

α) so that the feasible domain of (Pε
α) is

non empty and we may find a minimizing sequence (yn
ε , u

n
ε , z

n
ε ) converging to

9



dε = inf(Pε
α). Setting Iε,g = (IH + ε∂g)−1 and Iε,h = (IU + ε∂h)−1 we get

Jε(y, u, z) ≥ gε(y) + hε(u) ≥ g(Iε,g(y)) + h(Iε,h(u)) ,
and

inf
V×U×H

Jε(y, u, z) ≥ inf
V×U

g(Iε,g(y)) + h(Iε,h(u)) ≥ γ > −∞

because of the properties of g and h. So dε ∈ IR and the end of the proof is
standard (see Theorem 3.1).
Now we prove the convergence result. Since (yα, uα, zα) is a feasible triple for
(Pε

α) we have
dε = Jε(yε, uε, zε) ≤ g(yα) + h(uα) = dα .(4.3)

We have just seen that dε is lower bounded (with respect to ε) so that
yε, uε and zε are bounded in V, U and H. Extracting a subsequence, we get
the weak convergence of (yε, uε, zε) to (ỹ, ũ, z̃) in V × U × H; in particular,
this yields that Ayε−Buε−f + zε converges to Aỹ−Bũ−f + z̃ weakly in V ′.
Moreover Ayε − Buε − f + zε converges to 0 strongly in V ′ so that Aỹ −
Bũ − f + z̃ = 0 . In addition, as Uad, K and B∗R are weakly closed we get
ũ ∈ Uad, ỹ ∈ K and z̃ ∈ B∗R.
The injection of V in H is compact, so yε → ỹ strongly in H; as zε ⇀ z̃ weakly
in H we get the convergence of (yε, zε)H to (ỹ, z̃)H . Moreover Theorem 4.2
gives

lim inf
ε→0

Φε(yε) ≥ Φ(ỹ) and lim inf
ε→0

Φ∗ε(zε) ≥ Φ∗(z̃) .

So we get

[Φ(ỹ) + Φ∗(z̃)− (ỹ, z̃)H − α]+ ≤ lim inf
ε→0

[Φε(yε) + Φ∗ε(zε)− (yε, zε)H − α]+ ;

Since lim
ε→0

[Φε(yε) + Φ∗ε(zε)− (yε, zε)H − α]2+ = 0 this yields

[Φ(ỹ) + Φ∗(z̃)− (ỹ, z̃)H − α]+ = 0 .

So (ỹ, ũ, z̃) is feasible for (Pα). Now relation (4.3) gives

gε(yε) + hε(uε) +
1
2
|yε − yα|2V +

1
2
|uε − uα|2U +

1
2
|zε − zα|2H ≤ g(yα) + h(uα) .

Passing to the inf-limit in the above relation we get

g(ỹ)+h(ũ)+
1
2
|ỹ−yα|2V +

1
2
|ũ−uα|2U +

1
2
|z̃−zα|2H ≤ g(yα)+h(uα) ≤ g(ỹ)+h(ũ) ,

since (ỹ, ũ, z̃) is feasible for (Pα). So ỹ = yα, ũ = uα and z̃ = zα. Furthermore
lim
ε→0

|yε − yα|V = 0, lim
ε→0

|uε − uα|U = 0 and lim
ε→0

|zε − zα|H = 0 and we get the
strong convergence.
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Corollary 4.1. There exists (y∗, z∗) ∈ ∂Φ∗(zα) × ∂Φ(yα) such that
Φ′ε(yε) ⇀ z∗ weakly in V ′ and Φ∗

′
ε (zε) ⇀ y∗ weakly in V (and strongly in H).

Moreover

lim
ε→0

〈
Φ′ε(yε), yε

〉
= 〈z∗, yα〉 and lim

ε→0

(
Φ∗

′
ε (zε), zε

)
H

= (y∗, zα)H .(4.4)

Proof - As yε ∈ K ⊂ dom(Φ) strongly converges to yα in V , we use assumption
(4.2) to infer that Φ′ε(yε) is bounded in V ′. So we may extract a subsequence
(denoted similarly) such that Φ′ε(yε) weakly converges in V ′ to z∗. Theorem
4.1 iv. implies that z∗ ∈ ∂Φ(yα). Similarly, we may prove that Φ∗

′
ε (zε) ⇀ y∗ ∈

∂Φ∗(zα) weakly in V and strongly in H, since zε strongly converges to zα in
V ′. Relations (4.4) are obvious.

4.2. Optimality Conditions for (Pε
α). Now, we want to derive opti-

mality conditions for (Pε
α). Jε is C1 and the feasible domain of (Pε

α) is convex,
so using convex variations we have

∀(y, u, z) ∈ K ×Uad ×B∗R ∇Jε(yε, uε, zε)(y− yε, u− uε, z − zε) ≥ 0 .(4.5)

This leads to the following penalized optimality system :
Theorem 4.4. For all ε > 0 (small enough), there exist qε ∈ V and

λε ∈ IR+ such that

∀y ∈ K
(g′ε(yε), y− yε)H +(yε − yα, y−yε)V +〈A∗qε +λε[Φ′ε(yε)− zε], y−yε〉 ≥ 0

(4.6)
∀u ∈ Uad

(
h′ε(uε)−B∗qε + uε − uα, u− uε

)
U ≥ 0 ,(4.7)

∀z ∈ B∗R
(
qε + λε[Φ∗

′
ε (zε)− yε] + zε − zα, z − zε

)
H
≥ 0 ,(4.8)

where A∗ and B∗ are the adjoint operators of A and B.
Proof - Relation (4.5) may be decoupled to obtain

∀y ∈ K ∇yJε(yε, uε, zε)(y − yε) ≥ 0 ,(4.9)
∀u ∈ Uad ∇uJε(yε, uε, zε)(u− uε) ≥ 0 ,(4.10)
∀z ∈ B∗R ∇zJε(yε, uε, zε)(z − zε) ≥ 0 .(4.11)

Let us precise these relations : setting qε = Λ−1
V (sε) ∈ V , and

sε =
Ayε −Buε − f + zε

ε
∈ H ⊂ V ′, λε =

[Φε(yε) + Φ∗ε(zε)− (yε, zε)H − α]+
ε

∈ IR+

relation (4.9) gives, for all y ∈ K

(g′ε(yε), y − yε)H + (yε − yα, y − yε)V +

〈λε[Φ′ε(yε)− zε], y − yε〉+ 〈qε, A(y − yε)〉 ≥ 0 ;
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introducing the adjoint operator A∗ of A we get (4.6). The other relations are
obtained similarly.

Remark 4.3. Equation (4.8) (and (4.7) as well) can be reformulated
using the normal cone to B∗R. Indeed, as B∗R is convex this normal cone is
characterized with

NB∗
R
(zε) = { ξ ∈ H | (ξ, zε − z)H ≥ 0 ∀z ∈ B∗R }

(see for instance Clarke [9] p.53 ), so that relation (4.8) is equivalent to

−[qε + λε(Φ∗
′

ε (zε)− yε)] ∈ zε − zα +NB∗
R
(zε) .(4.12)

5. Optimality Conditions for (Pα). In order to pass to the limit (with
respect to ε) in the previous relations we need further estimations on the
multipliers qε and λε.

5.1. Estimations of the penalized multipliers. Let be (y, u, z) ∈ K×
Uad ×B∗R and let us add relations (4.6)-(4.8). This gives

(g′ε(yε), y − yε)H + (h′ε(uε), u− uε)U +
(yε − yα, y − yε)V + (uε − uα, u− uε)U + (zε − zα, z − zε)H +
〈qε, Ay −Bu+ z − f − (Ayε −Buε + zε − f)〉+
λε

[
〈Φ′ε(yε)− zε, y − yε〉+

(
Φ∗

′
ε (zε)− yε, z − zε

)
H

]
≥ 0 .

Using the definition of qε and that ε 〈qε,ΛV qε〉 ≥ 0 we get

〈−qε, Ay−Bu+ z − f〉 − λε

[
〈Φ′ε(yε)−zε, y − yε〉+

(
Φ∗

′
ε (zε)− yε, z − zε

)
H

]
≤

(g′ε(yε), y − yε)H + (h′ε(uε), u− uε)U

+(yε − yα, y − yε)V + (uε − uα, u− uε)U + (zε − zα, z − zε)H .

The right-hand side term is bounded since (yε, uε, zε) → (yα, uα, zα) strongly
in V × U × H, and (g′ε(yε), h′ε(uε)) ⇀ (yg

α, u
h
α) ∈ ∂g(yα) × ∂h(uα) weakly in

H × U (because of Theorem 4.2 iii. and the continuity of g and h). The
bounding constant σ depends only of (y, u, z). So we have, for all ε > 0 small
enough,

−λε

[
〈Φ′ε(yε)− zε, y − yε〉+

(
Φ∗

′
ε (zε)− yε, z − zε

)
H

]
−〈qε, Ay −Bu+ z − f〉 ≤ σ(y, u, z) .

(5.1)

We first estimate the real number λε. If the solution (yα, uα, zα) is such that
the non-convex constraint is inactive, i.e.

Φ(yα) + Φ∗(zα)− (yα, zα)H − α = G(yα, zα) < 0 ,
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then convergence results yield

∃εo > 0, ∀ε ≤ εo, Φε(yε) + Φ∗ε(zε)− (yε, zε)H − α < 0 ,

as well and λε = 0; hence the limit λα = 0.
Now, we investigate the case when the constraint is active that is

Φ(yα) + Φ∗(zα)− (yα, zα)H − α = G(yα, zα) = 0 .

Let us assume the following condition (H1) :

(H1)
∀α such that G(yα, zα) = 0, ∀(y∗, z∗) ∈ ∂Φ∗(zα)× ∂Φ(yα)
∃(ỹ, ũ, z̃) ∈ K × Uad ×B∗R such that Aỹ = Bũ+ f − z̃ and

[Φ(yα)− Φ(y∗)− 〈yα − y∗, z̃〉] + [Φ∗(zα)− Φ∗(z∗)− 〈zα − z∗, ỹ〉] < 2α.(5.2)

Remark 5.1. Relation (5.2) is indeed equivalent to

〈yα − y∗, z̃ − zα〉+ 〈zα − z∗, ỹ − yα〉 > 0

as we shall prove it later. Moreover, in our very case, 〈yα − y∗, z̃〉 = (yα − y∗, z̃)H

since z̃ ∈ H.
Theorem 5.1. Assume (H1); then λε is bounded by a constant indepen-

dent of ε and we may extract a subsequence converging to λα ∈ IR+.
Proof - If α is such that G(yα, zα) < 0 we have already seen that λα = 0.
If G(yα, zα) = 0, we use (H1). Let be (y∗, z∗) ∈ ∂Φ∗(zα) × ∂Φ(yα) ⊂ V × V ′

given by Corollary 4.1. Let us apply relation (5.1) with the triple (ỹ, ũ, z̃),
given by (H1). We get

λε

[〈
zε − Φ′ε(yε), ỹ − yε

〉
+

(
yε − Φ∗

′
ε (zε), z̃ − zε

)
H

]
≤ C̃(5.3)

and

Φ(yα)− Φ(y∗)− (yα − y∗, z̃)H + Φ∗(zα)− Φ∗(z∗)− 〈zα − z∗, ỹ〉 < 2α.

As y∗ ∈ ∂Φ∗(zα) and z∗ ∈ ∂Φ(yα) we have Φ(y∗) + Φ∗(zα) = (y∗, zα)H and
Φ∗(z∗) + Φ(yα) = 〈z∗, yα〉.
Moreover we are in the case where Φ(yα) + Φ∗(zα) = (yα, zα)H + α, so that
(5.2) is equivalent to

ρ = (yα − y∗, z̃ − zα)H + 〈zα − z∗, ỹ − yα〉 > 0 ,

as mentioned in Remark 5.1.
Convergence results given in Theorem 4.3 and Corollary 4.1 imply that

lim
ε→0

(
yε − Φ∗

′
ε (zε), z̃ − zε

)
H

+
〈
zε − Φ′ε(yε), ỹ − yε

〉
= ρ > 0 .
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So, there exists εo > 0 such that for all 0 < ε < εo we have(
yε − Φ∗

′
ε (zε), z̃ − zε

)
H

+
〈
zε − Φ′ε(yε), ỹ − yε

〉
≥ ρ

2
.

Then relation (5.3) gives

∀ε < εo 0 ≤ ρ

2
λε ≤ C̃ .

So λε is bounded and converges to some λα ∈ IR+ (extracting a subsequence).

It remains to bound qε. Following [7] we assume the (qualification) condition
(H2) :

(H2)



∃W separable Banach subspace such that
W ⊂ V ′ continuously and densely ,

∃M ⊂ K × Uad ×B∗R bounded in V × U ×H, such that
0 ∈ IntWT (M) in W -topology

where T (y, u, z) = Ay −Bu− f + z .

More precisely, 0 ∈ IntWT (M) means the existence of ρ > 0 such that

∀ξ ∈W, |ξ|W ≤ 1, ∃(yξ, uξ, zξ) ∈M such that Ayξ = Buξ + f − zξ + ρξ .

Theorem 5.2. Assume (H1) and (H2); then qε is bounded in W ′ and one
may extract a subsequence converging weak* to qα in W ′.
Proof - Let be ρ > 0 given by (H2) and ξ ∈ W such that |ξ|W ≤ 1. We use
relation (5.1) with (yξ, uξ, zξ) and we get

〈−qε, ρξ〉 ≤ C1 + C2λε ,

where C1 and C2 are constants dependent only of (yξ, uξ, zξ). Assumption
(H1) provides a bound for λε and M is bounded. So there exists a constant
C (depending only of M) such that

∀ξ ∈W, |ξ|W ≤ 1 〈qε, ξ〉W ′,W ≤ C ;

(as W ⊂ V ′ and qε ∈ V then qε ∈W ′). Thus qε is bounded in W ′.
Now, we are able to pass to the limit in the penalized optimality system

with respect to ε.

5.2. Optimality Conditions for (Pα).
Theorem 5.3. Let be α > 0 and assume (H1) and (H2); then there exists

(yg
α, u

h
α, z

∗
α, y

∗
α) ∈ ∂g(yα)× ∂h(uα)× ∂Φ(yα)× ∂Φ∗(zα) ⊂ H ×U × V ′× V and

(qα, λα) ∈W ′ × IR+ such that

∀y ∈ K such that A(y − yα) ∈W
(yg

α, y − yα)H + 〈qα, A(y − yα)〉W ′,W + λα 〈z∗α − zα, y − yα〉V ′,V ≥ 0 ,(5.4)
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∀u ∈ Uad such that B(u− uα) ∈W(
uh

α, u− uα

)
U
− 〈qα, B(u− uα)〉W ′,W ≥ 0 ,(5.5)

∀z ∈ B∗R such that z − zα ∈W
〈qα, z − zα〉W ′,W + λα (y∗α − yα, z − zα)H ≥ 0 ,(5.6)

λα [Φ(yα) + Φ∗(zα)− (yα, zα)H − α] = 0 .(5.7)

Proof - Let be y ∈ K such that A(y−yα) ∈W, u ∈ Uad such that B(u−uα) ∈
W and z ∈ B∗R such that z − zα ∈ W . We use relations (4.6-4.8) with these
test functions and add them to get :

(g′ε(yε), y − yε)H + (h′ε(uε), u− uε)U +
(yε − yα, y − yε)V + (uε − uα, u− uε)U + (zε − zα, z − zε)H +
〈qε, Ay −Bu+ z − f − (Ayε −Buε + zε − f)〉+
λε

[
〈Φ′ε(yε)− zε, y − yε〉+

(
Φ∗

′
ε (zε)− yε, z − zε

)
H

]
≥ 0 ,

that is, as subsection 2.1,

(g′ε(yε), y − yε)H + (h′ε(uε), u− uε)U +
(uε − uα, u− uε)U + (zε − zα, z − zε)H +
〈qε, A(y − yα)−B(u− uα) + z − zα〉W ′,W +
λε

[
〈Φ′ε(yε)− zε, y − yε〉+

(
Φ∗

′
ε (zε)− yε, z − zε

)
H

]
≥ 0 .

As g and h are continuous and finite everywhere, (g′ε(yε), h′ε(uε)) converges
towards some (yg

α, u
h
α) ∈ ∂g(yα) × ∂h(yα). Then we may pass to the limit in

the above relation to infer

(yg
α, y − yα)H +

(
uh

α), u− uα

)
U

+
〈qα, A(y − yα)−B(u− uα) + z − zα〉W ′,W +
λα [〈z∗α − zα, y − yα〉+ (y∗α− yα, z − zα)H ] ≥ 0 .

Taking in turn y = yα, u = uα and z = zα we obtain relations (5.4)-(5.6).
Finally if Φ(yα) + Φ∗(zα) − (yα, zα)H − α < 0 we have seen that λα = 0. So
relation (5.7) is satisfied.

Remark 5.2. As we already mentioned it in Remark 4.3, equation (5.6)
is equivalent to

−qα − λα(y∗α − yα) ∈ NB∗
R∩(zα+W )(zα) .(5.8)

Corollary 5.1. With assumptions of Theorem 5.3, there exists (yg
α, u

h
α) ∈

∂g(yα)× ∂h(uα) ⊂ H × U and (qα, λα) ∈W ′ × IR+ such that

∀y ∈ K s.t. A(y − yα) ∈W
(yg

α, y − yα)H + 〈qα, A(y − yα)〉W ′,W +
λα [Φ(y) + Φ∗(zα)− (y, zα)H − α] ≥ 0,

(5.9)
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∀u ∈ Uad s.t. B(u− uα) ∈W
(
uh

α, u− uα

)
U
− 〈qα, B(u− uα)〉W ′,W ≥ 0 ,

∀z ∈ B∗R s.t. z − zα ∈W
〈qα, z − zα〉W ′,W + λα [Φ(yα) + Φ∗(z)− (yα, z)H − α] ≥ 0 ,(5.10)

λα [Φ(yα) + Φ∗(zα)− (yα, zα)H − α] = 0 .

Proof - Theorem 5.3 gives (z∗α, y
∗
α) ∈ ∂Φ(yα) × ∂Φ∗(zα) ⊂ V ′ × V such that

relations (5.4) and (5.6) are satisfied.
As z∗α ∈ ∂Φ(yα) we get, for all y ∈ K such that A(y − yα) ∈W

Φ(y)− Φ(yα) ≥ 〈z∗α, y − yα〉 ,

so that relation (5.4) becomes

(yg
α, y − yα)H + 〈qα, A(y − yα)〉W ′,W + λα [Φ(y)− Φ(yα)− (zα, y − yα)H ] ≥ 0 .

Using (5.7) we obtain relation (5.9). We can show similarly relation (5.10).
Corollary 5.2. With assumptions of the previous theorem and if g and

h are Gâteaux-differentiable, there exists (qα, λα) ∈W ′ × IR+ such that

∀y ∈ K s.t. A(y − yα) ∈W
(g′(yα), y − yα)H + 〈qα, A(y − yα)〉W ′,W + λα [Φ(y) + Φ∗(zα)− (zα, y)H − α] ≥ 0 ,

∀u ∈ Uad s.t. B(u−uα) ∈W
(
h′(uα), u− uα

)
U−〈qα, B(u− uα)〉W ′,W ≥ 0,

∀z ∈ B∗R s.t. z − zα ∈W
〈qα, z − zα〉W ′,W + λα [Φ(yα) + Φ∗(z)− (z, yα)H − α] ≥ 0 ,

λα [Φ(yα) + Φ∗(zα)− (yα, zα)H − α] = 0 .

Remark 5.3. The natural idea would be now to study the asymptotic
behavior of the previous optimality system when α → 0. Unfortunately, we
would have to set an “(H1)-like” assumption with α = 0, to be able to pass to
the limit in the α-optimality system. This is impossible since the interior of
the feasible domain of P is empty because of the non convex equality constraint
and an assumption like (H1) with α = 0 would be never ensured. However,
as we have already mentioned, this relaxed approach is sufficient for numerical
applications.

6. Example of The Obstacle Problem. In this section, we study an
example where the variational inequality leads to an obstacle problem.

Let Ω be an open, bounded subset of IRn with a smooth boundary ∂Ω. We
consider a bilinear form a(., .) defined on H1

o (Ω)×H1
o (Ω) and A the continuous

linear operator from H1
o (Ω) to H−1(Ω) associated to a such that
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Ay = −
n∑

i,j=1

∂xi(aij(x)∂xjy) + a0(x)y with

aij , a0 ∈ C2(Ω̄) for i, j = 1, . . . , n, inf {a0(x) | x ∈ Ω̄} > 0
n∑

ij=1

aij(x)ξiξj ≥ δ
n∑

i=1

ξ2i ,∀x ∈ Ω̄,∀ξ ∈ IRn, δ > 0 ,

(6.1)

We shall denote ‖ ‖, the L2(Ω)-norm, ( , ) the L2(Ω)-scalar product and 〈 , 〉
any duality-product. We set

V = H1
o (Ω) , H = L2(Ω) , DH(A) = H2(Ω)∩H1

o (Ω) , U = L2(Ω) and B = IdL2(Ω) .

Let us set also

K = V and C+ = {y | y ∈ H1
o (Ω) , y ≥ 0 a.e. in Ω} .

The convex function Φ is the indicator function I+ of C+, Then Φ∗ is the
indicator function I− of the negative cone C− of H−1 and we have already
mentioned that Φ and Φ∗ satisfy condition (4.2). Then we get as a state
equation

Ay = f + v − z in Ω, y = 0 on Γ ,(6.2)

with f, v and z belong to L2(Ω) (because of the regularity result mentioned
in Section 1.) The constraint z ∈ ∂Φ(y) becomes

y ≥ 0 , z ≤ 0 , (y, z) = 0 ,

and the α-inequality constraint Φ(y) + Φ∗(z)− (y, z) ≤ α gives :

y ≥ 0 , z ≤ 0 , (y,−z) ≤ α .

We set ξ = −z, so that the original control problem is defined as follows (see
[5])

min
{
J(y, v) =

1
2

∫
Ω
(y − zd)2 dx+

M

2

∫
Ω
v2 dx

}
, (P)

Ay = f + v + ξ in Ω , y = 0 on Γ ,(6.3)

(y, v, ξ) ∈ D,(6.4)

where

D = {(y, v, ξ) ∈ H1
o (Ω)× L2(Ω)× L2(Ω) | v ∈ Uad, y ≥ 0, ξ ≥ 0, (y, ξ) = 0}

and zd ∈ L2(Ω); The relaxed problem is

(Pα) minJ(y, v),
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Ay = v + ξ in Ω, y ∈ H1
o (Ω),(6.5)

(y, v, ξ) ∈ DR
α ,(6.6)

where

DR
α = {(y, v, ξ) ∈ H1

o (Ω)×L2(Ω)×L2(Ω) | v ∈ Uad, y ≥ 0, ξ ≥ 0, ‖ξ‖ ≤ R, (y, ξ) ≤ α}.

The results of the previous section may be applied with W = Lp(Ω) and we
get :

Theorem 6.1. Assume

∀α such that 〈yα, ξα〉 = α ,

∃(ỹ, ṽ, ξ̃) ∈ C+ × Uad ×B∗R such that
Aỹ = ṽ + ξ̃ and (ỹ, ξα) +

(
yα, ξ̃

)
< 2α .

(H1)

and

∃p ∈ [1,+∞[, ∃ ρ > 0 , ∀ χ ∈ Lp(Ω), ‖χ‖Lp(Ω) ≤ 1 ,
∃(yχ, vχ, ξχ) bounded in C+ × Uad ×B∗R (independently of χ) ,

such that Ayχ = vχ + ξχ + ρχ in Ω.
(H2)

and let (yα, vα, ξα) be a solution of (Pα); then a lagrange multiplier (qα, λα) ∈
Lp′(Ω)× IR+ exists, such that

∀y ∈ C+ such that A(y − yα) ∈ Lp(Ω)
(yα − zd, y − yα) + 〈qα, A(y − yα)〉+ λα (ξα, y − yα) ≥ 0 ,

(6.7)

∀v ∈ Uad , v − vα ∈ Lp(Ω) 〈Mvα − qα, v − vα〉 ≥ 0 ,(6.8)

∀ξ ∈ B∗R , ξ − ξα ∈ Lp(Ω) 〈λαyα − qα, ξ − ξα〉 ≥ 0 ,(6.9)

λα ((yα, ξα)− α) = 0 .(6.10)

For more details one can refer to [5]. We just mention that assumptions (H1)
and (H2) are satisfied for instance if Uad = L2(Ω) or Uad = { v ∈ L2(Ω) | v ≥
ψ ≥ 0 a.e. in Ω}.

7. Conclusion. As already mentioned at the beginning of this paper,
we have in mind the numerical aspects of the question: that is why we have
underlined that the “relaxed” problem Pα is a good approximation of the
original problem. Now, we think that the main tool for a good numerical
approach for such problems is the (necessary) optimality conditions that we
have obtained in Theorem 5.3. They allow to interpret the optimal solution
as the first argument of the saddle-point of a linearized lagrangian function,
though the problem is not convex. We have developed this point of view and
presented some algorithms in [6], for the case of the obstacle problem. The
numerical behavior of these methods is quite nice.

On the other hand, though we have not tested methods using Yosida ap-
proximation, we believe that the use of penalization is not helpful for numerics.
It seems to be too much unstable (because of the suitable choice of the pa-
rameter ε) and we think is is only a theoretical tool.
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